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ABSTRACT

We investigate vacuum transitions in lattice higgs models at finite temperature. The 2
dimensional U(1) Higgs model is used as a toy model. In the 4 dimensional SU(2) Higgs
model the region of the phase transition and temperatures above it are considered. The
couplings (8,x,A) = (2.25,0.27,0.5) and (8.0,0.12996,0.0017235) correspond to masses in
lattice units (2¢ my, agmy, ) of (0.02,0.05) and (0.2,0.2), respectively. The algorithm is
described and a parallelized version is proposed. Taking the influence of the finite lattice
into account we discuss temperature effects. We compare our results with perturbative

estimates and claim that they link low and high temperature approximations.
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1. Introduction

Any theory to be considered seriously as a theory of the early universe must be
able to predict its future behaviour from some given initial conditions. In case of the
standard big bang model a hot and dense universe of temperature 100 MeV is as-
sumed to have existed at an early time. Applying general relativity and elementary
particle interactions lead to an expanding universe with a microwave background
radiation and certain proportions of nuclei, which may be found even today in the
outer layers of old stars.

Nevertheless there are observations which do not come out of the model quite
naturally, but have to be given as special input parameters. The flatness of the
universe or its large scale structure are examples which might be solved by the
concept of inflationary cosmology.! This is achieved by extrapolating the theories
of today (in the range of 102 GeV) up to energies of approximately 10'° GeV.

In this context there also appear baryon number violating processes, thus pro-
hibiting the possibility of a fixed baryon number of the universe since its beginning.?
In an attempt to explain the observed baryon number by elementary particle pro-
cesses it is most natural to investigate the latest event in history which might
account for it. Assuming the electroweak standard model to be valid up to energies
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of 108 GeV, sufficient conditions to generate a baryon asymmetry are fulfilled: The
anomal current allows baryon nonconservation,® the electroweak phase transition
at approximately 102 GeV' ensures thermal nonequilibrium, and the Kobayashi-
Maskawa mixing gives the required CP violation.* Therefore the standard elec-
troweak model near and above its phase transition will be considered.

The following scenario may give some idea of the generation of a baryon number
asymmetry:> Approaching the electroweak phase transition from above the system
stays in a metastable symmetric phase even slightly below the transition tempera-
ture. Small fluctuations of the cold, broken phase are suppressed due to the surface
tension. At some temperature the fluctuations get big enough, and the transition
into the broken phase proceeds via bubble formation. While in the symmetric phase
baryon violation is still possible, any baryon number present in the broken phase
will be conserved. The asymmetric reflection behaviour of baryons and antibaryons
at the expanding bubble wall due to CP violation — antibaryons are easier reflected
while baryons may pass through — leads to an accumulation of baryons inside the
bubbles, while the surplus of antibaryons outside the bubbles disapears due to
baryon number violation. When the whole universe is in the broken phase thus the
observed baryon asymmetry of the universe is generated.

In the next section the model used for this investigation is introduced. The terms
needed to describe baryon number violaton are developed in the third section. Some
remarks about the algorithm follow in section four. Section five contains the results,
and finally we give some perspectives.

2. The Model

Our approximation of the standard electroweak model by the pure SU(2) Higgs
model is justified because the U(1) fields couple only weakly, and fermions can be

neclected if the top quark is not too heavy. Then the Lagrangian of the system
1 a v a
L=—2FiFW ey (Du @) (D*®) + A(B1® — % /2)? (2.1)

leads in the euclidean formulation on the lattice to the local action

Sp = — égi Z t"'(Un,Ou) - i Z tT(Uﬂ,HU)

v=1,23 219,55,
— &k 1r(8} Un 0bnsa) — ;"_ 3" (6 Unudnts) (2.2)
§=1,2,3

+ MA@l dn — 12 + tr(ala) .

Here we use an anisotropic lattice with spacing ao(r) and N,(;) points in space
(time) direction. The lattice anisotropy ¢ = a,/a, is controled by the coupling
anisotropies v, for the gauge coupling 8 = 2N/g2, and v;, for the hopping parameter
k. To leading order in the weak coupling expansion these anisotropies are equal to

the lattice anisotropy £, but in a more precise investigation the lattice anisotropy
must be calibrated by correlation functions.®
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The temperature is introduced into quantum field theories by imposing periodic
boundary conditions in time direction, its extension beeing the inverse temperature.
Then on the lattice we have ]

ar Ny = —f (23)

Usually physical quantities like correlation functions or masses are given in units of
the spatial lattice spacing, a,. Then the temperature is

aT=-22 ot (2.4)

At some stages in this article it will be helpful to use the 2d abelian Higgs model.
Due to its lower dimensionality in configuration and internal space it is much more
easy to simulate, while the special properties conserning baryon number violation

are still present.
The model is defined analog to the 4d SU(2) model; the gauge and Higgs fields

ign)l‘

Anp= € (2.5)
&, = Rne'¥"

become complex numbers, and the action at each lattice site n is

Sn= =7 (1- cos(tna)) + Aa? (RE—0v*/2)’
i (2.6)
+ Z (R, + R121+,a — 2RaRn443c08(9n + Onp — Pnti)).
u=1,2

3. Topological Properties

There is a one to one correspondence between baryon number violating processes
and vacuum transitions. The SU(2) Higgs model has an infinite degenerate vacuum,
which can be visualized by a periodic potential.” The baryon number violation,
which takes place when the system moves from one vacuum to another, can be

expressed in terms of the gauge fields. This is possible, because the integral over
the anomalous current

: ns 2 1

Ouig = T tr(Fu F*) (3.1)

gives the baryon number difference.® Here n; is the number of fermion famlhes.
Assuming the system to be at times £y 2 in a vacuum, the baryon number difference

between these two vacua is given by

t2 ~
VY= 2
AB:—IZ;;Z /t dt/d% tr(F, F*) = —n; Q, (3:2)

where @ is called the topological charge.
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Semiclassicaly the transition between different vacua is given by the instanton,
a field configuration interpolating between two vacua. The transition rate obtained
by this method is tiny, and baryon number violation via this process is not expected
to be measurable.

There is another aproach to vacuum transitions. In the above mentioned po-
tential picture a field configutration in the middle between two vacua on top of the
potential barrier can be constructed for a fixed time.® It is called sphaleron and has
an energy of ~ 10TeV.

For the 2d abelian Higgs model an instanton configuration with a sphaleron
inbetween with n., = 0.5 can be constructed and visualized easily (fig. 1).
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Fig. 1. Instanton configuration for the 2d abelian model. Gauge fields in Ag=0 gauge are at the
left, Higgs field radial part and argument are at the right side. The different vacua are on the left
hand side n¢s=1 and on the right hand side n.;,=0 for both fields.

Heating the system to a temperature of the order of the sphaleron energy would
result in a high probability to end in a different vacuum after cooling. From this
picture two temperature regions with different transition behaviour are found. If
the temperature is below the vector boson mass, the transition rate T per unit time
and volume is given by®

Imw \7
Tr=0. 4 w -3mw [Ta,
0.007 (e T) (——Taw) ¢ . (3.3)
For high temperatures one may assume mw ~ T, resulting in
T ~T¢% (3.4)

with a proportionality constant between 0.1 and 1.1°

Investigating the behaviour of the SU(2) Higgs system requires a classification
of the field configurations at a fixed time in order to determine if the system is in
a potential well or on top of the potential barrier.
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Due to its special form, the anomalous current (eq.3.1) can be written as a
divergence

O, K* = tr(Fy, FH). (3.5)

1
1672
Then it is possible to write the baryon number difference in terms of the zeroth
component of K as the difference between two integrals:

AB = ~nf(/d3z Ko(fz, z) —/dax Ko(tl,m)) = —ny(ne(t2) ~ nes(t1))  (3.6)

The hereby defined Chern-Simons number n., is integer for vacuum configura-
tions and has half integer values for configurations on top of the potantial barrier,
for example the sphaleron. Under a gauge transformations the number only changes
by an integer, resulting in an invariant difference between Chern-Simons numbers,

and thus baryon number.

4. The Algorithm

The definition of the Chern-Simons current K, (eq.3.5) allows us to write the
Chern-Simons number in terms of the gauge fields. Inserting

K, = —#‘I Epvpo tr(Av(9pAs + %APA”)) (4.1)

into the definition (eq. 3.6) makes it possible to evaluate the Chern-Simons number
for a given field configuration.

Our investigation consists in a generation of statistically independent field con-
figurations by the Monte Carlo method. Measuring distributions of Chern-Simons
numbers gives the effective Chern-Simons potential V{n,,), which is defined by

P(ne) = exp(—=V(ng)) =

4.2
/ dAdP e~ 5AP) 6(nc, + 5 / dr &3 tr(Ai(85 Ax + %A_,-Ak))). (42

In a lattice formulation care has to be taken to preserve the transformation
properties of the Chern-Simons number. Especially the change by an integer under
gauge transformations cannot be achieved by a naive lattice definition of eq. (4.1).
Seiberg’s definition is well suited for our purpose.'! o

It requires the construction of an interpolating function in each 4 cube of th'e
lattice; it depends only on the link matrices on the edges of each 4 cube. This
function has to be integrated over and summed up for every cube. . '

But there some problems arise. Only one of the reqmre;d three. dimensional
integrations can be performed analytically. As all the intfagratm'ns are independent,
they can all be done in parallel. This would be very simple if we could use (z;:e
set of integration points for all the cubes. But usually for 90% of the' cubest. e
interpolating function is smooth, thus requiring only a small number of integration
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points. The few remaining cubes have to be integrated on a finer grid, and the
whole procedure is not straightforwardly parallelizable.

We propose the following procedure: First each cube is integrated with P x P
and with 2P x 2P integration points. If the difference between these integrations
is less then some threshold (0.01%), the integrations are assumed to be correct.
Otherwise the integrations are repeated with a higher number of integration points.
This procedure becomes inefficient when there is only a small number of cubes left.
These are dealt with in a different way. The different integration points (usually
of the order 64 x 64 up to 512 x 512) are now located on different sites and the
function is now evaluated in parallel for one cube at a time.

The special values for an optimal program are coupling parameter and computer
dependent. An initial value of P = 8 and distribution of the last 8 to 16 cubes over
the lattice proved to be a good choice for our task.

The calculations were done on the CRAY-YMP at HLRZ Julich and on the NEC-

SX3 of the University of Koln. In table 1 some average times for the evaluation of
Chern-Simons numbers are given.

Table 1. Time needed to evaluate a single Chern-Simons number on the CRAY-YMP at couplings
$=2.25, k=0.25, 0.3, 0.4 and A=0.5 as well as on the NEC-SX3 at =8, x=0.12996 and A=0.0017235.

CRAY-YMP NEC-SX3
Nq NT K {/Ng [ms] No- N-r 6 {/Ng [ms]
6 6 0.25 11.4 4 4 1.0 45.2
(5] 6 0.30 10.0 4 2 1.0 29.5
6 6 0.40 9.9 4 2 2.0 11.2
8 8 0.30 9.2 6 6 1.0 75.7
8 8 0.40 8.9 6 2 1.0 27.2
8 4 0.30 9.5 6 2 2.0 8.6
8 )
2 | 030 44 8 8 | 10 76.2
8 2 1.0 31.1
8 2 2.0 10.2
5. Results

The first part of the investigaton consisted of a measurement of the topological
susceptibility of the SU(2) Higgs system. By measuring the topological charge @

of a field configuration it is possible to identify vacuum transitions. The topological
susceptibility is related to the transition rate via 1°

[ =(Q*)/(2N7N;). (5.1)

These results are for § = 2.25 and A = 0.5 on both sides of the phase transition at

x = 0.26065, which corresponds to Higgs and vector boson masses of (.02 and 0.05
in units of the lattice spacing.!?

There is obviously a suppression of configurations with topological charges in
the Higgs phase of the system (fig. 2) due to the nonvanishing Higgs expectation
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Fig. 2. Topological susceptibility at zero (¢) and finite (®) temperature.

value there.!® At higher temperature there is an additional suppression. Clearly
instanton effects do not contribute to vacuum transitions.

Therefore only Chern-Simons numbers will be considered. Since the lattice is
finite, one cannot expect to produce an infinite periodic Chern-Simons potential.
This is most easily understood by the definition of the Chern-Simons number in the

2d abelian model: N
1 (-4
Res(nr) = o= > bi(n,n,) (5.2)

nxl

Since 6 € [—m; 7] the possible Chern-Simons numbers lie in the interval [— N/2; N/2].
By dividing through the measure a periodic potential, which is restricted into some
interval, is produced (fig. 3).1* There is also an indication for a more flat distribution
at higher temperature indicating a higher transition rate.

In analogy to the 2d abelian model the distributions will be corrected for the 4d
SU(2) model. The same behaviour becomes transparent, thus for both models the
periodic structure of the distribution after dividing out the measure will be assumed
from now on.!* Therefore it suffices to shift all Chern-Simons numbers by integers
into the intervall [—~1/2;1/2] in order to investigate the form of the potential.

Investigating now the volume and temperature dependence of the distributions
gives the following picture: The distributions get more broad with higher temper-
ature, but there also is an increasing width with higher volume. While the tem-
perature dependence will be investigated in detail, the volume dependence makes
it impossible to investigate the temperature influence on large volumes.®

This is related to the presence of high Chern-Simons fluctuations even at small
temperature. These zero temperature fluctuations are irrelevant for vacuum tran-
sitions and have to be taken into account.

One possibility might be to smoothen the configurations in a way similar tf’ the
cooling method.!® However we used a different way out: At higher gauge coupling 8
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16 x 16 lattice 16 x 2 lattice

016 n 216
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Fig. 3. Chern-Simons distributions (above) for zero (left) and finite temperature {right). Below
the distributions are divided by the measure.

the field configurations become more smooth, resulting on average in smaller Chern-
Simons numbers. We chose the couplings 8 = 8, ¥ = 0.12996 and A = 0.0017235
corresponding to Higgs and vector boson masses of 0.5 in lattice units.!” Then the
broadening of the distributions with rising temperature can be seen clearly (fig. 4)-

Our data do not allow any conclusions concerning transition rates. Still it is pos-
sibel to draw some conclusions. Let us assume, that Chern-Simons numbers in the
vicinity of half integer values indicate possible transitions. The increasing amount
of half integer Chern-Simons numbers at higher temperature is then proportional
to the increasing transition rate. Therefore the ratios of half valued Chern-Simons

numbers at different temperature is compared with the corresponding ratios of tran-
sition rates.

These data indicate that at temperatures of two times the phase transition
temperature there is still some exponential supression of the tramsitions (tab.2).
. It would be a confirmation of our picture if at higher temperature this supres-
sion would disappear. For such simulations a different approach would be needed,
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Fig. 4. Chern-Simons number distributions on 8%x 2 lattice with anisotropies £=1.5,2,2.5. With
increasing temperature the distributions get significantly broader.

Table 2. The first table gives the fraction Chern-Simons numbers, F' (€,€), calculated on 2 x 83
lattices with anisotropy € which differ from half-integer values by less than €. In the second table
we compare some ratios, F’ (8 €1 )/ F (E ,fz), with the semi-classical estimate for the tunneling
rate in the two limiting cases mwy = mw (T = 0) (eq.3.3) (a) and mw ~ T (eq.3.4) (b),
respectively.

¢ F(0.1,¢) F(0.05,¢)

1.8 | 0.0035(13) | 0.0013(07)
2.0 | 0.0109(23) | 0.0044(11)
2.5 | 0.0710(45) | 0.0327(28

£1/&2 e=01 | e=0.05 | (a) | (b)

2.0/1.8 | 3.1+£1.3 | 34%+20 3.9 ] 1.5
25/20 | 65+1.4 ] 74+20° 10.0 | 2.4

since numerical difficulties arise at even higher lattice anisotropies. In this case it
might be reasonable to work directly with the dimensionally reduced model in three

dimensions.!8

6. Perspectives

Our results indicate that it is possible to extend the low and high temperature
estimates by lattice calculations. This is mainly due to the definition of the Chern-
Simons number on the lattice.

In the range of one up to 2.5 times the phase transition temperat}n'e the nu-
merical calculations proved to be successfull. It would be desirable to simulate t.:he
system at even higher temperature, especially in order to check where the high
temperature approximation becomes valid. .

The 4 dimensional SU(2) Higgs model is not suited for this purpose. ’I.‘o rise
the temperature requires even higher values of €, which cannot be chosen arbitrary.
Therefore it will probably be usefull to investigate the dimensionally reduced three
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dimensional effective model.

Future investigations should find faster methods to evaluate Chern-Simons num-

bers. There is also some requirement to take the zero temperature fluctuations into
account. A method similar to cooling is desirable und might also speed up the
numerical integrations due to its smoothening of the field configurations.

We conclude that numerical Monte Carlo simulations are important in order to

investigate vacuum structure and transitions in Higgs models at finite temperature..
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