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Abstract We shed light on the key ingredients of reservoir computing
and analyze the contribution of the network dynamics to the spatial en-
coding of inputs. Therefore, we introduce attractor-based reservoir net-
works for processing of static patterns and compare their performance
and encoding capabilities with a related feedforward approach. We show
that the network dynamics improve the nonlinear encoding of inputs in
the reservoir state which can increase the task-specific performance.
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tern recognition

1 Introduction

Reservoir computing (RC), a well-

Figure 1: Key ingredients of RC.

established paradigm to train re-
current neural networks, is based
on the idea to restrict learning to
a perceptron-like read-out layer,
while the hidden reservoir network
is initialized with random connec-
tion strengths and remains fixed.
The latter can be understood as
a “random, temporal and nonlin-
ear kernel” [1] providing a suit-
able mixture of both spatial and temporal encoding of the input data in the
network’s hidden state space. This mixture is based upon three key ingredi-
ents illustrated in Fig. 1: (i) the projection into a high dimensional state space,
(ii) the nonlinearity of the approach and (iii) the recurrent connections in the
reservoir. On the one hand, the advantages of a nonlinear projection into a
high dimensional space are beyond controversy: so-called kernel expansions rely
on the concept of a nonlinear transformation of the original data into a high
dimensional feature space and the subsequent use of a simple, mostly linear,
model. On the other hand, the recurrent connections implement a short-term
memory by means of transient network states. Due to this short-term memory,
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reservoir networks are typically utilized for temporal pattern processing such as
time-series prediction, classification and generation [2]. One could argue that a
short-term memory could also be implemented in a more simple fashion, e.g.
by an explicit delay-line. But we point out that the combination of spatial and
temporal encoding makes the reservoir approach powerful and can explain the
impressive performance on various tasks [3, 4, 5]. However, it remains unclear
how the network dynamics influence the spatial encoding of inputs.

Our hypothesis is that the dynamics of the reservoir network can enhance the
spatial encoding of static inputs by means of a more nonlinear representation,
which should consequently improve the task-specific performance. Moreover, we
expect an improved performance when applying larger reservoirs, i.e. when using
an increased dimensionality of the kernel expansion. Using attractor-based com-
putation and by considering purely static input patterns, we systematically test
the contribution of the network dynamics to the spatial encoding independently
from its temporal effects. A statistical analysis of the distribution of the net-
work’s attractor states allows to access the qualitative difference of the encoding
caused by the network’s recurrence indepently of the task-specific performance.

2 Attractor-based Computation with Reservoir Networks

We consider the three-layered network architecture depicted in Fig. 2, which
comprises a recurrent hidden layer (reservoir) with a large set of nonlinear neu-
rons. The input, reservoir and output neurons are denoted by x ∈ RD, h ∈ RN

and y ∈ RC , respectively. The reservoir state is governed by discrete dynamics

h(t+ 1) = f
(
Winp x(t) + Wres h(t)

)
, (1)

where the activation functions fi are applied componentwise. Typically, the
reservoir neurons have sigmoidal activation functions such as fi(x) = tanh(x),
whereas the output layer consists of linear neurons, i.e. y(t) = Wout h(t).

Learning in reservoir networks is restricted to the read-out weights Wout . All
other weights are randomly initialized and remain fixed. In order to infer a de-
sired input-to-output mapping from a set of training examples (xT

k ,y
T
k )k=1,...,K ,

the read-out weights Wout are adapted such that the mean square error is min-
imized. In this paper, we use a simple linear ridge regression method: For all
inputs x1, . . . ,xK we collect the corresponding reservoir states h̄k as well as the
desired output targets yk column-wise in a reservoir state matrix H̄ ∈ RN×K

and a target matrix Y ∈ RC×K , respectively. The optimal read-out weights are
then determined by the least squares solution with a regularization factor α ≥ 0:

Wout = YH̄T
(
H̄H̄T + α1

)−1
.

The described network architecture in combination with the offline training
by regression is often referred to as echo state network (ESN) [6]. The potential of
the ESN approach depends on the quality of the input encoding in the reservoir.
To adress that issue, Jaeger proposed to use all weights drawn from a random
distribution, where often a sparsely connected reservoir is preferred. In addtion,
the reservoir weight matrix Wres is scaled to have a certain spectral radius
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Figure 2: Reservoir network.

Require: get external input xk

1: while ∆h > δ and t < tmax do
2: apply external input x(t) = xk

3: execute network iteration (1)
4: compute state change

∆h = ||h(t)− h(t− 1)||2
5: t= t+1
6: end while

Algorithm 1: Convergence algo-
rithm.

λmax. There are two basic parameters involved in this procedure: the reservoir’s
weight connectivity or density 0 ≤ ρ ≤ 1 and the spectral radius λmax, where
λmax is the largest absolute eigenvalue of Wres. The input weights Winp are
drawn from a uniform distribution in [−a, a].

In this paper, an attractor-based variant of the echo state approach is used,
i.e. we map the inputs xk to the reservoir’s related attractor states h̄k: The
input neurons are clamped to the input pattern xk until the network state
change ∆h = ||h(t + 1) − h(t)||2 approaches zero. This procedure is condensed
in Alg. 1. As a prerequisite it must hold that the network always converges to a
fix point attractor, which is related to a scaling of the reservoir’s weights such
that λmax < 1.

Note that an ESN with a spectral radius λmax =0 or with zero reservoir con-
nectivity (ρ=0) has no recurrent connections at all. Then, the ESN degenerates
to a feedforward network with randomly initialized weights. In [7], this special
case of RC has been called extreme learning machine (ELM). As our intention
is to investigate the role of the recurrent reservoir connections, this feedforward
approach obviously is the non-recurrent baseline of our recurrent model and we
present all results in comparison to this non-dynamic model.

3 Key Ingredients of Reservoir Computing

We present test results concerning the influence of the key ingredients of RC
on the network performance for several data sets (Tab. 1) in a static pattern
recognition scenario. Except for Wine, all data sets are not linearly seperable and
thus constitute nontrivial classification tasks. The introduced models are used for
classification of each data set. Therefore, we represent class labels c as a 1-of-C
coding in the target vector y such that yc =1 and yi =−1 ∀i 6=c. For classification
of a specific input pattern, we apply Alg. 1 and then read-out the estimated class
label ĉ from the network output y according to ĉ = arg maxi yi. All results are
obtained by either partitioning the data into several cross-validation sets or using
an existing partition of the data into training and test set and are averaged over
100 different network initializations. We use normalized data in the range [−1, 1].
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Role of Reservoir Size and Nonlinearity

Fig. 3 shows the impact of the reser-
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Figure 3: Classification performance de-
pending on the reservoir size N .

voir size to the network’s recognition
rate for a fully connected reservoir,
i.e. ρ= 1.0, with λmax = 0.9 and α
as in Tab. 1. The number of correct
classified samples increases strongly
with the number of hidden neurons.
On the one hand, this result shows
that the projection of the input into a
high-dimensional network state space
is crucial for the reservoir approach:
The performance of very small reser-
voir networks degrates to the perfor-
mance of a linear model (LM). How-
ever, we observe a saturation of the
performance for large reservoir sizes.
It seems that the random projection
can not improve the separability of inputs in the network state space anymore.
On the other hand, note that the nonlinear activation functions of the reservoir
neurons are crucial as well: Consider an ELM with linear activation functions,
then the inputs are only transformed linearly in a high dimensional representa-
tion. Hence, the read-out layer can only read from a linear transformation of the
input and the classification performance is thus not affected by the dimensional-
ity of that representation. Consequently, the combination of a random expansion
and the non-linear activation functions is essential.

Role of Reservoir Dynamics

In this section, we focus on the role
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Figure 4: Recognition rate for the Iris
data set depending on λmax and ρ.

of reservoir dynamics and restrict our
studies on the Iris data set. We vary
both the spectral radius λmax of the
reservoir matrix Wres and the den-
sity ρ for a fixed reservoir size of N=
50. Note again that we obtain an ELM
for λmax = 0 or ρ= 0. Fig. 4 reveals
that for recurrent networks the recog-
nition rate increases significantly with
the spectral radius λmax and surpasses
the performance of the non-recurrent
networks with the same parameter con-
figuration. Interestingly enough, this
is not true for the weight density in the reservoir: adding more than 10% con-
nections inbetween the hidden neurons has only marginal impact on the classifi-
cation performance, i.e. two many connections neither improve nor detoriate the
performance. Note that we have bought this improvement by an increased num-
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ber of iterations the network needs for settling in a stable state, which correlates
with the spectral radius λmax.

4 On the Distribution of Attractor States

We give a possible explanation for the
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Figure 5: Normalized cumulative energy
content g(D) of the first D PCs.

improved performance caused by the
recurrent connections. Our hypothe-
sis is that these connections spread
out the network’s attractors to a spa-
tially broader distribution than a non-
recurrent approach is capable of, which
results in a more nonlinear hidden rep-
resentation of the network’s inputs.
By reason of using networks with a
linear read-out layer, the analysis of
that representation H̄ is done with a
linear method, namely the principle
component analysis. Given the dimension D of the data, we expect the hidden
representation to encode the input information with a significantly higher num-
ber of relevant principle components (PCs). Therefore, we calculate the shift of
information or energy content from the first D PCs to the remaining N−D PCs.
Let λ1 ≥ . . . ≥ λN ≥ 0 be the eigenvalues of the covariance matrix Cov(H̄).
We calculate the normalized cumulative energy content of the first D PCs by
g(D) = (

∑D
i=1 λi)/(

∑N
i=1 λi), which measures the relevance of the first D PCs.

The case of g(D)< 1 implicates a shift of the input information to additional
PCs, because the encoded data then spans a space with more than D latent
dimensions. If g(D) = 1, no information content shift occurs, which is true for
any linear transformation of data.

Fig. 5 reveals that both approaches are able to encode the input data with
more than D latent dimensions. In the case of an ELM, the information content
shift is solely caused by its nonlinear activation functions. For recurrent net-
works, we observe the forecasted effect: The cumulative energy content g(D) of
the first D PCs of the attractor distribution is significantly lower for reservoir
networks than for ELMs. That is, a reservoir network redistributes more of the
existing information in the input data onto the remaining N −D PCs than the
feedword approach. This effect, which is due to the recurrent connections, shows
the enhanced spatial encoding of inputs in reservoir networks and can explain
the improved performance (cf. Fig. 4).

However, we have to remark that the introduced measure g(D) does not
strictly correlate with the task-specific performance. Although the ESN reassigns
a greater amount of information content on the last N −D PCs than the ELM
(cf. Fig. 5), this does not improve the generalization performance for every data
set (cf. Tab. 1).
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data set classification rate [%] network
properties (L-fold cross-validation) properties

D C K L LM ELM ESN N a α

Iris [8] 4 3 150 10 83.3 88.9± 0.7 92.7± 2.1 50 0.5 0.001
Ecoli [8] 7 8 336 8 84.2 86.6± 0.5 86.4± 0.6 50 0.5 0.001
Olive [9] 8 9 572 11 82.7 95.3± 0.5 95.0± 0.7 50 0.5 0.001
Wine [8] 13 3 178 2 97.7 97.6± 0.7 96.9± 1.0 50 0.5 0.1

Optdigits [8] 64 10 5620 - 92.0 95.9± 0.4 95.8± 0.4 200 0.1 0.001
Statlog Shuttle [8] 9 7 58000 - 89.1 98.1± 0.2 99.2± 0.2 100 0.5 0.001

Table 1: Mean classification rates with standard deviations.

5 Conclusion

We present an attractor-based implementation of the reservoir network approach
for processing of static patterns. In order to investigate the effect of recurrence
on the spatial input encoding, we systematically vary the respective network pa-
rameters and compare the recurrent reservoir approach to a related feedforward
network. The inner reservoir dynamics result in an increased nonlinear repre-
sentation of the input patterns in the network’s attractor states which can be
advantageous for the separability of patterns in terms of static pattern recogni-
tion. In temporal tasks that also require a suitable spatial encoding, the mixed
spatio-temporal representation of inputs is crucial for the functioning of the
reservoir approach. Incorporating the results reported in [3, 4, 5], we conclude
that the spatial representation is not detoriated by the temporal component.
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