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Abstract. Data are presented on exclusive p0 and q~ 
production in deep inelastic muon scattering from a 
target consisting mainly of nitrogen. The ratio of the 
total cross sections for p0 and ~b production is found 
to be 9: (1.6 ___ 0.4) at (Q z) = 7.5 GeV z, consistent with 
the SU(3) prediction of 9:2. The t dependence for 
exclusive pO production is found to become shallover 
as Q2 increases and, for large Qa, the t dependence 
is typical of that for a hard scattering process. Fur- 
thermore, the ratio of the cross sections for coherent: 
incoherent production from nitrogen is found to de- 
crease rapidly with Q2. Such behaviour indicates that 
even for exclusive vector meson production the virtual 
photon behaves predominantly as an electromagnetic 
probe. 

Introduction 

Exclusive lepto-production, e (or #) N ~ e (or #) VN, 
and photoproduct ion (Q2=0) ( y N ~  VN) of vector 
mesons, V, has been studied previously in many differ- 
ent experiments [-1]. These studies have been made 
mainly at rather low incident photon energies, v, and 
four-momentum transfer squared, Q2, (typically v <  
20 GeV, Q2 <3  GeVZ). These data indicate that the 
photon has hadron-like properties which may be de- 
scribed by the vector dominance model (VDM) [1]. 
In real photoproduct ion (Q2=0) the process is ob- 
served to be mainly diffractive and the helicity of the 
pO is nearly the same as that of the incident photon 
in the s channel helicity frame, i.e. helicity is conserved 
in this frame. In contrast, a measurement performed 
at larger values of QZ ( 2 < Q Z < 2 0  GeV 2) [2] using 
a hydrogen target showed that the p0 mesons were 
produced dominantly in a helicity zero state. Com- 
parison of the measured cross sections with those 
found at lower Q2 [-7] shows that the production is 
mainly from transversely polarised virtual photons 
(i.e. helicity _ 1). This indicates that, at larger values 
of Q2, s-channel helicity is no longer conserved. Fur- 
thermore, as Q2 increases the dependence of the differ- 
ential cross section on the 4-momentum transfer, t, 
from the photon to the pO falls less steeply. For  
Q2>5  GeV 2 the t dependence becomes inconsistent 
with diffractive production mechanisms. These prop- 
erties suggest that for large Q2 exclusive vector meson 
production becomes a hard scattering process and 
it seems no longer appropriate to use the VDM to 
describe such processes (for Q2> 2 GeV2). Moreover  
the simple propagator  behaviour of the exclusive pO 
and JAk cross section which is well established by 
many experiments [-1, 2, 7-9] and supported by the 

VDM [1] and photon gluon fusion models [18] 
points to a single production mechanism in the whole 
Q2 range, showing up as a hard scattering process 
at large Q2 and reproducing the VDM behaviour to- 
wards the photo-product ion regime. 

In this paper, new data are presented which test 
further these ideas. The data were taken using #+ 
beams of 120 and 200 GeV incident energy, scattering 
from an ammonia target, so that most of the events 
occur off nitrogen nuclei. Both coherent and incoher- 
ent production of exclusive pO measons have been 
studied and the total yield of exclusive ~b mesons has 
been measured. 

Experimental procedure 

The experiment was performed in the M 2 muon beam 
at the CERN SPS using the EMC forward spectrome- 
ter to detect the scattered muon and the fast forward 
produced hadrons. Figure 1 shows a schematic dia- 
gram of the apparatus. The spectrometer and the 
analysis procedures were similar to those described 
in [2-4] with the following differences. The drift 
chambers upstream of the magnet in the original spec- 
trometer [4] operated in a high background environ- 
ment and were subject to substantial efficiency correc- 
tions. Here they have been replaced by the multiwire 
proportional  chambers labelled PV1 and PV2 in 
Fig. 1, allowing data to be taken efficiently at incident 
muon intensities up to 4 x 107 muons per SPS pulse, 
which is a factor 3 higher than previously. The mul- 
tiwire proportional  chambers P4 and P 5 (Fig. 1) were 
also installed to cover the central regions of the drift 
chambers W 4  and W5. The latter chambers tended 
to become inefficient in this region after prolonged 
exposure to radiation due to the deposition of silicon 
compounds on the sense wires. In addition, the small 
multiwire proport ional  chambers labelled POA, POD 
and POE in Fig. 1 were installed to cover the dead- 
ened chamber areas in the beam region. The appara- 
tus had good efficiency for charged hadrons of mo- 
menta greater than ,-~ 5 GeV. 

The target was an 80 cm long polarised target, 
the main purpose of which was to study the spin de- 
pendence of the proton structure function. It consisted 
mainly of ammonia with a small admixture of helium 
( ~  10% by weight). The mean atomic weight of the 
target was 10.8. Other thinner targets, located about  
1 m downstream (Fig. 1) were also present during 
most of the data taking. Only events originating from 
the polarised target (summed over the different spin 
alignments) are used in the present analysis. The data 
were taken in three experimental runs, two at 
200 GeV and one at 120 GeV incident muon energy, 
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Fig. l. The apparatus. Key: H=scintillator trigger hodoscope, V=veto  hodoscope, BH=beam hodoscope, P=multiwire proportional 
chamber, W = drift chamber, FSM = forward spectrometer magnet C2 = Cerenkov counter, H2 = calorimeter 

using a trigger corresponding to a scattering angle 
0, > 0.75 ~ 

Data analysis and results 

The data were passed through a chain of analysis 
programmes in which pattern recognition, track and 
vertex reconstruction were carried out. Events con- 
taining a reconstructed scattered muon which was 
consistent with having produced the trigger and a 
pair of hadrons of opposite charges were selected for 
further analysis. Events were rejected if the ratio of 
the energies deposited in the electromagnetic part of 
the calorimeter (H2, Fig. 1) to the sum of the electro- 
magnetic and hadronic parts was greater than 0.8 for 
either non-muon track. In this way, electron-positron 
pairs were removed from the data sample. The loss 
of hadron tracks due to this procedure was measured 
from the data by extrapolating the distribution of the 
measured ratios into the rejected region. The loss was 
found to be small (~-,6%). 

In the analysis presented here, further details of 
which are given in [5], the standard variables em- 
ployed in deep inelastic scattering were used. These 
are Q2, v and Wthe total energy in the virtual photon- 
proton centre of mass system. The data were selected 
with Q 2 > I G e V  2 and y<0 .9  where y=v/E and E 
is the energy of the incident muon. For  the compari- 
son of the pO and ~b yields the 200 GeV data were 
used and restricted to the ranges 2 < Q 2 < 2 5  GeV 2, 
36< W 2 <280 GeV 2 and the scattered muon angle 

was required to be greater than 10 mrad. These cuts 
exclude the regions where the apparatus acceptance 
was small or varied rapidly or where QED radiative 
corrections are large. 

To select exclusive events containing a single had- 
ron pair, the total energy of the pair was required 
to be greater than 0.92v. As shown in [2], there is 
only a small residual contamination of events con- 
taining an extra undetected hadron with these selec- 
tion criteria. Figure 2 shows the invariant mass distri- 
butions of the hadrons treated as either K + K -  or 
n+ ~-  pairs. Clear peaks are seen at the pO mass in 
the n + n -  distribution and at the ~b mass in the 
K + K -  distribution. In these distributions events fall- 
ing in the pO mass region ( rnp-~ /2)  treated as ~+ n -  
pairs were excluded from the K + K -  spectrum. Simi- 
larly events falling in the ~b mass region ( m , - ~ )  
< mKK < (too + ~ )  when treated as K + K -  pairs were 
excluded from the n+ n -  mass spectrum. Here mp, 
m~, ~ and ~ are the masses and widths of the pO 
and q~ mesons, respectively. Only a small number of 
events satisfied both conditions simultaneously and 
the correction for the loss of these events was included 
in the acceptance calculation. 

The acceptance of the apparatus was computed 
by Monte Carlo simulation in which exclusive pO and 

events were generated and weighted according to 
parameterisations of the data in [2]. The total 
numbers of pO and q~ mesons were determined by 
applying acceptance corrections to the mass distribu- 
tions (Fig. 2) and by fitting a p-wave Breit-Wigner 
distribution together with a smooth background func- 
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Fig. 2a, b. Invariant mass spectra of oppositely charged pairs of 
hadrons of total energy larger than 0.92v, treated as a K § pairs 
b n + pairs 

tion to each. The corrected total number  of elastic 
pO and ~b mesons were found to be 538+40  and 94 
+ 24, respectively, (200 GeV data). F rom these yields 
the ratio of the cross sections is 

a(V*p~p~ 9 
a(y*p~q~p) 1.6___0.4 

at a mean value of 0 2 of 7.5 GeV z. The estimated 
systematic error of ,-, 10% is much smaller than the 
quoted statistical error. The observed ratio is consis- 
tent with the value of 9:2 expected from SU(3) flavour 
symmetry. However,  it is larger than the value of 
9 :(0.65 + 0.03) obtained from the measurement  in real 
photon product ion (02 = 0) at similar incident photon  
energies [6]. 

Figure 3 a shows this result together with previous 
measurements of the ratio of the cross sections for 
elastic pO to elastic ~b product ion as a function of 
Q2. Figure 3b shows the cross sections for elastic pO 
photo-product ion on hydrogen [2, 7] and elastic J/~ 
photo-product ion obtained on iron [8] as a function 
of Q2. It  can be seen that these cross sections become 
almost equal at high Q2. Figure 3c shows the same 
data presented as a ratio of the cross sections where 
the ratio was calculated by interpolating between the 
J/~ points (Fig. 3b). The smooth  curves in Fig. 3a  
and c show the predictions of the following simple 
model. Firstly, it is assumed that in the limit of large 
Q2 (Q2 ~ m~, where ml is the mass of the vector meson 
i) the ratio av:ai approaches the value expected from 
flavour symmetry [1] i.e. 9:2 for ~b and 9:8 for JAb. 
Secondly, in the intermediate Q2 range it is assumed 
that the cross section follows the form 1/(m:~ + 02)2, 
a behaviour  which is well established for the 02 de- 
pendence of the pO and JAI, cross sections [1, 2, 7-9]. 
With these assumptions the ratio of the cross sections 
will vary as 

+ Q2)2 R=ai=ci  mv 
ap 9 (m{ + 02) 2 

with c~ = 2 for ~b and 8 for J/~p. Both curves without 
free parameters  give a reasonable representation of 
the data in Fig. 3 a and c. This indicates that  the pro- 
duction mechanisms for the elastic vector mesons pO, 
qS, and J/O are similar in the whole Q2 range with 
the differences in the product ion cross-sections being 
determined by the different meson masses which are 
related to the quark masses. 

Figure 4 shows the yields for elastic p0 product ion 
as function of t' = [ t -- tmin 1, where t is the four-momen-  
tum transfer squared between the virtual photon  and 
the pO meson and tmin is the kinematic minimum 
value. The acceptance of the apparatus  as a function 
of t' is essentially flat so that  no correction is neces- 
sary. The peaks at small values of t' correspond to 
coherent product ion from the nitrogen in the target, 
smeared by experimental resolution. The lines show 
fits of the form e -be to the data for t ' >0 . 2  GeV 2, 
which excludes the coherent region. The slopes of the 
fitted lines decrease as Q2 increases consistent with 
the behaviour of the hydrogen data described in [2]. 
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Fig. 3. a The ratio 9ao/2a" as a function of Q2, including data 
from I-6] and I-7]. b The photoproduction cross sections for pO 
[2, 7] and J/ip [8] as a function of Q2. The J/~b data is from Table 1 
of [8] averaged over the v range 120-180 GeV. e The ratio 
9as/r from the data in b, as a function of Q2. The smooth 
curves in a and c are the predictions of the simple model described 
in the text 

The measured slope parameters, b, show reasonable 
agreement within the errors with the hydrogen data, 
as shown in Fig. 5. At large Q2 the measured slopes, 
b,-~l-2 GeV -2, are smaller than those expected for 
diffractive processes (b-,, 3-4 GeV-2) and so are typi- 
cal of  a hard scattering process. 

A theoretical, diffractive model  for the process has 
been developed recently by Donnachie  and Landshoff 
[16]. This model  predicts steeper slope parameters, 
b, than observed at the highest values of  Q2. The 
observed shallow t slopes at the largest values of  QZ 
are ascribed in [16] to the residual inelastic back- 

ground. However,  even if the assumption is made that 
this background is flat in t, the combinat ion  of  such 
a background with the predicted t distribution of  [16] 
fails to represent the shape of  the data at the largest 
value of  Q2 in Fig. 4. 

The polarisation of  the pO in the s-channel helicity 
frame was investigated by measuring the density ma- 
trix element roo~ from the decay angular distribution 
in the pO rest frame [2].  This density matrix element 
can be identified with the probability to produce a 
pO in a helicity zero state. The mean value of  the 
density matrix element (ro~ 4)  was found to be 0.72 
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_+0.08 for t '>0 .2  GeV 2 at ( Q 2 ) = 7 . 5  GeV 2. This is 
consistent with the measurement on hydrogen in [2] 
and shows that the angular distribution varies almost 
as cos 20 in the s-channel frame. For  t ' <  0.2 the angu- 
lar distribution is approximately flat showing that it 
is a mixture of sin20 and cos20 dependences. This 
suggests that, for t' < 0.2, the cross section is a mixture 
of coherent (diffractive) and incoherent parts. 

The straight line fits in Fig. 4 were extrapolated 
under the coherent peak in order to estimate the ratio 
of the coherent (0%0 to incoherent cross sections 
(o-i,r correcting for the effects of quasi-elastic sup- 
pression in the coherent region of t' using the calcula- 
tions of [17]. Figure 6 shows the ratio of acoh/tri, r 
for elastic p0 production from nitrogen as a function 
of Q2. The points at Q2 = 0 were obtained by perform- 
ing similar extrapolations using the data from carbon 
and copper targets [12, 13]. The Q 2 = 0  point was 
chosen to be 2.0 from the data of McClellan et al. 
[12] on copper. This value comes close to an optical 
model calculation [15]. However, the data of Asbury 
et al. [13] on carbon indicate a value which is a factor 
2 higher than this. 

The smooth curve in Fig. 6 shows the expected 
kinematic effect due to the increase of t m i n ' ~ [ ( Q  2 

+m2)/2v] 2 for the 200 GeV data. To compute this 
curve the coherent differential cross section was as- 
sumed to decrease as e -  50t, as expected from the radi- 
us of the nitrogen nucleus. The data fall much faster 
with Q2 than expected from such kinematic effects. 
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Conclusions 

E x c l u s i v e  pO a n d  q5 m e s o n  p r o d u c t i o n  has  b e e n  m e a -  

su r ed  in  d e e p  ine las t i c  m u o n  s ca t t e r i ng  f r o m  n i t r o g e n .  

T h e  r a t i o  o f  t he  c ross  s ec t ion  for  e las t ic  pO a n d  q~ 
p r o d u c t i o n  a t  ( Q 2 ) = 7 . 5  G e V  2 is f o u n d  to  be  9:(1.6 

___0.4). T h i s  resu l t  is c lose  to  t he  S U ( 3 )  p r e d i c t i o n  
o f  9: 2. A n  a n a l o g o u s  b e h a v i o u r  is seen  in t he  c o m p a r -  
i s o n  o f  o u r  ea r l i e r  pO a n d  J/~b da ta .  T h e  t d e p e n d e n c e  
o f  pO p r o d u c t i o n  r a p i d l y  b e c o m e s  h a r d e r  as Q2 in-  

c reases  a n d  the  c o h e r e n t  p r o d u c t i o n  f r o m  a n u c l e a r  
t a r g e t  dec rease s  s t r o n g l y  w i t h  i n c r e a s i n g  Q2. T h e s e  

o b s e r v a t i o n s  i n d i c a t e  t h a t  e v e n  in e las t ic  v e c t o r  m e -  

son  p r o d u c t i o n  the  v i r t u a l  p h o t o n  acts  p r e d o m i n a n t l y  
as an  e l e c t r o m a g n e t i c  p r o b e .  T h e  s i m p l e  p r o p a g a t o r  

b e h a v i o u r  o f  t he  c ross  s ec t ion  p o i n t s  to  a s ingle  p r o -  
d u c t i o n  m e c h a n i s m  in  t he  w h o l e  Q2 range .  
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