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We analyse numerically an SU(3) Higgs model with complete symmetry breaking and radial degree of freedom on 
asymmetric, periodic lattices. The character of both the Higgs and deconfining transitions is found to depend on the Higgs 
self-coupling and on a parameter which may simulate the number of flavours. In particular, an increase in the latter leads to 
the disappearance of the deconfining transition for small Higgs masses. 

1. I n t r o d u c t i o n .  The phase structure of  gauge 
models with Higgs fields that  "break the symmetry  
comple te ly"  in the traditional perturbative language 
still remains insufficiently understood.  The main 
reason is the so-called duality [ 1 - 3 ]  between con- 
finement and the Higgs mechanism and - closely re- 
lated to it - the nonexistence of  a simple order pa- 
rameter characterizing the Higgs ("broken symmet ry" )  
phase unambiguously. 

On the other hand the popular  "inflat ionary 
scenarios" for the very early universe [4,5] rely in an 
essential way on the existence of  a first-order transi- 
t ion between the "broken"  and "unbroken"  phases at 
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least at high temperature.  Earlier Monte Carlo searches 
for such a phenomenon in SU(2) models both  with 
adjoint [6,7] and fundamental  Higgs [8,9] do not  
always give unambiguous evidence of  its occurrence. 
In this paper we go from SU(2) to SU(3). 

For  this group it is not  quite as straightforward 
to "completely  break the symmet ry"  as for SU(2); 
a single fundamental  SU(3) Higgs field would still 
leave an SU(2) subgroup unbroken.  What would be 
needed is a "f lavour" multiplet  of  fundamental  Higgs 
fields. On the other hand, in the case of  SU(2), 
"complete breakdown" is achieved by a single fun- 
damental  Higgs field which can also be described by  
an SU(2) matrix,  together with a radia/degree o f  free- 
dom if  desired. This suggests to t ry  to achieve "com- 
plete b reakdown"  in SU(3) also by  choosing for the 
Higgs fields multiples of  SU(3) matrices. At  first we 
thought that this choice would not  be in any essen- 
tial way different from a conventional model with a 
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multiplet of Higgs fields. The often surprising resuks 
we are describing in this article, however, make this 
belief rather doubtful. In particular the model shows 
a wealth of first-order transitions, some of the sort 
that that should be liked by inflationary cosmologists. 
We are not sure, however, to what extent these phe- 
nomena are artifacts of the model. We are currently 
checking this by running a similar study of a model 
with a more conventional Higgs multiplet [10]. 

That our model might show some peculiar fea- 
tures could perhaps be expected because, unlike in 
the case of SU(2), the multiples of SU(3) matrices 
do not form a linear space, so a perturbative analysis 
is not easily possible. The smallest linear space in 
which our Higgs fields could be imbedded is the space 
of all complex 3 × 3 matrices [ 11 ] ; the restriction to 
the multiples of  SU(3) matrices can be thought of as 
arising as a limiting case of  a rather complicated po- 
tential. 

2. The model .  Our model has the following degrees 
of freedom: The usual gauge fields (link variables 
{Uu(x)}  , Uu(x  ) E SU(3)); Higgs fields living on sites, 
consisting of radial and internal degrees of  freedom 
(R (x ) ,  V(x)} (V(x) E SU(3)). 

The action we choose has the form 

+ 
2n ~ ]  Re Tr R x V x Ux, u Vx+uRx+ . S =  - -3- x , .  

+ ~ ] R 2 + X  ~ D ( R 2 - 1 ) 2 - ~  ~ ]  R e T r U a p .  
x x P laq .  (1) 

This action contains the parameters K, X, 3 corre- 
sponding to the Higgs mass, coupling constant of the 
Higgs self-interaction and gauge coupling constant. 

In order to fully specify the model we have to 
give a probability measure on the field configurations. 
This will be given by 

Z - l e  - S  1-I dUx,  u r I  d V  x I-I R f x d R x  . (2) 
X , U  X X 

dU u, d V  denote the Haar measure on SU(3), dR the 
Lebesgue measure on [o, co). It should be noted that 
there is an additional free parameter f appearing in 
this measure. Unlike the case of SU(2), where f = 3 
would lead to the standard fundamental Higgs model, 
here there is no canonical choice o f f .  We will look at 
various casesf  = 3 , f =  8 , f  = 17 and f =  50, and we 

will see that the phase structure is rather sensitive to 
this parameter .f  = 8 is suggested by the dimension 
of SU(3) and analogy with SU(2) , f=  17 by the di- 
mension of the space of complex 3 × 3 matr ices.f= 
50 was chosen to have some comparison with QCD 
with fermions (see below).f  = 3 is just a small value. 

To understand, at least roughly the effect of  vary- 
ingf, consider that there were a natural choice for it, 
f = f o  say, leading to an effective potential without 
logarithmic terms (e.g.f0 = 3 for SU(2)). Then using 
the measure eq. (2) w i t h f # : f  0 simulates a term 

- ( f  - fO) l n R x  (3) 

in the effective potential, producing additional struc- 
ture at R x = 0. Due to quantum effects the loga- 
rithmic singularity at zero will be smeared. F o r f > f  0 
we thus get a peak at R x = 0, resembling a Higgs po- 
tential, even if the original action eq. (1) has positive 
mass squared (K < ~ (1 - 2X)). F o r f < f  0 on the 
other hand, a Higgs-type potential (K > ~(1 - 2X)) 
will develop a second deep at the origin which can 
lead to a first-order phase transition. 

Similar effects have been observed for SU(2) with 
f = 0 , 3  [9]. 

3. Results .  As remarked before our model has a 
tendency to show first-order transition. As in QCD 
with fermions [12-14] at finite temperature and low 
K we find persistence of the first-order deconfinement 
transition of the pure SU(3) gauge model. But we also 
find first-order transitions by varying K at fixed/3, 
corresponding to a transition between "broken" and 
"unbroken" phases. Generally these transitions be- 
come weaker, sometimes become second order (or 
even disappear altogether) as we increase f and/or X. 
The limiting case X = oo (corresponding to R = 1) 
seems to show an at most second-order transition. 
On the other hand it is remarkable that at low f ( f  = 
3) and at ~, = 0 even the "spin model"/3 = co has a 
first-order transition. This transition is not quite like 
the usual magnetizing transition in spin models. The 
main effect seems to be a transition between a phase 
in which R x fluctuates around small values to a phase 
in which R x fluctuates around a value of the order 
of Rcl. Of course the phase with small R x values is 
at the same time disordered because the link term in 
the action is small for small R x ,  whereas in the other 
phase we find spontaneous magnetization. So at the 
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transition both <Rx> and the magnetization c~ jump. 
This way of  modelling ferromagnets with first- 

order transitions ( '~houless  effect") may be of  some 
interest. 

For X = 0 our models become unstable for K > ~. 
But there is a clear signal of  a phase transition at/3 = 
0% K = K c < ~-, ( a t f  = 17). This transition also occurs 
for/3 < ~ and seems to become actually stronger 
there. 

Even more remarkable is the following phenome- 
non: For f =  8, X = 0.1 we have a clear second-order 
transition in the spin model (/3 = oo). This transition, 
however, seems to become first order as we turn on 
the gauge coupling (fl < oo) and then disappear again 
for very strong gauge coupling (the transition is defi- 
nitely gone by/3 = 0.5 but we did not try to localize 

the end point). 
We summarize our results in four figures. The cal- 

culations have been done on the Cray-1 computers of  
IPP Garching and of  WRB Berlin. We used vectorized 
programs as have been described in ref. [15]. The 
simulations have been done on lattices of  size NtNs 3 
with N t = 2, N s = 4, 6, 8. We take typically some 
thousands of  sweeps per point. 

Fig. la  shows a rough phase diagram f o r f  = 8, X = 
0.1. We use the values o f R  = <R 2> and of  the Polyakov 
loop expectation P = (Re Tr II t U(x,t), 0 to distinguish 
three regions: 

R,  P large : the Higgs region,  

R small, P large : the deconfined region,  

R,  P small : the conffmement region. 

Al thoughR,  P are not order parameters, the various 
transitions are accompanied by jumps or strong varia- 
tion in these expectations. Figs. l b - l d  show typical 
behaviour o f  various observables across the transition 
lines. 

Here and in the following: 

A = ~/3(Re Tr(Uap)) ,  

H = ~K(Re TrRxV x + Ux,#Vx+~Rx+#), 

e G = A (time-like plaquette) 

- A (space-like plaquette),  

t h  ( p / 1 0 )  
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F~.  ] .  General picture for f =  8, ~ = 0.1. (a) Phase structure 
and transitions: Higgs and finite temperature.  The capital 
letters (A, B, E, ...) denote runs  along ~ = const,  or r = const.  
lines, by which the  t ransi t ions were localized: first-order tran- 
sitions (A, Q, B, R);  second-order or weaker (F, K, L); no 
transi t ion (E, M). (b) The  behaviour of  some YM-observabtes 
across the t ransi t ions A, L,  B: o: P;  o: A X 1/2 (X 1/4 for B); 
~x: eG × 4. (c) Same for some Higgs observables: o: R X 1/10; 
X : H X  1 / 1 0 ; V : e H X  4. 
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e H = H (time-like link) - H (space-like link),  

where N V is the lattice volume. 
Next we illustrate the fact of  the Higgs transition 

as function o f f ,  both for the spin model (fl = oo; fig. 
2) and for the Higgs model (/3 < ~ ;  fig. 3). As noticed 
above, the transition of  the spin model, which for f =  
8 is second order, becomes first order f o r f  = 3 while 
getting weaker for f =  17. For/~ < oo the transition is 
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Fig. 2. The spin model transition (/3 = *~). (a) f = 3, k = 0.1 ; (b)  f = 8, h =0.1 ; (c) f = 17, X = 0.1 ; (d) R = 1 ; (e) f = 17, h = 0. 
Here: o: R X 1/10 (R × 1/20 for  ( e ) ) ; X : H ×  1 /5 ;V:  e H X 4 ; o : Q ~ .  

steeper becoming first order for f =  8 while apparent- 
ly remaining second order for f =  17. Finally, going to 
X= 0 seems also to strengthen the transition, while 
fixingR x = 1 weakens it. 

Finally we discuss the fate of the deconfining tran- 
sition. For small K it is first order, weakening as ex- 
pected with increasing K (and also with increasingf 
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Fig. 3. The Higgs transition at/3 < o0. (b) f =  8, h = 0 . 1 , / 3  = 5 . 6  

( Q ) ; ( c ) f  = 17, k = 0 .1 , /3=  5 . 6 ; ( d )  R = 1,/3 = 6; ( e ) f =  17, 
h = 0,/3 = 5.2. Here o: P;  u: A = 1/4; a: eG X 4 (right scale); 
e : R ×  1 / 1 0 ( R ×  1 / 2 0 f o r ( e ) ) ; × : H X  1 / 5 ; V : e H ×  4. 

and/or k) see fig. 4. In fig. 4 we present the situation 
for f =  50, ~ = 0. The reason for using such a high 
value for f i s  the following. To the lowest order in 
the effect of  the Higgs fields can be obtained from 
an effective action with a Polyakov loop term (we 
consider lattices with N t < 4) 

(2K)Nt(1R'2)Ntl/TrNs\ t---1 U(x't)'o+h'c') " (4) 

Here 

R-- ~ _ f dr r/+ 2 exp( - r  2) _ f + 1 

f dr r£ exp(-r  2) 2 (5) 

To the same order in n QCD with Nf fermions pro- 
duces a similar term [12] 

N t  

(2K)Nt2/Vf(Trt[I 1= U(x,t),6+h.c.), (6) 

Thus to the lowest order in K the two models coin- 
cide if we take 

f = 1 2 ( 6 N f )  1 ] N  t _ 1 , ( 7 )  

leading t o f ~  50 forNf  = 3 , N  t = 2. Notice that we 
could not obtain the same effect by choosing a larger 
g because this latter is the expansion parameter. What 
we need is to introduce many more flavours and this 
we can simulate economically by choosing a large f.  

The results in fig. 4 show the weakening of  the 
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Fig. 4. The deconfining transition for f=  50, h = 0. (a) The 
transition line. (b) The jump in some observables as function 
of K (points R, C, D); o: P; a: eG. (c) The behaviour across 
the transition at C: o: P; n :  A × 1/2; a: e G X 4. (d) The gen- 
eral behaviour along the lines X, Z. o: P; X : H × 1/20 (both 
left-hand scale); o :A × 1/2, o: R X 1/50 (both right-hand 
scale). (e) Cross-over region below # = 2.4. o: P; o: A; z~: eG; 
V: e H. 

( for  small ~ still first order)  deconf in ing  t ransi t ion up 

to  its comple te  disappearance:  the  t ransi t ion does 

no t  ex t end  outs ide  the  region/3/> 2.4, K ~< 0.1 (we 

did no t  t ry  to localize precisely the end poin t ) .  How-  

ever a kind o f  cross-over region may  be  observed for  

/3 ~< 2.4. The  ef fec t  o f  bosonic  ma t t e r  on the decon- 

fining t ransi t ion for small masses conf i rms thus  the 

qual i ta t ive behaviour  ob ta ined  already in the K pa- 

rameter  expansion at larger masses [12]. This has, o f  

course,  no  direct impl icat ion for light fermions effects.  

One o f  the authors (IOS) wants to  thank P. 

Hasenfratz ,  C. Lang and V. Linke for  discussions and 

remarks.  
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