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Abstract— We propose a feedback-based solution for the
accurate manipulation of an unknown object in hand. This
method does not explicitly take the friction and surface ge-
ometry of the manipulated object into consideration for the
controller design, but employs a fast feedback loop based on
visual and tactile feedback to perform robust manipulation even
in the presence of unexpected slippage or rolling.

At every control step, fingertip motions are computed to
realize the intended object relocation, employing a composite
position/force controller. Subsequently inverse hand kinematics
is employed to retrieve joint-level motions, which are imple-
mented on the robot with a position servo loop.

We evaluate our method on two KUKA robot arms, each
equipped with a tactile sensor array as end-effectors to perform
the object manipulation task. The experimental results show the
feasibility of our proposed method, even in presence of slippage
or external disturbances.

I. INTRODUCTION

Humans use a large number of in-hand object manipu-
lation behaviors in their everyday lives. For example, we
grab our mobile phone and change its pose to make a call
or send a message. We pinch a pen and change its pose in
hand to a comfortable posture for writing. Such basic and
simple behaviors can be performed easily even by children.
However, they cannot yet be realized by the most advanced
robot hands. In this paper, we focus on this challenging task
of dexterously manipulating an object within a multi-fingered
robot hand, i.e. moving the object with respect to the hand.

A large number of approaches addressing this problem
make use of the mathematical robot hand manipulation the-
ory [10]. While sound, this theory makes strong assumptions
in order to perform dexterous manipulation tasks: the object
properties (friction, geometry, mass, etc.), the relative motion
between the fingertips and the object, and the robot hand
model must be known. Using this knowledge, the robot
hand can deliberately plan its motion offline and implement
accurate manipulation tasks in the real world [6].

In contrast to this open-loop planning approach, also
many feedback-based approaches have been proposed. For
example, [16], [17] proposed the sensorless grasping and
manipulation for a triple-fingered robot hand. Solely relying
on tactile feedback, they define the current object pose by
a virtual frame calculated from estimated contact points and
relocate the object w.r.t. this frame following an empirical
feed-forward control model. However, because visual feed-
back about the actual object pose is disregarded, accurate
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control in the presence of unexpected slippage or rolling is
impossible.

Wimboeck et al [18] also use the virtual frame idea to
realize object-level impedance control. Their model-based
control method requires an accurate robot dynamics model to
compute desired joint torques. Grupen et al [9] proposed a
control basis framework to perform complex manipulation
tasks. They use gradient descent to search for maximum
grasp quality configurations employing torque sensor feed-
back and multiple probing of the object surface. Finally,
they consider dexterous manipulation by sequencing a series
of stable grasps. Both methods can solve the manipulation
task by torque-controlled robots, but their methods are not
suitable for position-controlled ones.

In this paper, we propose the integration of vision, tactile
sensing and proprioception to accurately perform object
manipulation tasks. Concretely, we use vision to extract
the object pose, proprioception and forward kinematics to
estimate contact positions, and tactile sensing to estimate
contact forces. All sensory feedback signals are incorporated
into a closed-loop manipulation controller.

Conceptually, we divide the object manipulation process
into two stages: a local object relocation step and a global
regrasping step. The local controller reactively moves the
object by a small amount limited by the motion range of
the hand. A higher level planner will rearrange the finger
configuration to allow continuing the local motion. To this
end, a finger is selected for relocation, while the other fingers
maintain a stable grasp. The selected finger actively explores
the object’s surface to find a new optimal grasp configuration.
In our previous work, we have employed physics-based
simulation to show the feasibility of this approach [4].
The present paper will focus on an evaluation of the local
manipulation controller on a real robot.

The paper is arranged as follows. In the next section, we
discuss our methods to estimate the object pose and contact
positions/forces from visual and tactile sensors. In section III
we discuss the manipulation scenario and the local manipula-
tion controller, before in section IV the experimental setup is
detailed and the relocation capabilities are evaluated. Section
V discusses the results and parameter choices. Finally, we
conclude with a summary and an outlook.

II. OBTAINING OBJECT POSE AND CONTACT LOCATIONS

Focusing on the manipulation task, we employ a fiducial
marker attached to the object in order to easily estimate
the object’s 6D pose. The monocular camera was calibrated
applying standard calibration methods using a known 3D
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Fig. 1: Pose estimation for a static object pose: x-y-z position (cm, left column) and roll, pitch, yaw (deg, right column).
Blue solid curves show noisy raw values, red dotted curves show smoothed values used for control.

calibration object [3]. The BCH-code-based marker provides
four highly reliable and efficiently detectable key-points (at
the corners) with known coordinates with respect to the
object frame. From these we can calculate the object’s pose
employing standard pose detection from planar targets [19].

To evaluate the accuracy of this pose estimation method,
we compare its results to those obtained from a stereo-camera
system (stereo basis: 20cm). The results are shown in Fig. 1
and Tab. I given a static, known object pose. While the raw
pose estimation considerably varies, appropriately smoothed
values provide suitable feedback signals for robot manipula-
tion. The position error is naturally dominated by the depth
estimation error. As can be seen from Fig. 2, showing a
human manipulation sequence and the recorded pose error,
the angular error gets larger if the marker’s normal and the
camera’s view-vector become more (anti)parallel. However,
both position and angular error stay in an acceptable range
for the envisioned manipulation task.

The marker-detection and pose estimation system runs at
the full camera frame rate of 30Hz, which is sufficient for the
robot control cycle. In more natural manipulation scenarios,
the marker-based pose detection module could be replaced
by marker-less object tracking frameworks such as [2] or
even Microsoft Kinect-based methods such as [8].

Another, even more important feedback channel for ma-
nipulation is tactile sensing. As absolute accuracy of human
tactile sensing is also limited, we propose to estimate contact
positions and force from a modern tactile sensor providing
an array of 16×16 tactels with a spacing of 5mm in each

TABLE I: static object pose estimation accuracy

position error [cm] orientation error [deg]

x 0.082 ± 0.047 roll -0.564 ± 0.047
y -0.068 ± 0.044 pitch 0.342 ± 0.045
z -0.386 ± 0.229 yaw -0.157 ± 0.023
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Fig. 2: Human manipulation sequence and obtained pose
estimation error.



Fig. 3: contact blob and center of gravity
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Fig. 4: Computed contact position (cog) when moving a
2mm-diameter probe tip between two adjacent tactels. Due
to the weighted averaging between different tactel locations,
we yield a spatial accuracy of ca. 0.5mm despite the much
larger tactel size of 5mm.

direction [13]. The sensor is tuned towards high frame rates
(up to 1.9 kHz), rendering a use for real-time robot control
feasible. It exploits the piezo-resistive sensing principle,
measuring changes in resistance of a conductive foam due
to an applied normal force.

As a first processing step we need to identify the contact
region on the sensor, which typically extends over a larger
image region due to the softness of the sensor foam. To
this end, we employ connected component analysis [14],
well known from image processing, to extract all con-
nected regions in the binarized tactile image and choose the
largest one as the considered contact region R – neglecting
all smaller regions as originating from noise or spurious
contacts. An example contact region is shown in Fig. 3.
Subsequently, we compute the overall contact (normal) force
f as the sum of forces fij within the contact region and the
contact position c as the center of gravity (cog) of R:

f =
∑
ij∈R

fij c = f−1
∑
ij∈R

fijcij , (1)

where cij are the discrete coordinates of the tactels on the
sensor surface. Due to the averaging effect from multiple
tactels composing a contact region, we obtain a sub-tactel
resolution for the contact position as can be seen from
Fig. 4. Exploiting proprioceptive feedback and calculating
the forward kinematics, the 2D contact location on the sensor
is mapped onto a 3D Cartesian position.
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Fig. 5: Incremental manipulation of object pose O.

III. LOCAL MANIPULATION CONTROLLER

Conventional grasp and manipulation planning methods
[1], [7] uncouple the planning from the control stage. The
planning stage strongly depends on global knowledge about
the geometry of the object and the fingertips. Certain works
also explicitly consider spherical finger tips to facilitate
the geometry-based planning process [15]. Furthermore, the
friction coefficients for all contacts are required to evaluate
grasp stability.

In real world scenarios, especially when handling un-
known objects, this information is not available. Nevertheless
humans can easily manipulate objects without this know-
ledge. We assume that the incredible dexterity of human
manipulation originates from tight control loops employing
tactile sensor feedback. Consequently we propose to employ
tactile feedback to estimate contact positions and forces
and introduce a manipulation strategy mainly based on
this feedback. If friction properties and joint torques are
not available anymore, we cannot actively control rolling
and slipping, because internal forces cannot be designed.
However, as we will show, local object manipulation is
possible without explicitly designing all details of physical
hand-object interaction.

A. Contact Position Planning

Fig. 5 illustrates our overall control concept showing the
evolution of the object pose O from an initial one (Ostart)
to the goal (Ogoal). In every control cycle ti (see the
box) we compute an intermediately targeted object pose O′

towards the final target pose. While more complex motion
planning methods could be applied here, we adopt a simple
PI controller to do so:

O′ = O + (kp ∗ (Ogoal −O) + ki ∗
∫

(Ogoal −O)) (2)

Here, Ogoal −O denotes the pose error between the current
and the target pose. In order to calculate corresponding
finger tip motions realizing this new object pose O′ without
knowledge about the exact object geometry, we make the
assumption that contact positions po

i do not move relative
to the object within a control cycle. Under this essential
assumption, we calculate the new contact positions p′i with
respect to the palm as follows:

p′i = O′ · po
i . (3)
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Fig. 6: Force planner employs centroid p̄ of contact locations
to obtain contact force directions.

From this we can compute the required positional changes
∆pi = p′i − pi for all contact points.

Of course, the assumption that there is no relative motion
between the fingertips and the object is only an approxi-
mation. Because the exact contact geometry as well as grasp
stability measures are not explicitly taken into account, some
slipping and rolling will occur. However, the sensor feedback
available in the next control cycle will allow us to recognize
and correct this undesired contact motion.

B. Contact Force Planning

A mere kinematic consideration of the problem as dis-
cussed so far is not sufficient. In order to maintain a stable
grasp and to not break the object, we have to control contact
forces as well. Conventional contact force planners strive
for a globally optimal contact force distribution ensuring
grasp stability, for example, all contact forces stay within
corresponding friction cones, the totally applied force exactly
resists the external forces (e.g. gravity), and the local contact
forces are limited. This general solution is meaningful only
if the contact force is controllable. However, we assume that
there is no 3D contact force feedback (obtained directly or
indirectly), but only the force magnitude is available from
the tactile sensors.

Following the approach from [15], we plan the force
direction such that the resultant moment will be zero by
ensuring that the contact force directions of all fingers
intersect in one point, which is chosen to be the centroid
p̄ of contact locations (see Fig. 6). Subsequently we can
prescribe force magnitudes along these directions such that
the resultant force becomes zero as well. Hence, the force
planner calculates desired contact force magnitudes along the
contact directions, from which we can obtain force errors.

Both the force (∆fi) and positional errors (∆pi) are fed
into a composite position/force controller, which calculates
the effective contact position error u, which in turn is fed to
an inverse hand kinematics module to compute actual joint
velocities. Fig. 7 summarizes this control scheme. For a more
detailed introduction of the local manipulation controller we
refer to our previous work [5].
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Fig. 7: Low level, local manipulation control scheme.

IV. EXPERIMENTAL EVALUATION

In contrast to our previous works, where we proved the
feasibility of the manipulation approach in physics-based
simulation only (due to the lack of appropriate tactile sen-
sors), in the present work we evaluate the method using
two KUKA LWR arms, each equipped with a tactile sensor
module. Thus, both arms act as two large fingers with tactile-
sensitive fingertips.

The information about the shape, size, and friction of
the manipulated object is not available to the robot. The
experimental setup is shown in Fig. 8. The camera observes
the object from the top. We point out that we use only the
joint encoder feedback and not the torque feedback provided
by the KUKA arms. Vision feedback frequency is 30Hz,
and we limit the tactile feedback to the same frame rate.
They are both processed by a smoothing filter averaging
within a window 20 frames. Proprioceptive feedback and
joint angle control rate are both fixed at 125Hz. We extract
joint angle measurements and send joint control commands
via the KUKA FRI interface [12], [11]. All controller gains
are manually tuned to guarantee the stability of controllers
in all manipulation experiments.

The whole manipulation process comprises three phases:

(a) Vision-guided grasping of the object.
(b) Moving along world’s Z, X , and Y axis in sequence.
(c) Rotating around Z and X axis.

Each phase is described in detail in the following.
a) Vision-guided grasping: The first stage is to guide

the arms to contact the object, exert the planned grasp force
(see III-B) and hold the object. The force planner – originally
designed for multi-fingered hands – has been simplified for
the two-arm scenario: While the contact force vectors still

tactile sensor

calibrated camera

Z

X

Y

Fig. 8: Experimental setup using two KUKA arms with
attached tactile sensor arrays as large fingertips.
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Fig. 9: Evolution of force (f1, f2 of both tactile sensors /
fingertips) and positional errors during translating motion.
x,y,z errors are mapped to red, green, blue colors resp.

point towards the centroid of contact locations (see Fig. 6),
their magnitudes are set equally to a predefined value.

To establish object contact, we apply a simple, hard-coded
opposition strategy: Starting from the estimated pose (x, y, z)
of the marker attached to the object we attempt to drive
both fingertips, i.e. arm end-effectors, to the virtual grasp
point (x, y, z − z0) slightly below the marker frame, where
the offset z0 is a constant determined by the size of the
tactile sensor module. The approaching motion of both arms
is stopped as soon as contact to the object is detected by the
tactile sensor.

The coarse calibration of the tactile sensors does not pro-
vide accurate enough force feedback to stably hold the object
with a pure force-feedback controller. Rather, the object
will slowly drift away. However, exploiting visual feedback
about the object position too, the composite position/force
controller successfully accomplishes the grasping task.

b) Translating motion: In the first experiment, the
object is moved 10cm along the world’s z, x, and y axes in
sequence. The resulting trajectories for force and positional
errors are shown in Fig. 9. As can be seen from the
deflections in the bottom subfigure, a new target pose was
set after 5, 22, and 35 seconds. In all cases the positional
error quickly decays to the noise level.

Considering the force error trajectories, we see that the
motion along the y-axis generates most deviations. This
is because, this motion direction is parallel to the contact
normal, thus heavily demanding the composite force/position
controller. As soon as the positional error along the y-axis
stabilizes around zero, also the force error starts to decay.

c) Rotating motion: Secondly, we will show how the
object orientation can be controlled. In each experiment,
firstly the object will be lifted 10cm along the z-axis before
being rotated around the z resp. x axis. The results of both
experiments are shown in Figures 10 and Fig. 11. Again, the
positional and rotational errors quickly decay after setting
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Fig. 10: Error evolution rotating around world’s z-axis

a new target pose. However, rotational errors are corrected
more slowly due to a more conservative choice of controller
gains.

Looking at the force error trajectories, we observe that
the errors do not completely decay anymore. This is due
to the fact, that the physically applied force direction isn’t
normal to the sensor surface anymore. However, the sensor
only measures normal forces. Again, incorporating visual
feedback and employing the composite position/force con-
troller we can realize stable object rotation nevertheless. All
experiments are also shown in the accompanying video.

V. DISCUSSION

As we pointed out in the discussion of the grasping stage,
the force calibration of the piezo-resistive sensor is too
coarse to allow force-only feedback control for grasping.
Differing force magnitudes at opposing contacts will lead
to a drift of the object. However, as we have seen from
our experimental results, it is not necessary to improve on
the force measurement accuracy of the hardware. Rather, we
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(a) rotational and positional errors
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Fig. 11: Error evolution rotating around world’s x-axis

can compensate for this weakness using intelligent control
strategies.

In the present work, we relied on object pose feedback
from vision to solve this issue using a composite position and
force controller. However, even if object pose feedback is not
available, we can compensate for drifts using proprioceptive
feedback: Aiming to stably hold an object, we will expect
a stable end-effector pose as well (within noise level).
However, if we observe a drift of the end-effector pose, we
can trace it back to force deviations. In other words, instead
of using external feedback about the object pose, we could
also employ proprioceptive feedback to estimate the current
object’s pose and use that in the composite controller to
compensate for drifts.

As detailed in our previous work [5], the composite
controller computes the final control signal by superimposing
the control signals from both sub controllers, the position and
force controllers. Naturally, linear superposition may lead to
destructive interference, i.e. non-zero control inputs from sub
controllers may add up to zero.

To circumvent this effect, we exploit the fact, that PI-
type controllers can compensate for systematic errors, thus
realizing higher priority control. That is, the more important
control variable will be controlled using a PI-type controller,
while the sub-ordinated one employs a P-type controller. In
our case, controlling the pose of the object, the position
control part is most important, thus using a PI-type controller.
In contrast, force is controlled using a P controller. This also
contributes to the poor tracking results visible in Figures 10b
and 11b.

As a matter of fact, PID controllers are sensitive to proper
parameter tuning. We obeyed general rules for PID gain
tuning: Firstly Kp parameters are regulated until the system
begins to oscillate. Then the derivative gain Kd is employed
to reduce oscillations. Finally, the integration component Ki

is added to eliminate the steady state errors. We used the
same parameter sets for both arms.

VI. SUMMARY

We proposed a reactive control strategy to realize local
manipulation motions for unknown objects. In contrast to
traditional manipulation strategies, which require a lot of
information about the object and which plan in an offline
fashion, our method plans in an online fashion and employs
minimal sensory information. The position and contact force
planners are designed independently and are coordinated by
a composite controller. Finally, we proved the feasibility of
the method to manipulate unknown objects using a real robot
platform composed from two KUKA arms with attached
tactile sensor arrays acting as two large finger tips grasping
the object.

We are also working on improving the tactile sensing
capabilities of our anthropomorphic Shadow Robot Hand.
Once new tactile sensors will be available, we will extend
the experimental evaluation to the regrasping strategy as
well, which already proved feasible in our previous work
employing physics-based simulation [4].
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