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ABSTRACT 

The rapid advancement of genetic engineering has allowed to produce an impressive 
number of proteins on a scale which would not have been achieved by classical 
biotechnology. At the beginning of this development research was focussed on elucidating 
the mechanisms of protein overexpression. The appearance of inclusion bodies may 
illustrate the success. In the meantime, genetic engineering is not only expected to achieve 
overexpression, but to improve the whole process of protein production. For downstream 
processing of recombinant proteins, the synthesis of fusion proteins is of primary 
importance. Fusion with certain proteins or peptides may protect the target protein from 
proteolytic degradation and may alter its solubility. Intracellular proteins may be 
translocated by means of fusions with signal peptides. Affinity tags as fusion complements 
may render protein separation and purification highly selective. These methods as well as 
similar ones for improving the downstream processing of proteins will be discussed on the 
basis of recent literature. 
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INTRODUCTION 

Proteins are the primary products of the translation of the genetic code. They are therefore 
of central interest for life science research as well as applications in a multitude of areas. 
Thus, they are a very important class of biotechnology-derived products. Enzymes have 
found a large area of applications due to their catalytic properties. Spectacular 
advancements in molecular genetics (regulation of transcription and translation, gene 
transfer, polymerase chain reaction etc.) and in the cultivation of animal and human cells 
(cell fusion, hybridoma-technique, transfection) have given the opportunity that intensive 
efforts are undertaken in order to develop processes for the production of species-specific 
peptide hormones (insulin, somatostatin, growth hormones, etc.), immunologically active 
proteins (interferons, interleukins, etc.), coagulation factors (urokinase, t-PA, factor VIII, 
etc.), as well as of vaccines and monoclonal antibodies. 

Such proteins may only be obtained economically by means of biotechnological processes, 
since they represent polymers composed out of the 21 different proteinogeneous L-s- 

amino acids (including selenocysteine). Chemical synthesis of proteins [1] is only 
competitive for the production of short chain peptides. However, chemical synthesis is 
important when non-proteinogeneous amino acids have to be incorporated into peptides. 
The chemical route suffers from a laborious and expensive protection group chemistry and 
an error rate which is still too high. In addition, it has to be taken into account that proteins 
are only active in their natural folding state and that proteins of eukaryotes often need 
posttranslational modifications (glycosylation, proteolysis). In consequence, protein 
synthesis will need the use of microorganisms and of cells of animal or human origin. This 
also means that proteins will need to be separated from complex natural media. Cell-free 
translation systems are another possible method to produce recombinant proteins. The 
usefullness of such systems in bioprocessing is under investigation [274]. The importance 
of downstream processing very likely will at least remain or even increase [2, 3] because 
the separation and purification of proteins will remain the main source of costs for the 

manufacturing of proteins. 

A whole spectrum of downstream processes has been developed for the recovery of 
proteins [4-7] and these have been documented in recent books and monographs [8-15]. 
Uncertainty with the use of novel processes, the partiality for problem-specific solutions and 
new possibilities for the production of a multitude of pharmacologically active proteins have 
considerably promoted the interest in downstream processing. Since the tool box of genetic 
engineering is more and more used for improving the production of proteins, it has been 
straightforward not only to use these techniques in order to achieve overexpression but to 
aim at the improvement of downstream processing as well. Quite some novel approaches 
for improving the downstream processing of proteins have already been worked out [16- 
19]. These novel methods may lead to the opportunity that very different proteins might be 
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purified by means of one unique process strategy. On the one hand, the physico-chemical 
properties of the proteins may be changed or amplified by means of protein design or site- 
directed mutagenesis. Recombination of different genes for the production of fusion 
proteins, on the other hand, is of primary importance because unique fusion partners may 
be chosen for the complementation of the target protein. Such fusion partners are 
adequate which are carriers of a specific affinity useful for the downstream process applied. 
The class of fusion proteins englobe the use of signal sequences in order to change the 
localization of the target proteins. 

Such approaches and similar ones will be reviewed - taken from recent literature. The 
following chapter will deal with questions referring to the choice of host organisms and the 
requirement for producing biologically active natural proteins. Only a few issues can be 
emphasized with respect to host organisms and expression in general for not overloading 
the article. A further chapter discusses possibilities of manipulating the localization of 
proteins and the properties of cells which have direct impact on downstream processing. 

The last chapter is dedicated to strategies of protein modification for the improvement of 
protein separation and purification. 

PRODUCT CONCENTRATION AND BIOLOGICAL ACTIVITY 

The economy of downstream processing of proteins highly depends on the achievable 
product concentration. Therefore, recombinant protein production aims at the improvement 
of the overall protein concentration. However, aiming at a high product concentration may 
fail, unless a high proportion of biologically active proteins is obtained. 

Overexoresslon 

The first step for improving the concentration of the target protein is the choice of an 
adequate biological system by means of which overexpression may be achieved. Many 
such expression systems are available. For the optimisation of these systems a series of 
factors have to be taken into account referring to the replication, transcription and 
translation of the genes. 

The replication of genes coding for recombinant proteins strongly influences the stable 
transmission as well as the copy number of these genes. Most expression systems for 
bacteria use plasmids as vehicles of recombinant DNA. Plasmid stability depends on both 
the structural and the segregative stability. The structural stability refers to the error rate 
during plasmid replication, whereas the segregative stability depends on the transmission 
of the plasmid on to daughter cells. Besides the correct replication of plasmids the 
structural stability is influenced by the rate of mutation and the gene repair facilities of the 
host organism. The segregative stability, commonly called plasmid stability, depends on a 
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series of factors which cannot be discussed here in detail [20]. Means for stabilizing or 
enhancing plasmid stability have been discussed by Kumar et al. [21]. 

The rate of gene expression may be accelerated by increasing the number of plasmids per 
cell. This may be achieved by using so-called multi-copy plasmids, the copy number of 
which may reach 100 owing to their particular mode of replication. Since the plasmid copy 
number has to be high only at the time when the target protein shall be produced, a 
controlled induction of plasmid replication represents an advantageous strategy. This may 
be achieved by using so-called runaway replication plasmids the copy number of which 
may easily reach 1,000 [22]. An obvious additional strategy consists of integrating several 
copies of the coding gene into the plasmid. However, it has to be kept in mind that a high 
plasmid copy number may affect the physiological state of the host organism leading to a 
limited rate of gene expression. 

Both a promoter-operator system and an appropriate termination sequence are required in 
order to achieve efficient transcription. In addition, transcription should be inducible. During 
the development of expression systems different sequences have been recognized as 
strong promoters. A strong promoter is the prerequisite of a high transcription frequency. 
The best known inducible bacterial promoter-operator systems are those using operators 
derived from the lac- [23], trp- [24] and the ~,- [25] systems. The lac-operator is often used 

for the induction of different promoters like lac and tac. Induction is achieved by the 
addition of IPTG (isopropyl-J3-D-l-thiogalactopyranoside). Promoters coupled with the trp- 

operator may be induced by iAA (3-(3-indolyi)-acrylic acid). An induction by means of a 
temperature jump is applied in the case of X-promoters using a temperature sensitive 
mutant strain with respect to the ~.-repressor. Chemical inducers may be quite expensive 

and may lead to contamination of the product. Temperature induction may cause 
undesirable secondary products to appear due to an altered metabolism. Therefore, there 
is still a need for improved novel promoters [281] - like ones inducible by oxygen depletion 
[26] or by means of a pH-shift [279]. When strong promoters are applied, a strong 
terminator is required as well. Without an appropriate termination sequence transcription 
would proceed beyond the target gene and transcription would lead to useless products. 
Appropriate sequences like the trpA-transcription terminator are commercially available 
[e.g. 27]. 

Transcription is the first step during gene expression leading to mRNA. The second step 
involves the ribosomes which are responsable for the translation of the mRNA into the 
amino acid sequence of the recombinant protein. Translation efficiency depends on the 
stability of the mRNA, the ribosomal binding site (RBS), the correct termination of 
translation as well as the use of special codons. The stability of mRNA is a function of its 
susceptibility for hydrolysis by ribonucleases. It is commonly assumed that the lifetime of 
mRNA is influenced mainly by the presence of 3'-ribonucleases, because the secondary 
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structure of the 3'-terminal sequence of the mRNA is of crucial importance [28]. In 
consequence, mRNA stability may be enhanced by changing the 3'-terminal sequence or 
shifts in growth rate [264]. The lifetime of the mRNA determines how often it may be used 
by the ribosomes for translation [29]. Newest results suggest that RNA degradation may 
depend on 5'-terminal base pairing in E. coll. [221]. 

Recombinant genes are commonly introduced behind an inducible promoter, but they often 
have their own ribosomal binding site (RBS). This may be the reason for a low translation 
frequency, although the rate of transcription may be high. Optimized gene expression 
systems include an RBS especially designed for the particular host organism [30]. Thus, 
AT-rich sequences may be introduced up- and downstream of the RBS in order to increase 
the initiation frequency of translation [31]. The distance between RBS and the start codon 
AUG may also be changed in order to achieve higher productivities [32]. Synthetic RBS- 
sequences have not led to improvements of gene expression [33]. A strong terminator is 
required for efficient translation, too. Appropriate sequences are commercially available 
[27]. 

If a synthetic gene is used the sequence of which has been deduced from the amino acid 
sequence of a protein, the base sequences of the codons for the amino acids should be 
chosen with care. Studies with genes of highly expressed proteins have shown that certain 

codons out of the pool of the degenerate genetic code are preferred [34, 266]. 

Protein Stability 

After translation the stability of the protein itself determines how much product will be 
obtained. Protein stability mainly depends on the susceptibility of the protein for proteolytic 
decomposition. Especially in the case of recombinant proteins, proteases may cause a 
considerable loss of product [35, 222]. It seems as if heterologous proteins were 
recognized as belonging to a different species with the consequence of a rapid proteolytic 
degradation. Different proteases may be responsible for protein digestion. In the case of E. 
colithe protease La coded on the /on-gene is accused of mainly being responsible for the 
degradation of recombinant proteins [36]. By using ~on-minus mutants this problem may be 
partially overcome. However, the use of such mutants may cause a series of difficulties 
during cultivation. The product of the Ion-gene is also controlling cell division and the 
development of the polysaccharide capsule. Therefore, Ion-minus mutants tend to 
overproduce polysaccharides causing strong production of slime and interference with cell 
division and growth [35]. This problem may be circumvented by controlling the Ion-gene by 
inducing the Ion-function during the growth phase and switching it off during the production 
phase. However, this control is quite delicate since the concentration of the Ion-gene 
product has to be kept in a very narrow band. This may not be achieved with commonly 
used promoters because of the constitutive gene expression taking place in spite of 
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repression [37]. By inactivation of structural and regulatory genes of the slime capsule 
synthesis it is possible to prevent slime production and the growth problems related with 
that [38]. Modifications of the sulA-gene the product of which regulates the Ion-coded 
protease may yield a significant improvement of cell division for Ion-negative strains. 
However, it has to be taken into account that Ion-negative strains are very sensitive with 
respect to the induction of stress proteins causing additional growth problems. 

Additional methods to reduce protein degradation are to inhibit the host-mediated 
degradation of foreign proteins by phage infection, using T4-promoter [262] and to consist 
the influence of growth rate on proteolysis [271]. An easier to implement strategy for 
reducing protein degradation consists in the synthesis of fusion proteins. Thus, small 
heterologous peptides which commonly are very labile have been stabilized by fusion with 
large proteins like J~-galactosidase or Staphylococcus protein A [39-43, 272]. In the case of 

such fusions it may be necessary to split off the fusion complement in order to obtain the 
target protein in the desired form. 

The export of proteins is another elegant possibility to avoid the intracellular environment 
rich of proteases [44]. However, some secretion systems may also export proteases into 
the extracellular environment. The problems related to the presence of proteases have to 
be considered especially for the operation of cell disintegration [45]. Therefore, the addition 
of protease inhibitors may be necessary during cell disruption. 

Posttranslational Modification 

Many proteins, in particular eukaryotic proteins of pharmaceutical interest, require further 
modification after protein biosynthesis. Such posttranslational modifications may consist in 
phosphorylation, glycosylation, the cleavage of sequences from pre-pro-proteins of 
especially secretory proteins as well as the cleavage of the primary protein chain. Without 

appropriate modification these proteins are often obtained in a biologically inactive form. 

In many cases it is relatively easy to produce large quantities of protein by means of 
bacterial systems like E. coil However, strains of E. cofiare not provided with a pathway for 
the glycosylation of proteins. If glycosylation is of crucial importance, other less convenient 
expression systems have to be used. Yeast cells, simple eukaryotes, have glycosylating 
activity, but often they use other glycosidic residues then those required for the particular 
case [46]. There is certainly still a long way to go until bacterial systems or yeasts may 
have learned to achieve different posttranslational modifications by means of genetic 
engineering. Cells of animal and human origin will remain the systems of choice for 
proteins needing adequate posttranslational processing [4]. Another way to circumvent this 
problem is to look for the biologically active part of the target protein which, by 
circumstance, may not need further modification [47]. 
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Inclusion Bodies, Renaturation end Protein Foldino 

37 

Recombinant proteins are often found as insoluble aggregates in the cytoplasm [17, 48]. 
Extremely high protein concentrations due to overexpression may be responsible for this 
phenomenon [270]. These accumulations of solid insoluble proteins are called inclusion 
bodies [49]. The formation of these refractile particles may represent an advantage as well 
as a disadvantage for the production of recombinant proteins. Thus, inclusion bodies are 
relatively simple to be recovered from cell homogenates [17, 50, 51], and are protected 
from proteolytic cleavage. However, a great disadvantage must be seen in the fact that 
proteins bound in inclusion bodies are biologically inactive. Therefore, these highly 
insoluble protein aggregates have first to be denatured under extreme conditions in order 
to be solubilized [51, 52]. Subsequently, these solubilized proteins have to be renatured by 
means of adequate methods in order to be transformed into their biologically active form. 
This procedure may yield heavy losses which may be acceptable if a high overproduction 
goes in common with a high added value. Genetic engineering methods for the reduction of 
aggregate formation consist in forcing protein secretion as well as in changing specific 
properties of the target protein which may be responsable for the occurence of inclusion 
bodies. Wilkinson et a/. [48] describe factors influencing the solubility of recombinant 
proteins. The critical factors englobe the protein concentration, the distribution of surface 
charge, the portion of particular secondary structures, the contents of cysteine and proline 
as well as the overall hydrophobicity. These properties may be changed deliberately by 
site-directed mutagenesis as well as by fusion of the target protein with an appropriate 
complement [53, 277]. Some approaches along these lines have been discussed by 
Kotewicz [54]. The most simple possibility for reducing or even preventing inclusion body 
formation seems to be by decreasing the rate of expression [52, 223], e.g. by lowering the 
temperature after induction [224]. 

In the case of heterologous proteins it is often inevitable that aggregates are formed and 
the whole procedure of solubilization and renaturation has to be applied [55]. The 
achievement of the native structure is the most crucial aspect for the production of 
recombinant proteins [46]. Achieving correct protein folding is a fundamental problem and 
of enormous economic impact [51]. Protein folding depends on a variety of different factors 
[56-58]. Certain additives like e.g. PEG [59] may improve folding [60]. However, the 
kinetics of folding reveals a rather complex pathway [225]. 

In recent years it has become clear that in vivo protein folding is assisted by catalytic 
protein complexes. Such proteins obviously play a crucial role for protein folding and 
assembly. They belong to the heterogeneous group of heat-shock proteins (hsp), and are 
now divided into two more or less distinct classes [226]. The class of the chaperonins 
belonging to the hspl0 and hsp60 families occur both in eubacteria, mitochondria and 
plastids, whereas the class of the hsp70 family seems to be present everywhere where 



38 E. FLASCHEL and K. FRIEHS 

protein folding occurs. Evidence is also emerging for the presence of cytosolic chaperonins 
in archaebacteria as well as in eukaryotes [226, 228]. However, the term chaperone is 
generally used for proteins which assist in protein folding. Anyway, the division of 
chaperones into two classes seems to be a quite simplistic approach, because it has been 
shown in in vivo experiments that five chaperones cooperate in a sequential ATP- 
dependent folding pathway [229]. Both in vitro and in vivo studies of protein folding have 
already revealed quite some details about their action [61, 62, 230, 231, 267] and other 
proteins assisting in protein folding like peptidyl-prolyl cis-trans isomerase and protein 
disulfide isomerase [232, 234]. Such studies may finally lead to the fine-tuning of the 
cellular machinery of protein folding. This would certainly lead to a considerable 
improvement for the manufacturing of correctly folded recombinant proteins. 

(~leava_oe of Fusion Proteins 

Fusion proteins exhibiting the desired biological activity may be used as such, if there are 
no special regulations requiring them to be transformed into their natural structure, as it is 
still common practice for proteins of therapeutical use. In the latter case the cleavage of the 
fusion complement has to be accomplished. For this purpose, the amino acid sequence of 
the fusion protein has to be constructed with a specific cleavage side. 

Fusion proteins may be cleaved by chemical or enzymatic means. A chemical cleavage 
may be relatively unexpensive, but the rather drastic reaction conditions may lead to non- 
specific cleavage and denaturation of the target protein. Enzymatic methods are generally 
preferred, because specific cleavage sites may be introduced between the target protein 
and the fusion complement [63, 235]. Over 200 protein-cleaving enzymes are listed in a 
book of B. Keil [269]. Costs for the cleavage procedure may be reduced considerably by 
the development of an adequate standard cleavage sequence for a specific proteolytic 
enzyme. Table 1 contains an overview of available chemical and enzymatic cleavage 
methods and their respective cleavage sequences. 

At2breviations used in Table 1: 

BNPS-skatol = 3-bromo-3-methyl-2-(2-nitrophenyl mercapto)-3H-indol, 
CAT = chloroamphenicol acyltransferase, HIV = human immunodeficiency virus, 

ompA = outer membrane protein A, Kex 2 = yeast endoprotease 
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Table 1: Cleavage of fusion proteins 

Chemical methods 

Cleavage agent Cleavage-site sequence 

Hydroxylamine 
Formic acid 
Acetic acid 
Cyanogen bromide 
BNPS-skatol 
2-1odo-benzoic acid 
N-Chlorosuccinimide 

Ref. 

Asn ~ Gly [64] 
Asp ~ Pro [65] 
Asp g Pro [66] 
Met ~ [67] 
Trp ~ [68] 
Trp 8 [69] 
Trp ~ [70] 

Enzymatic methods 

Enzyme Cleavage-site sequence Ref. 

Carboxypeptidase A Poly His t) [71] 
Carboxypeptidase B Poly Arg U, Poly Lys ;) [72] 
Chymotrypsin Trp U, Tyr 8, Phe ~ [73] 
Collagenase Pro-X 8 Gly-Pro [74] 
Dipeptidyl aminopeptidase X-Tyr ~ (X not Pro) [75] 
Endoproteinase Lys ~ [76] 
Enterokinase Asp-Asp-Asp-Lys ~ [77] 
Factor Xa Ile-Glu-Gly-Arg ~ [78] 

HIV-1 protease 
IgA-protease 

CAT- ~ -HIV-1 protease fusion, selfsplitting [79, 80] 
Y-Pro ~t X-Pro; Y = Pro, Ala, Gly, Thr [275] 
X = Thr, Ser, Ala 

Kallikrein 
Kex 2 
ompA-Signal-peptidase 
Protein C 

Renin 
S. aureus strain V8 protease 
Subtilisin 

Pro-Phe-Arg U 
-Lys ~ Arg 
ompA-signal sequence 
Phe-Thr-Phe-Arg, Leu-Ser-Thr-Arg, 
Pro-Glu-Leu-Arg 
Tyr-Ile-His-Pro-Phe-His-Leu ~ Leu 
Glu 1~ 
Ala-Ala-His-Tyr 

[81] 
[278] 
[82] 

[268] 

[83] 
[236] 
[84] 

Thrombin 
Trypsin 
Ubiquitin peptidase 

Arg-Gly-Pro-Ar 9 
Arg ~, Lys 
Ubiquitin 8 Relaxin ¢¢-chain 

[65] 
[86] 
[671 
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LOCALIZATION 

The localization of proteins is obviously of major importance for downstream processing. If 
the protein is to be found in the cytoplasm, the concentrated cell mass has at first to be 
broken. The target protein, in consequence, has to be separated from a complex mixture of 
proteins, nucleic acids; eventually cellular compartments and debris. A more gentle cell 
disruption may be applied, if the target protein is secreted into the periplasm of Gram- 
negative bacteria. Obviously disruption is superfluous in the case of extracellular proteins. 

Separation of Cells and Cell Disruotion 

Biomass is most often harvested by centrifugation or cross-flow filtration [6]. For E. coli, a 
genetic engineering approach has been developed for changing the properties of the cells 
in order to facilitate biomass recovery. A gene has been cloned which codes for a protein 
localized on the outer membrane surface and which is responsable for the flocculation 
properties. This modification resulted in a higher sedimentation velocity of the cells [88]. 
Similar interventions should also yield better properties for centrifugation and filtration. 

Mechanical as well as non-mechanical techniques are applied for cell disruption on a large 
scale [6,89]. The mechanical methods comprise high pressure homogenization and bead 
milling. Both processes may exhibit considerable protein losses due to uncomplete protein 
liberation and thermal denaturation. Non-mechanical methods englobe chemical as well as 
biochemical processes. Cells may be permeabilized by organic solvents or by enzymatic 
lysis of the cell wall [90]. The use of organic solvents implies appropriate safety precautions 
[91], whereas enzymic processes are expensive on a large scale [90]. 

By means of genetic modifications it becomes possible to control cell lysis. The product of 
the kil-gene of the plasmid ColE1 may yield complete lyses of the cells [92]. A recent patent 
describes how the kil-gene, under the control of the lac-promoter may lyse the cells after 
induction with IPTG [93]. This strategy yields an expression system for which cell lyses may 
be induced under controlled conditions after the recombinant product has accumulated. 

Based on the same principle, the lysis gene E of phage ~X174 may be employed - under 
control of the ~,-PL-promoter [94]. In the presence of the temperature-sensitive ~,-repressor 

cl897, cell lysis may be induced by increasing the temperature to 42 °C. 

Secretion 

Protein export may circumvent some problems inherent to the expression of recombinant 
proteins [95]. It has already been discussed that the formation of inclusion bodies and 
protein degradation due to cytoplasmic proteases may be prevented. In addition, some 
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proteins may be letal for a host when overproduced. Secretion obviously may reduce this 
phenomenon [82]. However, secretion also may yield uncorrectly folded proteins especially 
in the case of eukaryotic proteins synthesized by bacteria. 

Nevertheless, protein secretion into the medium considerably simplifies downstream 
processing. In this case the cells may be separated from the medium by e.g. centrifugation 
and the proteins may be isolated from the supernatant. The early separation of unbroken 
cells leads to reduced contamination by other proteins or cellular constituents - an obvious 
advantage. A minor disadvantage of this strategy is the need for handling large volumes of 
liquids. 

The transport of proteins into the periplasm of Gram-negative bacteria represents a special 
case of protein secretion. After separation of biomass the product may be liberated from 
the periplasm prior to being isolated out of a relatively small volume [265]. Contamination 
due to cytoplasmic constituents may be avoided by gently removing the cell capsule and 
the outer membrane. This strategy has actually gained much attention. The periplasmic 
space representing about 20 to 40% of the cellular volume in the case of E. coil is large 
enough for the accumulation of large amounts of proteins. Besides the advantage that 
proteins in the periplasm are protected against the attack by cytoplasmic proteases (but not 
against outermembrane bound proteases [244], the environment of the periplasm favours 
the correct folding of proteins. 

The gene of the target protein has to be coupled with an appropriate signal leader 
sequence and the host organism has to be provided with a cellular transport system in 
order to allow secretion of proteins. In addition, the target protein should not show 
properties preventing secretion. 

Signal Sequences: Signal sequences commonly are short N-terminal peptides 
which enable proteins to use the sorting and transport systems of a particular organism. In 
bacteria signal peptides with a length of 15 to 30 amino acids are found [96,97]. These 
structures represent positively charged leader sequences allowing proteins to cross 
membranes. It may be mentioned that hemolysin of E. co/i carries its signal peptide at the 
C-terminus. Between signal peptide and core protein a cleavage site is found at which the 
signal peptide is cleaved off by means of a specific signal peptidase after transport of the 
core protein has occured. 

Secreting proteins may show additional domains besides the signal sequence which may 
be necessary for a successful transport. In this category inner sequences are found which 
facilitate or even stop transport, like in the case of membrane proteins, giving rise to the 
development of an export competent conformation. Therefore, fusion with a signal peptide 



42 E. FLASCHEL and K. FR[EHS 

Table 2: Signal leader sequences for protein secretion 

Signal sequence Target protein I M/P Ref. 

Host : Escherichia coil 

amy Amylase, B. stearothermophi/us 

bla Proinsulin, human 

M [99] 

IgG of mouse 
13-Lactamase 
Epidermal growth factor, rat 
Triosephosphatase, chicken 

M 
M/P 
M 

[ 100] 
[ lOl] 
[102] 
[lO3] 
[104] 

cgt alk. Phosphatase, c~-amylase 

lamB 
malE 

CD4 receptor of HIV 
Gene 5 protein, phage M13 
Klenow-polymerase 
Nuclease A, S. aureus 

M 
OM 
P 
P 
P 

[282] 
[261] 
[106] 
[106] 
[106] 

ompA Colony stimulation factor, human 
Superoxide dismutase, human 
Interferon oc2 

Antiviral protein, Mirabilis 

oc-Sarcin 
Prokallikrein, human 
Nuclease A, S. aureus 

ompF J3-Endorphin 

[107] 
P [82] 

[lO8] 
M [109] 
P [1 lO] 
P [111] 
P [82] 

M [19] 

pelB 
phoA 

Antibody VH-domain, mouse 
Trypsin inhibitor, bovine 
Epidermal growth factor, human 
Fusion : #-galactosidase-alk. phosphatase 
o~-neo-Endorphin 
Fusion : MBP-~-galactosidase 
Ribonuklease T1 

OM [276,280] 
[112] 
[113] 

M/P [98] 
P [114] 
P [115] 
P [116] 

phoS Growth hormone release factor, human P [117] 

spA Parathyroid hormone, human 
Insulin-like growth factor, human 

Ovalbumin Ovalbum in 

Pullulanase 13-Lactamase 

M [118] 
M [119] 

[120] 

M [121] 
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Table 2: Signal leader sequences for protein secretion (continued) 

Host : E$cherichia coil (cont.) 

Preproineulln (rat) Proinsulin, rat 

Enterotoxin LTA Epidermal growth factor, human 

Synthetic Interferon e¢2. 

Metalloproteese Metalloprotease, with helper protein 

BRP Insulin-like growth factor, human 

I~-Iactamase & a-amylase 

hly Hemolysin 

Pseudomonas cholesterol esterase 

[122] 

[123] 

P [124] 

M [125] 

M [19] 

M [283] 

M [126] 

M [127] 

M [246] 

Host : Bacillus aubtilis 

alk. Protease alkaline Phosphatase M [128] 

B. amy/oliquefaciens 

amy, B. amy/oliquefaciens Amylase, B./icheniformis M [129] 

amy, prepro-peptide Amylase & human growth hormone M [247] 

ble, E. coil Amylase, B./icheniformis M [129] 

Prepro-neutral-protease Growth hormone, human M [130] 

Host : Saccharomyces cerevisiae 

Yeast kil ler toxin a-Amylase, mouse M [248] 

Prepro-a-factor Viral proteins, human papillomavirus M [131] 

Abbreviations used in Table 2: 
amy = amylase, bla = ~lactamase, BRP = bacteriocin release protein, cgt = cyclodextrin 

glycosyltransferase of B. circulans, hly = hemolysin, M = secretion into the medium, male = 
maltose binding protein, MBP = maltose binding protein, OM = secrection into the outer 
membrane, ompA = outer membrane protein A, ompF = outer membrane protein F, P = 
secretion into the periplasm, phoA =alk. phosphatase, phoS = phosphate binding protein, 
spa = Staphylococcus aureus protein A 
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may not be sufficient for the secretion of the fusion protein [98]. Table 2 contains a list of 
some signal sequences together with the target proteins for which they have been used. 

E. coil is of interest as a secreting host organism, though even proteins naturally occuring 
in E. coil are hardly secreted. Known signal sequences like bla (J3-1actamase), malE 

(maltose binding protein), ompA (outer membrane protein A) and phoA (alkaline 
phosphatase) originate from proteins being transferred into the periplasm of E. coli. Fusion 
proteins carrying these sequences are accordingly exported into the periplasm. However, 
this may not be true in any case. Even secretion into the medium has been observed. 
Thus, the structure of the fusion protein determines to quite some extent if a successful 
secretion may be achieved. Recent studies show evidence for the presence of a signal 
recognition particle in E. coil in analogy to eukaryotes [237, 238]. The signal sequences 
spA (Staphylococcus protein A) and malE are of particular importance since both may be 
used at the same time as affinity tags for facilitating the separation of the fusion protein. 

Secretion Systems: Different organisms are used for aiming at secretion of proteins. 
Systems of bacterial origin include e.g. Bacillus subtilis [239], Staphylococcus aureus, 
Streptomyces lividans and last but not least E. coli [96]. Important eukaryotic secretion 
systems comprise different species of yeast like Saccharomyces cerevisiae [240], 
Hansenula polymorpha [241 ], Kluyveromyces lactis [242], Yarrowia lipolytica [243], of fungi 
like Aspergillus oryzae, and cellular strains of animal and human origin. 

Not only the signal sequences used and the structural properties of the target protein are 
important in order to achieve successful secretion, but also the transport system and the 
composition of the cell membrane and the cell wall of the host organism. 

There is increasing evidence that protein folding and protein export are competing 
processes in procaryotic cells. Disulfide bonds formed in the cytoplasm can lead to 
secretion incompetence [273]. In the case of E. coil there exists the possibility to gain 
control over the expression of certain proteins involved in the pathway of protein secretion 
[239]. These proteins belonging to the family of the sec-gene products can be expressed in 
parallel with the recombinant proteins in order to achieve an improved transport [97]. 
Modifications at the level of the cell membranes of E. coli lead to the appearance of so 
called leaky-mutants. With such mutants excretion of periplasmic proteins like alkaline 
phosphatase [132], ~-Iactamase [133], but also eukaryotic proteins like pro-insulin from rat 

[134] into the medium has been achieved. Therefore, the choice of an appropriate 
microbial strain [244] or cell line [245] represents an important merible with respect to the 
export competence. Another possibility consists in amplifying the amount of porin found in 
the outer membrane of E. cofi[135]. However, such mutations often show the disadvantage 
of disturbing cell growth. Another interesting variation of this principle is the cloning of the 
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bacteriocin release protein (BRP). Human growth hormone which accumulated in the 
periplasm of E. cofiwas able to be exported into the medium upon induction of BRP [19]. 

MODIFICATION OF PROTEINS FOR IMPROVEMENT OF SEPARATION AND 
PURIFICATION 

The separation and purification of proteins may be improved either by altering or by 
amplifying certain physico-chemical properties of the target protein by means of site- 
directed mutagenesis or by introduction of an affinity tag by means of a fusion complement. 
Adding a peptide or a protein as an affinity tag to the N- or C-terminus seems to be 
particularly attractive, since the tertiary structure of the target protein has not to be known 
and the primary structure is kept unchanged. In the case of a site-directed exchange of 
amino acids it should be known that these mutations occur at the surface of the protein in 
order to have an effect on downstream processing. In addition, changing the primary 
structure may affect the biological activity of the product. In general, protein fusion is easier 
to be accomplished than site-directed mutagenesis. 

Most examples from literature are therefore to be found under the topic of fusion proteins. 
The fusion complement should exhibit a strong affinity for the complementary ligand used 
in the main process of separation. The advantage of the fusion method lies in the fact that 
in principle one generally applicable downstream processing strategy may be developed for 
a multitude of different target proteins. The additional cost for genetic engineering may be 
easily cushioned by savings on process development. Fusion proteins synthesized for the 
improvement of downstream processing often consist, beside the target protein and the 

affinity carrying protein, still of a signal leader sequence which should cause secretion of 
the fusion product into the periplasm in the case of Gram-negative bacteria or into the 
medium. Additionally, a peptide representing a specific cleavage site may be introduced 
between the target protein and the affinity carrying protein, if the desired protein has to be 
obtained in its native state. The particular problems of secretion an cleavage of fusion 
proteins has already been discussed in previous chapters. 

Such fusion proteins will in future certainly be more and more commercialized without prior 
cleavage, if the biological activity of the target protein is not affected and if the fusion 
complement has no adverse effect on the particular application. It should also be taken into 
consideration that fusion proteins, that means proteins with two or multiple functions, are of 
strong interest for innumerable applications in areas such as general analytics, 
diagnostics, pharmaceutics as well as in health care [e.g. 19, 136, 137]. These 
multifunctional proteins are, however, so special in composition - e.g. an antibody fragment 
linked with a reporter enzyme - that an additional fusion with an affinity carrying protein 
may be envisaged in order to facilitate its recovery and purification [249]. It should be 
added that the construction of a fusion protein consisting of a purification tag and a 
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multiple repeat of the target protein each time separated by a cleavage site has also been 
proposed [250]. 

Protein-Liaand Interaction 

It is important for the success of downstream processing strategies that fusion 
complements exhibit a strong specific interaction with the appropriate ligands used in the 
main separation procedure. The aim should be to obtain the fusion protein with near 
absolute purity in a single separation step. Appropriate pairs of combination of fusion 
complements and ligands are gathered in Table 3. The fusion complements carrying the 
site of affinity interaction are commonly called affinity handle, purification tag or affinity tag. 

Table 3: Potential combinations of complementary Interactions for improving 
downstream processing of proteins 

Modification of the target protein 
or fusion complement 

(paptide or protein) 

Interacting ligands on the part of the 
separation process 

(not restricted to peptides and 
proteins) 

Antigen Antibody or antibody-fragment 

Antibody or antibody fragment Antigen 

Enzyme or enzyme binding site Substrate, inhibitor or substrate analogue 

Substrat, inhibitor or substrate analogue Enzyme or enzyme binding site 

Receptor or receptor fragment Hormone 

Hormone Receptor or receptor fragment 

Lectin or lectin fragment (Poly-)saccharide 

Binding protein Binding ligand (e.g. DNA, RNA ...) 

(Poly-)histidine Metal-chelate ligand 

(Poly-)lysine, (poly-)arginine Charge ligands, Ion exchangers 
(poly-)glutamate, (poly-)aspartate 

(Poly-)phenylalanine Hydrophobic ligand 

(Poly-)cysteine Thiol group 
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Purification tags obviously have to be peptides or proteins, whereas ligands may be 
derived from any source biological or chemical. The term affinity interaction is used for the 
capacity of complex formation between antibody and antigen (immunoaffinity), between 
receptor and messenger as well as between enzyme and substrate or inhibitor. The 
complexation of enzyme with substrate analogues and of e.g. (poly-)histidine sequences 
with chelating ligands is often called pseudo-affinity interaction. However, the term affinity 
is nowadays used in a quite broad sense. 

Affinity-based separation methods are state of the art in downstream processing of proteins 
[138]. However, only affinity chromatography has been developed so far that a multitude of 
ligands bound on solid phases are commercially available [139]. Very high specificities may 
be obtained with monoclonal antibodies raised against fusion complements. Since the 
production of antibodies is quite expensive, the application is restrained to the recovery of 
expensive proteins which have to be obtained in extremely high purity. In this case fusion 
proteins offer the possibility that antibodies raised against the fusion complement may be 
used for the recovery of quite different target proteins. Thus, the costs for development and 
production of the antibody may be settled against the benefit from several products. A new 
trend is the expression of immunologically active antibody fragments in bacteria [140]. This 
should considerably diminish the costs of production of specific antibody activities. This 
would also allow for a reversal of the commonly used method leading to the situation that 
the fusion complement may be the antibody and the ligand may act as the antigen. 
However, a problem commonly accountered for using the principle of immune-affinity is 
that the antibody-antigen complexes only dissociate under quite drastic conditions. 

Enzymes and their binding sites are quite convenient fusion complements, if these are 
known to form stable complexes with natural or synthetic substrates or inhibitors, 
respectively. A reversal of this principle is possible if a peptide may be identified as a 
potent inhibitor. All kinds of substrate affinity are quite important for downstream processing 
of enzymes. The most extensive experiences for the use of affinity interactions have been 
gathered in this area. Reactive dyes have found particular attention as chemically stable 
ligands [141]. These had been introduced mainly as coenzyme analogues into affinity 
separation techniques. Quite a number of this ligands bound to solid phases are 
commercially available. In principle, there is obviously an innumerable number of 
candidates on both sides, the purification tag and the Ugand. 

Highly specific interaction may be expected from the combination of a receptor and its 
respective messenger. If the messenger is a peptide hormone the principle may be 
reversed. 

Saccharides are potent ligands binding to appropriate lectins. If the gene of the appropriate 
lectin is known, this interaction may be used in protein recovery as well. 
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The class of binding proteins shall comprise all those proteins which do not fit into the 
categories already mentioned. Examples for such proteins are those which exhibit pseudo- 
immuno-affinity interactions like the Staphylococcus proteins A [142] and G, which bind to 
specific gene sequences (DNA or RNA) as well as proteins which interact with certain 
chemical groups or molecules. New methods from molecular genetics like reverse 
transcription and the polymerase chain reaction allow for producing (short chain) RNA, 
which binds certain proteins or peptides with high specificity [143,144], by repeated cycles 
of mutation/selection/amplification. This technique might be used in order to synthesize 
specific (RNA-) ligands for any peptide which is to be used as a fusion complement. 

An extremely interesting method for improving the separation and purification of proteins is 
based on the interaction of metal chelate ligands with, particularly, histidine side chains of 
proteins, because it is rather simple to be applied. Although this interaction is known since 
1975, it has only found deeper interest because of the evolving genetic engineering 
methods. These methods permit either to introduce histidine residues at the surface of 
proteins by site-directed mutagenesis or to introduce a histidine-rich sequence at the 
terminus of the target protein. With respect to the specificity of the interaction it is quite 
helpful to know that histidine represents one of the most rare proteinogeneous amino 
acids. The most commonly used chelating ligand is the three-dentate iminodiacetic acid 
(IDA). Appropriate supports are easily derivatized with this chelating group [145] and 
respective chromatographic phases are offered by several companies [146]. Additional 
chelating ligands are N,N,N'-Tris (carboxymethyl) ethylenediamine (TED) [145], nitrilotri- 
acetic acid (NTA) [147] - actually N-(5-amino-l-carboxypentyl) iminodiacetic acid, a lysine 
derivative - and ethylenediamine-N,N'-diacetic acid (EDDA) [148]. Metal ions which have 
most commonly been used comprise Cu(ll), Ni(ll), Zn(ll) and Fe(lll). Cu(II)-IDA groups form 
already stable complexes in the presence of only one accessible histidine side chain, 
whereas for Zn(II)-IDA two vicinal histidine residues are required [149]. However, recent 
results have shown that there are exceptions from this simple rule [150]. The Ni(II)-NTA 
group seems to be particularly suited to complexing proteins with several histidine residues 
in series [151]. The chelate-protein complexes are stable in the neutral pH-range. Complex 
dissociation may be forced by decreasing the pH or by means of adding ammonium ions, 
imidazole, histidine or other complexing agents which compete with the protein for the 
chelating group. The application of this principle in chromatography is known under the 
term immobilized metal affinity chromatography (IMAC) which is well documented [146, 
149]. For modification of the target protein, peptides of several histidine residues are the 
obvious fusion complements to be used in order to achieve a high selectivity of separation. 

Altering the properties of proteins by means of fusion with amino acid oligomers or with 
self-repeating amino acid sequences can be done quite easily by genetic engineering. 
Oligomers of amino acids with charged side chains (lysine, arginine as well as glutamic- 
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and aspartic acid) may be used in order to recover proteins selectively by means of 
oppositely charged groups like ion exchangers. Hydrophobic interaction may be used for 
the recovery of proteins derivatized with oligomers of hydrophobic amino acids. The 
reactive thiol group of cysteine is able to form reversible covalent bonds with ligands. 

Downstream Processino 

Separation processes and purification steps of particular interest for downstream 
processing of recombinant proteins shall be discussed in this chapter. In principle, this area 
is welt documented [e.g. 8-15, 152], however, it evolves rapidly. With increasing amount of 
proteins of high purity, large scale processing [13, 153] and continuous operation [5] are 
gaining considerable interest. 

A survey on processes applied for the separation and purification of recombinant proteins 
is given in Table 4. The largest choice of commercially available solid supported ligands 
can be found for processes based on adsorption. A rich chemistry for the activation of solid 
surfaces and polymer matrices is known in order to bind particular ligands in such a way 
that they may interact with proteins. Therefore, chromatography is the most commonly 
used technique for protein separation and purification. Unfortunately, the term 
chromatography is used nowadays for quite a number of different techniques. 

Table 4 : Processes for downstream processing of proteins 

1 Solid-phase extraction 

1.1 Adsorption 

1.2 Chromatography 

2 

2.1 

2.2 

Liquid-phase extraction 

Aqueous two-phase extraction 

Microemulsion two-phase extraction 

3 Precipitation 

4 Membrane processes 

4.1 Cross-flow filtration (micro- or ultrafiltration) 

5 Electrophoretic processes 
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If proteins are modified by genetic engineering with respect to downstream processing, it is 
in most cases done by introducing affinity interactions with the aim that a stable complex of 
the protein and a carrier-fixed ligand may be obtained . The respective adequate 
processing step is commonly called chromatography, also called replacement 
chromatography, but represents a process of adsorption/desorption. By means of this 
technique, the capacity of the solid phase can be used to a maximum. The separation 
selectivity is optimized by the choice of different eluents applied in series. Elution is mainly 
carried out in fixed beds in order to achieve a concentrating effect as high as possible in 
addition to separation owing to the small degree of backmixing, whereas charging may 
happen as well in well-mixed apparatus [154] or in fluidized beds [155]. Well-mixed 
systems are particularly suited, if the target protein is to be recovered in the presence of 
biomass or cell debris [156-158]. Since the diffusional resistance of proteins is quite high, 
small macroporous particles have to be applied. However, the operation of beds of small 
particles may be limited by a high pressure drop. Therefore, columns with small aspect 
ratio (e.g. radial-flow columns) have gained considerable attention. In last consequence 
this leads to the application of functionalized porous membranes [159-161]. 

In the area of liquid phase extraction, aqueous two-phase systems have proved successful 
not only for the separation of biomass and cell debris but also for the separation of proteins 
[e.g.15, 162]. Since phase separation occurs due to the incompatibility among water- 
soluble polymers or of these with salts, affinity interactions can be used, if the respective 
ligands are bound to the respective polymers. A polymer of central importance is 
polyethylene glycol (PEG). This polymer may be easily derivatized with groups like 
coenzymes, reactive dyes, chelate- and other affinity ligands [163]. The derivatized PEG is 
able to drag the protein into the polymer-rich phase [164-168]. 

Another system for liquid phase extraction consists of an aqueous phase in contact with a 
microemulsion - the latter is also called reverse micellar phase. Microemulsions are 
thermodynamically stable systems consisting of water, surface active agents and unpolar 
solvents. Proteins may be solubilized in the so-called reverse micelles. Proteins may be 
incorporated preferentially into the microemulsion phase by synthesizing surfactants of 
which the hydrophilic group represents the affinity ligand [169]. 

The precipitation by means of ammonium sulfate or acetone is a classical process for 
concentrating and fractionating proteins. A precipitation of higher selectivity and requiring 
less auxiliary substances may be achieved, if bifunctional ligands or functionalized 
polymers are used as precipitating agents. Polymers like polyethyleneimine (PEI) or 
chitosan are well suited in order to precipitate negatively charged proteins. Such polymers 
may be coupled with affinity ligands like in the case of polyethylene glycol, and may be 
used for affinity precipitation [166, 170, 171]. 
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Common membrane processes like uitrafiltration are unsuitable for the fractionation of 
proteins, because of a quite diffuse pore size distribution of membranes and the interaction 
of different proteins in the stagnant boundary layer [172]. Only if the molar mass of the 
target protein would be enlarged considerably by artifical means, it could be separated 
from other proteins present. This may be achieved most simply and selectively by using 
high molar mass polymers or microscopic supports derivatized with affinity ligands which 
are effectively retained by porous membranes. When the crude protein mixture is pumped 
into the ultrafiltration plant, the target protein forms a complex with the support. The 
complex as such is retained, whereas undesired proteins may leave the ultrafiltration unit. 
After a washing cycle, the target protein may be liberated by means of the addition of a 
competing complexing agent. For this purpose, supports have been used in the form of 
soluble polymers as well as of finely divided porous solid particles [166]. 

Since the charge and the isoelectric point, respectively, of a protein may be altered quite 
easily by genetic engineering methods, electrophoretic separation techniques may be of 
interest, too. For the purpose of production, continuously operating processes would be 
most appropriate [173]. Respective apparatus with uncompartimented cells are already 
available [174, 175]. Cells divided by ampholyte membranes and equiped with separate 
loops for liquid recycling may be used for producing large amounts of proteins 
discontinuously. Thus, minor differences with respect to the isoelectric point are sufficient in 
order to obtain proteins of high purity [176]. 

Survev of ADDllcatlons 

Examples with respect to the use of genetic engineering methods for the improvement of 
protein separation and purification are gathered in Table 5. Each new issue in the table is 
initiated by a hyphen. If the hyphen is omitted in one of the columns, the last entry above 
the actual position is still valid. Some of the signs used in Table 5 have to be explained. 
The sign "&" signifies that different experiments have been carried out, whereas the sign 
%" in the column fusion complement is used when both N- and C-terminal fusions were 
applied to one target protein. 

The entries in Table 5 are arranged according to the kind of interaction. It has to be 
mentioned that, when protein A (SPA) has been used as a fusion complement, this is to be 
found under the category of immunoaffinity because it binds to immunoglobulin G (IgG). 
However, it does not interact with the antigenic determinant, but with the constant Fc- 
region. This kind of binding is commonly called pseudo-immuno affinity interaction. 

With a few exceptions, almost all of the proteins mentioned in Table 5 have been produced 
by expression in the domestic bug of the molecular geneticists, in E. coil. Therefore, the 
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potential for secretion is quite restricted. By fusion of the target proteins with secretory 
proteins or signal leader sequences, the respective fusion proteins may be directed into the 
periplasmic space of E. coil For secretory purposes the genes of e.g. ompA, protein A, 
protein G or the maltose binding protein have been used for complementation. Eukaryotes 
and Gram-positive prokaryotes are better suited, if export into the medium is desired. 
However, protein release into the medium has been observed in rare cases with E. colt, 
too. Otherwise, Table 5 does not contain any indication about signal sequences used for 
inducing secretion nor about the introduction of special sequences serving as cleavage 
sites for the fission of fusion proteins. Nevertheless, the respective auxiliaries are indicated 
which have been used for cleaving the fusion protein - as far as this topic was a subject of 
investigation. Two cases are included (Table 5, No. 1.10, 2.13) the objective of which has 
been to obtain fusion proteins of enzymes for facilitating their immobilization. Since the 
fusion complement serves for binding with the support, the question in this case is similar 
to that where the objective is downstream processing. However, the very product is the 
fusion protein exhibiting the activity of the target enzyme. 

The ~-galactosidase of E. coil does not appear particularly noticeable in Table 5, because 

only recent literature (since ca. 1984) is reviewed. Respective fusion vectors with or without 
protease cleavage site are commercially available [177]. All fusions with ~-galactosidase of 

E. coil are suited a priori for the improvement of downstream processing since its substrate 
affinity for e.g. APTG may be exploited. The compilation of the target proteins clearly 
shows the great interest for the expression of eukaryotic proteins and particularly those of 
human origin in rapidly growing prokaryotes. Several of the target proteins mentioned like 
J3-1actamase, SPA-ZZ, ~-galactosidase and galactokinase are simply model proteins which 

have been taken for testing purposes. Table 5 only contains two examples (Table 5, No. 
4.11, 7.1) in case of which site-directed mutagenesis has been applied for improving 
downstream processing. In all other cases purification tags have been introduced by 
means of fusion. 

The ideal fusion complement serving as affinity handle should be able to form a stable 
complex with an inexpensive, chemically stable and easily derivatized ligand with an 
absolute specificity. However, the complex should dissociate under mild conditions. In 
addition, it is desirable that both components affinity handle and ligand would be of simple 
structure. With respect to these requirements, the FLAGTM-peptide may be mentioned. It 
consists of a sequence of only 8 amino acids (AspTyrLysAsp4Lys-) and may be used for N- 
terminal fusion. The first four amino acids represent the antigen with the help of which a 
fusion protein may bind to the monoclonal antibody (mouse anti-FLAG IgG M1) as the 
ligand. The following sequence (Asp3Lys-) represents the specific binding site for 
enterokinase which can be used for splitting off the octapeptide from the target protein. 
Although this case deals with an antibody-antigen complex, dissociation may be achieved 
under mild conditions because the interaction depends on the presence of calcium ions. 
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The fusion protein is only bound in the presence of calcium ions, whereas the complex 
dissociates when calcium ions are withdrawn. Since the FLAG-peptide is small and very 
hydrophilic, it can be expected that it may be found at the protein surface and thus may be 
accessible [178]. The dependence on the availability of specific antibodies, however, has to 
be taken into account for an economic analysis of the separation process. 

Fusion complements based on protein A from Staphy/ococcus aureus are of interest in 
many respects. This protein is stable against proteolysis and forms stable complexes with 
the constant region (Fc) of IgG of different mammals. The wild type gene consists of a 
signal leader sequence for secretion, five IgG-binding domains (E,D,A,B,C) and an 
additional binding domain for the integration of protein A in the cell wall of S. aureus. 

Fusion complements may be selectively assembled by taking e.g. the signal sequence 
together with a single or a repeated sequence of binding domains [142]. The complement 
SPA-ZZ is such a designed complement consisting of the signal leader sequence and two 
B-domains containing two point mutations. These point mutations (AsnGly--)AsnAla) were 

introduced in order to protect the B-domain against hydrolysis by hydroxylamine. A site 
directed mutation at the N-terminus of e.g. IGF-I (Met~Asn) is sufficient for the introduction 
of a cleavage side (AsnSGly) to allow the fusion protein to be split by means of 

hydroxylamin. By using both fusion complements SPA-EE and -ZZ it has even been 
observed that about 80% of the fusion protein with IGF-I or -II expressed in E. coil were 
exported into the medium [64, 119]. Fermentation capacities up to 1000 L have already 
been applied for the production of IGF-I [179]. Vectors for the assembly of SPA-fusions are 
commercially available [177]. Plasmids with a temperature - inducible promoter have been 
described [252] as well as one which permits a C-terminal fusion with SPA-ZZ [253]. 

The periplasmic maltose binding protein of E. coil is another commonly used fusion 
complement. It may be used for inducing the secretion into the periplasm. The fusion 
product adsorbs on cross linked starch, whereas elution may be achieved in the presence 
of maltose. A disadvantage of this purification tag is its relatively high molar mass (about 41 
kDa) in comparison with e.g. SPA-ZZ (about 14 kDa) or the FLAG-peptide (< 1 kDa). 
However, an advantage which should not be underestimated is given by the fact that an 
inexpensive ligand can be used. 

An inexpensive ligand is also used in the case of the metal-chelate technique. The 
complementation of the target protein with histidine-rich sequences can easily be achieved. 
With the introduction of vicinal histidine residues and their interaction with Ni(ll)- or Zn(ll)- 
activated chelating groups, a high selectivity may be obtained [254]. Some cloning kits are 
commercially available which are based on a His 6 fusion complement [180]. 

A categorization according to the kind of separation or purification process is not given in 
Table 5. This is due to the fact that other processes than adsorption and chromatography, 
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respectively, have rarely been applied. Extraction in aqueous two-phase systems may 
successfully be used, if the fusion complement interacts specifically with the soluble 
polymer of the phase system (e.g. PEG). It is known that ~-galactosidase of E. colt is 

characterized by an exceptionally high distribution coefficient in favour of the PEG-rich 
phase of PEG-salt systems. If e.g. protein A or G are linked with J3-galactosidase, an 

essentially more favourable distribution may be found compared with the extraction of the 
original proteins [181, 182]. Tryptophan side chains on the surface of ~-galactosidase are 

thought to be responsible for the favourable partitioning of this enzyme. This assumption 
has impressively been proved by the design of a fusion complement consisting of the 
peptide AlaTrpTrpPro ("partitioning peptide") and the use of oligomers of this sequence 
[183,255]. In such cases specific affinity ligands are not required. However, the interaction 
with specific affinity ligands bound to a polymer of the aqueous two-phase system is of 
more general application. The influence of X--~His point mutations on the affinity 

partitioning in Co(ll)-IDA-PEG-doted PEG-salt systems has been studied. If histidine 
residues are introduced into the protein backbone in such a way that two of them may be 
found in vicinal position on an o~-helical structure (His-X3-His) on the protein surface, a 

considerable improvement of the distribution in favour of the polymer-rich phase can be 
expected [184]. 

Only two groups of authors report about the application of affinity precipitation. Fusion 
proteins of ~-galactosidase of E. colt with polyaspartate sequences of various length have 

been precipitated by means of polyethyleneimine [185, 186]. Relatively long polyaspartate 
sequences were required in order to achieve an appreciable accumulation of precipitate - 
after nucleic acids had been broken down [185]. Ligands with more selective interaction 
would certainly be better suited as precipitating agents [e.g. 187]. A fusion protein of 
human P°glycoprotein and ~-galactosidase has been recovered by immunoprecipitation 
[74]. In this case the fusion protein was complexed with polyclonal antibodies against 13- 

galactosidase of rabbit and was precipitated with protein A bound to sepharose which 
means that the fusion protein was recovered adsorbed to the sepharose particles. Auto- 
precipitation may be induced by utilizing the C-terminal fragment of light meromyosin 
(LMM) from rabbit fast skeletal muscle as the fusion complement. The myosin heavy 
chains undergo coiled-coil interaction. Such fusion proteins precipitate in dilute salt 
solutions whilst they are soluble in concentrated salt solutions [258]. 

If the fusion protein is cleaved in order to obtain the target protein in its native form, the 
fusion complement may be removed by means of the same strategy used for the 
separation of the fusion protein [18]. This principle confers a certain charme to the strategy 
of fusion. One problem remains to be solved, that is the removal of the protease used for 
cleaving the fusion product. The immobilization of proteases on macroporous supports of 
small particle size might eventually solve this problem in an economic manner [188, 235]. 
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This short review under the subject of genetic engineering methods for improvement of 
downstream processing of proteins has shown that extremely interesting strategies have 
been developed which are equally being applied in both areas research and production. 
However, It has to be mentioned that still a lot of problems have to be solved. The practical 
application of these strategies still holds many surprises due to superficial knowledge about 
protein expression, folding, sorting, and post-translational processing. The safe knowledge 
accumulated so far together with the rapid progression in this area, however, will certainly 
lead to a broad application of the strategies briefly outlined here for the production of 
recombinant proteins. 
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