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We study how the adjoint {or adjugate) adj(4) of a real or complex n x n-matrix A behaves
under the rank one modification 4 — 4 + ur™. The most interesting cases are rank 4 = n—1,
rank(4 +u*y = n or 1~ 1. In the first case relations with generalized inverses can be shown,
¢.2. that (adj(A +uv”) — adj(4))? adj(A)u is a {1, 2}-inverse and that converse]y any {1, 2}-
'nverse of A can be expressed in this form. The results in the second case can be interpreted as
results on the changes of an eigenvector under this modification and can be carried over to
Mmatrices 4 without rank restrictions. Finally we investigate the adjoint of a bordered matrix.

INTRODUCTION

Itis well known how the inverse of a given matrix A behaves under a modifica-
tion of the form

A->A+uw" =B

where A4 is an n X n-matrix, u, v are nx l-matrices and “#” denotes.the
Hermitian transposed. As an example we mention the Sherman—Morrfson
formula, €.g.[4], p. 124. In the present paper we derive corresponding relatl.on.s
for adj (A4), the adjoint of 4 (sometimes named the adjugate of ). This is
fairty simple for the case that 4 and B are nonsingular, however, wher} Fhe
rank of 4 is n— 1, rather interesting results are obtained and a surprising
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connection to generalized inverses is revealed. The case when A and B are
both singular and of rank n— 1 is of special interest to us here. This situation
describes the behaviour of an eigenvector with a corresponding eigenvalue
that does not change under the above modification, which can be viewed as
dual to the wellknown Wielandt method of deflation where all eigenvalues
with the exception of one are invariant, whilst here only one eigenvalue is
assumed to be invariant. Such a situation occurs in the investigation of homo-
geneous Markov chains, when the model is altered in such a way that the
difference between the transition matrices describing the models is of rank
one. The change of the eigenvector corresponding to the eigenvalue 1 then
represents the change in the limiting distribution.

The notation and terminology which will be employed in this paper is
introduced in Section 1. This section also contains well known results, as
well as several new ones, concerning the adjoint of a matrix which are
essential for the sequel.

In Section 2 the case where 4 and B have ranks n— | and n, respectively, 1s
considered. Our main result here, Theorem 2, is that, up to a scalar, the
difference

adj(A + uvt')—adj(A)

is a {1, 2}-inverse of 4, and conversely, any {1, 2}-inverse of 4 can be ex-
pressed as a difference of adjoints of the above form.

Section 3 is devoted to the case where the ranks of 4 and B are bothn—1,
and a detailed investigation of the behaviour of adj(A4 + ur™) is carried out
(c.f. Theorem 4).

Theorem 4 suggests an examination of the nullspace of A + uv* in terms of
the nullspace of A. This is done in Section 4 without rank restrictions on A
and B. Some of the results in this section have been obtained previously,
using a different approach, by Egervary [2].

In the final section we investigate the adjoint of a bordered matrix. For

that purpose we exploit results obtained in earlier sections, in particular
those contained in Theorem 2.

All matrices and vectors have coefficients in F, where F = R or C. Let A4
be an nxn-matrix. For 1 < i, j < n denote by 4 ;i the determinant of the
matrix which originates from A by deleting the j-th row and the i-th column.
The matrix B = (b;); ;-1 . b= (—1)"/4, is called the adjoint matrix
of A and is denoted by adj(A4).

If u, v are n x 1-matrices then uv™ is a matrix of rank 1 and is sometimes
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called a dyade. We use the notation

D(A, uv™) = adj(4 +uv™)—adj(A) (1.1)
and for o™ adj(4)u # 0

C(A, uv™) = D(A, uv™)/ v™ adj(A)u. (1.2)
I, denotes the n-dimensional unit matrix, det 4 the determinant of A,

R(A4) = {Au, ue F"} its range and N(A) = {u € F", Au = 0} its'nullspace.
The following results are well known:

A tdet A = adj(4) if detA+0 (
Aadj(4) = adj(4)- A =det A-1, (1.

adj(4B) = adj(B) adj(4) (

det(A4 + uv™) = det A+ o adj(A)u (

If A7 exists and 1 +0v7 4~ 'u # 0, then (A +uv™) ™! exists and

A w4 ™?

T 1.7)
1+0"47 (

(A+uw) ' =471

By (1.3), (1.6), (1.7) one gets

adj(A +uv®) = (4 +uvt)™ " det(4 +uv™)

A At
C1+084
= adj(4)+ 0" adj(AuA "' - adj(Au? 47!

= A°! (det A+ adj Au)

ifo" 4"ty + 1. Hence
D(A, ut”) = o™ adj(A)ud "' —adj(Aur" 4™ (1.8)

if 47" exists, (1.8) holds by continuity also in the case v”4~ u+1=0.
Also

adj(A)uv’j} ot 4 [,” “_l’f_‘%ﬂi‘_/‘,?] (1.9)

H . _ s .
CA, w™) = [I,, F adi( Al eH adj(A)u

if 47! exists and p¥ adj(A)u # 0.
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ProposITION 1 Let v® adj(Au # 0 and C = C(A, uv™). Then

adj(A)uv?
B LA 1.10
cA=1, vH adj(A)u (110

uvt adj(A)
g 111
AC=1, v adj(A)u (L1
CAC.=C (1.12)

H

u
ACA = A— e 1.13
C A—det A4 o adi( Al (1.13)

Proof (1.10) and (1.11) follow from (1.9) if A~ ! exists and in general by
continuity. From (1.10) CACA = CA which implies (1.12) for 4 non-singular.

By continuity (1.12) holds also in the singular case. Post-multiplying (1.11)
by A and using (1.4) gives (1.13).

Let us finally recall that the Moore—-Penrose-inverse A* of A4 is the unique
matrix B satisfying

(i) ABA = 4
(i) BAB = B
(il) AB = (AB)¥
(iv) B4 = (BA)¥ (1.14)

and that each matrix satisfying (1.14) (i), (ii) is called a {1, 2}-inverse of A [1].

2.

In this chapter we assume rank(A4) = n— 1 throughout. In this case we get
from (1.4)

adj(A) =rs" £ 0 .1
where r and s span N(A4) and N(A™) resp.
4r=0, s#4=0. (2.2)

Hence r is a right-hand and s¥ is a left-hand eigenvector of 4 corresponding
to the eigenvalue 0.



EIGENVECTORS AND ADJOINTS 239

PrOPOSITION 2 If rank A = n—1 and adj(A) = rs? then the following are
equivalent

(@) A+ u? nonsingular
(b) v* adj(Au # 0 2.3)
(c) ug¢ R(A), v¢ R(AY).

Proof (a)<> (b) follows from (1.6). Writing (b) in the form (v*r) - (s"u) # 0
the equivalence with (c) follows from the fact that ue R(4) iff s"u = 0 and
ve R(4%) iff ofr =0, ]

This proposition helps us to prove the following theorems which describe
the set of all possible C(A4, uv™) in different ways. Although most of the results
are listed in theorem 3 we prefer to present parts of them in theorem 1 and
2 separately, thus underlining their importance.

THEOREM |  Let rank A = n—1, adj(A) = rs?. Then

C(A, sy = A", (2.4)
If A+uv™ is nonsingular then |
H H
ay _ [T 48 2.5
C(A, w) = (I v”r)A (I s”u)' (2.5)

Proof As r" adj(d)s # 0, B = C(A4, sr¥) is defined. We show that B =
C(A, sr¥) satisfies the equations (1.14) : (1.12) implies (ii), (1.13) and det 4 = 0
gives (i), by (1.10) BA = I—rr/rfy = (BA)® and by (1.11) AB = I—ss"/s"s
= (AB)?, hence also (iii) and (iv) hold. For C = C(4, uv”) we get using (1.12),
(1.14) (i), (1.10) and (1.11)

H H
C = CAC = CAA* AC = (I—-:%;)A+(1_ﬁs_.) n

sfu

In the situation of this chapter any C = C{A, u") satisfies (1.12) and by
(L.13) also ACA = 4, it is hence a {1, 2}-inverse of A. But also the converse

is true. This is the result of

THEOREM 2 Let rank A = n—1, adj(4) = rs™. Then a given matrix C is a
{1, 2}-inverse of 4, i.e.

ACA=A4, CAC=C (2.6)
iff there exist vectors u, v such that v adj(A)u # 0 and
C=C(A4, w")

W, vare up to a factor uniquely determined.
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Proof In view of the preceding remark it remains to show that a {1, 2}-
inverse C of A is of the form C = C(4, uv?) for some appropriate u, v. We
start by observing the following fact: If Q is a projection of rank 1, Ox =
x, Y70 = yH, then Q = xy”/y¥x. Hence if P is a projection of rank n—1,
Px =0, y®P = 0, then Q = I— P satisfies the assumptions above, giving
P =1-0Q = I—xy?/y!x. From (2.6) follows that P = CA is a projection.
Furthermore from rank(A) = rank(4ACA) < rank(CA) < rank(A4) we infer
rank(CA) = n—1. Define v # 0 by v#CA = 0. In addition CAr = 0. The
observation above gives

CA = I—rvti)0fly. 2.7
Similarly
AC = I —us®/s"uy (2.8)

whereu # Osatisfies ACu = 0. Now by (2.6), (1.14), (2.7), (2.8),(2.5)C = CAC
= CAA" AC = (I1-r" /0" A* (I —us?/s"u) = C(A, ™). Let us finally re-
mark that we can recover u and v from C(A4, uv®) by (1.11) and (1.10) as
AC = I—us"/s"u and CA = I—rv®/v¥r. Hence u and v are uniquely deter-
mined up to a factor. |

In the following theorem different descriptions of the set of all C(4, uv™)
are listed. An indication of the proofs is given below:

THEOREM 3  Let rank A = n—1, adj(4) = rs" and
C, = {C(4, uw™):u,ve F", v adj(A)u + 0}
C, = {C:CAC = C,ACA = A)
Cy = {(I=ro"/v*NA* (I —us®/s"u) :0%r + 0, s7u # 0}
Cy={A"—rg"—hs" + g1 Ah . rs":g"s = ¥ih = 0}
Cs = {(A" —rgMA(A* —hst'):g"%s = rh = 0}
Ce = {A* —rg"— hs" :gHs/sPs+ ¥ h/rir + g% Ah = 0}
ThenC, = C,=C,=C, = C, = C,.

i

i

Proof Theorems 1 and 2 show C; = C, = C,.1f Ce C,, then it has the
form A —rg"—hs" +g" Ah. rs¥ where g = v"A* /v¥'r, h = A*u/sPu. But
A%s =0. A" =0 show g% = rh = 0, hence C, = C,. On the other
hand, each g such that g"s = 0 is of the form g" = v#4* for a suitable v,
which in addition can be chosen to satisfy v¥r = 1. Similarly r#h = 0 implies
the existence of u such that s"u = 1, h = A*u. This shows C, = C,.

Observing that for h with rh = 0

A*Ah = (I—r¥/rfir)h = h
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and g% AA* = gH(1—ssi/s1s) = g% if g¥s = 0, we have for g#s = rih =0
(A" —rg")A(A" —hst) = AY —rg — hs" + (g" AW)rs”

and hence C, = C,.
IfCeCq,C = A" —rg"—hs" then because of

"s+r" 3
sfis Py

H
C = A+wr(g”*%s") — (h—;r:-—fr)sH+g"Ah-rsH
S
= A" —rg? —hs" + GH AR rs?

which shows that C e C,. On the other hand, writing a Ce C, in the form
C=A"—rlg"—g"ans"]—hs? = A* —rg? —hs" it is readily established
that Ce Cq, hence C, = C,. u

K=
=

|

—giAh

o

We shall now examine the case where B = A +uv™ is singular, too.

THEOREM 4 Let rank(A) = n—1, adj(4) = rs”, rank(A+uv™) < n. Then

either (1) rank(A4 + uv®) = n—2. In this caseu = Aw, 0" = x4, x74w = -1,
adj(A+u) = 0
or

(2) rank(A + uv™) = n— 1. Here the following cases are possible
(@) u = Aw, v¢ R(A®). Then v¥r + 0 and

adj(4 +w) = (1 + v wyr—ofrw)s” 3.1)
(b) u¢ R(A), v = xHA. Then s"u + 0 and
adj(A +ur®) = r{(1 + xFu)s” — s"ux") (3.2)
(©u=Aw, o = x#4, xFAw+1 # 0. Then
adj(4 +uv®) = (1 + x7F Aw)rs™. (3.3)

Proof We start from the relation
adj(A+uv™)—adj(4) = D(A, uvt) = (¥rl,— re)A* (s"ul,—us"). (34)

It follows from (2.5) in case of v¥rs"u # 0 and in general by continuity. As
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A + uv¥ is singular, by proposition 2 exactly one of the following cases occur

(i) ue R(A), v¢ R(4")
(i) u¢ R(A), ve R(A")
(iii) ue R(A), ve R(AM.

Incase(i)u = Aw,s%u = 0,vflr # 0. We may assume, by eventually replacing
w by w4 tr, that rfw = 0. In this case ATu = A" Aw = w. Now (3.4) gives
DA, u™y = —o¥rAtus® + v¥ A urs? = ((v¥w)r—(v¥r)w)s” from which (3.1)
follows. As vr # 0, adj(A +uv®) # 0 and rank(4 +uv™) = n—1.

Similarly case (ii) is treated, it corresponds to case (2Xb). In case (iii) one
has vfr = su = 0, u = Aw, v = x7 A.

From (3.4)

adj(4 +uv™) = rs"+ (WA wrs? = (1 + v Aw)rst.

If 1+x¥Aw # 0, rank(A+uv”) =n—1, this is case (2)c). Otherwise
adj(A +uv®) = 0, rank(4+uv”) < n—2 and by the well-known relation
rank(X + Y) = rank(X)—rank(Y) we get rank(B) = n—2. This corresponds
to case (1). ]

Let us indicate a different proof of theorem 4, which does not use theorem 1
and the relation (3.4).

We start from
adj(L, + xy™) = (1 + yIx)I,— xy! (3.5)

which follows easily from (1.6), (1.7) applied to 4 = I,. Now in case (i)
u = Aw and hence adj(4 +uv®) = adj(A(, + wo™)) = adj(I, + wv')adj(4) =
[(1+ "W, —wo] - rsf = [(1 + ¥ w)r — (v¥r)w]s?. Similarly the remaining
cases can be treated.

Using the remark following (2.2) we may interpret the results of theorem 4
in terms of eigenvectors:

2(a): If u = Aw, v¢ R(A") then under the modification 4 — A+ uv™ the
eigenvalue 0 and the corresponding left-hand eigenvector stay invariant
while the right-hand eigenvector r is replaced by (1 + v?w)r — (v%r)w.

2(b): If u¢ R(A4), v = x" 4, the eigenvalue 0 and the corresponding right-

hand eigenvector stay invariant, while the left-hand eigenvector s¥ is replaced
by (1 + x#u)st — (s"u) - x¥.

2c): f u = Aw, v# = x4 and x#Aw + 1 # 0, the eigenvalue 0 and the
corresponding right- and left-hand eigenvectors stay invariant.
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We illustrate the results of theorem 4 by some simple examples. Let

0 10
A=10 0 1
0 00

Here r = (1, 0, 0), s = (0, 0, 1). Then u = (uy, u,, u;)* € R(A) iff u; = 0.
In this case u = Aw(t) for w(t) = (¢, uy, u,) where t is a free parameter.
Similarly v = (v, v,, v3)? € R(A¥) iff v, = 0, v = x()7 A, x¥(1) = (v;, v3, 1).
The four cases in theorem 4 are

(1) u3=Ul =0, ﬁlvz+azv3+1 =O

(2b) Uy # 0’ vy, = 0

(20) u3=v, =0, av,+a,vs+1+0.

In the case (2a) the new right-hand eigenvector F is given by
; = (1 +ﬁ2ul +ﬁ3u2, ﬂf)lul’ _ﬁluz

Ois a defective eigenvalue of 4 + uv too, if sF = 0,ie.u; = 0or equivalently
u € R(A?). Otherwise ¥ can be normalized such that s*# = 1. This can be done
by dividing by 1+ v¥w(t) for a suitable ¢, i.e. by writing

Hrw(r) (3.6)

MO = r =1y

Fort = —oi Y (I+a,0, +iy05+a0,)  s"HE) = 1.
For

A= 2

oo 0o
oo
OO

3
r=s=(1,0,00. u=(u,u,, uy)¥ € R(A) iff u, =0, and then u = AW(1),

where w(t) = (t, u,d; *, ud; !). Let v = (vy, 03, 03).
We discuss case (2a) only, given by u; = 0, v; # 0.

P = (1+o"w(O)r — (o r)w()

_ - - ~1\H
= (1+52u23;1 +ESU3Z3— 1, ’—“Ulngz la —“L-‘IU333 ) .
0is a defective eigenvalue of A +uv®™ if
I =5
Hs = 14 0,u,d; ' +03u3d5 = 0

otherwise ¥(r) as defined in (3.6) satisfies #(t)s = 1for r = 0.
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4,

Theorem 4 provides an analysis of the behaviour of the eigenvectors under
rank one-modifications only in the special case that the invariant eigenvalue
is of geometric multiplicity 1 for A. We study now more general settings.
THEOREM 5 Let A and B be n x n-matrices, B = A+uv™ # A. Then
(1) rank(B) = rank(4)—1 iff u = Aw, v = xH4 and x¥Aw+1 = 0.
Here
N(B) = L(N(A)uw)  N(BY) = L(N(A®) U x).
(If S 1s a set, L(S) denotes the smallest linear subspace containing S)
(2) rank{B) = rank(A)ff
either (i) u = Aw, v ¢ R(A™).
In this case it is possible to choose w such that v#w = 0. For this w
N(B) = (I—wt™)N(A4), N(B™) = N(A¥)
or (ii) u ¢ R(A) v¥ = xH A.
In this case it is possible to choose x such that xfu = 0. For this x
N(B) = N(A), N(B") = (1—xu?)N(A™)
or (i) u = Aw, o = x"4, xHAw+1 #£0.
Here N(B) = N(A). N(B") = N(4Y).
(3) rank(B) = rank(4)+ 1 iffu ¢ R(4), v¢ R(A"). Here
N(B) = N(A)n vt
N(BY) = N(A") n u*. Here ¢t = {x:1¥x = 0.
Proof (a)Let u¢ R(A), v¢ R(AY).

If yeN(B) then Av+(t"y)Ju=0. As u¢ R(A4), v’y =0 and Ay =0.
Hence N(B) « N(A) n ¢*. It is obvious that N(4) n v < N(B). This shows
N(B) = N(A) n v*. Similarly N(B#) = N(A") n u*. As v ¢ R(4¥). v+ ? N(A).
dimN(B) = dimN(4)— 1, or rank(B) = rank(4)+1.

(b) Let u = Aw. v ¢ R(A™).
There is v e N(A), t”y + 0. Hence we may assume, by eventually replacing

w by w+ry, that tfw = 0. Now B = A(J+weH), (I+we)~ ' = [—wrf
Hence ve N(Bl e A(] + wrf)y = 0 < (1 + wef)y € N(A) < ve (I —wiH)N(A).
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This shows N(B) = (I - wv™)N(A), similarly N(B¥) = N(4¥). Hence rank(B)
= rank(A).

(c) The case u¢ R(A), v = x¥ A4 is treated by applying (b) to A¥ and B".
Hence N(B") = (1— xuf)N(A™), u¥x = 0, N(4) = N(B), rank(d) = rank(B).

(d) Let u = Aw, v¥ = x¥ 4. Then
B = A+ AwxA = A(I +wx¥4) = (I+ Awx¥)A. 4.1)

() If x"Aw +1 # 0, then by (1.6) I +wx" 4 and I+ Awx™ are nonsingular.
As in case (b} and (c) we infer from the two representations of B given in
(4.1) that N(B) = N(A), N(B¥) = N(A¥), rank(A4) = rank(B).

(ii) If x¥ 4w + 1 = 0, then obviously Bw = 0, but w¢ N(A4),as Aw = u # 0.
Hence N(B) > L(N(A4) U w), and dim N(B) = 1+ dim N(A). Hence rank(A)
= n—dim N(4) = n+1—dim N(B) = | + rank(B) > rank(4) the last in-
equality following from rank(X + Y) > rank(X)+rank(Y). Hence rank(B) =
rank(4)—1, N(B) = L(N(A) U w). Similarly N(Bf) = L(N(A") U x).

Regrouping of the proved results yields theorem 5. [

Remark A particular result of theorem 5, namely that rank(A4 +uv¥) =
rank(4)—1 iff u = Aw, v® = x¥4 and x"Aw+1 = 0, has been proved by
Egervary [2).

The following corollary is an easy consequence of theorem 5.

COROLLARY Let n = 2. Let A be a nxn-complex matrix, u, ve C" and
B = A+uv™. Then the following are equivalent.

(1) A and B have no common eigenvalues.

(2} 4 and B have no common right-hand and no common left-hand eigen-
vectors.

(3) Aand B have no common nght-hand eigenvectors in v+ and no common
left-hand eigenvectors in u*

Proof Let 4 and B have a common eigenvalue g Theorem 5 applied to
A— ul implies that one of the three cases occur :

() u = (A~ puhw,
(1) o = xH(A4—pI),
(i) N(B—pl) = N(A—ul) n vt # {0},
(3) does not hold, as in (i) any left- hdnd eigenvecto

eigenvector of B and satisfies z%u = u"z = 0. In (i1) any rig
vector z of A is a right-hand eigenvector of B and satisfies £z =

r z of Ais a left-hand
ht-hand eigen-
0 and in
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(ili) any right-hand eigenvector of B is a right-hand eigenvector of 4 and
orthogonal to v. Hence (3) = (1). As (2) = (3) trivially, it remains to show
that (1)=> (2). If A and B have a common, say, right-hand eigenvector r,
Ar = pr, (A+uv)r = vr, then (v—p)r = u- (v¥r). If v—pu = 0 then (1) does
not hold. Otherwise v¥r # 0 and u is a multiple of r. As n = 2 there exists
always a left-hand eigenvector y¥ of A4 such that y#r = 0. But then y*u = 0,
too, and y¥B = y#A = ky®. Hence (1) = (2). ]

5.

We study for completeness a further modification, the bordering

A u
5B = 5.1
A-B (uf' 1) (5.1)

where Aisnxn,uandvarenx1land a€ R, Bisn+1 x n+ 1. Using the well-
known formula for the inverse of B (e.g. [3], p. 113), using

det B = adet A— vt adj(A)u, (5.2)
(1.18) and the continuity of adj(B), we get

. (x+ adj A —adj(A4 + ur?) —adj(A)u)
B) =
ady(B) ( — " adj(A) det A

By applying the results in 1 or 2 numerous other representations of adj(B)
can be given.

In the spirit of chapter 3 we can get explicit formulas for adj(B) in terms of
adj(A), which as before can also be viewed as results on the eigenvectors of B.
We collect some of the results in the following theorem 6, the proof of which
proceeds along similar lines as theorem 4 and is therefore omitted.

(5.3)

THEOREM 6 Let det B = adet A— v adj(4)u = 0. Then rank(B) = n iff one
of the following cases holds:

(1) det A # 0, « = v 4~ 'u. Here
adj(B) = det 4 - 754
where ¥ = (4~ "W, DE, ¥ = (bHA 1 1),
(2) rank(A) =n—1, Ar=0, 54 =0, adj4) = rs¥
and either
(i) u = Aw, r ¢ R(A"). Then adj(B) = 7 where

F=((a—e"wirf + (1wl — o 57 = (51, 0)



EIGENVECTORS AND ADJOINTS 247
or
(i) ¥ = x¥ 4, ug R(A). Then adj(B) = 7#¥ where
=" 0 3 = (x—ufx)st + usxt, — uts)
or
(i) u = Aw, ¥ = xH 4, x" 4w # . Then adj(4) = (x—x7 Aw)Fs¥
F=(r 0, 3= (5% 0)

(3) rank(4) = n—2, u¢ R(A4), v ¢ R(AY). In this case rank(A +ur") = n—1,
adj(4 +uc™) = r s% 4 0 for some vectors r,, s, and adj(B) = —#", where
F= (7 0M, 3 = (M 0)

In all other cases adj(B) = 0.

We remark finally that by using a bordering of A it is possible to give
another proof of (2.5).

Assuming rank(4) = n—1, adj 4 = rs?, a = 0, v* adj(Aju # O define B
by (5.1). B is nonsingular by (5.2) and by (5.3)
_ 1 (adiA+w™)—adj(4) adj(A)u)
A adj Au vf adj(A) 0

On the other hand it is easy to verify (see also [1], p. 231) that

et A1 uSH) r
-1 Iﬂ_v”r st/ ofr
B = H
S
—~ 0
S'u

B—l

Comparison of the upper left corner gives (2.5).
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