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This letter is devoted to the investigation of the point-point Polyakov loop correlators in SU (2) lattice gauge theory on 4N 3 
lattices with Ns=8, 12, 18 and 26. We use an analytic expression for point-point correlators provided by the transfer matrix 
formalism to study the temperature dependence of the mass gap/Lm.g, and the corresponding matrix element v near the critical 
point in a finite volume. The finite-size scaling analysis of the values #m.d.(r; Ns) obtained gives the possibility to extract the 
critical value tic, the critical exponent v and the surface tension as.t: 

1. Introduction 

As is well known in S U ( N )  gauge theories the con- 
f inemen t -deeonf inemen t  phase t ransi t ion connected 
with the spontaneous  breaking o f  the global ZN sym- 
metry  occurs at some nonzero tempera ture  0c [ 1,2 ]. 
The numerical  study of  t ransi t ion phenomena  is a 
rather  delicate problem because of  strong finite vol- 
ume effects near  the t ransi t ion point.  On a finite lat- 
tice the symmetry  can never be spontaneously  bro-  
ken, and  the tunnel ing between different  m in ima  of  
the effective potent ia l  at 0>  0c lifts the degenerat ion 
of  the vacuum in the deconf inement  phase making 
the results sensible to the size of  the latt ice near  0~. 
Instead of  two degenerate vacua 10+ > and 10_ ) (for 
the SU (2)  group) one rather has on finite lattices two 
nondegenerate  " m i x e d "  states 10s) and  10a) above 
0c. In this letter we study the influence of  the tunnel-  
ing phenomena  on the p o i n t - p o i n t  Polyakov loop 
correlators in the S U ( 2 )  lat t ice gauge theory. The 
s tandard  Wilson act ion is 

Sw(U~)=flY', (1-½Tr Up), (1) 
t2 
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where r =  4/g2are and Up e SU (2)  are plaquet te  vari-  
ables. On a latt ice NcN~ the tempera ture  is def ined 
as 0 = 1/aN,  where a = a (fl) is the lat t ice spacing. In 
what  follows we shall put  the spacing equal to unity, 
measuring,  therefore, all dis tances and energies in 
units of  a and a -~ ,  respectively. The average o f  the 
Polyakov loop ~ (x)  is def ined in a s tandard  way: 

< ~ > - Z - '  f I~ dU~ ~(x) exp[-Sw(U~)], (2) 
links 

where 

~(x)-  ½Tr U4 ( x ,  ~" ) , (3) 

and periodic boundary condit ions in all directions are 
assumed.  

In the infini te volume l imit  the average value o f  
the Polyakov loop < ~ > is zero below the crit ical 
point  and differs from zero at 0> Oc(fl> tic) because 
of  spontaneous  breaking of  the global Z2 symmetry.  
The p o i n t - p o i n t  correlator  F ( x )  of  the Polyakov 
loops defines the color averaged potent ia l  for a static 
qCl pair  separated by a distance Ix l 

( '  ) F(x)=<~(x)~(O)>~exp -~v~q(x;O/ . (4) 
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The temperature dependence of this potential is of 
considerable interest for a quantitative understand- 
ing ofcolour screening and its possible relation to the 
deconfinement transition. One expects that below the 
phase transition point 0~ (or tic) the potential is line- 
arly rising at large distances (1/O)Vq~(r; 0 )=  
/~m.g.(0)r+... where /tm.g. is the so-called mass gap, 
while above the phase transition point/Zm.g. = 0 and 
Debye screening of static color charges presumably 
takes place. 

For the investigation of the long distance proper- 
ties of the plasma phase the correct functional form 
of the potential Vq~(x; 0) is of principal importance, 
especially in view of speculations about the possible 
breakdown of simple Debye screened Coulomb be- 
haviour [3 ]. The usual choice for the parametriza- 
tion ofVq~ (x; 0) above the phase transition point is 

Vqq(r; O)=c(O)(~d exp(--/lr)  

, ) 
+ (N~- r )  dexp[ -It(N,-r) ] , (5) 

with an arbitrary power d and/ t  defines the Debye 
screening. Because of the tunneling in finite volumes 
/tm.g. is not zero at 0> 0c, which influences strongly 
the functional form of Vqq(r) in the critical region. 
The parametrization as in eq. (5) is not correct in a 
finite volume at temperatures near the critical one 
0~0c. 

Monte Carlo studies [4-8] of the heavy quark po- 
tential so far gave no arguments in favour of pertur- 
bative behaviour at large distances. It is possible that 
nonperturbative modes play an important role in the 
large distance behaviour of the chromoplasma even 
at high temperatures [ 9,10 ]. Moreover, the very va- 
lidity of the perturbative approach is now under 
question. At large enough distances r this expansion 
is divergent for all (nonzero) couplings g~ and 
therefore not even the lowest-order calculations are 
reliable [ 11 ]. The determination of the heavy quark 
potential appears thus to be a nonperturbative prob- 
lem even at very high temperatures (see, however, 
refs. [12,13]). 

As a first step in the investigation of the heavy 
quark potential we want to deduce the value of the 
mass gap, Pm.g. (or for fl < tic the inverse of the corre- 

lation length ~_ ) from the full correlator F(x). To 
that end we use data from 4N 3 lattices, i.e. with cu- 
bic geometry, which were taken in the course of a 
general finite size scaling analysis [ 14 ] with the in- 
tention to extract the correlation length and the po- 
tential Vq~ (r). We shall show that full correlator data 
may be used just as well as zero momentum correla- 
tor data to evaluate the mass gap. 

The dependence of the mass gap/lm.~ on fl was al- 
ready studied for SU (2) on lattices with cylindrical 
geometry Nt.NZ.Nz (Nz>>Ns) [15-17] using zero 
momentum correlators. The cylindrical geometry has 
the obvious advantage that the highest excitation level 
of the transfer matrix may be projected out more re- 
liably than in the cubic case for the same Ns. We are 
aware of this fact and will therefore, when we esti- 
mate numbers as the critical coupling and the surface 
tension, leave the results from our smallest (Ns = 8) 
lattice out of consideration and additionally check the 
other results. As we shall see in the following the mass 
gap and matrix element values which we obtain from 
our cubic lattices are nevertheless well in accord with 
the expectations from finite size scaling and 
universality. 

2. Correlators of Polyakov loops in finite volumes 

We define the zero momentum operators ) (z) as 
follows: 

1 ~(z)= ~ ~(x) .  (6) 

In the transfer matrix formalism the zero momentum 
correlators P(z)  are given by 

P(z)=<~(z).~(O)) 
= Z - ~  ( n l ~ ( 0 )  Im)  2 

n , m  

xexp(--flmZ) exp[ - - f l , (Ns-Z)  ] 

= vZ{exp( - Zpm.g.) +exp[ -- (Ns - Z)P-m.s. ] } 

+v2{exp(--z/al)+exp[--(Ns--z)#,]} . . . . .  (7) 

where v 2 -- Z -  ~ < 0s I ~ (0) I 0a > 2 and v~, ~q .... corre- 
spond to higher exitations of the spectrum of the 
transfer matrix. 

It is worthwhile to note here that in a finite volume 
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at fl-~ tic rotational invariance is broken: F(x, y, z) - 
F(x) ¢F(  Ix1 ) and only invariance with respect to 
permutat ions  x, y, z survives. Because in our data Po- 
lyakov loops are separated by distance r along one of  
the three axes we shall use the notat ion F(r) =-F(x). 

With the definition of  the zero m o m e n t u m  opera- 
tor ) ( z )  as in eq. (6)  the connection between the 
zero m o m e n t u m  correlator P ( z )  and the po in t -po in t  
correlator F(x±; z) on a finite lattice is 

P(z)- ( ~ ( z ) ~ ( 0 ) )  = }2 r(x±; z). (8) 
x ±  

s 

The Fourier- t ransforms of  the correlators F(x) and 
P(z) are 

F ( p )  = Y~ exp( ix -p)  F(x) ,  (9)  
x 

F(Pz) = ~ exp ( i zp . ) /~ (z )  
2 

- Y~ exp(izpz) F(x) ,  (10) 
x 

where 

2rr 
p , = ~ k , ,  k , = 0 ,  + 1 ..... + (½N~-  1), ½N~ (11) 

for even values of  N~. Therefore the correlators F and 
P are connected by the evident relation 

P(pz)=-F(p± =0 ,  p~) .  (12)  

Discarding higher exitations in eq. (7) (# = #m.g ) one 
obtains for the Fourier- t ransform F ( p . )  

F(Pz) = v2'2¢t [ 1 - e x p ( - N ~ / t )  ] G(p~; N~,/.t), 
(13)  

where 

G(pz; N~, ~) - 1 - e x p ( - 2 # )  2/~ { [ 1 - e x p ( - / ~ )  ] 2 

+ e x p ( - - ~ ) . 4  sin2 (½p_~) } -~ (14)  

To derive the correlator F(p) we use the following 
substitution in eq. (14):  

3 

4 sin 2 (½p=) --,D (p) --- ~ 4 sin 2 (½Pi) , ( 15 ) 
i = l  

where D(p) is just the lattice laplacian in 3D mo- 
m en t um space. One cannot exclude in principle that 
in the denomina tor  of  G (p; N, / t ) ,  say, cross-terms ~ 

sin2(lpi  ) sin2(½pi) may appear.  So, our ansatz eq. 
(15) is based on the assumption that these cross- 
terms play a negligible ( i f  any) role. As a result we 
find 

F(p)=v2.21L[1-exp(-Nslz)]G(p;Ns,l ~) , (16) 

where 

1 - e x p ( - 2 # )  ( [  l _ e x p ( _ / z )  ]2 
G(p; Ns, It) =- 2l t 

- - l  

+ e x p ( - / t )  i=, ~ 4 s in2( lp / ) )  (17) 

Performing the inverse Fourier- t ransform one ar- 
rives at the following expression for the correlator 
F ( r ) :  

1 
F(r) = v2.2/~ [ 1 - e x p (  - N~/t) ] N3 

27r N~ X Z e x p ( - i r p z )  G = ~ - k ;  s , # ) .  (18) 

In the limit of  small/~ (/~ << N ~- l ) the correlator F ( r )  
will tend to a constant value. At/~Ns >> 1 the correla- 
tor F ( r )  is equivalent to the superposit ion of  two Yu- 
kawa-type potentials: 

Fvuk (r)  = V 2 ~ [ 1 - - exp( - -#N~)  ] 

x(lexp(--I. tr)+N@_reXp[--I~(Ns--r)l).  

(19)  

Fig. 1 shows the behaviour  of  the ratio R ( r ) -  
F(r)/F(r) Yuk as a function of  r at different values of  
#Ns. We observe that R (r)  -~ 1 only for/.t >> N ~- l and, 
therefore, the correlator F(r) can be represented in 
the form of  a superposit ion of  two Yukawa-type po- 
tentials only far f rom the phase transition point. At 
f l~  tic, where /~~N~ -l f inite-volume corrections are 
too strong and this is not possible. 

Defining the average of  the "squared 
magnet izat ion".  

2 

z r(x)= z , (20) 

we get for ( .~2 ) f rom eq. ( 18 ) 
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Fig. 1. The behaviour of the ratio F(r)/F(r)vuk as a function of 
rat different values of~ on an Ns=26 lattice. 

N 3 ( ~ 2 >  =V2[I --exp( --/.lm.g. 2~s) ] 

× 1 +exp(--/~m.g.) (21) 
1 -- exp ( - ¢tm.g. ) " 

It is worthwhile to note here the nontrivial role of  the 
factor with the explicit size dependence 
1 - exp ( - #m.g.Ns) in eq. (21 ). Far below the transi- 
tion point it tends to unity with increasing lattice size 
Ns. But at ~>  tic, where #m.g.N~ << 1 it gives after con- 
traction with #m.~. from the denominator  an addi- 
tional power of  N~. 

In the thermodynamic limit below the phase tran- 
sition point, f l< tic, the correlator F(x)  decays expo- 
nentially at large distances, 

( ( ~ )  N~--,oo, r>>l  (22) F(x)  ~exp  ~_ , 

which entails 

V ( x .  ; z) <oe . (23) 
x ±  

From eq. (23) we conclude that for a finite lattice 
size all matrix elements are independent o f  Ns in the 
large volume limit so that 

2 0 v ~N~,  N s ~ o o .  (24) 

Above the transition point, fl> tic, the large distance 

behaviour o f  the correlator F(x)  in the thermody- 
namic limit is 

F(x)  - ( ~ 2 )  ~ e x p ( -  - -  

N~-,oo, r>> 1 , 

and at large but finite N~ 

Z F(x±; z ) ~ U ~ .  
x ±  

+ 

(25) 

(26) 

The matrix element has therefore the following de- 
pendence on the lattice size: 

2 2 v ~ N ~ , N ~ o o .  (27) 

3 .  D a t a  a n a l y s i s  

The data we analyse were produced on lattices with 
N t = 4  and Ns=8,  12, 18, 26. Part of  the data were 
already evaluated and described in ref. [14] .  The 
correlators F ( r )  were measured every 10th update in 
these runs, so that between 10 000 and, close to 0c, 
upto 45 000 measurements per r-value were available. 

To extract values of  the mass gap/~m.g. (fl; Ns) and 
the matrix element v(fl; Ns) we made simultaneous 
fits of  our data for the correlators F(r)  and the 
squared magnetization ( ~ 2 )  using eq. ( 18 ) and eq. 
(21 ). The errors Of#m.g. and the matrix element v were 
determined from the X 2 of  the fits such as to include 
possible deviations with a probability of  75%. Sys- 
tematic errors due to the neglect of  the higher levels 
have not been taken into account. Exploratory fits in- 
cluding more levels in formula (18) show that the 
mass gap values resulting from the fit close to and 
above the critical point are changed to slightly lower 
values. A corresponding effect is found if we discard 
in the fitting procedure the r =  1 or the r =  1 and 2 
correlator data. Then/Zm.g.-values near to tic are low- 
ered by about 10% (12%) for the bigger lattices and 
by 40% (60%) for the Ns = 8 lattice. In general, how- 
ever, we find from our full correlator formula, eq. 
( 18 ), mass gap values which are o f  comparable size 
to those deduced from zero momentum correlators 
(see, e.g. ref. [ 17] ). 

The dependence of ]Am.g.(fl; Ns) on fl for different 
Ns is shown in fig. 2a. Forf l>  2.27/~m.g. it shows strong 
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Fig. 2. (a) The dependence of//m.g, on flfor different hrs. (b)  The 
dependence of  Nd&..g on fl for different Ns near the transition 
point tic. The straight lines are linear least square fits to the points 
in the neighbourhood of tic. 

finite-volume effects as expected. Also the mass gap 
is tending to zero with increasing N~, as it should be 
near to and above the critical point. 

To scrutinize the temperature and finite-volume 
dependence o f  the mass gap we used the finite-size 
scaling (FSS) technique [ 18,19 ]. Below the critical 
point the mass gap can be identified with the inverse 
correlation length (see, e.g. ref. [ 19 ] ): 

~-(fl; Ns)=-ltm.~.(fl;Ns), fl<~flc. (28) 

According to FSS theory any observable O with 
critical behaviour is supposed to have the following 
form; 

O=NC/"fo(xN]/"), Ns-~OO, (29) 

for fixed small x-= ( f l -  tic)/tic and p is the critical ex- 
ponent  of  the observable O. Since the critical expo- 
nent o f  the correlation length is again v we expect for 
the mass gap 

-~sfu(xN]/'), x~O (30) /tm.g.(fl; N)s = 

and at the critical point 

/lm.g. (tic, Ns) ~ N s '  , (31) 

d 
d-flUm.g. (tic ; Ns) ~Nz  '+t/v. (32) 

Below the transition point the susceptibility X(fl; 
N~) is defined as follows: 

Z(fl;Ns)=N3 ( ~2), fl<~flc. (33) 

The critical exponent of  the susceptibility is 7 and eq. 
(29) then leads to 

( ~2)=Nu3+~/" f~,(xN~/"), x~O. (34) 

Combining eqs. (21) ,  (30) and (34) we finally 
obtain 

v2(fl)=Ns'+~/Vfv(xNls/v), x~O. (35) 

The following should be mentioned here. Eq. (28) 
and eq. (33) are valid only at//~<~¢ (x~<0). Never- 
theless, because of  the analytic dependence on fl (or 
x)  on afinite lattice we expect that the corresponding 
FSS equations (30),  (34) and (35 ) will be valid also 
above the critical point, i.e., at x>~ 0. This is really the 
case as can be seen below. 

We used eq. (31 ) to estimate the transition point 
tic. Though observables, which are directly connected 
to the measured data (i.e. not through a fit) like the 
cumulant g~ (see ref. [ 14 ] ) or ( ~2 ) are better suited 
to that purpose, this gives us a check on the consis- 
tency of  our results for the mass gap and a compari- 
son to the zero momentum results. In fig. 2b we show 
the dependence o f  Ns~m.g. o n  fl for different values o f  
N~ in a narrow region near tic. The straight lines cor- 
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respond to linear least square fits of Ns///m.g" nea r  the 
transition point. We have chosen the intervals where 
these fits were done much smaller (by a factor three 
or more) than in ref. [17]. This was necessary be- 
cause, as can be seen in fig. 2b, with increasing N, the 
curvature of  Ns#m.g. increases and it was possible since 
we have enough points close to the critical point. 

The intersection point fl(Ns, N's ) of the two lines 
corresponding to the lattice sizes Ns and N's gives an 
estimate of the critical point. At large enough values 
of N,, N'~ the intersection point must tend to tic. We 
obtain for fl(Ns, N's ) 

fl(12, 8 )=2 .3013+0 .0012 ,  

fl( 18, 8) = 2.3005_ 0.0006, 

//(18, 12)=2.3001 ___0.0009, 

//(26, 8)=2.2999_+0.0006, 

//(26, 12)=2.2997_+0.0006, 

//(26, 18)=2.2994-+0.0009. (36) 

With increasing, Ns, N'~ the intersection point fl(Ns, 
N~ ) approaches the critical point from above, and 
//(26, 18) in eq. (36) is in agreement with the value 
obtained in ref. [ 14 ],//c = 2.2985 _ 0.0006. The slight 
discrepancy with the value//c obtained in ref. [ 17 ] 
can be naturally explained by the fact that the lattice 
volumes used in that paper are not large enough. 

Given the critical point//¢ one can determine the 
critical exponent v using eq. (32). Fig. 3 shows the 
dependence of In(-dNdlm.g./d//)  on InNs at fl=fl¢. 
The straight line is a linear least square fit of  our data 
with the inverse slope 

u=0.62-+ 0.08. (37) 

The error bars in eq. (37) are comparatively large, 
but the value of v obtained agrees well with u~si~g-~ 
0.63 for the 3D Ising model (indicated by the dashed 
line in fig. 3). 

To demonstrate the consistency of our data with 
the universality hypothesis [ 20 ], which predicts equal 
critical exponents for SU (2) and the 3D Ising model, 
we show in fig. 4a Ns#m g. and in fig. 4b v2N~ -~+y/" as 
a function ofy=xN]/",  where v and ywere taken from 
the 3D Ising model. We see that within the error bars 
all data points in the vicinity of  the phase transition 
lie on the same universal curve, i.e. we have scaling. 

I , , , ~ I , , , , I , , r ~ I 
2.0  2 .5  3 . 0  

InN 

Fig. 3. The dependence of ln(  -dNsflm.g.(fl; Ns)/dfl) on InNs at 
fl=flc. The line is a linear least square fit to the data, the dashed 
one corresponds to a fit with v=0.63 as input. 

Using our values for v from eq. (37) and flc=fl(26, 
18 ) from eq. (36) leads to plots which cannot be dis- 
tinguished by eye from fig. 4. 

The tunneling in finite volumes can be interpreted 
as the creation of interfaces between domains with 
different signs of"spins"  ~ (x) separated by domain 
walls. The associated interface energy density (sur- 
face tension) as.,. is defined as 

.~,w - ~ ~ w - ~  
Oa~.t.(O)= N x ~ - - - ' N ~  (38) 

where the free energies ~" and ~w are defined as 

~ ( O ) = - O l n Z ,  ~tw(O)=-OlnZtw,  (39) 

and Ztw is the partition function on the lattice with 
twisted boundary conditions in the (t, z)-plane 
[21,22 ]. The surface tension is connected to the mass 
gap #m.g. through the following relation: 

~m.g. ~exp[  -as.t.(O)N~] , (40) 

where the preexponential factor depends on temper- 
ature and can comprise some power dependence 
~N~.  One may speculate, referring to the analogy 
with the 3D Ising model, that b = 0  [23,24]. In fig. 5 
we show the dependence of - In #m.g. ( 0 ) / N  z on 1 / 
N 2 at fl= 2.35 for Ns = 12, 18, 26. To make sure that 
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Fig. 4. (a) The dependence of Ns#m.s.(fl; N,) on xN2/", 
x-~ ( f l -  flc) /fl~. (b) The dependence of vZN ~ -y/" on xN  ~/~, with 
the 3D Ising model values for 7 and v as input. 

our values for ]Am.g" are as realistic as possible, we have 
made  several fits to the correlator  data: including all 
distances,  omit t ing distance r =  1 and r =  1 and 2. The 
points  shown in fig. 5 correspond to the second o f  
these fits. There is essentially no difference to the third 
fit and only a slight one to the first. The broken line 
in the figure is a l inear  least square fit to our  data  

--OLs.t.N s ), where with the ansatz IZm.g.=Ca exp(  2 

. 0 4 , , , , I , , , , i , , , , -  I 

• 03 

.02 

.01 

0 
0 

- l n  (~.g.) /N 2 

/ /  
/ 

0 . I  
/ /  

i / 

/ 
/ 

/ /  
/ I  

/ 

, I , , , , i , , , I 
0 . 0 0 5  0 . 0 1  

1 / N  2 

Fig. 5. The dependence of-ln#m.g.(fl; N~)/N~ on I /N~ at 
fl= 2.35. The broken line is a linear least square fit to the data for 
our three largest lattice volumes. 

as.~.(p= 2.35) = 0 . 0 0 2 5 ( 2 )  and c , = 0 . 0 7 5 ( 5 ) .  Inside 
the error  bars the surface tension obta ined  from re- 
spective l inear fits to the other  two sets of  da ta  is 
compat ib le  with this result. A two level fit to the cor- 
relator  da ta  also leads to the same ot~.t.-value. 

4 .  C o n c l u s i o n s  

In this paper  we studied the p o i n t - p o i n t  Polyakov 
loop correlators F ( r )  in SU (2)  latt ice gauge theory 
on 4N~ lattices with Ns=8 ,  12, 18 and 26. In part ic-  
ular we were interested in the role of  finite volume 
effects near  the t ransi t ion poin t  tic. 

Our  analysis is based on an analyt ic  expression for 
the p o i n t - p o i n t  correlator  p rov ided  by the transfer  
matr ix  formal ism and the ansatz in eq. ( 15 ). The re- 
sults of  our  analysis testify in favour  of  its validity.  

We s tudied the fl ( t empera ture )  dependence  of  the 
mass gap #m.g. and the corresponding matr ix  e lement  
v near  the crit ical point  in a finite volume. The finite- 
size scaling analysis of  the values ob ta ined  from the 
fit allows to de termine  the crit ical value tic, the criti- 
cal exponent  v, as well as the surface tension as.t: The 
value of  the crit ical point  fl which we obta ined  is in 
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a g r e e m e n t  wi th  the results  f r o m  the  analysis  o f  the  

c u m u l a n t  [ 14 ] and  o f  the  zero  m o m e n t u m  correla-  

tors [ 17 ]. The  va lue  o f  the  cri t ical  exponen t  v is con-  

s is tent  wi th  that  o f  the  3D  Ising mode l .  

In this  pape r  we d id  no t  cons ide r  h ighe r -o rde r  con-  

t r ibu t ions  to the cor re la tors  F(r) and  the  " s q u a r e d  

m a g n e t i z a t i o n "  ( ~ 2 ) .  They  can  p roduce  s o m e  bias 

o f  the  va lues  o f  the mass  gap but  no t  for  the  va lue  o f  

the  t rans i t ion  po in t  and  the cr i t ical  exponents .  The  

s tudy o f  the t e m p e r a t u r e  and  f ini te  v o l u m e  depen-  

dence  o f  these h igher -o rde r  con t r ibu t ions  is a non-  

t r iv ia l  but  ve ry  in te res t ing  p r o b l e m  especial ly  impor -  

tant  for the invest igat ion o f  the heavy quark  potent ial .  

Th i s  will  be  a m a i n  topic  o f  a f o r t h c o m i n g  paper .  
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