

A Note on Optimal Block-Scaling of Matrices

Dedicated to Prof. Dr. F.L. Bauer on the occasion of his 60th birthday

L. Elsner

Fakultät für Mathematik, Universität Bielefeld, Postfach 8640, D-4800 Bielefeld (Fed. Rep.)

Summary. After pointing out that two recent results on optimal blockscaling are equivalent, a new short and simple proof of both results is given.

Subject Classifications: AMS(MOS): 65F35; CR: G1.3.

We use the following notation: ρ is the spectral radius and $|| ||_2$ the spectralnorm, $\kappa_2(A) = ||A||_2 ||A^{-1}||_2$ the condition of A with respect to the spectral norm and $C^{n,k}$ the set of all complex $n \times k$ matrices. Let X_1, X_2 be linear subspaces of C^n , dim $X_i = n_i$ and $X_1 \oplus X_2 = C^n$. Let

$$\mathcal{M} = \{ A = (A_1, A_2) : A_i \in C^{n, n_i}, \text{ Im}(A_i) = X_i, i = 1, 2 \}.$$

Demmel [3] and Bart et al. [2] have proved

Theorem 1. Let $A = (A_1, A_2) \in \mathcal{M}$ and $A_i^H A_i = I_{n_i}$. Then

$$\kappa_2(A) = \min \{\kappa_2(X), X \in \mathcal{M}\}.$$

In other words, if the columns of A_i are orthonormal bases of X_i then A has optimal condition.

Eisenstat et al. [4] have proved

Theorem 2. Let
$$B = \begin{pmatrix} I_{n_1} & X \\ X^H & I_{n_2} \end{pmatrix}$$
 be positive definite. Then

$$\kappa_2(B) = \min \{ \kappa_2(D^H B D) : D \in \mathcal{D} \},\$$

where

$$\mathcal{D} = \{ D = D_1 \oplus D_2 : D_i \in C^{n_i, n_i}, nonsingular \}.$$

By observing that $(\kappa_2(A))^2 = \kappa_2(A^H A)$ and that $C \in \mathcal{M} \Leftrightarrow C^H C = D^H B D$ for some $D \in \mathcal{D}$ and B is a positive definite matrix of the form of Theorem 2, we see at once that Theorem 1 is an easy consequence of Theorem 2. Similarly by taking Cholesky decomposition of B, Theorem 2 can be derived from Theorem 1.

We give now a proof of Theorem 2 (and hence of Theorem 1) which is simpler than the proofs given before. The main tool is a trick used by F.L. Bauer in [1].

From $B\begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$ we get $X y = (\lambda - 1)x$, $X^H x = (\lambda - 1)y$ and $(\lambda - 1)^2 x = XX^H x$. This shows that the eigenvalues of B are given by $1 \pm \mu_i$, μ_i singular values of X. Also, if $z = \begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector belonging to the maximal eigenvalue $1 + \|X\|_2$, then $\tilde{z} = \begin{pmatrix} x \\ -y \end{pmatrix} = Sz$, $S = I_{n_1} \oplus -I_{n_2}$ is an eigenvector belonging to the minimal eigenvalue $1 - \|X\|_2$. This gives

$$SB^{-1}SBz = \frac{1 + \|X\|_2}{1 - \|X\|_2}z = \kappa_2(B) \cdot z$$

hence

$$\rho(SB^{-1}SB) \ge \kappa_2(B).$$

Now for any $D \in \mathcal{D}$, as $||S||_2 = 1$ and S commutes with D,

$$\kappa_2(B) \leq \rho(SB^{-1}SB) \leq \|D^{-1}(SB^{-1}SB)D\|_2$$

= $\|S(D^{-1}B^{-1}D^{-H})S(D^HBD)\|_2 \leq \kappa_2(D^HBD).$

References

- 1. Bauer, F.L.: Optimally scaled matrices. Numer. Math. 5, 73-87 (1963)
- 2. Bart, H., Gohberg, I., Kaashoek, M., Van Dooren, P.: Factorizations of transfer functions. SIAM J. Control Optimization 18, 675-696 (1980)
- 3. Demmel, J.: The condition number of equivalence transformations that block diagonalize matrix pencils. In: Matrix pencils (B. Kagström, A. Ruhe, eds.) Lecture Notes in Mathematics 973. Berlin, Heidelberg, New York: Springer 1982
- Eisenstat, S.C., Lewis, J.W., Schultz, M.H.: Optimal block diagonal scaling of block 2-cyclic matrices. Linear Algebra Appl. 44, 181-186 (1982)

Received December 19, 1983/February 6, 1984