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Abstract. We calculate the production rate of soft real 
photons from a hot quark-gluon plasma using 
Braaten-Pisarski's perturbative resummation method. To 
leading order in the QCD coupling constant 9 we find 
a logarithmically divergent result for photon energies of 
order 9T, where T is the plasma temperature. This diver- 
gent behaviour is due to unscreened mass singularities in 
the effective hard thermal loop vertices in the case of 
a massless external photon. 

1 Introduction 

Theoretical investigations predict the formation of 
a quark-gluon plasma (QGP) in high-energy heavy ion 
collisions. Many signatures for tl~is new phase of nuclear 
matter have been proposed, in particular electromagnetic 
ones: photon production [1] by tl)e QGP is expected to be 
an interesting signal, as the mean free path of the photon 

in the thermal medium is expected to be larger than the 
size of the plasma, at least when the energy of the 7 is not 
too small. 

The present paper is concerned with real direct photon 
production, assuming that the photon is not thermalized. 
The production rate of hard photons (with energy E ~  T, 
where T is the plasma temperature) has already been 
studied in great detail [1-7]. Especially when applying the 
framework of the resummed perturbative expansion of 
Braaten and Pisarski [8-11], it has been demonstrated 
that mass singularities due to the exchange of massless 
quarks are shielded by effects due to Landau damping 
[5-6]. In the following we are dealing with the soft photon 
production rate (E~gT , where 9 is the QCD coupling 
constant), whose calculation requires not only to use re- 
summed quark propagators but also dressed vertices. This 
should allow us to extract the (finite) leading contribution 
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to the production rate, thus completing the list of predic- 
tions of electromagnetic signals: real and virtual [12-14] 
photon rates. 

The main result of the present work is that contrary to 
the hard photon case, for soft real photons the resumma- 
tion advocated by Braaten and Pisarski does not succeed 
to screen mass singularities, i.e. in this case the resummed 
peturbative expansion fails to give a finite contribution at 
leading order for a physical quantity. 

The outline of the paper is the following: in Sect. 2, we 
briefly review the situation for hard photon production. In 
Sect. 3, we deal with soft photons, showing the origin of 
mass singular terms and exhibiting them, then extracting 
the singular contribution using dimensional regularisa- 
tion. Section 4 is devoted to a short discussion. 

2 Hard photon production rate 

The Born calculation of the hard photon production rate, 
which uses a bare internal quark propagator for the first 
order annihilation and Compton scattering amplitudes, 
gives as the leading term [2-7] in the limit of vanishing 
bare quark mass m: 

d W egc~aST2e_e/T (ET) 
Ed3i~-~ 2~ 2 In ~ -  , (1) 

where E > T. e is the fine structure constant, eq the quark 
charge and ~s = 92/4m 

The obvious problem with (1) is that the photon pro- 
duction rate is divergent when m tends to zero. Thus the 
leading order Born calculation is not satisfactory. 

Indeed, when the momentum transfer of the ex- 
changed quark, e.g. in the Compton process, is soft of 
(9(9T) one has to resum an infinite set of diagrams 
contributing to the same order as the Born term. This 
resummation program has been proposed by Braaten and 
Pisarski [8-11]. In the case of the propagator it amounts 
to replace the bare by an effective one, whenever the 
momentum is soft. 
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The main characteristic property of the effective 
propagator is that it is dynamically screened on the mo- 
mentum scale of order gT for space-like momenta, due to 
the mechanism of Landau damping. The soft scale is 
characterized by the fermion mass induced by temper- 
ature, i.e. by m: = 2 x / ~ / 3  T. It acts as an infra-red cut- 
off, and in (1) one may replace m by mf [3]. This heuristic 
manipulation yields in fact the right result in the leading- 
logarithm approximation.The rigorous calculation [5-6], 
which also allows to find the numerical coefficient appear- 
ing inside the log, leads to: 

E d W~egac~ T2e-E/T ln (  c E )  
d3~ - 2a: 2 \O~ s ' 

(2) 

with c ~- 0.23, when E > T. 
One obtains a finite production rate for hard photons. 

The In (1/c~) dependence in (2) is a reminiscence of the 
logarithmic divergence of the Born term, which indeed 
becomes dynamically screened after resummation. 

In the following we want to know whether the resum- 
reed perturbative expansion achieves the same screening 
of mass singularities in the case of soft photon production, 
i,e. for photon energies of (9(gT). 

3 Soft photon production rate 

The production rate may be computed in a systematic 
way by evaluating the imaginary part of the photon polar- 
ization tensor: 

dW 1 
E d2 , - p  (2zc)3 nn(E)Im/7~(E,D), (3) 

where H~ is first calculated in the euclidean formalism*. 
The Bose-Einstein distribution is denoted by n~. 

When the photon energy E is of order gT, either k and 
k' (Fig. 1) are soft (~gT), and both quark propagators 
have to be resummed, or k and k' are hard (~  T), but the 
latter contribution is suppressed by a factor g 2 and we 
shall neglect it. By evaluating the soft photon production 
rate according to (3) we thus consider both internal quark 
propagators as soft ones. As the photon momentum 
P = k + k' is soft, vertices have also to be resummed and 
the relevant photon polarization tensor entering (3) is 
shown in Fig. 1. 

k 

k' 

Fig. 1. One-loop diagram for the production of a real soft photon 
(weary line) with momentum P. The effective quark propagator and 
the effective quark-photon vertex are indicated by a blob. 

* H~ is evaluated for p4=2rcnT and then continued according to 
ip4-~E. In the imaginary time formalism, the euclidean Dirac alge- 
bra {?",~} =26 ~ is used 

As the internal quark propagators are resummed, we 
expect that screening occurs as for the hard photons, and 
no divergence appears when k or k' are vanishing. How- 
ever, the introduction of effective vertices, though neces- 
sary to take into account all diagrams contributing to the 
rate at leading order in g, will be shown to lead to 
unscreened collinear divergences. 

3.1 Resummed photon self energy 

In order to evaluate the production rate (3) we first con- 
sider/7~: 

dSk 
H~(E,~)=e~e2NcTZ ~ ~ tr[*A(k)*F"(k,k';-P) 

k4 

�9 *A(-k ' )*F. ( -k ' ,  - k; P)], (4) 

where N~ is the number of colours and *A (k) is the effective 
quark propagator: 

? ' k -  
*A (k) k + 2  \D + (k) (5) 

with 

k+ =(1, +ik),  ~=/~/Ikl. 
The functions D+(k) are given in [13-173. The effective 
quark-photon vertex [10-11, 13 14] is represented by: 

dO Q"Q 
*FU=?"+m} ~ 4n (Qk)(Qk')' 

Q = (i, 0). (6) 

The second term in the r.h.s, of(6) is the hard thermal loop 
correction-in terms of an angular integral-to the bare 
vertex 7"- Q is a light-like vector, Q2 = 0; the inner product 
Q. k = Q4k4 + Q" k is denoted by (Qk). 

The Dirac trace in (4) is split into three terms according 
to the number of hard loop corrections, cf. (6): they are 
denoted by tr(0), tr(1), tr(2), respectively. We get: 

. 2 2 - d3~; 
F1 u =eq e N~T~  ~. (-~n)3 [tr(O)+tr(1)+tr(2)], (7) 

k4 

where 

tr(0) = 2 Z (ki kS) (7a) 
i,j= • DiDj ' 

2 - dO 1 (k,Q)(kjQ) (7b) 
tr(1) = - 4 m y  ] ~ (kQ)(k'Q)i,j~=+_ DiD~ ' 

, dr21 . 8 0 2  (Q1Q2) 
tr(2)= - m ~  J ~-~-J ~ ( k Q 1 ) ( k Q ~ Q ~ ) ( k '  Q2) 

1 
J='~+ ~ [(Q1 ki)(Q2 k~)+ (QI kj)(Q2 k~)- (Q~ Q2)(kikj)]. 

(7c) 

The primed quantities depend on the momentum 
k ' = P - k .  



To obtain the imaginary part of f/~ u we use the identity 
[13-14]: 

I m T  ~ f(ik4)f'(i(p4-k4)) 
k4=2~nT 

=zc(1-e  ~/r) ~ de) S da)'nv(o~)nv(w') 
- o o  - a o  

�9 6 ( E - c o - o y ) p ( o ) ) p ' ( o J ) ,  (8) 

where nF is the Fermi-Dirac distribution, and p, p' are the 
spectral densities associated with f f ' ,  respectively: 

p(~o) = lim _1 I m f ( m  + ie). (9) 

Equation (8) can be used only if tlhe dependence of Hu u on 
ikr and ik'4 is factorized. Thus, as proposed by Wong [141, 
it is convenient to take the discontinuity of H~ in the 
factorized form (7), before integrating over dO. 

When the continuation ik4~co+ie  is performed, the 
functions with non-vanishing discontinuities are 
[D+(k)] - t ,  [(Qk)D+(k)l -~, [(Qtk) (Q2k)D+(k)l -~ ap- 
pearing in the terms tr(0), tr(1), tr(2) of (7). The associated 
spectral densities are denoted by p e, a +, z +, respectively. 
For space-like momentum k, co <:l~l, they read: 

1 [De]  =/L+(~,lkl), (10a) p + = - I m  -a 
7~ 

1 
z_+ = -  Im [(Qtk)(Q2k)D+_] -1 

7"C 

6(O2k)+P ~ c~+_, 

where 

1 
lim D + (ik4~co + i~) = a + + infl +. (10d) 
~ 0  - 

P denotes the principal part prescription. The detailed 
expressions for the functions e_+ and fi+ can be found in 
[13-171. We show below that the mass singularities arise 
only when both k and k' are space-like momenta.  

3.2 Mass singular contributions 

Taking the imaginary part of f/~" leads to products of the 
type p+ p'+, o-+ 0-% and z+ z'+ in (7a), (7b) and (7c). The next 
step is to integrate over dO, and over dOa, dO2, respect- 
ively. 

Only the 1/(Qk) factors can produce singularities: e.g. 
in the product of terms o-+ a'+ arising from (7b) we have 

1 , 1 
P(~k ) ,5(Qk')= P ( ~  ) fi(Qk )=(-~) 6(Q k'), (11) 
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(as (QP)>O the P prescription is dropped); i.e. when 
(QP)=0, i.e. Q-~-[~/E, (Q2=p2=0) ,  a non-integrable 
singularity appears. In the following we regularize this 
singularity by using dimensional regularisation of the 
angular integral over dO in D = 3 + 2~ dimensions, with 

> 0, but keeping only the singular parts: 

dQ_.~ d _Q regdef 1 ~ O 2  1 i ~ = ~ ! d 0 s i n  - 0=~_ ldcos0 (1 -cos20 )~ .  

(12) 
By taking the discontinuity of (7) using (8), we thus retain 
only the products P(1/Qk) 6(Qk') in order to compute the 
leading (singular) contribution to the soft photon produc- 
tion rate. The singularity arises when (Qk)=(Qk')=O, 
which is possible only for space-like k and k'. For this 
reason we restrict ourselves to this domain, since all other 
contributions are regular*. 

In some more detail we describe the procedure for the 
term tr(1), (7b). The part giving rise to the singularity 
reads-after regularisation according to (12): 

dO r e g  (Q1p) ImH~[1.reg= - 4 m }  ~ [dk]  S 

�9 {6(Qk')[/L (1 + ~. 0 )+ /~-  (1 - t .  0 ) ]  

�9 [c(+ (1 +'k>. ( 2 ) +  c(_ (1 - ~ .  (~)1 

+ sym(k ~-* k')}, (13) 

where the continuation e.g. (Qk) ~ e) + O" ~c is implied. ~+, 
fl+ are functions of co and k =  [k[. The integrations with 
respect to k, ~o, co' are indicated by the short-hand nota- 
tion: 

d3~: 
[dkl=-e2eZn~n(1--eE/W) S ( ~  

�9 ~lk',k I d o  ~lki~, I do)'nx:(co)nv(co')6(E--oJ-co'). 

(14) 

In the limit ~-,0 Im H~[ ~, rcg behaves as 1[~: the residue is 
determined by replacing 0 by -~/E. The integral over 
dr2 is then computed for ~--,0: 

dO reg 1 1 ~ (QP)-2E~" (15) 

The leading divergent behaviour expressed in terms of the 
factor 1/~ finally becomes: 

ImH~lLreg = --2m~ ~ ~ [dk]b(Pk) 

" {(fl+ (1 - k )  + fl- (1 + k ) )  (a'+ (1 - ~ , '  ) 

Next we discuss the contribution including two vertex 
corrections, i.e. the tr(2) term of (7c). Let us focus in the 

* No singularity is produced by the PP or 66 products present in 
the terms proportional to a+ or% and z• z'• 
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following on the " +  + "  terms (the others being obtained 
by symmetry) and extract the potentially singular part 
from the 1:+ r'+ term. The expression of z+ (cf. (10c)) shows 
that terms in c~+ fl'+, c~'+ fl+, e+ cG and fl+ fl'+ will appear in 
the singular contribution, because each of the latter 
quantities can be associated with a P(1/Qk) 6(Qk') prod- 
uct. 

The contribution is: 

ImH~I]"~g'++=2r@~[dk]J~-Jr 4~ r~g (Q1Q]) 

�9 [(Q~ k+ )((2z k'+ )+(Qa k'+)(Q2k+ )-( [21Q2)(k + k'+ )] 

{1 ( , ) ( 1 )  , 
" ( ~ ) P  Q ~ 7  P Q2k a(Qlk)C~+fi+q-(Q1P~) 

p ( 1  ~ p (  1 ~ 1 1 
" \Q]kJ  \Qzk'} 6(Q~k')~'+fi+ (Q1P)(QzP) 

�9 (a(G k)a (0~ k').+ a~ - , ?  a(Q~ k') a(Qy)/~+/~'+ )}. 

(17) 

We find the 1/~ contribution for Q ~ ~ - p/E or Q= ~ - p/E 
(the latter is obtained by symmetry k ~ k'). No double 
pole has to be considered because of the presence of the 
(Q~ Q]) factor. 

Using: 

~dO 6(Qk) = 0~-~ 2) 
/ 

d~2 O(-k'2) (e)[k'l-eo'[c.k">'), (18) 
~-47 6(Qk')(Qk)= 21~,12 
and [11]: 

_ = L = l l n  o)+k 
(.o--k 

dg2 k'Q~ " k' 
  p(k_ff) = , oJ L - T ;  (o~L- 1), 09) 

we obtain after combining the contributing terms: 

�9 [2(1 - ~o/k)(1 - ~'/k')  C + ((E - k ) / k ' -  1) 

( D  2 (2) * 2 t 

. 1  2(1-m/k)(1-oY/k ')+ 1 - ~  
2k 

�9 ( ( E - k ) / k ' - I  +sym(co, k,--,co,k' . 

(20) 

Similar contributions come from z+z" and z_z'._ , re- 
spectively. 

The functions L (and L') in (20) are eliminated by 
using the definitions for :r177 and fl_+, (10d): 

r@(1-co/k)Le+= m - k -  a+-~r  2 (1-e)/k)fl+ +l, 

m 2 

(21) 

Thus (20) contains terms proportional to a+c(+, c~+fi~_, 
c(+fl+ and fl+fl~, and terms linear in fl+, fi'+. The ~+ c~'+ 
and fl+fl'+ terms vanish in (20), whereas the e+fl'+ and 
e'+fl+ terms compensate with those of (16). All what 
remains are the linear terms in fl+ and fl'+. The final result 
(including all contributions from r+ z'+) is: 

u - 2 1 6(Pk) 
Im H ~lrog- 2mf ~ S [dk] 

This expression may still be simplified by following a pro- 
cedure familiar from the hard photon case [6]. Since the 
functions fl+ and fl_ as given by [13-17] are peaked for 
co~0 (k being fixed) we may replace nr(~o) nF(E--co) by 
ne(O)nf(E)=�89 After performing the angular 
integration in (22), the remaining integrals 
S de)(1-~co/k)fl• are evaluated using the sum rule 
[63: 

dco(1 T- co/k)p + (co, k) = 0. (23) 

The dominant contribution of the integral over k comes 
from mI<k< T. The leading contribution for g ~ 0  then 
reads: 

d W 1 eZecq T2 he(E) In . (24) 
E dsb- g 27c2 

This result shows that the Braaten-Pisarski resummation 
does not yield a finite soft real photon production rate: 
a logarithmic divergence remains. 

4 Discuss ion  

The above analysis allows to identify the diagrams which 
are responsible for the singularities as they originate from 
terms proportional to the product P(1/Qk) (5(Qk'). One 
example of such a diagram is shown in Fig. 2, where the 
singularity is due to the massless quark exchange present 
in the hard thermal loop effective vertices. The massless 
exchange is transparent in the two--three amplitude of 
Fig. 2b. The singularity arises from the configuration 
Q. P = 0: it corresponds to a collinear singularity when the 
photon is allowed to stay massless, p 2 =  0. 

At present we do not know how to screen this mass 
singularity by a consistent prescription. Therefore a prag- 
matic approach is to introduce a soft cut-off,of (9(9T) in 



V k'+ O. p 

( a )  (b) 

Fig. 2a, b. a Cutting the effective one-loop diagram through the 
effective hard thermal loop vertex gives rise to b the amplitude 
with a collinear singularity for P. Q = 0, The curly line denotes the 
gluon 

order  to regularize the soft pho ton  product ion  rate at 
logari thmic accuracy: 

d W  2 ( 1 )  (25) E d ~ - e q a c q T 2 1 n  2 ~s ' 

where the pho ton  energy is assumed E ~ inf. 
The presented result is valid for soft massless, i.e. non-  

thermalized photons.  This implies that  the quark-gluon 
plasma has to have a finite size; its characteristic length is 
denoted by L. As already ment ioned in the In t roduct ion  
the mean free path l~ of the detected pho ton  has to be 
larger than L. Since only photons  with wave lengths less 
than L are radiated, the dimension of  the plasma becomes 
constrained [18]: 

2n 
- -  < L < l , ( E ) .  (26) 
E 

Suppressing the logari thmic factors in (25) we estimate the 
photon ' s  mean free path  to be given by: 

E 
l -~ (27) 

c~cq T 2 " 

This order of magni tude  estimate is in agreement with 
l~,"l/nqrrCompton(E), where nq is the quark  density and 
aCompton(E)~ao:s/ET is the high energy C o m p t o n  cross 
section in the Q G P ,  which is responsible for the pho ton  
absorption.  

For  soft pho ton  energies E ~ m y ~ C ( g T )  the con- 
straint (26) becomes: 

i.e. for typical values of  T ~ 4 0 0  MeV and ~s~0.25 the 
constraint  reads: 1 fm < L < 100 fra. This size is compatible 
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with the expectations for a realistic Q G P  produced in 
heavy-ion collisions. 

In  summary  it seems reasonable  to foresee experi- 
mental  situations where soft C(gT) non-thermalized 
photons  would be emitted from a QGP.  However,  our  
present unders tanding does not  allow us to derive their 
finite product ion  rate. 
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