QF-3 rings

By Claus Michael Ringel in Tiibingen, and Hiroyuki Tachikawa in Tokyo

In this paper, by a left QF-3 ring we shall always understand a ring with a (unique)
minimal faithful left module, and by a QF-3 ring we mean a ring which is both left and
right QF-3. While many generalizations of the notion of a QF-3 algebra to general rings
were proposed, cf. [29], [18], [14], this definition is just Thrall’s original one of QF-3
without any other assumption on the ring [30].

The duality between the endomorphism rings of the minimal faithful left and right
modules over a QF-3 algebra and the reconstruction of QF-3 maximal quotient algebras
were already known in [16] and [28]. Recently, the relation between Morita duality and
QF-3 rings was extensively studied by several authors [12], [21], [25]. However, these
investigations seem to be more or less restrictive. Our first purpose of this paper is to
point out that these results are valid for all QF-3 rings. Thus, in section 2 we give a strue-
ture theory for QF-3 rings. The QF-3 maximal quotient rings are precisely the endomor-
phism rings of modules which are linearly compact generators and cogenerators, and it
is shown that this module is determined by the endomorphism ring as far as possible.
Further, a ring R is a QF-3 ring if and only if R can be embedded into a QF-3 maximal
quotient ring Q in such a way that R contains a minimal faithful left ideal and a minimal
faithful right ideal of Q. In this case, Q is the maximal quotient ring of R. If Q is a QF-3
ring, then we denote by C(Q) the set of all QF-3 rings R < Q such that @ is a quotient
ring of R. We show that C(Q) has minimal elements and that they are isomorphic under
an inner automorphism of Q.

Eilenberg and Nakayama [8] proved in 1956 that a left and right noetherian ring
R with 4R injective is left and right artinian. Later, this result was extended to rings
which are either left or right noetherian. The corresponding question for left and right
noetherian, left QF-3 rings has an affirmative answer. However, a left QF-3 ring which
is only left noetherian (right noetherian) need not to be right noetherian (left noetherian).
Also, there exists a left noetherian, left QF-3 ring which is a maximal left quotient ring
and which is neither right QF-3 nor semiprimary. On the other hand, it can be shown
that for a right noetherian, left QF-3 ring the maximal left quotient ring is a semi-primary
QF-3 ring. Since a self-injective ring is its own maximal left quotient ring, this theorem
generalizes the classical result. As an immediate consequence we obtain that a left noethe-
rian QF-3 ring is always left artinian. These theorems, together with further remarks on
QF-3 rings with chain conditions, are contained in section 3.

Recently, M. Auslander [1] has shown that for artin algebras there is a one-to-one
correspondence between Morita equivalence classes of QF-3 maximal quotient rings
R with global dimension < 2 and of rings A of finite representation type. Here, a ring A
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is said to be of finite representation type provided A is left artinian and has only a finite
number of finitely generated indecomposable left A-modules. In section 4 we shall give
a short proof of this result. From our proof it follows that the condition on R and 4 to
be artin algebras is unnecessary. As a corollary we obtain the following interesting result:
If A is a ring of finite representation type, then every indecomposable left A-module 1s
finitely generated, and every left A-module is a direct sum of indecomposable modules.

Following Thrall [30] a ring R is said to be a QF-1 ring if every faithful R-module
satisfies the double centralizer condition. When R is at the same time QF-1 and QF-3,
we shall call R a QF-13 ring. According to the structure theorem for QF-3 maximal quo-
tient rings, each (QF-13 ring is obtained as the endomorphism ring of a linearly compact
generator and cogenerator ,M over a suitable ring A. We prove in section 5 that for
indecomposable direct summands ,X and ,Y of ,M with Hom,(,X, ,¥) 40, either
X is projective or , Y is injective with non-zero socle. As a consequence we obtain that
every QF-13 is semi-perfect and, up to Morita equivalence, uniquely determined by the
endomorphism ring of its minimal faithful left module. For certain QF-3 rings we also
show that they are left QF-1 if and only if they are right QF-1, in particular, this is true
for serial (“generalized uniserial”) rings. We call a module ,M minimal fully faithful
provided M is a generator and a cogenerator, but no proper direct summand of , M is
a generator and a cogenerator. If A is a serial ring and , M is minimal fully faithful, then
End(,M) is serial again. This then gives a characterization of serial QF-1 rings which 1s
different from that in [11]: The ring R is a serial QF-1 ring if and only if R is Morita
equivalent to End(, M), where A4 is serial, and ,M is minimal fully faithful such that
for given indecomposable direct summands ,X and ,Y of ,M with Hom(, X, ,¥) +0,
either X is projective or , Y is injective.

1. Preliminaries

In this section we explain the notation used throughout the paper and recall the
definitions and elementary properties of left QF-3 and of QF-3 rings.

Rings are usually assumed to have an identity and all modules considered are
unital. If R is a ring, then the symbols ;M and M, will be used to underline the fact
that the R-module M is a left or a right R-module, respectively. We write homomor-
phisms of modules always on the side opposite the scalars; in particular, every left R-
module M defines a right C-module M,, where C = End (M) is the endomorphism
ring of M. The double centralizer D(;M) is the endomorphism ring of M. There is a
canonical ring homomorphism of R into D(,M), and if M is faithful, we may assume
R < D(zM). In the last section we will need that the module ;M is said to be balanced
or to satisfy the double centralizer condition provided the canonical ring homomorphism
R~ D(3M) issurjective: The ring R isleft QF-1 if every faithfulleft R-module is balanced,
and R is a QF-1 ring provided it is left QF-1 and right QF-1.

If the R-module M has a composition series, denote by | M| its length, and M is
called serial provided the set of all submodules of M forms a composition series. A serial
ring R is defined by the fact that both ,R and R, are direct sums of serial modules. The
rfldical Rad (M) of M is the intersection of all maximal submodules of M, and, for the
Ting R, we write Rad(R) for Rad(zR) = Rad(Rp). Similarly, the socle Soc(M) of M
1s the sum of all minimal submodules of M. The module M is called local provided it
has a maximal submodule which contains all proper submodules of M, and M is called
colocal provided it has a minimal submodule which is contained in all non-zero submodules
of M. The injective envelop of M will be denoted by E(M). Further, if ;M and , are
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R-modules and ¢: ;M > NV is a homomorphism, then Im(4) is the image of ¢, whereas
Ker($) stands for the kernel of . The direct sum of M and N is denoted by M & N, and
similarly, given an arbitrary family {M,|i{€ I} of left R-modules, their direct sum is
denoted by @®; M, or simply by & M,. In the same way, the product of the family
{M,|1€1}is denoted by IT M,, and II; M means a product of I copies of M. It is easy
to see that ,M is faithful if and only if there is an inclusion xR = IT; M, for some index
set /. The R-module ,M is a generator provided pR is a direct summand of some &, M,
and M is a cogenerator in case M contains as submodules the injective hulls of all
simple left R-modules.

The module M is called minimal faithful, provided
(a) zM is faithful, and

(b) given a faithful module zV, then (N = ;M @ %
(that is, M is isomorphic to a direct summand of N).

The ring R is a left QF-3 ring if there exists a minimal faithful left R-module. And
a QF-3 ring is a ring which is both left QF-3 and right QF-3. The following characteri-
zation of left QF-3 rings was proved by Rutter [26].

(1. 1) The following conditions are equivalent for the ring R.
(i) R is left QF-3.

(ii) There are finilely many, pairwise non-isomorphic simple left ideals L; such that
& E(L,) is faitkful and projective.

(iii) R has an injective fatthful left ideal L with finitely generated, large socle.

In case of (i), & E(L,) is minimal faithful.

Thus, the minimal faithful left module of a left QF-3 ring R is always isomorphic
to a left ideal of the form Re, with e an idempotent of R. And, in particular, left QF-3
rings have an injective faithful left ideal. The converse is not true, as the ring of matrices
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with Z the integers and Q the rational numbers, shows: R has an injective faithful left

ideal, but is not left QF-3. The minimal faithful left module of a left QF-3 ring R will

usually be denoted by Re, with e = ¢?€ R, and, if R is a QF-3 ring, we will denote the

minimal faithful R-modules by Re and fR, where e and f are assumed to be idempotents

of R.

If R = Q is an inclusion of rings, then Q is called a left quotient ring of R, provided

20 is a rational extension of zR. As is well-known, every ring R has a maximal left quo-
tient ring, namely D(E(zR)).

(1.2) Let Q be a left quotient ring of R. If R has an injective faithful left ideal Re,
then Qe = Re is an injective faithful left ideal of Q. If Re has large socle, then also Qe has
large sacle.

In particular, if R is a left QF-3 ring, then also Q is a left QF-3 ring. For the proof
of the first part we refer to Tachikawa [29]. Now assume that Re has large socle. We
claim that Soc(;Q¢) = Soc(,Q¢). Let Rz be a minimal left ideal of R contained in Re= Qe.
If g € 0 and gz = 0, then there is r € R with r¢ € R and r(¢a) == 0, because pR is rational
in 0. Now rgz =+ 0 belongs to the minimal left ideal Rz of R, so z = trqz for some
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1€ R. This shows that Qz is a minimal left ideal of @, and therefore
Soc(zQ¢e) = Soe(,Q¢).

Now, since Soc(,Qe) is large in ,Qe, we conclude that Soc(,Q¢) is large in Qe.

Left quotient rings of R can be obtained in the following way. Let K be a faithful
right ideal of R. We claim that the double centralizer D (K p) of K, is a left quotient ring
of R. For, given two elements d, # 0, d, in D(Kp), then there is x € K with xd, + 0.
Now z € K = R and also zd, € K = R, s0 zD(Kp) is indeed a rational extension of A.
Using this remark we get as a corollary from (1. 2):

(L.3) Let K, be a faithful right ideal of the left QF-3 ring R. Then D(Ky) is a left
QF-3 ring.

Another consequence of the remark above is the following lemma (for a generali-
zation we refer to Masaike [15]).

(1.4) Let R be a left QF-3 ring. Then the maximal left quotient ring is contained in
the mazimal right quotient ring.

Proof. Let Re be a minimal faithful left ideal of R. The maximal left quotient ring
of R is given by D(ELR). Now E; R = Re @ Cy for some module pC, since He is in-
jective. Also, xC is cogenerated by Re. For, ;R < ITRe, since Re is faithful, and since
Re is injective, also E R = IT Re. As a consequence

D(ER) = D(Re),

but D(Re), is a rational extension of R, so a subring of the maximal right quotient
ring of R.

Thus, if R is a QF-3 ring, then the maximal left quotient ring and the maximal
right quotient ring coincide and we simply speak of the maximal quotient ring of R.
If fR is an injective faithful right ideal of the QF-3 ring R, then D(fR;) is the maximal
quotient ring of R. For, D(fRy) is a quotient ring, and if Q is a quotient ring of R, then
fR =fQ by (1.2), so also fRf = fQf, so0

0 £ D(fQq) = End (14,1 Q) = End (1, R) = D(fRy).

(1.5) Let R be a left QF-3 ring and Re minimal faithful. If fR is a faithful right
ideal (with f an idempotent of R), then

(1) Hom,p,(fR, fRe) > Re, and
(2) ;zfRe is injective.

For the proof, see Tachikawa [29]. This result can be used in order to show that
for a QF-3 ring R with minimal faithful modules Re and fR, the rings fRf and e Re are
Morita dual. Here, rings A and B are called Morita dual provided there exists a bimodule
4Up such that ,U and Up both are injective cogenerators and 4 = End(Uj),

B = End(,U). It A and B are Morita dual, then both rings are semi-perfect, as B. Osofsky
{23] has shown.

(1.6) Let R be a QF-3 ring with minimal faithful modules Re and fR. Then fRf

and e Re are Morita dual with respect to ,p f Re,p,.

A proof of (1. 6) may be found in Roux [25]. Since we will use Morita duality quite
frequently, we have to mention some more details. Let A and B be Morita dual with
respect to the bimodule ,Uy. Given a left A-module ,M, we denote by M* the dual
of M, namely the right B-module M* = Hom,(, M, ,U,). Similarly, for a right B-
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module X, we define the left A-module X* = Homg(X,, ,U,). The module ,M is
called reflexive provided the canonical homomorphism M -> M** is an isomorphism,
and Morita’s theorem [16] asserts that all finitely generated left A-modules are reflexive.
Mueller [22] has shown that for a ring A which is Morita dual to some ring B, a left A-
module is reflexive if and only if it is linearly compact. Here, the module M is called
linearly compact if any finitely solvable system of congruences z = x, (mod M,), where
the M, are submodules of , M, is solvable.

(1.7) The ring A is Morita dual to some ring B if and only if there exists a linearly
compact left A-module which is a generator and a cogenerator.

Proof. 1f A and B are Morita dual with respect to the bimodule Uy, then 4 & ,U
is a linearly compact generator and cogenerator. Conversely, assume ,M is a linearly
compact generator and cogenerator. Note that submodules, factor modules and finite
direct sums of linearly compact modules are linearly compact, again. The minimal co-
generator ,V is isomorphic to a submodule of , M, so linearly compact. Also, 44 is a
factor module of a finite direct sum of copies of ,M, and therefore linearly compact.
Now it can easily be derived from [22] that A and End(,V) are Morita dual.

Finally, we have to mention a property of the minimal faithful modules over a
semi-primary QF-3 ring. Recall that a module M is called Z-injective provided every
direct sum of copies of M is injective, and M is called /1-projective in case every product
of copies of M is projective. Then, Colby and Rutter [5] have shown:

(1.8) Let R be a semi-primary QF-3 ring with minimal faithful modules Re and
fR. Then the R-modules Re and fR both are EZ-injective and II-projective.

2. Structure Theorems

If Ris a QF-3 ring with minimal faithful modules Re and fR, then fRf and eRe
are Morita dual rings and it is rather easy to see that ;5 fR is a reflexive generator and
cogenerator. Moreover, if R is also a maximal quotient ring, then R is just the endomor-
phism ring of ,p,fR. Thus QF-3 maximal quotient rings are endomorphism rings of
linearly compact generator and cogenerator modules. As we will see, also the converse
is true and this gives a characterization of (F-3 maximal quotient rings. It should be
noted that by (1.7) the rings which have linearly compact generator and cogenerator
modules are just those rings which are Morita dual to some other ring.

(2. 1) Structure Theorem for QF-3 maximal Quotient Rings. QF-3 maximal quotient
rings are precisely the endomorphism rings of modules M which are linearly compact, gen-
erators and cogenerators. Moreover, if ;M and M’ are such modules and

End(,M) =~ End{(,M"),

then there is a categorical equivalence T: M~ M with T(,M) = ,M"

Proof. First, let R be a QF-3 maximal quotient ring with minimal faithful modules
Re and fR. By (1. 6) we know that the rings fRf and e Re are Morita dual with respect
t0 ;7 f Re,z,- Now consider the module ;. fR. It is a generator, since

mf R = yfRf ® ;i f R(1 —F),

and a cogenerator, since ,,fRe is a cogenerator and ,pfR = ;pfRe ® g R(1 —e).
Using (1. 5), the dual of R is fR* ~ Re,p,, and similarly, Re* = ;nfR, 50 ;5[ R 15
veflexive and therefore linearly compact. Also, since fR is a faithful right ideal,
8
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D(fRy) = End (g fR) is a left quotient ring of R, so since R is a maximal quotient ring,
R = End(,zfR).
Conversely, assume that , M is a linearly compact generator and cogenerator. Then
A is Morita dual to some ring B, so there is a bimodule ,Uj which defines the duality.
Since the property to be a QF-3 ring (and also to be a maximal quotient ring) is Morita
equivalent, we may assume
M= ,Xo,Ye , 8 ,C,

where , X ® ,¥ = ,A and ,Y @ ,Z = ,U, such that neither ,X nor ,{ contains an
indecomposable direct summand which is the injective hull of a simple module, whereas
neither ,Z nor ,C contains an indecomposable projective direct summand. Here we use
that a linearly compact module is of finite rank.

f: M> A= ,X&,Y and e M-, U=,Y®,7Z

be the respective projections, considered as elements of R. Now, M can be identified in
an obvious way with fR, and then A = fRf, U = fRe. Also, Re can be identified with
Hom, (,M, ,Uj) = M*. Since ,U is injective and M, = fR is projective,

rfte = Hom,(, My, ,U)

is an injective left ideal. Similarly, since Uy is injective and M* = Re is a projective
left R-module, fR = M o M** = Homy(yM*5, Uy) is an injective right ideal, where
we use that ,M is reflexive. It remains to be shown that the socles of zRe and of fR,
are large.

Let S ={s€fRe|Im(s) = Soc,U}. We claim that (1 —f)RS = 0. For, let r € R,
s = fse €§ and assume (1 —f)rfse = 0. We consider (1 —f)rf and fse as mappings

AZ@J‘C___SI___Q'_’._*AX®AY=AA___,‘.’__>AY@AZ,

and by assumption Im((1 —f)rf) ¢ Ker(fse). Since the A-module Im(fse) < Soc,U
is completely reducible, Ker(fse) contains the radical Rad (A) of ;4. Thus, Im((1 —f)r/)
1s not contained in Rad(A). Since A is semi-perfect, either ,Z or ,C maps onto at least
one indecomposable direct summand of ,A4, but this contradicts the assumption that
neither ,Z nor ,C has as direct summand an indecomposable projective A-module.

Now 1t is easy to see that S is a left ideal. For given r € R and s = fse € S, we have
rs = frfs. Since (1 —f)rs = 0. But frf€ 4, so

Im(frfs)s A -Im(s) = 4 - Soc, U < Soc, U,

and therefore rs €S. Also, under the obvious identification of § and Soc,U, the left
ideals of R contained in § correspond to the A-submodules of Soc,U. In particular,
&S 18 completely reducible, since the same is true for ,Soc, U.

Next, we show that S is large in Re. Given 0 = r € Re we have Im(r) ~ Soc, U = 0

since Soc, U is large in ,U. So there is m € M with 0 == mr € Soc, U. Define an A-homo-
morphism

$: 440,20 ,C>,M by (a,7,¢)¢=am
for a€ A, 2€Z, ¢c€C. Then ¢r = fére + 0, and Im(4r) sAmr <Soc,U, thus

0 +4¢r€S ~Rr.
This proves that S is large in Re.
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Similarly, using the fact that neither ,X nor ,C contains a direct summand which
is the injective hull of a simple module, it can be shown that SR(1 —¢) = 0. Thus,
R is also a right ideal, and the right ideals of R contained in S correspond to the B-sub-
modules of Soc,U. But Soc, U = Soc Uy, in particular [Soc, U]y is completely reducible,
s0 also Sy is completely reducible. In order to show that Sy is large in f Ry, consider a
non-zero element r € fR. As an epimorphic image of ,4, Im(r) has a maximal submodule
LV =Im(r). Since ,U is a cogenerator, there is a mapping y: M~ ,U with Vy =0
and Im(ry) = 0. Then ry = frye =0, and Im(ry) = Soc, U, thus 0 +ry€rRn S.

Using (1. 1) we see that R is both left QF-3 and right QF-3. It remains to be shown
that R is a maximal quotient ring. As we have seen, [ R is an injective faithful right ideal,
s0 we have to show R = D(fRjy). But we have identified ;5 fR with 4K, so

R = End(,K) = End(,5fR) = D(fRp)

This shows that the endomorphism ring of a linearly compact generator and cogenerator
is a QF-3 maximal quotient ring.

Finally, assume A and A’ are rings and ,M and ..M’ are linearly compact gener-
ators and cogenerators. Observe that A and A’ are semi-perfect rings and it is rather
obvious that we may assume that A and A’ are basic rings. For, taking the basic ring B
of A we get a categorical equivalence T: ,9 — I, and T(, M) is again a linearly com-
pact generator and cogenerator, and End(,M) = End(T{ D).

Since A is a basic ring and , M is a generator, we have (M = 1A ® 4C for some
complement ,C. Denote by f: ;M- ,A the projection considered as an element of
R = End(,M). We want to show that fR is a minimal faithful module, so A = fRf
can be recovered from R as the endomorphism ring of the minimal faithful right module
fRp= My, and ;M = fR. Now fRy is faithful, so fR contains as a direct summand
the minimal faithful right module (we know already that R is QF-3). Thus, there are
orthogonal idempotents f, and f, in R with f = f, + f, and f,R minimal faithful. Assume
f, & 0. We have identified fRf and 4, so f, and f, are orthogonal idempotents of A.
Since 4 is a basic ring, every A-homomorphism A f,~ Af,maps Afjinto Rad(Af,). Thus,
the image of every element of f,R is contained in Af, ® Rad (Af,) ® C. But ,M is a co-
generator, so there is a non-zero endomorphism ¢ of , M with (Af, ® Rad(4f) ® ) =0.
This shows that f, R¢ = 0, contradicting the fact that f, Ry is faithful. Consequently,
f,=0and fR = f, R is a minimal faithful module. This implies A =~ A’ and proves the
second part.

The next theorem shows that the investigation of arbitrary QF-3 rings can be
reduced to the case of QF-3 maximal quotient rings. Here, we write {1, Qe, fQ@) for the
smallest subring of Q containing 1, Qe and fQ.

(2. 2) Structure Theorem for QF-3 Rings. The ring R is a QF-3 ring if and only
if there is a QF-3 maximal quotient ring Q with minimal faithful modules Qe and fQ such
that

1, Qe fQ>=sR<=0Q.
In this case, Q is the mazimal quotient ring of R.

Proof. Let R be a QF-3 ring with minimal faithful modules Re and fR. Denote
by Q the maximal quotient ring of R. By (1.2), Re = Qe and fR =fQ are minimal

faithful modules for .
8*
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Conversely, let Q be a QF-3 maximal quotient ring, and let R be a subring of ¢
with (1, Qe,fQ> < R, where Qe and fQ are minimal faithful (-modules. By (1. 5),
of Qe and fQe,qy, both are injective modules and

Hom,o,(fQ, fQe) >~ Q¢  and Homeqt((}e, fQe) = Q.

Since Re = Qe and fR = fQ, we may replace Q by R in the previous sentence and, as
a consequence, we see that

Homy (fR,fRe) >~ ,Re and Hom,, (Re, fRe) ~ fR
both are injective R-modules. Obviously, they are also faithful, so it remains to be shown
that Soc(,Re) is large in ,Re and that Soc(fRy) is large in fR,,.

Let § = Rf - Soc(gQe). We claim that .S is completely reducible. For, let N be
the radical of R and assume NS = 0. Then

[Nf-Soc(,Qe)=fR-N - Rf - Soc(qQe) =fR-N -8 +0,
since fR is faithful. But

fNf = Rad(fRf) = Rad(fQf) = f - Rad(Q) - f,

and f-Rad(Q) - f-S =0, since S s Soc(gQe). From this contradiction we know that
§ = Rf - Soc(Qe) = ®!_, R, *Soc(Qe) and Rf, - Soc(Qe) is a sum of homomorphie
images of Rf/Nf,, where f= fi+ -+ 4, is the decomposition of f into orthogonal
primitive idempotents f; of Q. However RfINf, is simple, because

End(Rfi/Nfi) >~ [ Rf/fNf, = i Qfdf, - Rad(Q) -,

and f,Qf./f, Rad(Q)f, is a division ring, and f, € R.

Hence 2§ is completely reducible. In order to show that Soc(,Re) is large in ,Re,
let 0 % 2 € Re. We know that Soc(yQe) is large in ofte, so there is ¢ € Q with

0 + gz €Soc(,Qe¢).

Since fR is faithful, there is r € R with 0 F frqz. But, on the one hand, frqx € Rz since
frg€fQ <R, and, on the other hand, frqzx €f - Soc(yQe) =8 = Soc(zRe).
Similarly, Soc(fRy) is large in fR;. As a consequence, R is a QF-3 ring.
Combining the two structure theorems we ses that QF-3 rings are obtained in the
following way: Take the endomorphism ring ( of a linearly compact generator and co-
generator, let Qe and fQ be minimal faithful Q-modules and take all subrings R with

4, Qe,fQ>sR=Q,

It should be noted that this class of rings R was also considered by Kato in [14), where

he characterized it using another definition of “QF-3 rings”, which seems to be ratheu
complicated.

If Q is a QF-3 ring, then we denote by C(Q) the set of all QF-3 rings R < Q such
that @ is a left quotient ring of R. Obviously, C (Q) is partially ordered by inclusion. If
C(Q) has minimal elements, then by the last theorem they have to be of the form
<1, Qe, fQ> for suitable idempotents e and f. The following theorem shows that mini-

(2. 3) Theorem. Let Qbea
subring a minimal element of C(Q)
under an inner awtomorphism of ().

QF-3 ring. Then epery subring in C(Q) contains as a
and any two minimal elements of C(Q) are isomorphic
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Proof. First, note that every decomposition of 1 as a sum of orthogonal idempotents
of Q can be refined to a sum of orthogonal primitive idempotents, since Q is a ring of
endomorphisms of a linearly compact module.

The pair ¢, f of idempotents of Q is called properly chosen, provided there exists

a decomposition 1 = 2 )j e;; with orthogonal primitive idempotents e;; such that
i=1j=1

o0 = ,Qe, if and only if © = k, and

e= 2¢
€1 f= keK Chme?

where I = {i] ¢Qe, is injective with large socle} and K = {k|¢,,0Q, is injective with
large socle}. We want to show that every ring R in C(Q) contains a subring of the form
A, Qe, f@> with properly chosen idempotents e and f of Q.

Let R€C(Q), and 1 = 28 = Ze be decompositions into orthogonal primitive

i=1 j=1
idempotents of R. Usually, such decompesitions cannot be compared, since R need not

to be semi-perfect. But at least, if zRe, or e R is injective with large socle, and
rRe = pRe, for 1 <i<s,

then there are s idempotents ¢} such that Re, ~ pRe;. For, in this case, the endo-
morphism ring e, Re, of yRe, is a local ring, so zRe, has the exchange property, accord-
ing to Warfield [32].

Now, given the ring R € C(Q), we fix a minimal faithful left ideal Re, and refine
l=e+(1—¢ to a decomposmlon of 1 as a sum of orthogonal primitive 1demp0tents

of R, say 1 = Ze with e = 23 Also, we fix a decomposition 1 = 2 2 e;; with

{=17=1
orthogonal pnmltlve 1dempotents el ;»now of Q, and with the property that ¢Qe;; =2 oQ¢,
if and only if { = k. Let K = {k | ¢,,Q,, is injective with large socle}. For k€ K, we want

to define n(k)€{1,2, ...,1} such that

(@) ey Rp >~ €,Q0,, and

(b) if my >1, then a(k) >s.
First, we have to notice that a number x(k) with (a) exists. Namely, ¢,,Q, is a direct
summand of the minimal faithful right Q-module, so ¢,,Qp is a direct summand of the
minimal faithful right R-module, by (1.2). So there is a primitive idempotent f, in R
with €,,0y = f,Ry. Then we find z(k) with f, Re,q < Rad(f, Rp), and in this case every

element g€ f, R e,,(k)\Rad (f: Rp defmes an epimorphism e R f, R by left multiplica-
tion. Since e, 1s primitive, th.lS epimorphism has to be an isomorphism, so

en(k)RR =~ f Ry >~ €,0z,

and (a) is satisfied. Now assume m, > 1, but we have chosen n(k) <s. Then both
Qenp = Rey and e,y Q = e, R are contained in R, so also the product Qe 0 = R
But this implies that for all 1 < j < m,, we have Qe,; = R. Namely, given ¢,;, there
are elements u;, v, in Q with e,; = u;6,4;, since e, Qg = ¢, Qg == €,;0p. Then

Qer; = Qujtapt; = Qeyy@ = R
Consequently, all the idempotents e,;, 1 < j < m, belong to R, and

Reyyy = RQen(k) = gQe; = rR e
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Moreover, e, R is injective with large socle, so by the argument above'&, every decom pqsi-

tion of 1 into orthogonal primitive idempotents of R contains m, idempotents which

generate left ideals isomorphic to ,Re, . In particular, we have mk(>1).idemp'otents

e, With pRe,q, o gRe,. Since the first s idempotents generate non-isomo?p}'nc left ideals,

we can replace (k) by another index which satisfies (a) and (b). Now it is easy to see

that e = ).!‘ e;and f = sz ¢ re properly chosen in Q, and obviously {1, Qe,fQ> = R.
€

t=1 .
Next, we want to show that two subrings {1, Qe, fQ) and (1, Q¢ f' Q> with prop-
erly chosen idempotents ¢, f and ¢/, f*, are isomorphic under an inner automorphism of Q.

As before, we fix a decomposition 1 = X bl e,; with orthogonal primitive idempotents
i=17=1

of Q such that 4Qe,; = Qe if and only if { = k, and we introduce
I= {(i,1) | ¢Qe, isinjective with large socle} {(,m;) | €, Qq is injective with large socle}.

For the pair ¢,{ of properly chosen idempotents we have ef = fe,s0 d=1—e—f +efisan

idempotent orthogonal to e 4- f—ef. We can refine the decomposition 1 =d + (e +f—ef)

to 1 =d+ 2 f, with orthogonal idempotents f, of (1, Qe, /@) such that (Qf, = (Qe,.
ter

Similarly, for ¢, f’ we define d' and get orthogonal idempotents f; of {1, Q¢', f'Q) with
00fi = o0e,. We therefore have direct decompositions of @,

(D7 Q) © ¢Qd = @ = (B oUf1) ® 0,

with 4Qf, = (Qf;, for all 1€ I. Since the endomorphism ring f,Qf, of o©f 18 local, the
module ,Qf, has the cancellation property, using again [32], so it follows ,Qd ~ ,Qd".
But in such a situation it is well-known that there exists a regular element ¢ € ¢ with

gMfg=f; for 1€l and gldg=4d,

and therefore 77 (1, Qe, 70> ¢ = (1, Q¢', f' ).

It follows now that the rings of the form T = {1, Qe¢, Q> with properly chosen
idempotents are minimal elements of C(Q). For, let R € C(Q), and R s 7. As we have
seen, there are properly chosen idempotents ¢, f' such that T'= (4, Q¢',f' Q@) = R.
Now T and T' are isomorphic under an inner automorphism of Q, so it is easy to see
that T = 7", and therefore also R = T. This concludes the proof.

For @ a semi-primary QF-3 ring the result (2. 3) was proved by Mueller [20],[21]
and our proof follows quite closely his presentation. In the general case considered here,
the difficulty comes from the fact that the Krull-Schmidt theorem in Q (and in R) is no
longer valid, but fortunately, Warfield's local version of this theorem can be used.

3. OF-3 Rings with chain conditions

We want to consider QF-3 rings with different chain conditions; in particular,
we ask under what conditions a QF-3 ring has to be artinian. First, we note that a left
perfect QF-3 ring R is at least semi-primary. For, let ¢ and f be idempotents of R such
that Re and fR are minimal faithful R-modules. Then, also fRf is left perfect, and since
fRf 1s Morita dual to eRe, it follows from a theorem of B. Osofsky [23], that fR{ is left
artinian. Now ;p,fR is a linearly compact module over a left artinian ring, so of finite
length. Then the maximal quotient ring @ = End(,;fR) of R is semi-primary. Let
N = Rad(R), N’ = Rad(Q). We know that N’ is nilpotent and that N is at least a nil
ideal. Now N + N'/N' ~ N/N n:N' is a nil subring of the semi-simple ring Q/N’, so it
is nilpotent. Also ¥ ~ N’ s N' is nilpotent. Thus & is an extension of the nilpotent ideal
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N ~ N’ by the nilpotent ring N/N ~ N’, so itself nilpotent. This shows that R is semi-
primary. Also, a semi-primary (F-3 ring R has finitely generated left socle and finitely
generated right socle. For, let fR be a minimal faithful right ideal, then ,5,fR is finitely
generated, so R, can be embedded into a finite direct sum of copies of fR,. But the
socle of f Ry 1s finitely generated so the same is true for Soc(Rj). However, a semi-primary
QF-3 ring need not to be left or right artinian. We give an example which is even a maxi-
mal quotient ring. Namely, let A and B be Morita dual rings such that A is left artinian
but not right artinian, and B is right artinian but not left artinian [23]. Let ,U be an
injective cogenerator with B = End(,U). Then End(,4 &, U) is a semi-primary QF-3
maximal quotient ring which is obviously neither left nor right artinian.

Next, we consider the case where the ring R is left or right noetherian. Our results
are valid not only for left QF-3 rings but for all rings which have an injective faithful
left ideal. First, we sharpen a result of Jans [13].

(3.1) Lemma. Let R be right noetherian. Then R has an injective faithful left ideal
if and only if E(gR) is projective.

Proof. The “only if” part is due to Jans. For the converse, assume that E(,R) is
projective. Since A is right noetherian, there does not exist an infinite family of ortho-
gonal idempotents. In particular, R has a maximal injective left ideal, say Re, with e
an idempotent of R. We want to show that Re is faithful. If the injective hull of a fi-
nitely generated module is projective, then it is well-known that it is finitely generated.

Since we assume that E(zR) is projective, there is a module zC and some natural z with
n

E(zxR) ® zC = @& zR. The endomorphism ring R, of aa nR 18 again right noetherian,
=1 i=1

so does not have infinite families of orthogonal idempotents. Since the idempotents of
R, correspond to the direct summands of E(zR) & RC, we conclude that E(zR) is a
finite direct sum of indecomposable modules. Let ,X be an indecomposable direct sum-
mand of E(zR). Since zX is embeddable in

& RRZ( ¢ Re)e(é R(i——e)),
i=1 =1 i=1

t

there are n homomorphisms p,: ;X > Re and n homomorphisms ¢;: z X+ R(1 —e)
such that the intersection of the kernels of all p, and all ¢, is zero. But an indecomposable
injective module is uniform, so one of the p; or ¢, is a monomorphism. Now ¢, cannot
be monomorphism, since otherwise Re @ Xg, is an injective left ideal properly contain-
ing Re. Thus ,X is embeddable in Re. This shows that E(rR) is cogenerated by Re,
and consequently, Re is faithful.

(3. 2) Theorem. Let R be left and right noetherian. If R has an injective faithful
left ideal, then R is left and right artinian.

Proof. By the previous lemma, E(,R) is projective, and therefore finitely generated.
Now we use a result of Vinsonhaller [31] to derive that R is left artinian. But a semi-
primary right noetherian ring is also right artinian.

If we weaken the assumptions and only assume that R is left noetherian or right
noetherian, the conclusion does not remain valid, in spite of assertions in [31]. This is
even the case for left QF-3 rings. A QF-3 ring which is right artinian but not left artinian,
can be constructed as follows. Let D be a division ring with a division subring P such
that dimpD = oo and dimD, = 2; for the existence, see Cohn [3]. Then the ring of
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D 0O
(DPO)
DDD

matrices

is a right artinian QF-3 ring which is not left artinian. Also, it is possible to construct a
left QF-3 ring which is left noetherian but not right noetherian. Let A be a (non-trivial)
simple left noetherian domain with an injective simple left module 49 for the existence,
see Cozzens [6]. Let C be the endomorphism ring of ,S. Then the ring R of matrices

C 0

S 4
is a left noetherian, left QF-3 ring which is not right noetherian, since dimS, = oo, If,
in addition, we assume that S is the only simple left A-module, then it is easy to see
that R is also its own maximal left quotient ring. Thus, for a left noetherian, left QF-3

ring the maximal left quotient ring does not become nice. For right noetherian, left
QF-3 rings the situation is quite different, namely we have the following theorem.

(3. 3) Theorem. Let R be right noetherian. If R has an injective faithful left ideal,
then the maximal left quotient ring Q, of R is a semi-primary QF-3 ring.

Proof. Let Re be an injective faithful left ideal of R, where e is an idempotent.

First, we want to show that the ring ¢ Re is right artinian. If J is a right ideal of
eRe, denote by I(J) = {x € Re|zJ = 0} the left annihilator in Re, and similarly, for
an R-submodule K of Re, denote by r(K) = {y €eRe; Ky = 0} the right annihilator
in eRe. We claim that for every right ideal J of eRe, we have J = ri(J). For, eRe is

right noetherian, so J = 3 y,eRe for some natural m and elements y, € J. The mapping
i=1
Re»_@lRe, given by z- (zy,, +++»%Y,), Induces a monomorphism % from Rejl(J)

into ® Re. Given y€ri(J), define f: Refl(J)> R by (z4 1(J))f = zy. Then the

1=1
diagram
0 — Rell(J) — " & Re
=1
P 1

v

I Par

. !

I 'S

Re

can be completed, since rRe is injective. But /' is determined by certain elements
bi€eRe, 1 <i<m namely
(@ 2 = Zab, for all (), ..., x,) € % Re.
§=1
Thus, for all x € Re,

= (@ W = (o + IS = (g, .., ay)f = & oy

4

and therefore y = 2; Y:b, belongs to the right ideal J of eRe.
obviously ri(J) = J.

This proves ri(J) < J, so
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Now let ¥ = Rad(eRe), and consider the descending chain
NzN=z=N'z ...,
For the left annihilators in Re we get an ascending chain
V) s (N <l(N}) << Re

Since N* is a two-sided ideal of eRe, it follows that {(V*) is also an e Re-submodule of
Re,p,. But Ry is noetherian so also Re, p, is noetherian, and consequently [(N®) = [(N"')
for some natural n. This implies that

N™ = rl(N") = r[(N"*) = N*H,

and using Nakayama’'s lemma for the finitely generated module (N"),p,, we conclude
N™ = 0. On the other hand, e Re is the endomorphism ring of , Re, and ,Re is a finite
direct sum of indecomposable injective modules, so e Re is semi-perfect. It follows that
e Re is semi-primary, and since e Re is also right noetherian, it is right artinian.

Using the fact that Re,p, is noetherian, so finitely generated, so of finite length,
we see that the endomorphism ring ( = End(Re,,) 1s semi-primary. We claim that ¢
is the maximal left quotient ring of R. As we have seen in (3. 1), E(,R) is embeddable

n
into @ Re, for some n, so there is zC with
i=1

Re.

1

E(zR) & xC =

I\’GB =

1

Now pC is generated by E(pR), since it is an injective left R-module; also, (' is co-
generated by E(,R), since it is cogenerated by Re. Therefore, the double centralizer Q
of pR coincides with the double centralizer of E(,R), but this is just the maximal left
quotient ring (Q,.

Since ( is a left quotient ring of R, we know by (1.2) that ,Qe = jRe is an in-
jective faithful left ideal of Q. But Q is semi-primary, so Soc(,Qe) is essential in 4Qe,
and therefore Q is even a left QF-3 ring. It remains to be shown that @ has also an in-
jective faithful right ideal.

We may assume that ,Qe is a minimal faithful module. In this case, we find an
idempotent f in Q such that Soc(,Q¢) = Qf/N'f, where N’ = Rad(Q), since Soc(,Qe)
is the direct sum of a finite number of mutually non-isomorphie simple modules. Obvi-
ously, fQ, is faithful, since for 0 4 ¢€Q there is € Qe with gt +0, and then
Qgt ~ Soe(yQe) + 0; but no non-zero submodule of Qf/N'f is annihilated by f, therefore
fQqt £0, so fQq = 0. Thus, we only have to prove that fQ, is injective.

We may use (1. 5), replacing R by Q, and get that ,, fQe is injective and that
Hom,,, (fQ, fQe) = Qe. Now ;o fQe is also a cogenerator, since obviously every simple
left fQf-module occurs in the socle of ;o,f Qe. So ,o;fQe is an injective cogenerator. The
equality above implies the following equalities

Home[(/Q/eri jQ/ereQe) = eQeeQe,

Homyg, (101f Of, jorf Qeeqe) = [Qeeger

and since both modules eQe,q, and fQe,,, are artinian, it follows that the modules
sof Qe and ,,fQf are noetherian. Here we use that for a bimodule ,Up, where ,U is
an injective cogenerator, the fact that Hom,(, X, ,U,) is an artinian B-module implies
that , X is noetherian. As a left noetherian semi-primary ring, fQf is left artinian. Con-

and
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sequently, ,o,fQe is a finitely generated injective cogenerator over a left artinian ring,
so by Tachikawa [27), o, Qe.q. defines a duality. In particular, also fQe,,, 1s injective.

Now we use the equality End(Qe,q) = ¢ in order to derive that

Homng(QOeeQm fOeeQ?) = f()Q

But Qe is projective, and fQe,, 1 injective, so also fQ,, is injective. This concludes the
proof of the theorem.

(3. 4) Corollary. Let R be right noetherian. If R has an injective faithful left ideal
and an injective faithful right ideal, then R is right artinian.

Proof. Denote by Q the maximal quotient ring of R. By the last theorem, Qisa
semi-primary QF-3 ring. Tf fR is an injective faithful right ideal of R, then fQ = fR is
an injective faithful right ideal of Q. Since Soc(Q,) is a finitely generated right ideal, we
have an embedding

n

for some natural n. This yields an embedding
Ry < Qlt = GB‘fQR = _%me

which can be extended to an embedding of E(R,) into & fR, since fR, is injective.
i=1

Consequently, F(Rj) is finitely gencrated. Again using Vinsonhaller’s theorem [31], we

conclude that R is right artinian.

Similar to the characterization of semi-primary QF-3 rings by Colby and Rutter
[5], we characterize right noetherian rings which have an injective faithful left ideal.

(3. 8) Corollary. Let R be right noetherian. Then the following conditions are equivalent.

(i) R contains an injective faithful left ideal.

(i) R coniains a X-injective faithful left ideal.

(1) R contains an injective, II-projective faithful left ideal.
)

(iv) The injective hull of every projective left R-module is projective.

Proof. (1) = (i). If Reis an injective faithful left ideal of R, then by theorem (3. 3),

eRe is right artinian and Re,y, is finitely generated. Thus, by a result of Faith [10],
rRe is Z-injective.

(i) = (ii1). Let Q be the maximal quotient ring of R, and consider IT, Re, where
I is an arbitrary index set, and Re is Z-injective and faithful. Now Re = (e, and also
oQe is Z-injective. We consider /TQe = [T Re as a (-module. Since @ is semi-primary,
oI Qe has a large socle T,

where J is another index set, and S, are simple Q-modules. Obviously, every such S, is
embeddable in ¢Qe, so the injective hull E(S,) is a direct summand of Qe, and therefore

again Z-injective. Now there are only finitely many different types of simple Q-modules,
consequently @, E(S,) is injective and therefore an injective hull of 7. Thus we conclude

Q”Qe & EBEJ (Sa)a
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since both are injective hulls of T. Now E(S)) = Qe, for some primitive idempotent e,
in e = Re, so
Wl Re = (ITQe = @,L(S,) = &, z0¢, = B, pRe,,

and consequently /7 Re is a projective R-module.

(i) - (iv). Let M be projective, let P be an injective IT-projective faithful left
ideal. Since P is faithful, there is an embedding R < II; , P, for some set I. Since M
is projective, there is an embedding

wM =@, R P,

for some set J. Since P, and so every product of copies of P Is injective, E(,M) is
embeddable into a product of copies of ,P, and is of course a direct summand. But ,P
is also [I-projective, so E(,JI) is also projective.

(iv) = (i). The assumption implies, in particular, that E(,R) is projective. By
(3. 1), R has an injective faithful left ideal.

4. Rings of finite representation type

We are interested in the endomorphism ring of the minimal faithful right module
of a semi-primary QF-3 ring with left global dimension < 2. Recall that the left global
dimension 1. gl. dim R of a ring R is defined to be the smallest number » such that every
left R-module has a projective resolution of length n. Thus, I gl. dim R < 2 if and only
if the kernel of every homomorphism between projective left R-modules is projective.

(4.1) Lemma. Let R be a semi-primary QF-3 ring with L gl. dim R < 2. Let fR
be a minimal faithful right ideal and let A = fR{f. Then every left A-module is a direct sum
of indecomposable A-modules, and every indecomposable left A-module is of the form ,f Re;,
with e, a primitive idempotent of R.

Proof. Let M be aleft A-module. Let Re be a minimal faithful left ideal. We know
that ,U = ,fRe is an injective cogenerator, thus there is an exact sequence

0— M—1I, U1, ,U,
where I and J are index sets. There are R-isomorphisms
Hom,(,f Ry, 11,U) = ITHom,(,f Ry, 4U) = I Re,

where the last isomorphism is given by (1.5). By (1.8), pRe is [I-projective, so
Hom ,(,fR,,, IT,U) is a projective left R-module. Since L gl. dim R < 2, the kernel of

Hom(fR, g): Hom,(,f Ry, 1, ,U)—>Hom(,fRy, 1I; )

has to be projective. But a projective module over a semi-primary ring is a direct sum
of primitive indecomposable modules, so we have an exact sequence

Hom({fR,m
B e

0 —> & Re,—> Hom,(,fR, 1T} ,U) Hom,(,fR, 11, ,U)
with primitive idempotants ¢, of R. Tensoring with R, is an exact functor, and
ROy (@ Re) = @ (fR &y Rep) =~ 8 4fRe,

shows that @, fRe, is the kernel of fR ® Hom,(fR, g).
9*
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Since the functor fR ®, Hom,(f R, —) is natural equivalent to the identity, there
is a commutative diagram

{RQHom(/Rg)
—

0—> & fRe,—> [R @ Hom ([ R, I1U)

fR 7, Hom,(fR, I1U)

m =] oy

o e

v v

0—s M U A U,

where m exists and is an isomorphism, since kernels of isomorphic mappings are iso-
morphic. This shows that
AIM ) @ AfR Bt.

Since 4 is left artinian and ,f R is of finite length, ,fRe, is a direct sum of finitely many
indecomposable left A-modules. On the other hand, if M is indecomposable then the
isomorphism , M =~ & ,fRe, shows that , M is of the form ,fRe,, for a primitive idem-
potent e, of R. This concludes the proof.

The ring A is said to be of finite representation type provided A is left artinian and
has only a finite number of finitely generated indecomposable left A-modules. The lemma
above asserts that the endomorphism ring of the minimal faithful right ideal of a semi-
primary QF-3 ring of left global dimension < 2 is of finite representation type. The con-
verse i3 also true, as the following result shows.

(4.2) Lemma. Let A be a ring of finite representation type and let My, ..., M, be
left A-modules representing all isomorphism classes of finitely generated indecomposable left

A-modules. Let ;M = % M, and R == End( M). Then R s a semi-primary QF-3 maxi-
i=1
mal quotient ring, and l. gl. dim R < 2.

Proof. Since A is of finite representation type, the indecomposable injective left
A-modules are finitely generated. Otherwise, A would have indecomposable left modules
of arbitrary finite length, since every submodule of an indecomposable injective module
is indecomposable. Consequently, all indecomposable injective left A-modules occur as
direct summands of M, so M is a cogenerator. Obviously, M is also a generator, and
since M is of finite length, M is linearly compact. Thus, by the structure theorem (2. 1),
Ris a QF-3 maximal quotient ring. We may assume that 4 is a basic ring, thus , M con-
tains as a direct summand ,A, and we denote by f the corresponding idempotent of R.
We can identify ,fRp with (M, and we know that fR is a minimal faithful right ideal
of R.

It remains to be shown that I gl. dim R < 2, and for this it is enough to prove
that the kernel of any homomorphism

h:®; B>, xR

with I and J arbitrary index sets, is projective. Let h be given. First, assume that I is
finite. Note that

pft = Hom ( My, ;M) = Hom,(,fRy, ,[R).
Also, there is a homomorphism
B:®; fR>a,; fR

such that 4 and Hom,(,f R, k') are isomorphic. Namely, take #’ isomorphic to fR ®z k
and use that the functor fR @, Hom,(,f Ry, —) is natural equivalent to the identity.

il
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Now ,fR, and therefore also &, ,fR, is of finite length, so the kernel of k' is a left A-
module of finite length, and therefore a direct sum of certain of the M ;8. Thus, we have
an exact sequence

0— &y Mi,,—“’ @1‘4fR-h’_> 8, 4fR,

and application of the functor Hom,(,fRz, —) yields an exact sequence
0 - Hom (,fRy, ®K‘M{k) - Hom, (,fRy, ®,fR) ~ Hom,(,fR,, ®,fR).
If we denote by ¢, € R the projection of M onto M,, then we see that

Hom,(,f By, ®x M) = &g Hom ( My, M) = & Re,

1s a projective left R-module. Since % is isomorphic to Hom (,f Ry, %), it follows that
the kernel of & is projective.

Now assume that I is arbitrary. For any finite subset F < I denote by h; the re-
striction of k to the finitely generated free submodule & 4R of @; R, s0

hy: ®p xR~ @, R,

and by the considerations above, we know that the kernel of k; is projective. But the
kernel of % is obviously the union of the kernels of the homomorphisms k,, where F runs
through all finite subsets of 7. This shows that the kernel of A is the union of a directed
set of projective modules, and therefore itself projective, since R is semi-primary.

(4. 3) Theorem. There is a one-to-one correspondence between

(1) Morita equivalence classes of semi-primary QF-3 maximal quotient rings R with
Lgl dimR<2 and

(II) Morita equivalence classes of rings of finite representation type.

Here, a ring R of (1) is associated with the endomorphism ring of a minimal faithful
right R-module, and conversely, a ring A satisfying (11) is associated with the endomorphism
ring of a module which is the direct sum of all duifferent finitely generated indecomposable left
A-modules.

Proof. Let R be a ring with the properties given in (I). If fR is a minimal faithful
right ideal, then by (4. 1), 4 = fR{[is of finite representation type, and every indecompos-
able left A-module is a direct summand of ,fR. Also, ,fR is finitely generated. Thus, if
4M is the direct sum of all different finitely generated indecomposable left A-modules,
then ,fR and ,M have the same indecomposable direct summands and therefore
End(,M) and R = End(,fR) are Morita equivalent.

Conversely, let , M be the direct sum of all different finitely generated indecompos-
able left A-modules, where A is a ring of finite representation type, then by (4. 2),
R = End(, M) satisfies the conditions of (I). Let fR be a minimal faithful right ideal
of R. If we assume that A is a basic ring, then A ~ fRf, thus, in general, 4 1s Morita
equivalent to fRf.

For “artin algsbras”, that is for artinian rings which are finitely generated over
the center, the theorem abovas was proved by Auslander [1]. Namely, an artin algebra
18 a QF-3 maximal quotent ring if and only if its dominant dimension is = 2. Here, a
ring R is said to have dominant dimension > n, provided there exists an exact sequence

of left R-modules
0> pR> 1,51, > 1,
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with I, injective and projective, for all 1 < { < n. By (3.1), a right artinian ring is a
left QF-3 ring if and only if the dominant dimension of K is = 1. Tt is wellknown that &
coincides with its maximal left quotient ring if and only if E(,R)i R is cogencrated by
rf. But il R is also left artinian (and E(,R) is projective), then # is a maximal left
quotient ring if and only if the dominant dimension of R is -2 2. Now we only have tn
use theorem (3. 3) to see that an artin algebra which is a Jeft QF-3 ring and a maximal
left quotient ring is in fact QF-3. However, the generalization of Auslander’s theorem
is of interest, since there are obviously non-trivial examples of rings of finite representa-
tion type which are not finitely generated over the center. for example the “exceptinnal
rings” of Dlab and Ringel [7].

There is an important consequence of the previous investigations concerning the
module category of a ring of finite representation type. Apparently, this was not vet
noticed even in the case of finite dimensional algebras.

(4. 4) Corollary. Let A be of finite representation type. Then ecery left A-module is
a direct sum of finitely generated modules.

Proof. By (4. 3), we may assume A — fRf, where R is a semi-primary (F-3 ring
with ]. gl. dim R < 2, and R a minimal faithful right, ideal. Now the statement follows
from (4. 1), since for every idempotent e, of R, the left A-module afReg is finitely
generated.

A theorem of Eisenbud and Griffith [9] asserts that a ring of finite representation
type is also right artinian and has only a finite number of finitely generated indecompos-
able right modules. Thus, the assertion of (4. 4) is also true for right A-modules.

5. QF-13 rings

Thrall used the notion of a QF-13 algebra for algebras which are at the same time
QF-1 and QF-3, and we will understand by a QF-13 ring a ring which is both a QF-1ring
and a QF-3 ring. We have already derived a result for QF-13 ring. Namely, an obvious
consequence of theorem (3.3) is that a right noetherian QF-13 1ing Is right artinian,
Since a QF-13 1ing R is in particular a maximal quotient ring, we may consider R as the
endomorphism ring of a linearly compact generator and cogenerator ;M. We are inter-
ested in properties of the module +M which are necessary or sufficient for End (M) to
be a QF-1 ring. The first theorem gives a necessary condition: every indecomposable
direct summand of , M is either injective with non-zero socle or projective; moreover,
there is a torsion theory containing all indecomposable modules which are injective but
not projective, as torsion objects, and all indecomposable modules which are projective
but not injective or with zero socle, as torsionfree objects.

(9. 1) Theorem. Let ,M e 4 linearly compact generator and cogenerator, and let
R = End(,M). Then the following conditions are equivalent:

() Every faithful left R-module which is a direct sum of local and of colocal R-modules
is balanced.

(1) Every faithful right R-module which is a direct sum of local and of colocal R-
modules is balanced,

(i) If X and , Y are indecomposable direct summands of 4M and if
Hom,(,X, ,7) + 0,

then either X is projective or 4 Y 1s injective with non-zero socle.
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Proof. We may assume that M = ,A @ ,U @ ,C, where ,U is a minimal injective
cogenerator, and we denote by [ the projection onto 44, by e the projection onto ,U.
We know from section 2 that fR 1s an injective faithful right ideal and that Reis an
injective faithful left ideal.

Let X be an indecomposable direct summand of , M, and let ¢’ be a projection
onto ,X. Now, pRe’ is isomorphic to a direct summand of Re if and only if ,X is in-
jective with non-zero socle. For, let ;Re’ ~ ;Re, for some 1, where e = Xe, is a decom-
position with orthogonal primitive idempotents e,. Then there is an invertible element
in ¢’ Re,, that is, an isomorphism between the A-modules (X and Im(e,). Since Im(e,)
is an indecomposable direct summand of Im(e) = ,U, we know that Im(e;) is injective
with non-zero socle. Conversely, if ,X is injective with non-zero socle, then X is iso-
morphic to a direct summand Im{(e,) of ,U, so pRe, >~ zRe', for some 1.

Also, let ,Y be an indecomposable direct summand of ,M, and f’ a projection
onto ,Y. Then f' Ry is isomorphic to a direct summand of fRy if and only if ;Y is pro-
jective. For, let f'R po f; Ry for some i, where f = Zf, with orthogonal primitive idem-
potents f,. Now, Im(f,) is a direct summand of Im(f) = 44, so Im(f) is projective.
On the other hand, if ,Y is projective, then isomorphic to a direct summand of 44, so
to some Im(f,). The statement now follows from the fact that the R-modules f; Ry and
f’ R, are isomorphic if and only if the A-modules Im(f,) and Im(f) = , Y are isomorphic.

Using the above considerations and the fact that Hom,(,X, ,¥) + 0 if and only
if ¢ Rf" + 0, we may reformulate condition (iii) in terms of R as follows:

(iv) If ¢’ and f are primitive idempotents of R and neither Re’ is isomorphic to
a direct summand of the minimal faithful left R-module, nor f* R is isomorphic to a direct
summand of the minimal faithful right R-module, then f'Re' = 0.

Since (iv) is left-right symmetric, it is enough to show the equivalence of (1) and
(iv). Assume that (i) is satisfied. Let ¢, f* be primitive idempotents of R with f'Re’ =0
and take 0 &z = ["z¢' €f'Re’. Let L be a maximal left ideal contained in Re’ and not
containing z. Then Re'/L has simple top, namely Re'/[N¢, where N = Rad(R), and
simple socle, namely (Rz + L)/L ~ Rf’/Nf". The R-module Re ® Re'/L is faithful and
a direct sum of local modules, so by assumption has to be balanced. But according to
Morita [17], this is only possible, if Re either generates or cogenerates Re'[L. So we see
that either the top Re'/Ne has to be isomorphic to some Re,/Ne,, where Re, is a direct
summand of Re, and then also yRe’ >~ ,Re,, or else the socle Rf'/Nf’ of Re’[L can be
imbedded into Re, and then Rf'/Nf =~ Rf,/Nf, for some idempotent f; such that f,R
is a direct summand of fR. Since Rf'[Nf =~ Rf/Nf, implies f'R/f'N = f,R/f;N, we
see that in this case /'R =~ f, R is isomorphic to a direct summand of fR.

Conversely, let (iv) be satisfied. Again using Morita’s criterion [17], we see that
we have to show that every local and every colocal left R-module zK is generated or
cogenerated by Re. Assume first that 4K is local, so pK =~ Re'[L for some primitive
idempotent ¢’ and some left ideal L = Re'. Since K is not generated by Re, we know
that Re' is not isomorphic to a direct summand of Re. By (iv) we see that for every
primitive idempotent f* of R with f'Re’ # 0, the right R-module "R is isomorphic to
a direct summand of f R. Thus, given an element 0 = ¢ = f'ze’ + L € Re'[L, the module
Rf'|Nf appears as a submodule of Re, so there is an R-homomorphism é: (Rz+ L)/L- Re
with z¢ =0, and since Re is injective, we can extend ¢ to an R-homomorphism Re'/L—~ Re.
Consequently, oK = Re'[L is cogenerated by Re. Second, assume that pK is colocal
and not cogenerated by Re. Let 0 # s = f"'s € Soc(yK), with f” a primitive idempotent
of R. Since ,K is not cogenerated by Re, it follows that f” R is not isomorphic to a direct
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summand of fR. Given an element 0 & m = ¢”m in K, with ¢” a primitive idempotent,
we have s € Re”’ m, since s is contained in every non-zero submodule. As a consequence,
["Re" 0, and by (iv), Re" is 1somorphic to a direct summand of Re. Therefore, there
is an R-homomorphism Re-> .k, mapping e onto m. This shows that Re generates K.

We derive from this theorem several corollaries. Note that condition (iii) in partie-
ular implies that every indecomposable direct summand of »M is either injective with
non-zero socle or projective.

(8.2) Corollary. 4 QF-13 ring is semi-perfect.

Proof. The endomorphism ring of an indecomposable module which is either in-
Jective or projective is always a local ring. Thus, if R is QF-13, then there is a decompo-
sition 1 = )j‘ e; with orthogonal primitive idempotents e; such that e, Re, is local, for

=1

all 1.

(5. 3) Corollary. Let R and R’ be QF-13 rings with minimal faithful left modules
Reand B'e’. If the rings eReand e’ B'¢’ are isomorphic,then R and R’ are Morita equivalent.

Proof. Let fR and f' R’ be minimal faithful right ideals, respectively. If
eRe~¢R'e,

then also fRf ~ f'R'f’, since Morita dual basic rings determine each other up to iso-
morphism. By (2.1), R ~ End(;,fR) and R’ ~ End(,,,f"R’). But R is a direct
sum of indecomposable modules which are either injective with non-zero socle or pro-
Jective, and similarly rref' R’ So, if we identify fRf and f"R’f’, then fR and f'R’ con-
sidered as f Rf-modules differ only in the multiplicity of the occurrence of the indecompos-
able direct summands. Thus R and R’ are Morita equivalent.

(8.4) Corollary. Let R be an artinian QF-A ring with I gl. dim R <2 Then
R = End(, M), where A is an artinian ring such that every indecomposable left A-module
is either projective or injective, and ;M is a finitely generated generator and cogeneraior.

Proof. It was shown by Ringel [24] that an artinian QF-1 ring R with 1. gl.
13
dim R < 2isa QF-3 ring. By (4.3), R = End (4 M) where M = g M, such that every
i=1
indecomposable left A-module occurs as one of the M,. By (5. 1)
direct summand of , M is either projective or injective.
Artinian rings for which every indecomposable left module is either projective or
injective, can be classified, and it can be shown that the converse of (5. 4) is also true.
Recall that a ring R is said to be of local-colocal representation type (or “cyclic-
cocyclic representation type”), provided R is of finite representation type and every

indecomposable R-module is either local or colocal. By (4. 4), every R-module is a direct

sum of local and of colocal R-modules. Now the equivalence of (i) and (ii)
(5. 1) implies:

, every indecomposable

in theorem

‘ (5.5) Corollary. Let R be 4 QF-3 ring of local-colocal represeniation type. Then R
18 left QF-1 if and only U R is right QF-1,

. In particular, the conclusion holds for serial rings. In the remaining part of this
section we will concentrate on this class of rings. As we have mentioned, a module , M

is. called minimal fully faithful provided , M is a generator and a cogenerator, but no
direct summand of 4M is a generator and a cogenerator.
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(5.6) Lemma. Let A be a serial ring and M minimal fully faithful. Then
R = End{(, M) is serial, again.

Proof. We may assume that A is a basic ring and two-sided indecomposable. Let

1= Xe, be a decomposition of 1€ 4 into orthogonal primitive idempotents. There
=1

are elements a;€e,de; , (1 <1< n, with e, , = ¢;) such that

Aa;,= Ne and ¢,4 = e, N,

i+1
where N = Rad(A4). Let 3, = |Ae,|, then ,> 3,,,—1, and we set f(i) = 9, — 3,
80 f(i) = — 1. Note that f(i) + 1 = |Ker(a,)|, where we consider a, as right multiplica-
tion, a,: Ae,~> Ae,,, for
|Ker(a,)| = [de,| — |Im(a)| = [Ae;| —[Ae;,| +1 =f0) + 1.

Given an A-module ,M, denote S'M ={mé€M| Nim =0}, with j=0. Then
SOM =0, S'M = Soc(M), and, for a serial module, |S'M| =]

If 0 < j < f(i), then Ae,/S? Ae, is injective. For assume Ae,/S?Ae, is properly con-
tained in its injective hull. Since the injective hull is indecomposable, it is of the form
Ae,/ % for some k. So we have a commutative square

M

Ae ST Ae; ———— A%

Ao, ——2—— A,
with the canonic epimorphisms ¢, ¢, and a lifting ¢ of the inclusion . Since ¢ is not
surjective, ¢ €e,N = a,4, so ¢ = a,¢’ for some ¢'. But then
SiAe, = Ker(e,u) = Ker(de) 2 Ker(a,),

a contradiction, since |S'de,| =j, and |Ker(a)| =f() +12=].

We define modules M, with 1 <i < nin the following way:

M,=Ae, and, if f(i)=1, then M= Ae/S7Ae,

(1 £j <)) and denote by e;;: Ae;> My, the canonical epimorphism. Then every
M, is either injective or projective (or both), and every indecomposable projective Ae,

occurs as M,. Also, every indecomposable injective left A-module appears as M,;.
Namely, given e,, we want to construct E (Ae,/Ne,). There is e, and

0 &z = e,xe, € Soc (e, A).

Let z € S*'Ae NS’ Ae,, for some j = 0. Note that j < f(i), since z € Soc(e, A) = Ker(ay),
and therefore
j+1=8""4e| =|Az| < |Ker(a)| = f() +1.

Thus M ; exists, is injective, and
Soc(M,;) = Ax/[Nz = AeNe,.
This shows that M,; = E(Ae/Ney).
We consider now the A-module

AM = ®i,thj’

Journal fir Mathematik. Band 272 10
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where the index set is given by
T={G,j)|1<i<n and j=0 or 1)< f(i))

We order [ lexically, and denote by (ij) 4 1 the successor of (ij). Thus (ij) + 1 = (i,j + 1)
for j<f(), and (i) +1=(i+1,0) or j=f(i). We define A-homomorphisms
rt My—> M, in the following way. If j < f(i), then

i My =AefS'Ae,> AeS™ Ae, == M,
the canonical epimorphism, whereas for j = f(i),

Tyt Myy = Ae,fS" DA e, > Ae,, | = Mg,y
is defined by the equation
€ty Tipey = G-

Here we use that S"94e, < Ker(a)), so a, factors uniquely through €y Note, that
with these definitions ¢,;r;, - - -r;, = €11y for j <L

Let W be the radical of R = End(,M). Let ¢;; be the idempotent of R given by
the projection onto M,,. So we may consider ri€e,;Reyy . . First, we show that
e;;W =r,;R. For, assume there is given 4: M;~ My, which is not an isomorphism.
We get a commutative diagram

P
Mij Mkl
‘il]\ T’kl
Ae,—2 5 4e,,

where ¢ exists since Ae, is projective. If ¢’ € e;A e, belongs to the radical N of A, then
¢' = a,4" for some 4", then

L4
L]
Majy+1
& IS RERER T g
M 410
X
Ae, Ae,

1 a commutative diagram and thus ¢ factors through r;;- 1, on the other hand, ¢' ¢ N,

then i =k and 4 is an gpimorpl}ism. But since ¢ is not an 1somorphism, Ker(¢) < 0, so
KF?I'((;S) 2 Soc(M;) = S Ae,jSiA ¢;. As a consequence, ¢ factors through the canonical
epimorphism

Tyt M“——) _M”/SOC(.M”) ~ M

= Thi+1n)

This shows that every element in ei;Wey, with e, arbitrary, belongs to r,; R, and there-
fore ¢, W = r,,R.



Ringel and Tachikawa, GF-3 rings 71

Also, we show that 1We,, , = Rr,.. So assume therc is given a non-zero
yr My~ My, not an isomorphism. We want to show that there is 3" with
EprY = Y Ty
In the case j == f(i), we have (ij) + 1 = (i +1,0), and, since e,p: Ade,~> Ae
an isomorphism, it belongs to Ne, | = Ra,. So we find 9" with

ip1 18 1O

Ey == Y 4= Y ey
In the case j < f(i), we have (ij) + 1 = (i, j + 1), 50 &;;r;;=¢ ;) 15 an epimorphism.
Since Ae, is projective, we find also in this case ' with g, p=1y'e Consider now
the corresponding diagram

TLETY

My M

N iG]

Aep ——— Ae,
wl
where we are looking for 9" making the diagram commutative. It is enough to show that
v'e; factors through ¢, for e,9" = y'¢;; implies that ¥"r;; = v, since ¢, is an epi-
morphism. So we have to prove that

Ker(g,,) < Ker(y'e,)).

This is trivial for [ = 0, for in this case ¢, = id. I{ [ > 0, then, as we have seen above,
M,, is injective, so y cannot be a monomorphism, since otherwise it would be an iso-
morphism. As a consequence, Ker(s,,y) properly contains Ker(e,,), therefore

[Ker(e)| = [Ker(ep) | — 1 = [Ker(y'e;;r) | — 1 = |Ker(y'e, ),

where the last equality stems from the fact that y’e;; + 0 and |Ker(r;;)| = 1. Thus we
have shown that Ker(e,) = Ker(y'e;;), so there exists 9" with &9 = y'¢;;, and
v"'r;; = . Therefore every element in e, We;, , belongs to Rr;, and, since e, was
arbitrary, we have Weg, ., = Rry;.

(5. 7) Theorem. The ring R is a serial QF-1 ring if and only if R is Morita equiv-
alent to End (, M), where A is serial, and M is minimal fully faithful such that given inde-
composable direct summands ,X and Y of ;M with Hom (,X, ;¥) 0, either (X s
projective or (Y is injective.
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