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Abstract. Physics engines have been used in robotics research for a long
time. Beside their traditional application as a substitute for real world
interactions due to their higher speed, safety and flexibility, they have
recently also been used for motion planning and high level action plan-
ning. We propose to further explore the idea of using a physics engine as
means to give a robot a basic physical understanding of its environment.
In this paper, as a preliminary step, we study, how accurately the process
of pushing flat objects across a table with a robot arm can be predicted
in a physics engine. We also present an approach to adapt the engines
parameters to enhance the simulation accuracy.
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1 Introduction

One prominent research objective in robotics is to build autonomous service
robots that are fit to share our common living space. However, we are still
very far from robots that can perform everyday human tasks like tidying a
room as smoothly as we do. A major challenge is the integration of the different
abstraction layers of information the robot has to deal with. While goals and
actions are usually represented at a high level of abstraction, the sensory input
and motor control information are represented and processed on a much lower
level of abstraction.

To allow reasoning about goals and actions an understanding of the world’s
dynamics and the effects of actions is necessary. For example, when asked to
arrange books on a table it is good to know how they behave – they might
fall down if placed too close to the edge of the table. To interact with objects
a physical understanding of the world would be very beneficial, as it would
provide a very general and powerful way for both interpreting perceptions and
planning actions. Such a model of the world’s behavior should ideally be learned
automatically from low-level sensor inputs, so that the robot can adapt to new
situations and no hand-crafted models are needed.

In fact, humans also acquire ‘physical’ concepts and rules, which help them
to interprete the world. The very basic concepts are already learned at a quite
early age: Young infants of only three months already have a concept of solid
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objects. They are surprised when they see solid objects passing through each
other or not falling down when they lack support [1]. This kind of ‘naive physical
understanding’ of the world certainly plays an important role in structuring their
perception and actions.

The artificial intelligence community has long been concerned with finding
appropriate computational models for human-like physics knowledge and reason-
ing. The developed theories and algorithms such as qualitative process theory
[2] and QSIM [3] are all based on qualitative representations. Their power lies
in their ability to infer all possible behaviors of the modeled systems without
the need for complete, quantitative knowledge of the system’s initial state. In
improved versions of the original QSIM algorithm, available numerical data can
be additonally fed into the qualitative simulation to further restrain the number
of possible behaviors [4].

Physics engines provide an alternative way of simulating physical interactions
quantitatively and have become popular in the robotics community in the last
ten years. Traditionally applied in the design and monitoring of actual physi-
cal systems, they have recently also been used in the context of evolutionary
optimization and motion planning. Lipson et al. [5] use physical simulations to
repeatedly evaluate the fitness of a large number of individuals in an evolution-
ary process to develop blueprints and motor programs of robots. The motion
planning community employs physics engines to simulate the temporal progress
of controlled motions of complex robots where kino-dynamic constraints must
be taken into account [6].

In contrast to qualitative simulation techniques, physics engines operate at a
lower abstraction layer and can be used for robot control more directly. However,
they are so far not considered as means to endow a robotic system with the
ability to reason about physical world interactions. We propose to take a new
perspective on physics engines in this regard.

Reasoning processes guiding an autonomous robot naturally have to cope
with questions concerning the stability of manipulated objects such as whether
they could tip over or start to roll or how to shift several objects without changing
their configuration. Other questions are related to the controllability of objects
and the estimation of uncertainty in the prediction of the actions’ effects. Physics
engines provide answers to these questions in a general and detailed way. They
can therefore complement classical rule-based reasoning systems by acting as a
source of information or ‘oracle’ for them. Pasula’s work [7], in which she uses a
physics engine to build a simplistic qualitative world model, provides an example
along this line.

As a first step towards the long-term objective of employing physics engines
in physical reasoning, in this paper we closely analyze the Bullet engine, which
is an arbitrary choice among current, freely available engines. We present our
study on the accuracy of predicting outcomes of real world interactions in a
well-defined scenario: a robot arm pushing flat objects across a table. In the
following section, we describe the experimental setup and the data acquisition
process. Section 3 gives an overview of the Bullet physics engine, its capabilities
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Fig. 1. The robot pushes one of the tangram pieces across the table. The results of this
interaction are recorded and used to improve the accuracy of the according physical
simulations.

and restrictions, many of those being typical for physics engines in general. In
section 4 we present an optimization method to choose simulation parameters,
which improve the resemblance of simulated and real world actions. Finally, we
discuss the results in section 5 and give an overview of possible applications of
the proposed techniques in section 6.

2 Experimental Scenario

2.1 Setup

We decided to test the simulation accuracy of a current physics engine in a
scenario of flat objects being pushed across a table. This scenario was chosen,
because it is simple and still several physical properties like friction, mass and
shape of the objects have to be taken into account in simulations. Specifically,
we used the four wooden tangram pieces shown in Fig. 1. In each pushing trial,
one of the tangram pieces was placed on the table at a predefined position and
then pushed against its side with a robot hand. The hand was attached to a
redundant 7 DoF Mitsubishi PA10 robot arm.

The trials were conducted with the square, parallelogram, small triangle and
large triangle placed at varying initial positions x0 (see Fig. 2). For each trial, the
kind of tangram piece, its initial position, its final position and the trajectory
of the pushing fingertip were recorded. The path of the hand movement was
always identical, although the duration it was actually pushing the pieces varied
for their different initial positions (Fig. 3). In total we had 19 different start
conditions across the objects, for each of which we performed five (identical)
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Fig. 2. The arrows in the figure mark the positions where the robot hand
started to push the tangram pieces. The tangram pieces were positioned at x0 ∈
{10 cm, 11 cm, 13 cm, 15 cm, 18 cm, 21 cm}, while the hand trajectory followed a straight
line of 40 cm length at x = 10 cm. The pushing trials with the dashed start positions
were used as test data, the solid ones as training data in the optimization process
outlined in Section 4.

pushing trials. Repeating the trials was done to find out how much the final
poses of a pushed object vary under identical conditions, providing a baseline
for the subsequent predictions.

2.2 Data Analysis

The camera system used to recognize the pushed object’s shape as well as its
initial and final pose provides an accuracy of ±1 mm for position and ±1◦

for rotation. The fingertip trajectory was obtained from applying the forward
kinematics to the joint angle trajectory recorded with 100 Hz. Due to controller
inaccuracies, the deviation of the fingertip trajectory from its ideal straight line
amounts to ±2 mm.

An interesting aspect of the recorded pushing actions is the variance within
the five identical trials for each of the starting conditions. Due to the limited
precision with that the tangram pieces can be placed at the designated initial
position and the controller inaccuracies, it is not possible to exactly reproduce
a single trial. However, the variance between identical trials strongly depends
on the starting condition. It is highest when the pieces are pushed close to their
center (see Fig. 3). The standard deviations for all shapes are plotted in the
results section, where we compare them to the simulation results.

3 Action Prediction with Physics Engines

3.1 Choosing a Physics Engine

The design of physics engines heavily depends on their intended application and
focuses either on high precision (e.g. for weather forecasting, climate calculations
or airplane design) or on real-time performance (e.g. for computer games). Since
we want to use the physics engine for continuous simulation and planning of
robot behavior, real-time capability of the engine is essential.

[8] compared ten major real-time physics engines with regard to five cate-
gories including material properties, constraint stability and stacking behavior.
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Fig. 3. The two figures show pushing trials recorded for the parallelogram-shaped
object, which was placed at a different initial position in the left and in right figure. In
each figure the final object positions of five repeated trials are plotted. The vertical red
line marks the trajectory of the fingertip. When pushing close to the symmetry axis of
the object, the variance of final position becomes bigger.

Although there was no physics engine that performed best in all categories they
concluded that “of the open source engines the Bullet engine provided the best
results overall, outperforming even some of the commercial engines.”

Based on this statement and considering the fact that it is freely available as
open source1, we decided to use the Bullet engine for our simulations.

This engine is capable of simulating rigid bodies as well as soft bodies which
can be used to model cloth, ropes or deformable volumes. The engine implements
Newton’s laws of motions and uses a simple friction model to simulate Coulomb
friction. Bodies are prevented from penetrating each other by automatically in-
troducing constraints, which are solved together with all user defined constraints,
e.g. representing joints.

3.2 Stability and General Restrictions

One important issue about the physics simulations is how quickly two simulations
diverge, when there are small differences in their initial conditions. There are two
reasons for divergence. One is the limited numerical accuracy of floating-point
operations, so that tiny numerical errors might accumulate in the simulation and
cause different final results. The second reason are bifurcation points in the phys-
ical simulation state space. When placing a pyramid on its tip or pushing against
one of the tangram pieces on one of their symmetry axes, the eventual direction
of motion changes dramatically even for tiny changes in the initial conditions.
Obviously, this also applies to real world experiments. However, the divergence of
simulations can be reduced by changing parameters of the simulation algorithm,
as this influences the way numerical errors accumulate.
1 The code is open source under the MIT License, which permits anyone to use it for

any purpose. The code is hosted at http://code.google.com/p/bullet/.
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The implementations of most physics simulations focus on high performance
at the cost of less accuracy. In fact, the physical laws like energy conservation or
the constraint that objects should not intersect, are not exactly fulfilled. In most
cases the resulting errors are quite small, but for certain parameter combinations,
the simulated scene might become unstable and even ‘explode’. This behavior
will obviously also result in quick divergence of repeated simulations.

To address these issues, we did an iterative linear search over those simulation
parameters, that significantly influenced the simulation stability to determine the
values leading to the smallest variance of end results in repeated simulations.
The obtained values are listed in the “global parameters” part of Table 1.

Another important question is how to adequately model real world objects in
the physics simulation. As the Bullet engine is supposed to work best with objects
not too big or small, a scaling factor applied to the dimensions of each of the real
world object did improve the simulation for us. Last but not least, the friction is
computed using a simple Coulomb friction model which is applied to each of the
contact points between two bodies. In the case of the tangram pieces, the number
of contact points is no higher than four and they are usually located at extremal
points of the surface, in our case the corner points of the shapes. For an object
rotating on the ground, this simplification leads to a strong overestimation of
the friction-induced torque, because instead of correctly calculating the torque
as

τreal = µFN
1
A

∫
r dA, (1)

it is calculated as
τsim = µFN

∑
ri, (2)

where µ is the dynamic friction coefficient, FN is the normal component of the
objects weight, A is its ground area and r is the distance of a point in A to
the rotation center. Instead of integrating and thus averaging over all distances,
only the extremal distances of the corner points ri are taken into account by
the engine. Therefore, in simulations the rotation of objects will slow down too
fast. We solved this problem by slightly modifying the tangram objects in the
simulations. Underneath each of the objects we attached a thin plate of identical
shape, but reduced dimensions, thereby moving the contact points closer towards
the rotation center, such that the friction-induced torque becomes smaller. Since
the overall shape of the objects is merely affected, their behavior during collisions
remains unchanged. We will refer to the shrinking factor as shape factor from
here on. Every surface has a geometry-specific shape factor that can determined
analytically.

4 Parameter Adaption

Our aim is to find a parameter setting for the Bullet engine so that its simulations
yield the same results as observed in reality. We use the previously recorded data
to define a cost function as the distance between simulation results and real world
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results. The recorded data consists of 19 sets of trials in which a single tangram
piece was placed on the table and then pushed by the robot arm moving on a
straight, well defined trajectory, as outlined in Section 2.

4.1 Simulation Parameters

Altogether we determined 17 parameters that affect the physical simulation.
They can be divided into two groups: The first group comprises all parameters
that reflect physical properties of objects. The parameters of the first group are
friction and restitution of materials, the inertia tensor of rigid bodies, linear
and angular damping of moving bodies, linear and angular factors that scale the
forces acting on a rigid body per simulation step as well as the shape factor we in-
troduced earlier. The second group contains global simulation parameters, most
of them fine-tuning the Bullet engine’s simulation algorithm: Gravity, the colli-
sion margin spanned around bodies, the simulation step size, the world scaling
factor, the number of allowed solver iterations and the error reduction parameter
(ERP).

By simulating pushing actions while varying these parameters one by one,
we identified nine parameters that have significant influence on the simulation:
angular factor and angular damping, friction, shape factor, gravity, world scaling
factor and collision margin. All of these parameters are candidates for optimiza-
tion. The latter three of them however, strongly influence the stability of the
simulation, so they were fixed to their default values. The angular factor and
angular damping parameters change the ratio between rotation and translation
of the moved tangram pieces. They do not directly correspond to physical phe-
nomena and the rotation-translation ratio can also be influenced by the shape
factor, therefore we can exclude them from the training candidates, too. This
leaves us with the three parameters to be adapted, listed in order of decreasing
influence:

– shape factor of each tangram piece
– tangram/ground friction
– tangram/finger friction

To show their effect on pushing simulations, in Fig. 4 typical simulation results
for two of them are plotted. Before the actual optimization, all parameters were
set to the values listed in Table 1. For the parameters to be optimized, these
values were just a starting point.

4.2 Cost Function

For optimization we need a cost function, that maps each parameter setting onto
a quality of the simulation, describing how well the physical interaction in the
training data is reproduced. To judge the quality of a parameter setting π, a
simulation with the Bullet engine is conducted for each of the trials using the
corresponding tangram piece, the given initial position and the recorded trajec-
tory of the fingertip. Afterwards, the final position Psim of the tangram piece in
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Table 1. Parameter Settings for Optimization

Parameter Name Value Parameter Name Value

object parameters (adapt) restitution ground 0.2
shape factor square 0.541 restitution finger 0
shape factor parall. 0.552 correct inertia tensor on
shape factor tri. (s, l) 0.461 global parameters (fixed)
friction tangram/ground 0.3 collision margin 0.04
friction tangram/finger 0.3 simulation stepsize 1/60

object parameters (fixed) erp 0.2
angular, linear factor 1 world scaling factor 3
angular, linear damping 0 gravity -9.81
restitution tangram 0.2 solver iterations 10
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(b) friction of tangram

Fig. 4. In both plots the final positions of the pushed triangle as a result of varying
one simulation parameter are shown. In the left, the shape factor was varied between
0.3 and 1. In the right, the tangram/ground friction was varied between 0.05 and 1.
With increasing values of the parameters, the final positions are plotted in a brighter
color.
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the simulation is compared to the real final position Preal in the training data.
The polygon position P is described by a tuple of corner coordinates (c0, . . . , cn).
The distance between the two final positions is measured as the mean distance
of these corner points:

E (P, P ′) =
1
n

n∑
j=1

‖cj − c′j‖.

The error on the whole training set with N trials is defined as the mean
distance between simulated and real final position:

ED(π) =
1
N

N∑
i=1

E(Psim(π), Preal)

4.3 Training and Testing Data Set

We divided the recorded data set into a training set Dtrain and a test set Dtest

as follows:

x0 = 10 cm 11 cm 13 cm 15 cm 18 cm 21 cm

Dtrain × × ×
Dtest × ×

We do not use the trials where the objects were pushed at their axis of
symmetry (x0 = 10 cm), since for them the final positions in the real world vary
too strongly. Although the number of trials in the training set is quite small
(5×2 for square and small triangle), we still expect that the found parameter
values will generalize well. This is due to two reasons:

1. We strongly limited the number of parameters that are trained and they
relate directly to physical phenomena.

2. The mapping between parameters and final positions of the tangram pieces
is complex and computed in a huge number N � 1 of consecutive steps. So
the simulation of one trial can also be interpreted as N consecutive one-step
mappings from one world state to the next. To come up with the correct
simulation result, all of these mappings have to be rather accurate as well.
This reduces the danger of over-fitting.

4.4 Optimization Algorithms

We combined the simplex algorithm [9] and differential evolution [10] to search
for optimal parameter values. While the simplex algorithm only performs a sin-
gle simulation per step, the differential evolution algorithm does one simulation
for individual in the current population. With a population of 30 individuals, the
differential evolution took about 50 times longer to converge than the simplex
algorithm. However, it is also less prone to get stuck in local optima than the
simplex algorithm. To combine the strength of both algorithms, we ran 100 iter-
ations with the differential evolution first and then took the resulting parameter
vectors as initial conditions for further search using the simplex algorithm.
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5 Results

We have chosen two different settings for the training. In the first setting, the
shape factor and friction parameters were optimized separately for each of the
tangram shapes. In the second setting, only the shape factor was optimized
separately for each shape, while all shapes had to share the same friction values
which is more realistic. The obtained parameter values and corresponding error
values are summarized in Table 2.

Table 2. Optimization Results

Shape
Friction Friction Shape

EDtrain EDtestT./Ground T./Finger Factor

Square 0.1246 0.7372 0.5274 0.62 cm 0.97 cm
Parall. 0.1055 0.4403 0.7178 0.59 cm 1.07 cm
Tri. (S) 0.1320 0.7346 0.4615 0.37 cm 0.77 cm
Tri. (L) 0.5951 0.7143 0.5658 0.49 cm 0.69 cm

All 0.3065 0.7495 see bel. 1.25 cm 1.42 cm

The optimized shape factors for the combined training of all shapes are
(0.6279, 0.7131, 0.46, 0.5597) for the square, the parallelogram, the small trian-
gle and the large triangle, respectively. When optimizing the three parameters
individually for all shapes, the predicted final corner positions are only about
0.5 cm off the real positions in the training data. For testing data, the errors
are about double that size, which shows that, although experiencing some over-
fitting, the optimized parameters still generalize well over new pushing actions.
The over-fitting is most likely due to the very small training set. In the chosen
distribution of the data into training and testing set, all test trials are situated
‘between’ the training trials, and the optimized parameter vector successfully
interpolates between them. In order to explore the ability to extrapolate we
additionally trained the parameters for the large triangle with a different data
distribution. We used the x0 = 18 cm trial for training and the x0 = 21 cm trial
for testing, so extrapolation is necessary to achieve low test errors. In fact, the
resulting errors are as low as the ones in the interpolation setting.

In the second optimization setting where the recorded training data of all
four tangram pieces is used, the difference between training and testing error
becomes much smaller. Except for the tangram/ground friction in second setting,
the optimal parameter values did not resemble the empirically determined ones,
that are shown in Table 1. The reason for this is most likely the imperfect
modeling of the real interaction in the physics world, which mainly stems from
the simplifications of the physical laws used in the simulations.

We further compared the prediction errors of the trained parameters πopt

with those of the default parameter set π0 on the complete data set D. The
errors are listed in Table 3, together with an upper limit Ebase which is the
average distance the tangram corners moved in the real world and would be
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obtained when simply using their initial positions as predictions. As a measure
of how reproducible the trials were in the real world, which is a lower limit for the
prediction error, we list the standard deviation σreal of tangram final positions
in trials with identical start conditions, averaged over all start conditions.

Table 3. Comparison of Results

Tangram Shape Ebase ED(π0) ED(πopt) σreal

Square 12.55 cm 3.28 cm 0.74 cm 0.46 cm
Parallelogram 8.39 cm 1.69 cm 0.82 cm 0.23 cm
Triangle (Small) 8.5 cm 0.99 cm 0.51 cm 0.26 cm
Triangle (Large) 17.36 cm 2.73 cm 0.57 cm 0.31 cm
All shapes 12.35 cm 2.23 cm 1.32 cm 0.33 cm

Fig. 5 shows the exact final positions predicted by the Bullet engine together
with the actual final positions reached using the robot arm for the large triangu-
lar object. For the other shapes, the simulations provide equally good predictions
of the places to which the tangram pieces were pushed.

6 Conclusions and Future Work

Our general objective is to explore the use of physics engines in robot’s physical
reasoning systems. We showed that accurate prediction of real world interactions
is possible with a current physics engine for the case of flat objects that are
pushed across a table. By adapting the simulation parameters, the predictions
errors were reduced to less than half of the errors obtained with the default
parameters. Apparently, the engine does a better job in predicting the objects’
motions than humans are capable of, which would have to be evaluated in an
additional study.

One interesting next step is to apply the physics engine to more complex
scenarios and to adopt its parameters continuously. Enabling physics engines to
handle incomplete data about a scene or making more of their inner workings
available to learning processes also seems promising. We believe that a successful
approach to physical reasoning in robotics will eventually have to combine the
strengths of both qualitative simulations systems and quantitative simulation
systems.
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Fig. 5. The six figures show the recorded pushing trials of the large
triangle-shaped tangram piece placed at different initial positions x0 ∈
{10 cm, 11 cm, 13 cm, 15 cm, 18 cm, 21 cm}. The initial positions are printed in black,
while the final positions and the trajectories of the finger are in red. The bold blue
triangles are the final positions predicted by the Bullet engine. In each figure, five trials
with identical start conditions are plotted.


