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Abstract

Robotic systems research is typically a result of a collaborative engineering process
in an environment of rapidly changing technologies. It involves a large number of
hardware and software components, each of which are problem solutions for differ-
ent challenges from different research areas. Systems for Human-Robot Interaction
face the additional challenge of having to actually work together with humans in
a shared environment.

Despite the fact that some single capabilities needed to solve various tasks with
robotic systems are well established, however, robots frequently fail when they
need to combine these capabilities and demonstrate them in a complex real world
scenario. The aspect of coordinating and efficiently combining robots capabilities
is one area where robots still fail.

The focus of this work is to provide a framework for developers of interactive
robot systems that perform in domestic environments, which allows the combina-
tion and improvement of building blocks of the robot behavior based on experience
gained in real world interaction and make the combination and coordination of
these building-blocks easier and more easily reusable for developers.

With the framework developed during this thesis there where many occasions
where a robot platform was evaluated in a real world environment. This iterative
design process documented here helps to answer questions about how to improve
the robot performance based on observations from real world interactions, how
to enable re-usability of robot behavior building blocks across scenarios and plat-
forms and how to combine and coordinate the different robot capabilities from a
developers point of view.
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1. Developing Interactive Robots -
A First Contact

Never judge a book by its cover.

popular proverb

"Wouldn’t it be excellent to have a robot at home that can actually interact
with people and help them in their daily lives?” - similar sentences can be found
in many theses’” introductions over the last years that aimed to introduce the field of
personal robotics. In fact, robots where envisioned to literally be at the doorstep of
every home but the technological gap to enable robots to act in our world turned
out to be much harder than expected as it has been proclaimed by Gates [37].
The robotics community in return has widely accepted that the application space
often is tightly coupled with the design of a robot platform. Examples can be
found in many different areas, ranging from aerospace industry to surgery and
manufacturing. Personal robotics, which serves as the test environment for the
work presented in this thesis, in this regard describes the application space of a
robot performing in a domestic environment with human interaction partners.

This research area has gained more attention by different research groups in
recent years with an increasing number of interactive robotic systems available
for various research scenarios. One example of a robot fitting into this applica-
tion space was the research platform BIRON [143] at the Bielefeld University in
2005. Another research platform, the Cosero robot of the RoboCup@HOME team
NimbRo from the University of Bonn, can be seen on the right in Fig. 1.1.

Despite the look of some of the research platforms, the functionality available
to developers of such platforms has increased, which also means that the robots
became deployable in more and more scenarios. Given these robot capabilities, the
developers started to ask questions like ”What else can we do with it?” or "How
do we use that?”. The answer to these questions are sometimes a little surprising
because despite the rather simple appearance of the robots the interplay of software
underneath is often more difficult and complex than one would expected from
their appearance. A simple process such as enabling the robot to actually see, or
better perceive, a human standing in front of the robot for example involves many
different sensors and a lot of software.
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The research in recent years highlighted an additional challenge when developing
interactive robots: Apart from numerous advancements in different research areas
that are relevant to the robot platform, such as computer vision, the additional
challenge was how to develop methods or frameworks that make all the different
pieces of software do something coherent - or even better - make them do something
useful for the user.

But making a robot do something useful such as following a person actually
comprises two questions. The availability of a software component that is able to
detect a person that might be standing in front of the robot does not necessarily
mean that a developer can use this component on a robot. And once this software
component is running on the system it does not mean that the robot is now
"capable” to e.g. follow a person. For that, the "tracking component” of the
system needs to be somehow combined with the "moving component”.

Sometimes the sheer complexity in terms of number of different software compo-
nents of a system, which may include a software component that tracks a person
in the robots vicinity, hinder or even prohibit the combination of presumably easy
actions of the robot because there is no component properly combine them. But to
make robots act in more complex environments and make them demonstrate more
complex actions, actions that combine many capabilities, it is necessary to find
methods for the combination of the platforms capabilities into coherent behavior.

Naturally the early systems that where deployed in domestic environments for
human-robot interaction (HRI) had to be equipped with software that allows to
e.g. detect persons, identify objects or understand speech commands. Hence, one
focus of the robotics community at that time was the integration of such software
components into a system which than can perform simple actions.

But with more software and more systems at hand that handle software integra-
tion issues (e.g. MARIE [24] or CARMEN [92]), focus shifted towards engineering
issues arising after a system has been firstly constructed, which among other things
means the combination of the available capabilities of a platform in new or different
scenarios.

This shift of focus that was happening inside the robotics community is also
reflected by the number of different robot challenges that emerged over the last
years and the increasing number of participants. Recent years have seen specialized
competitions focusing on certain research areas, e.g. the Semantic Robot Vision
Challenge®, or on a particular scenario, e.g. the DARPA Grand Challenge [93]
and the Urban Challenge [129] - both focusing on autonomously driving cars.
Most recently the DARPA Robotics Challenge is focusing on humanoid robots
for disaster response. Apart from that there are broader competitions like the
RoboCup that has moved from pure robot soccer and diversified into different

'http://www.semantic-robot-vision-challenge.org/
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leagues covering particular scenarios for robots, such as the Rescue League [61]>
or the @QHOME League [130]°.

1.1. From Service to Personal Robots

Given this groundwork for integrating functionality in terms of software into robot
platforms and the changing applications from these competitions, the challenge was
to take these abilities of a robot and make it operate in a world of humans. To
be able to do experiments in this area of application the mobile research robot
BIRON (see Sec. 3.1) was used during the research carried out for this thesis.

The BIRON system, along with many other research systems is a result of a
collaborative engineering process in an environment of rapidly changing technolo-
gies. They consist of a large number of hardware and software components, each
of which solve problems from many different research areas (navigation, mapping,
perception, planning, speech understanding, dialog, etc.). Personal robots ad-
ditionally face the challenge to actually act together with humans in a shared
environment. Human-robot interaction (HRI) in this regard has taken its steps
ahead, moving away from command-oriented interactions to more complex scenar-
ios to further improve the interaction with a human. The role of the human user
changes from an operator, as e.g. found in the manufacturing industry, towards
an actual interaction partner, e.g. acting in a domestic environment.

As mentioned before the area of application has an impact on how robotic
systems are developed and in what way they are optimised. On the left of Fig. 1.1
there are three popular areas of robot applications shown and associated features
that are especially crucial for that area. Industrial robots for example (shown in
green) are often optimised for one special task that they need to do repeatedly and
fast. Hence, stability is important to not interrupt a production line, an example
of such a robot is the Titan * robot. Following the International Federation of
Robotics (IFR) °, a non-profit organisation by robotics organisations to help and
promote the robotics industry worldwide, a service robot should provide services
useful for humans or equipment that are not manufacturing operations. This can
be a transport robot in a hospital (e.g. the TUGS ) as well as a toy robot for
entertainment (e.g. the Pleo 7). Flexibility in terms of deploying the robot in
different situations while being able to adapt the actions is important for service

2http://www.robocuprescue.org/

3http://www.robocupathome.org/

‘http://wuw.kuka-robotics.com/germany/en/products/industrial_robots/heavy/
kr1000/

Shttp://wuw.ifr.org/

Shttp://www.aethon.com/solutions/deliver/

"http://www.pleoworld.com/



1. Developing Interactive Robots - A First Contact

Industrial Robots:
stability/durability

Personal Robots: Service Robots:
autonomy flexibility

Figure 1.1.: left: Different robot applications and resulting requirements for
robotic systems. right: The robot Cosero of the RoboCup team Nim-
bRo doing the registration task at RoboCup 2011, Istanbul.

robots (see red circle left in Fig. 1.1). A personal robot is to a certain extend
a service robot in your home that, apart from fulfilling services for you, is able
to naturally interact with people. Because the user does not want to or even is
not able to re-program the robot all day, autonomy is a crucial factor for personal
robots. They need to be able to take action by themselves based on e.g. their
observations of the environment (see blue circle left in Fig. 1.1). Until now such
a robot can not be purchased ” of the peg” but many researchers around the world
have platforms to experiment and test such systems (e.g. the PR2 robot®). The
BIRON platform that serves a similar purpose will be introduced in more detail
in Sec. 3.1.

Obviously these features of robotic systems do not only apply in these areas. The
optimal robot is stable and flexible and autonomous, which still is a big challenge
for developers. But we have seen a growing number of robots entering new areas
of application and some are even entering peoples homes (e.g. vacuum cleaning
robots) but the lack of robots performing multiple tasks in peoples homes may
serve as an indicator that there still needs to be research on how to combine these
features and have an optimal robot that could be placed right in the center of
Figure 1.1.

8http://www.willowgarage.com/pages/pr2/overview
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1.2. Research Questions

Despite the fact that single capabilities needed to solve various tasks with robotic
systems (e.g. person tracking) are well established, robots frequently fail when
they need to show these capabilities in a complex real world scenario. There are
different reasons for that, one certainly is that it is still difficult to test all necessary
software of a robot system under realistic circumstances. Another might be the
reliability of results of certain software components, e.g. object recognition, under
real world (read: dynamically changing) conditions. One aspect that is typically
underestimated is the efficient combination of robot capabilities or coordination
(see also Sec. 4).

Given the improvements over the last years in terms of available functionality
and middleware (communication between software) for robots, this coordination
has become one of the key factors for robots performing in real world scenarios
because it allows them to operate more autonomously.

There are various areas of research that are also working on improvements for
the performance of robots in real world scenarios ranging from computer vision
to psychology. But with the availability of more complex (in terms of number of
available functions) and more compatible systems there is also a growing demand
of developers that work with these systems in real world scenarios, improving the
system on a behavior level rather than improving a single component of the system.
This means that there is also a shift of the focus of developers from integration
aspects (read: including new software into a system) towards the change and
adaptation of system behavior in iterative evaluation cycles.

The availability of systems and the resulting change of focus leads to the follow-
ing research questions that have been the scaffolding of this work:

Improving Behavior. How can we improve the development of robot behavior
based on experience gained in real world interactions over time? This includes
identifying what needs to be changed and how to achieve the change.

Adaptivity & Reusability. How can we make it possible to easily re-use robot
capabilities in different applications that have been evaluated in other scenarios, on
other platforms, or with different communication frameworks (middleware)?

Enable Coordination. How can we make behavior coordination, the combination
of different robot capabilities, for interactive robots easier and reusable in different
scenarios for developers?

It is important to note that the term behavior is ambiguously used throughout
the robotics community. A definition of the term for the context of this work can
be found in Chapter 4.
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All these questions need to be answered when trying to build the optimal robot
that combines the features explained in Fig. 1.1. But these questions also indicate
that there are two main perspectives on the topic. One is the view of a system
evaluator that has to improve the behavior of a robot from interactions observed
in the real world. The second perspective is the one of a system developer who
may be an expert for one area of the behavior and needs to be able to integrate
improvements from the observation into the robots behavior in a reusable manner
that it can be further evaluated and improved. These two roles, the one of a system
evaluator and the one of a system developer, are a separate problem but they are
not necessarily taken by different individuals.

Both of these perspectives also resemble a difficulty encountered in robotic sys-
tems: The discrepancy between a desired approach of coordinating the robots
behavior and the actual implementation of the system. This means that the im-
plementation of a system can limit the reusability or the ability to combine capa-
bilities of the robot system. This results in more engineering efforts that have to
be applied to achieve the desired outcome with a robot.

The guiding principle of this work was to take the two perspectives of the system
evaluator and the developer into account and find a consistent solution for the
system design and the implementation of robot behavior.

1.3. Contribution & Outline

This work focuses on the engineering aspects resulting from an iterative modeling
approach of the behavior of a robotic system and the according challenges for
developers of such systems.

The main contribution of this work is a modeling and developing process of
robot behavior facilitating the concept of behavior modules (see Sec. 4.2.6) that
allow developers with little to no experience with the system to adapt and improve
these building blocks over time. These concepts where implemented in a modeling
framework, named Bonsai, that allowed to evaluate the modeling framework and
the according concepts in real world scenarios (see Sec. 6.2) and on different
platforms (see Sec. 6.3).

Following up this Introduction, the thesis is structured in five parts: In Chapter
2 I will give an overview of the current state-of-the-art interactive robot systems
and explain their approaches to achieve real world interaction, followed by an
overview of the used tool set in Chapter 3. After that chapter 4 will give a detailed
explanation of the system foundation and the underlying concepts that emerged
from the experience gained from real world experiments with a robot system over
time. Gray boxes provide additional information on robot scenarios that have been
research topics, e.g. the Home Tour Scenario (see Exc. 2.1.4), or that are part of
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the RoboCup (see Exc. 6.1.1) as well as additional background information. They
do not directly fit into the chapters but do provide interesting information for the
reader to get an impression of what actually is going on during RoboCup tests.
The implementation details will be exemplified in chapter 5. The work has been
intensively tested and evaluated in two main scenarios over the complete timespan
of this thesis. The different results from user studies and the RoboCup@HOME
competition will be presented in chapter 6. Finally I will conclude and illustrate
some future perspectives for interactive robots and their software in the future.






2. Interactive Robots: Software &
Systems

All experience is an arch to build upon.

Henry Brooks Adams

In this Chapter I will give an overview of different principles for system ar-
chitectures and introduce some the characteristics implemented in existing robotic
systems. In addition to that I will discuss some of the developments in recent years
that have led to an increasing number of interactive robotic systems which also
fostered the progress in the field of human-robot interaction (HRI) towards more
flexible and complex scenarios in open and unstructured environments. Hence,
this chapter not meant to give a complete list of interactive robot systems but
rather highlight certain developments that are relevant for developing and improv-
ing robot behavior. I will give an overview of different robot scenarios that are
used to evaluate the performance of a robotic system acting in such a scenario.
After that I will introduce principle concepts for control and coordination of such
systems, followed by real world examples of systems and tools that are already
available. The platform used during this work and the according software will be
introduced in the next chapter.

2.1. Scenarios for Interactive Systems

The term software architecture is often used and is important for interactive
systems since, as also pointed out in [23], it is one corner stone of what a system
or robot will be able to do. It focuses on the software components and their
interaction. The Institute of Electrical and Electronics Engineers (IEEE) defines
a software architecture in their recommended practice 1471-2000 [51] ! as follows:

http://standards.ieee.org/findstds/standard/1471-2000.html
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Fetch 'n’ Carry

A Fetch 'n’ Carry refers to a typical task of a service robot in which the robot has to
fetch a defined object for a user from a known location and deliver it to the user. This
kind of setting was subject in various user studies [53, 136] and was also one of the first
major tasks in the RoboCup@HOME competition in 2008/2009 [94]. The complexity
of the task may vary, e.g. the robot might have to identify the correct object from
a set of objects or may get instructions from where to fetch the object (" Go to the
kitchen table!”), but the common goal is to bring an object from one location to the
user. More recently this task also includes autonomous grasping of the object and
object recognition in a cluttered scene.

Excerpt 2.1.1: About the Fetch 'n’ Carry task

Software Architecture. The fundamental organization of a system
embodied in its components, their relationships to each other and to the
environment and the principles quiding its design and evolution.

For this work the software architecture plays an important role because the
modeling and developing of robot behavior is influenced by the interactions of the
software components and their organization. An introduction to the topic can be
found in [34] However, the principles for software architecture in general are not
the subject of this work. More details will be discussed in Chapter 4.

When it comes to comparing of interactive robotic systems, which still is a
difficult task, the software architecture and the actual hardware of such systems is
often abstracted. The problems are usually solved in simulation or in constricted
scenarios as e.g. also pointed out by Baltes [7] and Behnke [9]. This problem of
measuring performance of the systems has lead to toy domains (e.g. block stacking
or towers of hanoi), which in some parts provided a measure of performance.
However, the domain can influence the performance and often covers only few
aspects of a system and is an abstraction of the real world.

With these lessons learned, more complex scenarios for interactive robots have
emerged. There is a variety of prototypical scenarios for service robots that on the
one hand provide the basis to study the systems in real world interactions and on
the other hand enable a comparison between different robots or methods in the
same scenario. The following scenarios where selected because during the evalua-
tion (see Sec. 6.2 and Sec. 6.1) the robot used during this work had to perform in
all of the scenarios or scenarios that where very similar to the ones presented here.
Apart from this testbed character the selected scenarios are well established and
provide a good basis for comparison since many different robots performed these
tasks. The Excerpts give a short overview of what is actually happening in such a
task. Additional requirements for the selection of these scenarios were that they
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can be conducted in real world environments and that they involved interaction
with human users, because this is the target scenario for the work in this thesis.

Each of these scenarios focuses on certain capabilities of the robot to drive
development in that area. The Tour Guide scenario (see Exc. 2.1.2) for example
mainly focuses on the navigation of the robot, popular examples are e.g. [127] and
[117]. The Fetch 'n’ Carry scenario (see Exc. 2.1.1) in contrast focuses on mobile
manipulation in complex scenarios, popular examples are e.g. [12] and [126]. A
scenario that focuses more on the perception part of the robot, which obviously
also plays an important role in all previous scenarios, is the Search for Objects
scenario (see Exc. 2.1.3), a popular example is e.g. [86]. Generally speaking the
development of adequate scenarios (or applications) guides the research in different
areas and can help to figure out e.g. where more research effort is needed, making
the building of applications an integral part of the research process.

Tour Guide

A Tour Guide robot is typically guiding visitors of e.g. museums or labs to prede-
fined positions to give information about the environment to the user. The scenario
focuses on simultaneous localization and mapping (SLAM), navigation and obstacle
avoidance. Additionally the robot should be able to move and operate robustly in
crowded spaces and sense humans. The user interaction is typically kept simple, e.g.
via buttons (”Start Tour”) or keyboard. The robot should be capable of providing
audio-visual feedback to the user to communicate the necessary information and ad-
ditionally indicate a system status. For that matter some systems also incorporate
simulated emotions and/or facial expressions that can be displayed.

Excerpt 2.1.2: About the Tour Guide scenario

But this variety of foci also demonstrates a common challenge in robotics re-
search: Before one can investigate an interactive system in a complex scenario,
the system itself needs to be capable of navigating, sensing and communicating.
This in most cases implies - apart from people doing the software integration from
different areas and a suitable hardware platform that can be used - another crucial
factor for developing such a system: Time.

Obviously computing time on a mobile system with limited resources is always
a factor that needs to be considered when developing software. But in this context
time refers to the effort spent on developing new features or improving existing
ones. The time for testing the overall system is also a corresponding factor. Nat-
urally the first implementation of a system will not cover all aspects necessary for
the system to perform equally well in different scenarios. The way of investigating
such systems will result in a system architecture that is at least in parts optimized
for a certain scenario, often simply by making assumptions about software, the
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available information or the surrounding.

Search for Objects

The search for objects scenario tackles the problem of a robot autonomously searching
the environment for known objects. This means that the robot may have knowledge
of the surrounding, e.g. a prerecorded map, and of the objects to search for. The
task is to autonomously search for the objects in the environment and notify in case
of a successful match, e.g. by exclaiming the label of the found object. Variations
of this scenario where e.g. part of the Semantic Robot Challenge as well as of the
RoboCup@HOME competition. In the Semantic Robot Challenge the objects have
to be learned from the world wide web from a simple text file description of the
object additionally to afterwards searching for them in a rather simple but unknown
scenario . In the @HOME challenge the object models are trained beforehand but
the environment is more complex (domestic home) [95].

%http://www.semantic-robot-vision-challenge.org/rule.html

Excerpt 2.1.3: About the Search Environment task

The engineering issues resulting after a system has been firstly constructed shifts
the focus from the integration of components towards the change and adaptation of
system behavior in an iterative evaluation cycle. In terms of the system architecture
the focus is set on the efficient adaptability and the reusability of the behavior of
the system.

2.1.1. Coordination: Arbitration and Command Fusion

It becomes clear that the aspect of coordi-
nation in such systems, as there where dis-
cussed in the prior Section, has a tremen-
dous effect on the robot performance. For
that reason I will give a short description
soornotraverses Of What coordination means in the context
of interactive mobile robots.

Any system that is confronted with a real
world scenario needs to have a mechanism
to select and activate an action or sequence
of actions to produce a coherent behavior
Figure 2.1.: Example from a Discrete to cope with the current situation. This

Event System (DES), mechanism, also referred to as action selec-
showing a traverse door tion problem (ASP) as e.g. described by
state. Maes [83], is called behavior coordination.

door not found
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This problem has been the focus of many
researchers from different areas, including ethology, artificial life, virtual reality
and others. I will focus on the coordination for mobile robots (physical agents),
which is mainly an engineering challenge to utilize robots to perform specific tasks.
Following the argumentation of MacKenzie [82] and Safiotti [111], the mechanisms
for behavior coordination can be divided into arbitration-based and command fu-
sion-based approaches. The first class deals with the activation of one appropriate
behavior whereas the latter class deals with methods of combining the behaviors
that are activated. Popular methods for the arbitration are e.g. Priority-based or
State-based approaches, popular methods for command fusion are e.g. Fuzzy Logic
or Voting approaches. I will focus on discrete event systems (DES) because the
BIRON platform (see Sec. 3.1) as well as most ROS-based systems (see Sec. 2.2.4)
fall under this definition. A detailed overview of coordination mechanisms can be
found in [104].

Discrete Event Systems (DES) Discrete Event Systems (DES) is a popular
state-based approach for arbitration systems as e.g. described by [65]. In this
approach the interaction of the system with its environment is modeled using Finite
State Automata (FSA). The selection of the behavior is done via the transitions
of the different states. When a certain event is detected, e.g. a person in front of
the robot or an open door, the according transition is performed which activates
a new state. A state in this case refers to the execution of certain actions of
the system to cope with the current situation. Fig. 2.1 shows such a state for
traversing a door. This FSA handling the different actions of the system was also
called plant. Originally there was a second FSA, called the supervisor, that can
interact and modify the according actions (originally also called behaviors) of the
system. However, in practice the modeling of such systems with the supervisor
was complex and error-prone since the supervisor had to control all actions and
even simple errors within the supervisor can result in restraining or even blocking
the execution of any actions.

Before I will give a definition in the next Section under Def. 4 of robot behavior
in the context of this thesis, we need to take a closer look on the different principles
for Software Architectures that are in use for Mobile Domestic Service Robots. A
general overview can e.g. be found in [85].

2.1.2. Control Principles: Deliberative, Reactive or Hybrid

In this section I will give an overview of the different control principles that can
be found in mobile robots. It is important to note that these principles, as well
as the coordination mechanisms explained earlier, are independent of the software
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architecture of the robot. This means that the same software architecture, which
means the same way the software components interact with each other, can realize
different control principles and vice versa. It is therefor important to understand
what the effects of the different control principles can be and what the possible
shortcomings are.

As mentioned previously, there are common principles for structuring the control
that are applied on interactive robots that grew out of the necessity to compen-
sate shortcomings of the control architecture in different scenarios. This can be
shortcomings of existing structuring principles in terms of e.g. extensibility (or
the lack of it) or any other aspect of the architecture that may limit the use of
the principle on a robot or in a scenario. This means that the principle suitable
for controlling e.g. an autonomous mobile robot monitoring factory buildings is
not necessarily suitable for an autonomous service robot interacting with humans.
The control architecture from a systems point of view takes care of structuring the
control flow, exchange of information in a system to manage the control, and the
information flow, exchange of semantic information in a system, accordingly. In
general we can distinguish three different principles that have proven to work in
different scenarios [98, 3, 22, 32, 40, 72], a good overview can be found in [85]:

Deliberative Systems |
sometimes also called plan-based systems
Sensors are based on two main concepts that en-

able the system to properly act in an envi-
ronment: Modelling the environment with

_______ , appropriate sensors and plan the execution
wOr/J< ----------------------------------- i Model i  of an action according to the information
P . P and the world model. In the literature this
I:’:F is referred to as the Sense-Plan-Act [16] ap-

proach. A system, in a first step, checks the
current sensory input (Sense) and compare
Actuators it with the information available from the
world model. The knowledge of the world
Figure 2.2.: Deliberative System ac- model typically was represented as a set of
cording to Sense-Plan- rules that would apply to a sensory input.
Act and  Sense-Plan- After that a plan is computed, based on the
Model-Act (dashed). available information and the actions from
the word model (Plan). Finally the actions

are executed (Act) according to the plan to achieve a certain goal.
There are a number of pitfalls contained in this way of controlling a robot that
make it difficult to facilitate this principle in current real world systems: The set
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of rules of the world model are static and typically created by the developer. It is
almost by definition inaccurate since it is hardly possible to foresee all situations a
robot could encounter. A later introduced variation that tries to dynamically re-
model the environment, called Sense-Model-Plan-Act, in case of an inconsistency
between model and the perceived world, does try to compensate for that. Unfor-
tunately it is still difficult to integrate new knowledge into the world model and it
highlights another pitfall, as has been described by Graefe [43]: The computation
of a plan takes time. Even with modern computers that are a lot more power-
ful than 20 years ago the computation takes time, because the complexity of the
planned action directly effects the computing time. The implication of that is that
the system is unable to react to dynamic changes in the environment. This is due
to the breakdown of the different steps that are carried out sequentially and might,
in a very dynamic environment, lead to a system that can not act at all because
the change of the environment happens faster than the planning and execution of
the action. In controlled, non-dynamic environments it is still possible to achieve
good results with a control architecture like this. For domestic environments with
an autonomous mobile robot for human-robot interaction this model, however, is
inadequate.

Reactive Systems in contrast to the de-
liberative systems do not plan or model the
environment. Inspired by biological sys-
tems this approach maps sensory input di-
rectly to actuators of the system, which

T
mimics the Stimulus-Response-Model [64]

of biological systems. Because no planning

or modelling step is required, the reaction Rigure 2.3.: Diagram of a Subsump-
time of such systems is dramatically lower tion architecture with 4
than in deliberative systems. Reactive sys- layers of competence.
tems on the other hand loose the ability to

plan more complex tasks and can only re-

act to what the system can perceive at a given moment. Such systems serve well
in restricted scenarios with a limited set of input stimuli for the robot that can
be mapped to the actuators. The mapping happens according to a small set of
rules that describe a condition under which a certain action should be executed
(Condition-Action-Pair).

This reactive approach was motivated by the shortcomings of the deliberative
control, especially in terms of reacting to dynamic environments. The resulting
subsumption architecture by Brooks [14, 15] and the later enhancement of the be-
havior language are well known. The additional higher levels of competence (see

ol

Sensors
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Level 1-3 in Fig. 2.3) of the architecture allowed to move away from simple, purely
reactive systems towards a task-based decomposition of actions that became the
beginning of behavior-based robotics. This approach does not model the environ-
ment but uses the world as much as possible as its own best model via perception.
This allows for parallel execution of multiple behaviors at once and enables a robot
to decide, according to current sensory input, to explore the environment or avoid
objects. The pitfalls of this approach lie again in the details, as e.g. discussed
by Hartley [49]: As mentioned before, planning ahead is not possible with such
systems and the interaction between the different levels of competence is static,
which means that also for these kind of robots the scenarios in which they can
perform is rather limited and changes in the different levels are difficult since it
is hard to predict how the changes will influence the actual performance of the
system. This also implies that for domestic environments with an autonomous
mobile robot this approach is also inadequate.

The Home Tour Scenario

The Home Tour scenario started in 2004 as a key experiment of the Cognitive Robot
Companion (Cogniron)? project with the goal of enabling a robot to learn the topology
of a previously unknown apartment and its artifacts, the identity and location of objects
and their spatial-temporal relations (see [115]).

The "Home Tour” key experiment was used to demonstrate the dialogue capacities
of the robot, and the implementation of human-robot interaction skills as well as
the continuous learning of both spaces and objects. To realize this scenario, a robot
needs to be mobile, interactive and needs to possess a high standard of perceptual
capabilities. The robot must be able to follow a user through the apartment and
remember, e.g. via pointing to an object, the robot needs to be able to understand
the user’s speech, track the gesture and detect the object that the user is pointing to.
Additionally, if the user or guide introduces a room to the robot, e.g. by saying ” This
is the kitchen”, the robot should remember the label ”kitchen” and mark it in the map.
The BIRON platform was used for this experiment and the development paradigm of
a close Implementation-Evaluation-Cycle was adopted.

“http://www.cogniron.org/final /RA7.php

Excerpt 2.1.4: The Home Tour scenario.

Hybrid Systems are a result from the different problems with purely reactive
or purely deliberative control. They have lead to different methods, which enable
systems to combine reactivity with adaptive execution of plans (see e.g. [27, 35].
Current robotic systems in dynamic environments facilitate a hybrid architecture
(see e.g. [73]). The main goal is to enable a system to react to dynamic envi-
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ronments whereas at the same time a deliberative component allows to execute
more complex tasks [71]. The components realizing this functionality are orga-
nized in layers: deliberative, intermediate and reactive layer (see e.g. Gat [36]).
The deliberative layer, which typically is on top of the others, generates plans to
achieve higher level goals, e.g. navigate to a position on a map (e.g. a room). It
is necessary to switch the control between deliberative and reactive components
in the according situations, which often is done in the intermediate layer. The
reactive layer consists of components that enable the robot to compensate for dy-
namic changes in the environment, e.g. obstacle avoidance, and can execute simple
actions that need no planning, e.g. following along a wall.

Even though it is possible to perform many different kinds of tasks with a system
like this, e.g. driving to a location on a map (deliberative) while avoiding dynamic
obstacles (reactive) on the way, the major strength is also a problem with these
kinds of systems: Switching the control. This means that hybrid architectures need
to switch the control of either the whole system or parts of the systems between
reactive and deliberative components. Typically a centralized component (the
sequencer), as also described in [22, 36, 99], handles the switch. In Sec. 3.1 two
different iterations of such a sequencer for the research platform used in this work
are illustrated. This component is crucial for the coordination of any hybrid system
as it influences all tasks executed on the platform and with extending or changing
the behavior of the robot, this component as well needs to be adapted. Even
though hybrid systems are adequate for the work presented here, the sequencer
problem needs to be tackled. The steps taken to handle this problem in this work
are described in Sec. 5.2.

2.2. Robot Architectures in the wild

In this section I will introduce tools or libraries that relate to my work due to their
application, e.g. service robotics, or due to their methods. There are many robots
out there but many of them share the same principles or even the same framework
underneath which would make it unfeasible to list them all. For that matter I
have decided to only address work that has a similar approach or contributes to a
similar research topic as the Bonsai framework developed during this thesis. For
the relevant aspects I will also explain why certain frameworks where not suitable
for this work. The main reason for this is to provide an overview of tools and
methods that try to tackle the problem of modeling and/or implementing robot
behavior, thus, providing a context for comparability of the work presented in Sec.
4 and Sec. 5.

As I said earlier many of todays research platforms can be classified as hybrid
systems that manly differ in three ways: How is the control of the system organized
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Figure 2.4.: The software architecture of the robot TASER where Roblet-servers
(RS) are used to provide a hardware abstraction layer, taken from [6].

(e.g. reactive, see Sec. 2.1.2), how do components share their information (software
architecture) and what kind of abstraction levels exist for higher level programming
(see coordination Sec. 2.1.1), which are typically the main feature to distinct
robot architectures in the wild. I will begin with a framework for higher level
programming of robots.

2.2.1. Roblet® Technology

The Technical Aspects of Multimodal Systems (TAMS) 2 group at the University
of Hamburg has published a software framework to ease the development of high
level applications for mobile robots. The so called Roblet®technology by Baier [6]
is a client-server based middleware in Java that mainly was developed for the
robot TASER (left on Fig. 2.4) that also is developed at the TAMS group. The
main goal of these Roblets®)is to provide higher level functionality of a certain
hardware via sending a request, containing an executable Roblet®), to a Roblet®)-
server. Because a Roblet is well defined in this context, similar to e.g. a Java
applet that is run inside a browser, the server can directly execute the request
and thereby reply to the request sent by the client. Because of the client-server
infrastructure Roblets can work in distributed systems. Roblets are subdivided
into Modules and Units. The Roblet®mainly serves as container that encapsulates
the network communication and execution on a server. The so called Modules
extend a Roblet®server to encapsulate a class of similar functionality for a specific

’http://tams-www.informatik.uni-hamburg.de/
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Figure 2.5.: Example of two applications (appl/app2) running distributed on the
NAO robot and on computerl. Applications can use all functions
registered to the main broker (local/remote call).

hardware. In case of the TASER robot this was e.g. a Speech Module or a Pan-
Tilt Module to control the according hardware and functionality. Units are Java
interfaces inside the Modules that allow for an abstraction of the native hardware
interfaces. To request the current pose of an arm of the TASER robot (see Fig.
2.4 top left), a Module must implement the according Unit that will provide a
function to get the current pose of the arm. As depicted on the right side of Fig.
2.4, the Roblet®servers (RS) on the left (e.g. grabber RS) provide the hardware
abstraction of the robot whereas the servers on the right (e.g. tracking RS) provide
higher level functionality on this hardware. It is important to mention that only
some of the servers are running on the actual robot, e.g. the path planning RS
runs on an external computer connected to the same network.

This Roblet®technology is relevant to the work presented in this thesis because
it aims to provide a task-based abstraction for developers that provides higher-
level functionality of a system. Even though the level of abstraction is based on
the robot hardware, the execution environment resembles a Hardware Abstraction
Layer (HAL) of the TASER platform (see also [137]), Roblets®provide a directly
executable entity (Java classes). This is similar to the approach of the Bonsai
framework (see Sec. 5.2). However, the focus on hardware abstraction in combi-
nation with the restricted execution environment and a missing higher-level control
abstraction layer made the Roblet®technology unsuitable for the work presented
here. Additionally, the client-server based approach induces a high coupling be-
tween the Roblets but does not provide a solution for the sequencer problem.
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Figure 2.6.: A screenshot of the Choreographe User Interface.

2.2.2. Graphical Tools: Choreographe and NAQOgqi

One of the robots that has had a big impact to the community in recent years
is the NAO robot (see Fig. 6.6 left) developed by Aldebaran Robotics 3. The
NAO is a small and relatively inexpensive humanoid platform (see [42]) that was
chosen as platform for the RoboCup Standard Platform League 4 in 2008 and is
present in different research labs around the world and features in various research
projects (e.g. ALIZ-E [67]°). Apart from the appealing appearance of the robot
the availability of a standardized middleware and programming environment have
lead to the wide spread adoption of the platform.

This wide adoption of the platform has put the manufacturer into a difficult
position in terms of programming the robot. On the one hand the manufacturer
wants to avoid to give a detailed insight into the platform and the hardware but
on the other hand wants users working with the platform to be able to quickly put
together movements or behavior of the robot. This means that users with possibly
no programming experience need to be able to tell the robot what it should do.
At a first glance this challenge sounds similar to some of the research questions
presented in Sec. 1.2, which is why I will introduce the NAO software in more
detail here.

There are two main tools for the robot that I will introduce: The graphical
programming tool Choreographe (see [106]) and the robot framework NAOqi. The
NAOqi framework mainly consists of two parts, namely the middleware core and

3http://www.aldebaran-robotics.com/
‘http://www.tzi.de/spl/bin/view/Website/WebHome
Shttp://www.aliz-e.org/
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different functional components (modules) that were specifically developed for the
NAO platform (e.g. a color tracker or text-to-speech).

The middleware allows to have distributed binaries, providing functionality for
the robot, which are called modules that are registered to a main broker instance
which manages the different functions of the modules. This means that an appli-
cation running on the robot can use the walk() function provided by the Motion
module as well as a custom function provided by an application running on a com-
puter (see Fig. 2.5). Some essential modules are run directly on the robot, e.g. the
Motion module, whereas functions that need more computing power than avail-
able on the NAO platform can be run on external computers. It is also possible
to have multiple robots controlled from one external computer, as it is e.g. done
for the RoboCup standard platform league.

To make the rapid prototyping of e.g. robot movements easier the Choreograph
tool is also provided by Aldebaran. As a matter of fact, Choreograph itself is a
special NAQOqi instance that can be run on a computer that provides a graphical
user interface to compose sequences of movements and speech as well as a small
preview of the composed actions in a small simulation window (see Fig. 2.6 top:
time line, left: available NAOqi functions, middle: graphical composer, python
script editor, right: simulation preview). A behavior in NAOqi is a piece of software
that controls the robot using the NAOqi module functions. Choreographe provides
these functions in a graphical manner, e.g. detect a bumper pressed or produce
a speech output. The combination of these actions is enabled via the component
model of the modules which have to implement the NAOqi module interface and
use the request-reply-based communication provided.

We have seen that the graphical interface helps when it comes to programming
the robot by unexperienced users. The NAOqi, however, is first and foremost
a platform specific middleware to integrate software components into the NAO
robot. The graphical interface alone hardly serves as a behavior modeling approach
and makes clear that a distinguishing between programming functional software
components and the behavioral layer (see e.g. Fig. 4.1) is needed. Lastly, NAOqi
only suports the NAO robot and its hardware which makes it impossible to use
for any other robot platform.

2.2.3. The Behavior Markup Language (BML)

An approach that, in contrast to the previous tool, explicitly tackles the modeling
of behavior is the Behavior Markup Language (BML) [63].

It is an XML-based description for modeling the verbal and nonverbal behavior
of humanoid agents, more specifically so called Embodied Conversational Agents
(ECA). 1t is one result of an effort to standardize behavior and functional languages
and focus on the similarities that existed among earlier approaches (e.g. [107]).
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<bml>
<gesture id= type= target= />
<body id= posture= />
<gaze target= />
5 </bml>

Listing 2.1: BML example for a behavior including pointing gesture (line 2), a
sitting body (line 3) and a gazing towards an object (line 4).

The main function of the BML is to describe the behavior of a humanoid char-
acter and to allow the synchronization of those behaviors. This focus allows to
specify elements to describe what the agent should do. These elements are e.g.
parts of the body (head, torso, legs, lips...) as well as actions the agents can
take (e.g. speech, gesture or gaze). In List. 2.1 a simple behavior is modeled
where the humanoid agent points at a target (objectl in line 2) while the agent
is sitting (line 3) and gazing at another object (object2 in line 4).

In the second example in List. 2.2 the behavior is extended with synchronization
data (e.g. wait) to structure the actions of the behavior. These extensions, that
can be referenced among each other in a BML document, are called synchronization
points.

<bml>
<gesture id= type= target= />
<body id= posture= />
<wait id= condition= />
<gaze target= start= />
; </bml>

Listing 2.2: Extended BML example with synchronisation (wait) of the gazing
(line 5).

BML does provide a basis to describe behavior for virtual humanoid agents. A
BML parser is available in Java ¢ and projects that e.g. deal with the modeling
of multi-modal interaction with virtual human agents. However, for real world
systems the implementation of both the behavior and the synchronization has to
be done individually for each system. In contrast to e.g. the previously described
Roblets, BML does not provide executable software entities. Until now the avail-
able implementations neither provide a control abstraction (e.g state machines)
nor event processing, which makes it difficult to use BML on a real world system.
Thus far, the BML language has missed the important factor of matching the
described behavior (XML) onto a real platform. An important step that holds ad-
ditional engineering challenges that are often underestimated and can even break
the described model of a behavior. However, a standardized and human readable
format to describe the robot actions is desirable.

Shttp://sourceforge.net/p/saibabml/wiki/Home/
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2.2.4. The Robot Operating System (ROS)

Unquestionably on of the biggest impacts to the robotics community in recent years
had the Robot Operating System (ROS) [109], provided by Willow Garage 7. Tt
was started as an effort to bring together existing tools and libraries from different
research areas that are relevant for robotic platforms into one framework that
could foster collaboration and standardization.

ROS 8 is an open-source collection of libraries and tools that aim to support
developers of robotic systems in various areas of expertise. Amongst them ROS
provides a hardware abstraction, device drivers for sensors, manipulators and plat-
forms, libraries such as the computer vision library openCV ? and the 3D im-
age processing Point Cloud Library (PCL) 19, visualizers, standardized message-
passing and package management. ROS inherited a lot of drivers and tools for
navigation from the predecessor Player/Stage project ' and added apart from
software components from all over the community, a consistent communication
(ros_.comm) and packaging framework.

Software within ROS is organized in three main units: nodes, packages and
stacks. Any software that wishes to provide functionality to ROS needs to imple-
ment a rosnode at the lowest level, which will basically provide communication
with the ROS system. A node therefore is a process within the system that can
communicate with other nodes and can be combined to fulfill a certain function-
ality. A collection of such nodes and possibly other software, configurations or
datasets that combined provide a certain functionality is organized as a package
in ROS. This can be any functionality needed for a robotic system, e.g. device
drivers for a camera (camera_drivers). Packages are designed to provide easy
reusable code. For higher level functionality these packages can be combined to
a stack. A stack collects packages to provide a combined functionality. Popular
stacks are the ros_comm stack, the navigation stack or the manipulation stack. In
contrast to e.g. libraries a stack can be run and provide necessary information
without linking against the stack. A detailed comparison of the communication
features of ROS vs. other middleware can be found in [138].

ROS has become a de-facto standard for integrating software components into
a robotic system and also provides tools for developing robot behavior. Since the
focus of this work is the development of robot behavior, it seems like ROS would be
an obvious choice to use and extend. Hence, I will give a more detailed introduction

"http://www.willowgarage.com/
8http://www.ros.org/
Shttp://opencv.org/
Yhttp://poi
p://pointclouds.org/
Uhttp://playerstage.sourceforge.net/
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into the ROS SMACH 2 library which was developed in 2010 and why I did not
use it. SMACH is used to create robot behavior in a rapid prototyping way and is
based on the concepts of hierarchical state machines, (HSM) [147], which describe
the capability of a state machine to allow the nesting of superstates which are
complete state machines for themselves.

SMACH

The SMACH library, as e.g. described by Bohren [12], is a task-level library writ-
ten in python for rapid prototyping of different robot scenarios. The evaluation
system '* was a small robot platform that was able to deliver drinks and take or-
ders without speech interaction. The system was completely done with ROS and
SMACH.
Generally SMACH distinguishes two main concepts: States and containers. States,
which are derived from the HSM states, is a local execution of a state and corre-
sponds to the according system performing a certain task. A state always provides
a certain outcome, which normally represents the result of the processing inside
a state. This generally allows developers to model the robot actions with states.
SMACH provides different state classes to model certain functionality: The base
interface is called State, SPAState defines a normal state with a predefined set of
Outcomes (succeeded, preempted, aborted), MonitorState blocks the execution
as long as a predefined condition holds, ConditionState is executed when a pre-
defined condition is true (Callback) and SimpleActionState acts as a wrapper
for the ROS actionlib '* by simply calling a certain action available from the ROS
actionlib.
Containers in contrast provide an execution
o000 semantics, which means a container defines how
i S m a C h (multiple) states are executed. Available con-
eee tainers in SMACH are StateMachine to directly
execute a certain state machine, Concurrence
allows to simultaneously execute states, Se-
quence always executes the states in a prede-
fined sequence (less flexible than StateMachine) and Iterator, which is very sim-
ilar to Sequence but can auto-generate transitions of a set of states. Fig. 2.8
shows a simple state machine with the states FOO and BAR, which can be chosen

Figure 2.7.: ROS smach

2http://www.ros.org/wiki/smach

1I3SMACH has been evaluated during the students project ” Silent Butler” was part of the ISY
practical in 2011 at Bielefeld University. I would like to thank all participants of the project,
especially Patrick Renner, Lukas Kettenbach, Phillip Dresselhaus and Manuel Baum for their
hard work.

Yhttp://www.ros.org/wiki/actionlib

24



2.2. Robot Architectures in the wild

from the available SMACH states as explained above. Both states are added to a
StateMachine container which then is to be executed. In this example BAR will
be repeated until a condition defined and checked in FOO is fulfilled (e.g. execute
BAR 3 times).

With these building blocks at hand it is possible to construct a robot scenario
while taking advantage of the ROS features and libraries. However, I would like to
point out some of the aspects that emerged during the evaluation project. SMACH
does a great job in combination with the ROS tools to setup a small system and
get it running. The SMACH viewer ' supports the developer with visualizing the
currently running behavior and highlighting active parts at runtime. Even though
the HSM modeling part of SMACH is a standalone library that is decoupled from
ROS, for actual prototyping of a system SMACH introduces a high dependency
with ROS on a rather low level. The usage of ROS messages inside the modeled
states allow for type and configuration checking (via the ROS tools) at startup, but
makes it difficult to reuse such behaviors outside a ROS context. It is possible to
send untyped user data between states but information produced here is difficult to
propagate into the rest of the system. System components are by default locked out
of control flow information between different states. SMACH supports exceptions
of different states but if not properly handled the complete state machine freezes
which in the end means that the robot freezes. The states processing is done in
while() loops, but it is difficult to interrupt these from external input which can
make implementation of reactive behavior a quite difficult.

The available Containers in SMACH al-
ready indicate that the tasks that a robot
should fulfill are modeled in a rather con-
trolled manner, which means what the
robot does (behavior) and how it should
do it (control flow) are modeled together @
in the same construct. This is helpful
for rapid prototyping scenarios since there
is only one place where to code can be
changed or added in a short testing cy-
cle. For reusability however this is a ma- d
jor drawback. These aspects will be fur-
ther discussed in the next section 4. A de-
tailed comparison of the framework devel- )
oped during this thesis and SMACH can with smach outcomes.
be found in Sec. 7.1. The mentioned draw-
backs here and the rather late availability of SMACH (2011) have lead to the

STATE_MACHINE

outcome2 putcomel

BAR

Figure 2.8.: Example state machine

http://www.ros.org/wiki/smach_viewer
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2. Interactive Robots: Software & Systems

decision to not use SMACH.

2.3. Summary

To summarize this chapter I will shortly discuss some of the issues and challenges
that emerged from the related work presented here. We have seen that there are a
number of systems and according architectures out there. For a mobile interactive
robot that comprise an increasing number of capabilities a hybrid architecture was
utilized because it can cope best with the different scenarios, as e.g. introduced in
Exc. 2.1.4 and 2.1.3, that require reactive and deliberative components.

For the behavior coordination (see Sec. 4) of such an architecture, as explained
with the sequencer for hybrid architectures, a solution that avoids such a single
sequencer component needs to be considered. Additional support for different
mechanisms for coordination (see Sec. 2.1.1) is desirable.

We have also seen that there are a number of different tools and libraries avail-
able, but adequate behavior modelling combined with the matching between the
descriptive model and executable entities seems to be still difficult. A solution
that enables this combination and at the same time supports the usage of ex-
isting frameworks for middleware (e.g. ROS) would also be desirable. Not only
because this would reduce the development time for a system, but because ex-
isting components could be used, and it would also allow a better comparison
between frameworks or platforms. In the next chapter I will give more details on
the principles that helped to create a solution for these issues.
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3. The Tool Set: Platform and
Communication Framework

In this chapter I will introduce the robotic system BIRON which has been contin-
uously developed before and during this thesis, making it an interactive robotic
systems that has been continuously improved over time span of over a decade. It
serves as a experimentation tool in various scenarios for the concepts that will be
presented in this work. During this thesis there have been many occasions where
the robot was evaluated in real world scenarios. Apart from user studies in a
real world apartment (see [76]) the system has been part of the RoboCup Team
of Bielefeld (ToBI) [131]'. After that I will give a short overview of the middle-
ware framework that was used on the platform and the software architecture the
solution developed in this work is based upon.

3.1. Bielefeld Robot Companion (BIRON)
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Certainly there are a number of dif-
ficulties for service robots in real
world environments that need to be
overcome. But to develop robots
that can be accepted as personal
robots in our homes two additional
factors play an important role: The
robot must be accepted as a com-
munication partner by the human
user and it must be able to sense
and act in an environment that was
Figure 3.2.: BIRON software architecture adapted to humans. To afford re-
with central Fzecution Supervi- search on these topics and the re-
son (ESV) sulting requirements, the Bielefeld
Robot Companion (BIRON) was

developed at the Applied Informatics Group of the Bielefeld University in 2004.

!ToBI website: http://www.cit-ec.de/ToBI
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~*— Pan tilt camera
(at helght 142cm)

Touch screen display
~+—(at helght 117cm)

Stereo microphones
~+— (at helght 107cm)

~=—gesture camera (ISight)
(at height 95cm)

Stereo speaker
(at helght 90cm)

[Fast Ethemet

Overall height approx. 145cm

= Laser range finder
(at helght 30cm)

Figure 3.1.: left: The 2007 BIRON system waiting in the living room of the real
world apartment of the robot. right: Schematic view of the BIRON
system with its components.

The first version of the BIRON platform was designed for Human-Robot Interac-
tion (HRI) in a real world scenario (see Fig. 3.1). For that purpose, an apartment
in Bielefeld was permanently rented for carrying out experiments with the robot.
A ground view of the apartment can be seen in Fig. 6.1.

As one robot platforms that
was continuously developed over a
decade at the time when this thesis
was finished, it is evident that there
have been changes in the architec-
ture and the hardware over time.
I will give an overview over the
relevant parts and describe what
can be called the evolution of the
BIRON platform.

Influenced by the work of Gat [36]
on three-layered architectures and

Rosenblatts [110] work on a fine- Figure 3.3.: Updated BIRON software ar-

grained layered architecture for chitecture with active memory
controlling a mobile robot, the ar- enabled.

chitecture of the first BIRON plat-
form was described as a hybrid ar-
chitecture with a central Ezecution Supervisor acting as a controller and sequencer
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3.1. Bielefeld Robot Companion (BIRON)

i

Figure 3.4.: left: The 2010 BIRON system waiting in the living room of the real
world apartment. right: The 2011 BIRON system and its components
on the right.

for the different components of the system (see [143, 44] for more details). While
the early Software Architecture was partly based on an event-based data flow with
XML messages, the architecture itself was designed as a three-layered architecture
as described by Gat. Thus, it divides the system into deliberative, intermediate
and reactive parts.

The main focus, that was achieved through the execution supervisor (ESV)
component, was to enable a coherent execution of different tasks and control the
different system components from the different architectural layers. This allowed
to decouple the execution from a planner component in contrast to other systems
at the time, enabling the system to perform tasks or combine reactive and delib-
erative tasks faster. The resulting highly coupled system as it can be seen in Fig.
3.2, indicated by the direct connections between system components, shows the
complexity of the ESV-system. Almost all information from the different system
components had to be send directly to the ESV to enable to switch the control
between components. Additional connections from components to the ESV where
necessary to actually switch the control. This obviously introduces a high complex-
ity to the system, makes changes in the robot behavior difficult since they must be
performed in many different places of the system and impose system components
with the necessity to store information about the current overall system state.

To overcome these aspects and particularly reduce the complexity of the system,
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3. The Tool Set: Platform and Communication Framework

Figure 3.5.: The evolution of the BIRON system from approx. 2002 (left) until
2012 (right).

more precisely to reduce the necessary connections between components, an active
memory [135] based approach was introduced that basically switched the control
(sequencing) between the different components in place where the necessary infor-
mation was stored: In the memory (active memory). The resulting reduction of
connections can be observed in Fig. 3.3, more details can be found in [122]. A
more detailed discussion can be found in Sec. 7.1

3.2. BIRON Hardware

A robotic system that is developed over such a long period of time and, more
importantly, is deployed in changing scenarios like the BIRON system involves a
number of hardware modifications over time. I will introduce the platform and
focus on changes/extensions that had an impact to the behavioral spectrum of the
robot, which excludes repairs or upgrading the on board laptops. In general it is
save to say that the availability of more computing power on board will increase
the components that can be run in parallel, which results in more functionality
available at the same time on the robot. It does not automatically improve the
performance of the robot itself.

The early versions of the BIRON system, which was before the year 2005, are
not directly related to the work in this thesis. Hence, the hardware description
comprises only the advancements of the hardware from 2007 to 2012. The BIRON
system with its components in 2007 is depicted on the right in Fig. 3.1, the left
image shows the robot in the living room of the real world apartment that was
also used for the user studies described in Sec. 6.1. A detailed descriptions of
the hardware and the study in 2007 can be found in [76]. For the following years,
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3.2. BIRON Hardware

2009-2012, the team description papers of RoboCup team ToBI provide a good
overview of the changes of the hardware (see [131, 132, 133, 134]).

The actual robot platform is based on the research platform GuiaBot®) by adapt
mobilerobots?. It was customized and equipped with sensors that allow analysis of
the current situation in a human-robot interaction and with two piggyback laptops
running Linux to provide the necessary computing power. The main sensors of the
platform can be seen on the right of Fig. 3.4: Cameras for face/object detection
and recognition, a microphone for speech recognition, a 3D sensor for grasping/-
navigation and gesture detection, a robot arm for manipulation and a laser scanner
for mapping of the environment. An overview of the different changes of the hard-
ware of the robot BIRON from 2002 until 2012 can be seen in Fig. 3.5.

Imaging system: The imaging system plays an important role for the behavior
of an interactive robot. Most noticeable in the appearance of the robot BIRON
is the change from a pan/tilt camera towards multiple high resolution cameras
on top of the robot. This is mainly due to the fact that the higher resolution
allows for better feature computation on cropped images for object recognition.
Multiple cameras additionally allow to have one camera permanently looking for
objects and another one permanently looking for faces. Another extension of the
robot BIRON that had a big impact to the behavior, and probably to robotics
community as such, was the development of the kinect®) sensor (e.g. described
by Shotton [116]). With a huge community in the background, software for 3D
sensing that uses this sensor was available to the community and was, due to
the mass production, very affordable compared to other sensors on the market. In
2011/12 almost all robots in the RoboCup@HOME league where already equipped
with a kinect sensor.

Manipulation: Manipulation is essential for a domestic service robot and despite
the increased difficulty of manipulation on a mobile platform, it has become a
mandatory aspect not only in the RoboCup@HOME challenges. The BIRON
platform therefore was extended with a manipulator, a Katana IPR 5 degrees-
of-freedom (DoF) (see right in Fig. 3.4, 2nd from bottom). This is a small and
lightweight manipulator driven by 6 DC-Motors with integrated digital position
encoders. The end-effector is a sensor-gripper with distance and touch sensors
(6 inside, 4 outside) allowing to grasp and manipulate objects up to 400 grams
throughout the arm’s envelope of operation.

Both, the improved imaging system and the manipulator greatly extended the
behavioural repertoire of the robot platform but also introduced additional com-
ponents and complexity into the overall system.

’http://mobilerobots.com/
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3.3. An Active Memory for Information-driven

Integration

Component A

Active Memory

insert
remove
replace

query

remove

Component B

Figure 3.6.: Conceptual drawing
of component A
and component B
communicating via
an actiwe memory.

The BIRON platform uses an integration
framework that basically puts foreword two
main elements that enable an information-
driven integration approach, which means the
integration of system components is data-driven
and not bound to explicit links between com-
ponents of a system. The framework assumes
a component-based system, as e.g. described by
Brugali [17, 18], where every piece of software
that implements a functionality of the robot is
considered as a component. These components
share a common interface for execution and in-
formation exchange. Typically all components
of a system use the same framework, in case of
the BIRON platform this was the XML-enabled
Communication Framework (XCF) [30]. This
framework is based on XML 3 representations
of the data exchanged between components as
a document-oriented data model. In particu-
lar it comprises an active memory (AM) as a
central integration broker for managing shared
data of a system. Conceptually, all the informa-

tion that are generated by system components is shared through an active memory,
where it can persistently be stored and retrieved from. Because the data is en-
coded using XML, components can subscribe for particular information via the
XML Path Language (XPath) 4, a query language for XML documents, and get
notified whenever this subscribed memory content changes or is inserted into an
active memory. As it is shown in Fig. 3.6 the according operations on the mem-
ory are insert, remove, replace and query. The active memory itself can be seen
as a system-wide tupel-space, providing managed read-write access to all system
components using the above operations.

3Extensible Markup Language (XML) is a markup language for encoding documents in a format
that is both human- and machine-readable.http://www.w3.org/XML/

‘http://www.w3.org/TR/xpath20/
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4. The System Foundation &
Concepts

The belief that complex systems require
armies of designers and programmers is
wrong. A system that is not understood in
its entirety, or at least to a significant
degree of detail by a single individual,
should probably not be built.

Niklaus Wirth

In this chapter, I will give an overview of the development process when facili-

tating software intensive systems, such as these described by Wirsing [139], after
such a system has initially been assembled. I will exemplify the resulting challenges
and also give a short introduction into architecture principles and requirements for
mobile interactive robots. After that I will illustrate the concepts of the Bonsai
framework that are related to these aspects and that can help developers to better
fulfill specifications of an architecture. I will start with defining the term robot
behavior in the context of this thesis to better understand the general idea behind
the developed framework.
Like many other research areas, the field of robotics comprises many disciplines
and areas that often use a similar vocabulary, even though they are not necessarily
talking about the same thing. The context for the systems that are discussed as
part of this thesis (see Sec. 2) are domestic service robotics in complex environ-
ments. This means that challenges a robot faces in this area range from having to
follow a person, introduce a robot to a new home environment (see Exc. 2.1.4),
delivering tasks (see Exc. 2.1.1) to autonomously searching for objects in an en-
vironment (see Exc. 2.1.3). But this also implies, since we speak of domestic
environments, that the robot needs to be interactive in terms of being able to
perform in a human environment and interact with humans at any time.

Nevertheless the focus of this work is to help developers to create reusable robot
behaviors and improve a system over time via real world experiments. Therefore
I am introducing the term robot behavior in more detail, due to its ambiguous
usage in different fields of research. Generally speaking anything that describes
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Figure 4.1.: Schema of the Bonsai Architecture style in more detail: Each layer
processes information generated in layers underneath or in the same
layer, enabling a semantic decomposition of the components. Only
selected components of the functional components layer of the BIRON
system (see Sec. 3.1) are shown.

the performance of a robotic system can be considered as behavior. In contrast
to the classical behavior-based robotics as e.g. described by Arkin [4] I will take a
slightly different perspective in this thesis. Arkin describes behavior as a formula
that matches a certain input stimulus to a system reaction (see motor schemas in
[2]). This interpretation works well for various scenarios where the input stimulus
can be described beforehand, for mobile robots in a domestic scenario this may
not always be attainable. Most importantly this interpretation is only fixed on the
robot and excludes the user. For dynamic and interactive scenarios a definition
should consider the effect of the robot action onto a user that will interpret the
behavior in its own context.

Hybrid research systems, as explained in 2.1.2, are typically implemented via
software intense systems, which means that a larger number of components is run-
ning distributed on multiple machines. In contrast to behavior-based systems, this
approach makes use of many pieces of software which are providing a certain set of
functionalities to the system, as depicted in Fig. 4.1 (functional components). The
layering approach, which mainly aims at information hiding between the different
layers, is a well accepted approach (see Sec. 2.1.2) and therefore will be supported.
An overview of reasonably recent frameworks can be found in [11, 90].

This implies that many components contribute to the overall system behavior
in a different way, depending on the current situation. Known behavior-based sys-
tems, a good overview can be found in chapter 4 of [4] (pages 140/164-165) and
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more recent examples are [31, 73], have covered a smaller subset of these functions,
such as navigation and avoiding obstacles, and therefor exclusively influence the
execution on such systems. For modern robotic systems this constricted interpre-
tation of behavior is inappropriate, because systems incorporate more functionality
and there are many components that need to influence the execution of behavior.
For example, a navigation subsystem ' as e.g. provided via the Robot Operat-
ing System (ROS) (see Sec. 2.2.4), that is part of many modern service robots 2
already covers the complexity of some former complete systems (e.g. [40, 112]).
The interplay between task-level and lower level actions of a robot, comparable
to the subsumption architecture described in 2.1.2, has become more complex and
influential on the overall system performance.

Hence, it is necessary to distinguish between a hardware- and a functional layer
where all components are individual software entities running distributed on the
robot. The hardware components layer (see Fig. 4.1 bottom) contains software
components that are dependent on a direct connection to the hardware because
they need to run in real time and/or require high data rates, e.g. the Obstacle
Avoidance or the Simultaneous Localisation and Mapping (SLAM). The functional
components layer (see Fig. 4.1 middle) includes all software that needs to incor-
porate data from either components of the layer underneath or the same layer or
does not rely on a direct hardware connection, e.g. the person tracking. Please
note that only some selected components of the functional components layer of the
BIRON system (see Sec. 3.1) are shown. The Bonsai Layer includes all the behav-
ior modules (see Sec. 4.2.6) of the robot that collectively describe the behavioral
spectrum of the robot.

Accordingly the term robot behavior in the context of this work is defined more
closely to the understanding of a behavior in ethology, where it relates to the
human observable actions of the robot:

Robot Behavior. A robot behavior is the externally observable activity of a
robotic system such as movement/rigor and acoustic or visual feedback produced
on the robot, whether intended or unintended.

This connotes that architectural or implementational details are not described
in a pure technical manner and allows the developer and the user of a system
to describe an interaction with the robot in the same way. For user-studies that
shall improve the overall system from the experience of the different users, it is
extremely important to be able to deduce technical aspects from the description
of a robot behavior. A similar nomenclature for developers and testers of a system
is beneficial.

http://www.ros.org/wiki/navigation
’http://www.ros.org/wiki/Robots

35



4. The System Foundation & Concepts

A similarly ambiguous term in this context is behavior coordination, which is
often referred to as the action selection problem as described by Maes [83] and
specifies the selecting of the most appropriate next action at a given time. However,
behavior coordination for a mobile interactive robot exceeds pure action selection
and is defined here as follows:

Behavior Coordination. Behavior coordination is the ability to select an action
of a robotic system based on the sensing of the environment, considering interrupt-
ibility (opportunism), recoverability and interaction partners.

This also demands a new terminology to describe the lower level parts of the
system that affect the behavior, which will be introduced later in this chapter.
The implementational details of the developed framework Bonsai are explained in
chapter 5.

4.1. Requirements for Interactive Frameworks

On an architectural level early works such as Brooks [14] and Firby [26] have paved
the way. However, for a developer of an interactive mobile robot it is important
to know that the process of developing and improving the part of a software that
generates a part of the robot behavior, these software building blocks will be re-
ferred to as behavior modules, is an iterative process. As it is described in Sec. 6.2,
the initial implementation of such a behavior module often is defective or does not
perform equally well in different scenarios. The idea behind this iterative process
is to gradually improve the behavior modules over time and in different scenarios
to obtain reusable building blocks that perform well in different scenarios. The fol-
lowing requirements, hence, help the developer during this process to improve the
behavior modules over time. Implications of such requirements for mobile interac-
tive robots have e.g. been discussed by Martin [84]. The following requirements
are therefor also valid for other parts of the software architecture, e.g. the mid-
dleware, but I will focus on the impact for the framework developed during this
thesis.

Modularity: For the overall system this refers to the different software compo-
nents or modules of the architecture, which must be functionally independent and
exchangeable. In terms of the behavior modeling this refers to the ability of putting
together small building blocks to generate the robot behavior. These behavior mod-
ules also must be exchangeable and independent in terms of their execution, but
may be reliant on the same resources that are also used by other behavior modules
of robot behavior. This actually is also true for many software modules on a robot
since they have to share the same resources as well.
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Extensibility: In general this refers to the easy extension of the overall system
with new software components. The extensibility for the behavior modules means
that they too must be easily extensible with new ones (or the extension of existing
ones). This especially connotes that an extension must not have side effects on
other behavior modules.

Transparency: This is similar to the prior requirement, it means that the ex-
change of single behavior modules must be transparent to the other modules. In
fact, this is also true for software components of the system. Furthermore, this
means that the processing of a software component in e.g. the functional layer in
Fig. 4.1 must be transparent for the behavior module.

Portability: This is a general requirement for most software components and is
inherited from the requirements of high level programming to allow the usability
of a software in different environments. In this case it means the usability of a
behavior module on different robot platforms, which is only conditionally sensible
in a robotics context. The implicit assumption here is of course that the platform
has the same information available. A behavior module that is working on camera
data can only be used on a platform that provides such a camera. The same is true
for a behavior module that tracks a person, which is only possible if the platform
can sense people.

Efficiency: This refers to the execution of the behavior modules. The framework
must be able to run at an acceptable speed for interaction, which is a non-real-
time system because response times can not be guaranteed. Sometimes it is also
called soft real-time (e.g. in [13]), in the context of this work this only refers to the
characteristics that the delay of the processing is not perceivable in a human-robot
interaction.

Rapid Prototyping: This is especially important for the developers of interactive
robots and refers to on the one hand easy generation of new behavior modules and
on the other hand to the quick composition of them to allow new applications to
be generated on a robot platform. The growing applicability of robots in different
scenarios suggests that this should be possible even by non-programmers.

Customization: To enable the easy customization of the robot behavior is es-
pecially important for software intense systems and should be possible even by
programmers with no detailed knowledge of the system components. With such
systems it is very likely that the developer of a certain functional component (see
Fig. 4.1) is not the same as the person creating the behavior module for a specific
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application. But with growing applicability of the robot in different real world sce-
narios it is becoming more important that the programmer of a behavior module
can customize this building block without detailed knowledge of the whole system
(see e.g. Sec. 6.1).

Reusability: This is becoming an increasingly important aspect for robot archi-
tectures in general. From the overall system perspective it refers to easy reuse
of software components on different robot systems and platforms and available
frameworks. The ROS framework has done a very good job for that matter. How-
ever, in terms of the behavior modules it is a little different and refers to the easy
reuse of the behavior modules for different scenarios/robots. Just like for the soft-
ware components it is noteworthy that this means to use the very same behavior
modules (e.g. classes) in different scenarios and on different robots.

Combinability: For systems with a growing number of components and function-
ality, coordination becomes one of the most important aspects of robot behavior.
For developers this means that a framework should enable the effective combina-
tion of functionality and allow to exploit semantic information, e.g. of the current
scene, for the coordination of behavior modules. It must also allow for flexible
failure recovery facilitating the same information. From the system testing/eval-
uating perspective it must be able to change the parameters for coordination of
behavior modules, e.g. the sequence of actions, without changing the code of the
behavior modules itself at runtime.

Interruptibility: This is also part of the previous definition of behavior coordina-
tion and the interruptibility refers to the possibility of stopping a behavior module
before it is finished while the system remains in a defined state. For interactive
robots this is very important because during the execution of one task the user
always should be able to change or cancel the task. For a behavior module this
implies a decomposition of the execution into semantic subparts, more details for
the implementation of this work can be found in Sec. 5.2.

Recoverability: This is also part of the previous definition of behavior coordina-
tion and the recoverability refers to the possibility to send a behavior module into
a defined state even if a prior condition changes during execution. For example
when the robot should fetch an object but the object is removed while the robot
is already fetching it. From a software engineering perspective these requirements
are related to concurrent programming, a good overview can be found e.g. in [10].
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4.2. Bonsai Architecture: Design Principles

Apart from the terminology, there are certain design principles that have proven
to not only ease the development process of interactive systems with respect to
the continuous improvement over time but also help to improve the robustness
of the overall system. A framework for generating robot behavior therefor should
support these principles by providing according software structures for developers
and including (runtime) reconfigurability.

In the following I will give details on the design principles that the Bonsai
framework facilitates and the according design structures within the framework
that construct the robot behavior. The focus here is to enable the efficient adapt-
ability of the behavior and to improve the reusability of the according behavior
modules of the robot behavior.

4.2.1. Separation of Concerns (SoC) & Modular Programming

SoC is the design principle of splitting up software functionality into distinct fea-
tures that overlap as little as possible, as also described by Mitchell (page 5 in [89]).
Modular programming or modularization as proposed by Parnas [100], is one way
to achieve SoC but in terms of robot behavior a strict distinction of functionality
in combination with hiding necessary information and a joint life cycle is equally
important.

Hence, Bonsai makes use of modular programming, which is a well accepted soft-
ware design technique, and spreads functionality of the robot behavior over multiple
independent entities, the behavior modules, to encapsulate different functions of
the robot behavior and increase reusability of the code. The code becomes more
maintainable and it is a direct fulfillment of the modularity requirement discussed
earlier in this chapter.

4.2.2. Abstraction & Readability

Kiczales [60] has introduced a model of abstraction for software engineering which
outlines the general goal of abstraction: Managing complexity. This can refer to an
abstraction at a level of system semantics, as e.g. shown in Fig. 4.1, but in terms
of creating robot behavior it refers to abstraction of processes in the functional
layer (Fig. 4.1). Developers of robot behavior should not be forced to cope with
the full complexity of the processes underneath. As Kiczales already pointed out,
the problem that may arise from this method is that even a clean interface may
still sometimes carry the complexity it wants to hide into the new abstraction
layer. This phenomena is sometimes also called leaky abstraction and emphasises
that during execution the underlying complexity can not always be ignored. On a
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semantic level, e.g. processes generating information, as well as on a technical level,
e.g. connecting components (middleware), extending the abstraction interface with
according functionality is a proposed solution. An often underestimated part of the
developing process is readability of the code. The abstraction therefor should also
semantically represent the processes underneath. Additionally it helps to fulfill
multiple requirements such as portability, transparency and reusability.

4.2.3. Loose Coupling & Information Passing

Coupling of software typically refers to the degree to which each program or soft-
ware component relies on one another during execution. In terms of Robot Be-
havior coupling can be understood as the necessity of another part of the robot
behavior that needs to be active to be able to perform. Given the requirement
for modularity it becomes clear that behavior modules need to be loosely coupled,
which refers to a dependency (if any) only based on information. Typically there
are two possibilities for such a loose coupling: Exchange information via param-
eters, e.g. calling functions, which sometimes is referred to as data coupling and
exchanging information via sending and receiving messages of one another. This
type of coupling sometimes is also referred to as message coupling. To reduce the
inevitable overhead when creating, transmitting and translating of the informa-
tion it would be advantageous to receive the according information where it is
generated by the system and vice versa to send them in the same manner, as it is
done via the active memory (see Sec. 3.3). This helps to fulfill the requirements
for extensibility because new behavior modules can be more easily extended with-
out side effects, modularity because every behavior module is a module of its own
and customization because these modules can be easily customized for different
scenarios.

Keeping these principles in mind, the main conceptual idea of the Bonsai frame-
work is to decouple the design and decomposition of the system into reusable
building blocks that can be used to flexibly construct robot behavior. The main
goal of the Bonsai framework is to ease the developing process of robot behavior
and produce reusable behavior modules by keeping the previously introduced re-
quirements and principles in mind. The decomposition of the behavior modules
is dependent on the contribution of the underlying processes to the overall robot
behavior (e.g. following a person) rather than by its technical implementation.

In concordance with common robotic terminology the robot behavior modeling
with Bonsai builds up on the concepts of sensors (see Def. 4.2.4) and actuators
(see Def. 4.2.5). They are the main access points to the system and allow for
linking of perception (e.g. people or objects) to according action of the robot (e.g.
following or grasping). This approach is informed by the behavior-oriented design
by Bryson [19] and allows to encapsulate rather complex perception-action-linking
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processes by only using sensors and actuators.

With these access points at hand it is possible to gather information from com-
ponents or more complex processes, which are interactions between multiple com-
ponents to e.g. generate a specific information, in the functional and hardware
layer as depicted in Fig. 4.1 or trigger processes and actions from the same layers.
The different colors from bottom to top refer to the level of abstraction from the
hardware. Components in the dark gray level at the bottom either depend on
direct sensory input or have a direct connection to the hardware. The obstacle
avoidance module for instance depends on the input from the laser sensor at high
frequencies to be able to detect obstacles while the robot is moving. The motor
control represents a direct connection to the motors of the robot base to actually
move the robot. Components on the light yellow level (functional components) in
the middle depend less on the robots hardware and can process information and /or
functions provided by components of the layer below or of the same layer. For ex-
ample the person tracking facilitates information from the lowest layer (laser) as
well as information from the face recognition. The Bonsai sensors and actua-
tors therefor act as single well-defined synchronisation points between the system
(robot platform) and the higher level behavior coordination.

This also means that sensors and actuators provide the interface that is used
to model higher level abilities of the robot, e.g. following a person. Thereby it is
possible to create reusable behavior modules that can be used to construct robot
behavior to solve higher level tasks with a robot platform. This software entity of
the Bonsai framework is called a skill (see Sec. 4.2.6).
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4.2.4. Sensors: Interface for acquiring information

Interactive robots nowadays are typically equipped with a number of different
hardware sensors. In contrast to the Bonsai sensors these are actual pieces of
hardware connected to the robot that provide information about the environment.
The 2011 version of the BIRON system (see Sec. 3.2) for instance has a micro-
phone, two cameras, a 3D sensor and a laser range finder. It becomes obvious
that there is additionally a lot of software necessary to generate higher level infor-
mation from these inputs, e.g. there are different software components that can
detect faces in a camera image and others e.g. recognize objects. On top of that
another software component might again use the results of these components to
generate other information, such as e.g. tracking people. All these components can
also be interpreted as sensors. To model the robot behavior both types of sensors
in the end provide information that needs to be available to properly model robot
behavior.

A Sensor in Bonsai. A sensor within the Bonsai framework is the concept of
reading information from a single modularity relevant to the current system, gen-
erated by either a hardware or software component or a combination of both, to be
used to model a system action and/or additional information and concealing the
underlying generation and communication process.

In Fig. 4.3 the general structure of the Person Sensor from the Bonsai frame-
work is depicted. Again, the goal of this sensor is to provide information about
a person in the robot’s vicinity. In this example from the BIRON system, the
Person Sensor manages the information of four components from the functional
layer that realize the detection and tracking of person hypotheses over time as
described by Jiingling [56].

4.2.5. Actuators: Interface for acting

The counterpart to sensors which provide information to a Please note that only
some selected components of the functional components layer of the BIRON system
(see Sec. 3.1) are shown.robot behavior are the Bonsai actuators, which similarly
to sensors can represent two things: Actual hardware actuators, e.g. a robotic
arm like the one on the very right in Fig. 3.4 second from bottom, or software
components. Actuators receive information, e.g. position of an object, and then
can (re)act in the real world. To model the robot behavior, actuators allow to
describe what to do with which of the available information. Apart from the real
hardware actuators, the Bonsai actuators can also be software components from
the already described functional layer. There is a Dialog Actuator to trigger the
dialog component of the BIRON system for example (see Peltason et al. [102]). Of
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Figure 4.3.: Schema of the implementation of the person tracking of the BIRON
system from 2009-2011.

course ultimately the speech output of the robot does require hardware (speaker)
of the robot, but the actuator does neither know about that nor is it necessary to
specify the exact text for the dialog.

An Actuator in Bonsai. An actuator within the Bonsai framework is the con-
cept of committing singular information available to the current system to a certain
hard- or software component or subsystem to generate concrete action of a partic-
ular component/subsystem and concealing the underlying communication process.

In Fig. 4.4 the general structure of the Navigation Actuator is described. It
provides basic functions for a robot to navigate in its environment while taking
care of obstacle avoidance and mapping. Despite its simple interface, the Bonsai
actuator triggers a rather complex interaction between multiple software compo-
nents from the functional layer which is also indicated by the color yellow for the
functional layer. 1t is interesting to note that the subprocess shown is based on
the 2010/2011 BIRON system which has been changed in the 2012 BIRON system
without any difficulties for the robot behaviors modeled with Bonsai using this
actuator.

4.2.6. Skills: Behavior Modules Facilitating Strategies

Behavior modules, as described earlier, are an important requirement to produce
reusable robot behavior with Bonsai. Within the Bonsai framework behavior mod-
ules are represented via so called skills. The acquisition of skills in general is an
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important topic in different fields of research. We can e.g. distinguish motor skills,
which typically describe a learned sequence of movements that combined produce
an action, language skills like listening and speaking or basic skills like reading and
writing. What they all share is that they describe a learned capacity to carry out
pre-defined actions with desired results, often optimized regarding a criteria, e.g.
time or energy. Additionally, in sports studies, see e.g. in [21], a skill describes
an automated stereotypical part of a behavior. Sports studies to a certain extend
try to break up activities, e.g. into skills, to be able to more precisely describe
the action. To describe the robot behavior is to some extend a similar problem
because it also needs to be divided into smaller parts to be able to get a more
precise description.

Guided by this understanding of a skill in general, the implementation of a skill
within the Bonsai framework describes the main building block of robot behavior
and is defined as follows:

A Skill in Bonsai. A skill describes a combinable and reusable stateful build-
ing block of a robot behavior that covers one desired outcome (minimal) by only
facilitating the frameworks sensors and actuators.

As T have already explained, with Bonsai the interpretation of the terms sensor
and actuator is wider and reaches beyond a simple hardware abstraction. This
characteristic enables us to create different skills to construct more complex be-
havior of the robot.

From a more technical perspective a skill can be understood as the one place to
initiate a system interaction to achieve a certain goal, e.g. to follow a person. It
is stateful not because it defines a sequence of actions (robot behavior view) but
because the interaction between the Bonsai level (see Fig. 4.1) with the underlying
robotic system runs through different states (system view). As e.g. described by
Liitkebohle [78] the interaction of software components in distributed event-based
systems (DEBS) follows a certain life-cycle, making the communication between
software components stateful. It can be e.g. initiated, running, done or cancelled.
Guided by this understanding of the interaction between software components,
the interaction between the skills in general are also described by a life-cycle all
skills in Bonsai share. The phases that form the skill life-cycle are: Interrogation
(information retrieval), activity and reclamation (information publishing).

During the interrogation phase a skill checks and retrieves all necessary data
from the system components, emphasizing an important characteristic of skills:
Since they are only constructed with the use of sensors and actuators all infor-
mation and according possible actions are available in one place, even if the func-
tionality is spread over many software components of the system. This attribute
of skills is referred to as being local.
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of 2009-2010.

The activity phase describes the part of the skill where the action of the robot
is happening. This being said it is important to note that this is often triggering
and checking processes from the functional and hardware layer (see Fig. 4.1) and
processing of the according information rather than containing expensive comput-
ing.

During the reclamation phase information that has been altered in the activity
phase or newly generated information is made available to the system, by publish-
ing it to respective active memories (see Sec. 3.3).

This life-cycle enables skills to control the robot actions more flexibly by reacting
to individual results of the different phases. Hence, it is possible to provide multiple
handling for error cases during certain activities of the robot inside a skill. A simple
following skill for example, where the robot follows a person in a certain distance,
would check if the correct person is standing in front of the robot, follows that
person and additionally provides mechanisms of what to do when e.g. the guiding
person was going to fast and the robot lost ”visual contact”.

By only relying on the sensors and actuators, the skills are thereby detached
from the respective hard- and middleware underneath. This is in contrast to
modeling the robot behavior inside the software components of the different layers
(see Fig. 4.1).

This increases the re-usability of the skills, which will be explained in more detail
in chapter 5. The approach of e.g. Nesnas [96] was to developed a domain-specific
robotic architecture that focuses on the reduction of the overhead of developing
custom robotic infrastructure, e.g. middleware, and on integrating components
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from various domains that can be reused on different hardware platforms intro-
ducing two levels of software components: The functional layer and the decision
layer, which comprehend certain properties that structure the architecture and
ease up the interaction between components. In contrast Bonsai focuses on ex-
plicit modeling of the robot behavior via behavior modules and their re-usability in
different scenarios.

This means that skills model the higher level functionality of a robotic platform
that uses the information generated on the levels underneath, e.g. information of
the person tracker or the object recognition as shown in Fig. 4.1. Their combi-
nation can be used to solve different tasks (see Fig. 4.2, Control Level FSM on
the right) that are required in different scenarios. To be able to combine skills
in such a way the definition requires skills to be minimal, which means that each
skill should only cover one particular part of a behavior (e.g. following a person).
However, for this one aspect of a robot behavior a skill may cover many cases (e.g.
error recovery) the robot may encounter.

The ability to include different mechanisms to handle problem situations inside
a skill exposes the need for a structure to also describe these mechanisms in an
appropriate way. This is especially important when dealing with reusable building
blocks because one mechanism to handle for example the situation of loosing visual
contact with a person while following might be applicable in other skills as well.

One outcome of the minimal characteristics of skills is that, during the activity
phase, there are very few (often only one) actuators involved to describe what
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the robot should do. Using the person following task again as example, the skill
primarily needs to make the robot move, which means that the Navigation Actuator
is used. Hence, the activity phase of the person following mainly configures this
actuator to figure out where the robot needs to go next. The entity to model this
modality within Bonsai is called a strategy and can be defined as follows:

A Strategy in Bonsai. A strategy within Bonsai describes the modality of pa-
rameterizing a single actuator of the Bonsai framework by using information of
possibly multiple sensors.

Strategies are used to react to unexpected situations during the activity phase
and they determine the way an actuator is controlled in Bonsai (changing param-
eters). The application of a strategy is derived from the actuator it is used for,
whereas the semantics is defined by the sensors it uses and the processing that is
necessary for the sensor information. Sticking with the following example, a sim-
ple strategy can determine e.g. the distance the robot should keep when following
a person by using the person sensor and generating a target for the Navigation
Actuator, keeping a certain distance from the person. More complex strategies
can be distinguished by the processing steps required to control an actuator. This
is important in situations where the selection of parameters or goals for a skill
is not as simple, e.g. where to search for objects. However, with the different
functional components at hand it is often possible to enable a smart selection by
fusing multiple information from different components. To be able to benefit from
this fusion the informed strategies where introduced in Bonsai. They have an
additional processing step to combine multiple sensor information (sensor fusion)
which generates additional information that is used to guide the robot behavior.
This can be used to gain a better scene understanding and exploit that to enhance
or optimize the robot behavior.

One situation where this approach was successfully implemented is described by
Ziegler et al. [149]: A search behavior of a mobile robot that uses plane extraction,
color detection and a SLAM map to generate target positions where the robot
should search for certain objects. Assuming that objects are typically placed on
planar surfaces it was possible to significantly reduce the search time for an object
in a real world apartment. Later this approach was implemented into the Bonsai
framework via the informed strategies as described in [119]. This anchors the
capability to exploit additional scene information to the Bonsai framework which
has been show to work well in real world scenarios, e.g. during the RoboCup
competition (see Sec. 6.2).

In Fig. 4.5 the informed strategy shows a scenario in which information from a
plane extraction, a color detector and a SLAM map are fused to generate target
positions for the robot, in this case possible locations of an object. The strategy
part in this illustration (top right corner) represents a simple strategy: From all
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the points of interest the one which is nearest to the robot is selected. The final
step is the actuation itself where a target position of the robot is generated that
is suitable for the according actuator.

4.3. Contribution

In this chapter the different building blocks for robot behavior in the Bonsai frame-
work where introduced. Before I will describe the implementation of the framework
in the next Chapter, I want to sum up the advantages of the Bonsai framework
and the modeling entities described here.

The introduced building blocks make modeling of robot behavior and adapting
skills, even for developers who are no experts in any of the functional components,
feasible. Especially for complex systems that are often shared by developers and
system evaluators to improve the system performance over time this paradigm for
an iterative modeling approach has proven (see Sec. 6) to work very well. As
mentioned above, this also means that strategies are not only part of the skills
but also important for increasing the reusability of these behavior modules. When
system evaluators test the performance it is helpful not to spread the behavior
modules over many components of the system. Keeping the local characteristics
of skills helps to transfer observations from real world user interactions into the
actual code that controls the robot. Thus, skills are independent of the way the
underlaying system components are implemented and if problems are identified in
user studies there is only one place where they need to be changed. Moreover,
Bonsai skills can more easily be transferred to other platforms and architectures,
which will be further explained in Sec. 6.3.1.

Another aspect of robot behavior implemented using skills is the reusability
not in terms of platforms but in terms of scenarios. Skills need to be minimal
and modular, e.g., only model one function of the robot at a time, to enable a
flexible combination of many skills for different scenarios. These three aspects (lo-
cal, minimal, and modular modeling) additionally ease an iterative design process
for developers, because they can focus on designing functionality rather than the
component configuration, which requires a detailed knowledge of the whole sys-
tem. Additional insights gained in user studies can be implemented into individual
behavior modules, which are then easily reusable for new scenarios or platforms.
This also implies that the behavioral spectrum of the robot can easily be extended,
new or even experimental skills can be combined with proven and tested skills in
a scenario with low effort.

The two main challenges for mobile interactive robots that have been tackled
here are how to integrate findings from user studies easily and efficiently and how
to enable an easy reuse of behavior modules that have been evaluated in other
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scenarios. These challenges can only be met with a framework that abstracts from
the multitude of components within the system and allows changes to be made in
only one place not requiring a deep knowledge about the whole system. In fact
many of the concepts for the Bonsai framework were inspired by concepts that are
also used in user studies because only in such studies it is possible to determine
concrete requirements for future system design. In this regard the concepts pre-
sented here provide the necessary level of abstraction and foster an iterative design
cycle for behavior modules.

Additionally, the concept of behavior modules indicates that there is another
distinct feature for robot architectures that influences the overall performance of
a system: How and where the robot behavior is modelled and implemented.
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5. Implementing the Bonsai
Framework

Any fool can write code that a computer
can understand. Good programmers write
code that humans can understand.

Martin Fowler

After we have learned about the architectural concepts that abet the reusability
of the behavior modules composing the robot behavior, I will now give a closer
look into the implementation of the Bonsai framework. Following the definition of
a framework by Johnson [55], which states that a set of classes that embody an
abstract design for solutions to a family of related problems and supports reuses
at a larger granularity than classes can be considered a framework, Bonsai can be
described as a domain-specific behavior-orientated Java framework.

The growing functionality of robotic systems today is accompanied with an in-
creasing number of different software components that enable the robots to prop-
erly act in e.g. domestic environments. Unfortunately this also means that the
complexity of the system increases when trying to produce more complex robot
behavior.

There has been (and still is) a lot of research to help developers with the resulting
challenge of integrating many different software components into a system and it
has produced a number of robotic frameworks to actually assist the developers
to put together a system of components and provide middleware functionality.
Popular examples are the Player/Stage project [38], the YARP framework [88],
the XCF framework [144] and the Robot Operating System (ROS) [109].

With these frameworks at hand it is possible to deploy an autonomous system
in different scenarios and applications but the available frameworks also indicates
that neither an existing modeling approach nor available framework covers all as-
pects necessary in robotic applications yet. The resulting variety of frameworks
and approaches poses an additional challenge for developers of interactive robotic
systems: How to model, implement and improve robot behavior that can be reused
in other scenarios, on other platforms or with different frameworks underneath?
As explained earlier todays robotic systems confront developers with a lot of in-
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formation from various sources and various research areas that might be helpful
for solving a higher level task with such a system.

We can conclude that the overall complexity of robot behaviors rises with the
complexity of the system, especially in an environment where the robot interacts
with a human partner. A developer must be able to focus on the relevant aspects
of the robot behavior and should be able to combine the different information in a
simple and reusable manner. It is important to ease the development process of
robot behaviors and provide tools to combine the different information sources and
behavior modules because the environment and the available capabilities of robot
platforms have become more complex.

In contrast to modeling the robot behavior with different classes of messages on
top of a communication layer, hence, focusing on the software components and
their interaction as it was described by Lin [71] I have taken a slightly different
perspective on this topic for the implementation of the Bonsai framework. Based
on the concepts described in Sec. 4 Bonsai aims to model the robot behavior using
skills rather than the component interaction and thereby elicit the responsible
code from the Functional Components (see Fig. 4.1) into its own layer, referred
to as Bonsai or Behavior layer. The guiding question during the development of
Bonsai was:

How to model, tmplement and improve robot behavior that can be reused in other
scenarios, on other platforms or with different frameworks underneath?

What this question implies is how to model the robot behavior without includ-
ing middleware or scenario specific code. In this regard the framework enables
component developers to focus on the functionality by following a simple pro-
cess informed by the Information-Driven-Integration approach [144] (see Sec. 6.3)
whereas developers of robot behaviors can reuse existing skills and focus on the
task the robot should solve, namely the scenario (see Sec. 6.2).

To give a better insight into how the different software entities are implemented
in the Bonsai framework I will first introduce the sensors and actuators here and
the according communication framework. This is followed by the handling of in-
formation exchange inside Bonsai. The last part of this chapter will describe the
control flow aspects and reusability of skills using a statechart-based implemen-
tation as behavior engine that allows to easily combine different skills in different
scenarios.

5.1. Communication: Abstraction for Consistency

To achieve this decoupling of the behavior-relevant code from the middleware un-
derneath it is very important for developers to establish a general interface that
allows on the one hand to exchange necessary data from the system and on the
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other hand provide an easy and ceaseless interface. Thus the sensor and the actua-
tor interface detaches the behavior code, that only facilitates these interfaces, from
the system’s software components and the system’s middleware by implementing a
factory design pattern (see in [33]) for sensors and actuators for a specific config-
uration. This also allows to have middleware-specific implementations of sensors
and actuators for different middleware or different systems while leaving the skills
and their code untouched.

This also emphasizes the requirements of the system components, as introduced
in Sec. 4.1, since an interface like this can only operate properly with the system
components providing all necessary information, e.g by making them available in
a central memory or by publishing them via publish/subscribe methods. As far
as modeling robot behavior is concerned, we can distinguish two main types of an
interface for this matter: One that does provide information (e.g. a listener or
subscriber) used by the according skills, e.g. information coming from a camera or
a laser range finder, and the other one receiving information to trigger action (e.g.
a caller or Remote Method Invocation (RMI)), e.g. information to operate a robot
arm or to move the robot base. A similar concept to construct system components
facilitating so called information sinks and information sources is described by
Liitkebohle [80]. This is also reflected by the fact that modern middleware solutions
do provide implementations for at least one of these communication patterns. An
overview can be found in [90] and [138]).

5.1.1. Sensors and Actuators

The basic interfaces for sensors and actuators are contained in the Bonsai core.
Since the semantics of a sensor mainly is defined by the data content, it is possible
to define common functions that apply to all sensors (see Listing 5.1), which
basically allow to access the information of the sensor via the readLast () function
in line 4 and readLast (long timeout) in line 5.

public interface Sensor<T> extends ManagedCoreObject {
Class<T> getDataType () ;
T readlast () throws IOException, InterruptedException;
T readlLast(long timeout) throws IOException,

InterruptedException;

boolean hasNext ();
void addSensorlListener (SensorlListener<T> listener);
void removeSensorListener (SensorListener<T> listener);

Listing 5.1: The simple sensor interface from the Bonsai core.

For actuators it is a little different, since the usage and the designated action
of the actuator mainly defines the semantics, which makes it difficult to have one
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single actuator interface for all use cases. Therefore, the navigation actuator serves
again as example as a common actuator (see Listing 5.2) that is needed for any
mobile platform. The core interfaces are generated by the factory implementation,
which allows to define object instances of sensors and actuators that contain a
certain set of functions without specifying the exact class instance of the object.

Additionally this helps to avoid duplicate code, since the creation of a sensor
or actuator for a specific middleware normally differs little. For the developer of a
system behavior the consistency of the functions and the availability of information
is the most important aspect, which is well covered by this pattern.

public interface NavigationActuator extends Actuator {
void setGoal(NavigationGoalData data) throws IOException;
GlobalPlan tryGoal(NavigationGoalData data) throws IOException

>

void drive(double distance, LengthUnit unit) throws
I0OException;

void turn(double angle, AngleUnit unit) throws IOException;
GoalReachedData driveTurnDone () throws IOException;
GoalReachedData isGoalReached() throws IOException;
void manualStop() throws IOException;
NavigationGoalData getCurrentGoal() throws IOException;

}

Listing 5.2: A stripped down version of the NavigationActuator interface from the

Bonsai core.

Sensors and actuators extend the ManagedCoreObject, which is produced by
the CoreObjectFactory within the Bonsai core. As described in Fig. 5.1 these
CoreObjects provide a monitoring functionality, e.g., the connectivity of sensors
and actuators with the system underneath, that may not be available from the
underlaying middleware but still is important for the robot behavior.

For example the XCF framework ! (see Sec. 3.3), which was mostly used on the
BIRON robot, does not provide an auto-reconnect function when e.g. a functional
component crashes. The CoreObject allows to model this functionality without
interfering with the actual function of the sensor or actuator.

The implementations for a specific middleware of each sensor and actuator are
contained in a separate package that uses the Bonsai core. Even though the XCF
framework was most often used there have been experimental implementations for
YARP 2, ROS 3 and most recently the implementation of all sensors and actuators
is ported to the RSB * framework.

Yhttp://xcf.sourceforge.net
’http://eris.liralab.it/yarp/
3http://www.ros.org/
‘http://code.cor-lab.org/projects/rsb
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Figure 5.1.: Schematic view of the use and implementation of sensors/actuators
in Bonsai with the NavigationActuator as example.

Sticking with the NavigationActuator as example, the actual implementation
for the XCF framework is provided by the XcfNavigationActuator class. As
depicted in Fig. 5.1 the Bonsai skills only know about the sensor/actuator inter-
face (NavigationActuator), whereas the XcfNavigationActuator class commu-
nicates with the system components using a system specific middleware (in this
case XCF) and the monitor (CoreObject) is checking the communication and can
e.g. initialize a re-connection to the functional component.

Going back to the Requirements discussed in Chapter 4.1 this structure fortifies
Loose Coupling and allows developers to focus on either the development of the
robot behavior or the system component. This complies with the concepts, as
introduced in Sec. 4.2, of Separation of Concerns (SoC) as well as Abstraction &
Readability since the developer can write skills independently of the middleware
or platform. Thus, the reusability and portability are increased and developers
can more easily generate new skills, as e.g. required for rapid prototyping.

5.1.2. Data Content: Necessity for decoupling

One aspect of the implementation that was already mentioned before is the in-
formation exchange within the Bonsai framework. For the sensor interface of the
Bonsai framework this is highly important, because the unitary interface design
implies an additional challenge for the developers of a robot behavior: What in-
formation is exchanged between the system components and the Bonsai layer (see
Fig. 4.1) and between the skills? Even more important for the developers of skills
is what minimal set of information is necessary for these interfaces to work as
intended? As mentioned earlier a skill, e.g. following a person, can only operate
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properly if the according information about a person is available. This is a source to
undercut the decoupling of the skills from the middleware or system underneath
because it can introduce middleware or system specific dependencies. To avoid
this, Bonsai needed its own way of handling information inside the framework.

To allow Bonsai skills to be actually detached from the specific middleware of
the system the Bielefeld Type Library (BTL) was introduced to deal with data rep-
resentation within Bonsai. In fact, the BTL is strongly influenced by the message
oriented data exchange of the different systems in the Bielefeld research environ-
ment.

The BTL was implemented very early in the development process of Bonsai and
mainly provides parsing functionality for XML-based messages exchanged between
the system and the Bonsai Layer and among the skills. The main benefit of using
XML-based representations, apart from the human readability of the exchanged
information, is the extensibility which allows to have minimal information require-
ments for e.g. sensors, which can be extended for new sensors or actuators without
the need to change the existing ones.

<LIST type= >
<ELEMENT_TYPE>de.unibi.airobots.btl.data.map.Annotation</
ELEMENT_TYPE>
<ANNOTATION label= >
<VIEWPOINT category= label= >
<ROBOTPOSITION>
<POSITION kind= ref= theta= x=
y= />
</ROBOTPOSITION>
</VIEWPOINT>
<VIEWPOINT category= labels= >
<ROBOTPOSITION>
<POSITION kind= ref=
theta= x=
y= />
</ROBOTPOSITION>
</VIEWPOINT>
<PRECISEPOLYGON>
<POINT2D scope= X= y= />
<POINT2D scope= x= y= />
<POINT2D scope= x= y= />
<POINT2D scope= x= y= />
</PRECISEPOLYGON>
</ANNOTATION>
</LIST>

Listing 5.3: Short example for a MapAnnotation XML, describing the kitchen area
(precisepolygon) and a view point for the fridge.

This allows to e.g. define data types that are necessary for skills, such as a
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NavigationGoal which describes a target position of the robot on a map, which do
not have to have a correspondent data type on the functional layer of the system.
But at the same time this allows all sensors, actuators, strategies and skills to
work on the same set of information. Another example is the Person type of the
BTL. It contains information about the angle and the distance of a person as seen
from the robot position (ego view), but additionally may hold information if a
Person is the current interaction partner of the robot and the name as well as
additional percepts (face, pair of legs) of the person. It is getting clear that the
information that compose a Person can vary between different systems. In fact
this information can even vary between different software components of the same
system.

A practical example for the usability of the BTL types are the Strategies. They
produce a single output that can be used by an actuator, e.g. a NavigationGoal
to be used by the NavigationActuator. This increases the reusability and eases
the process for the developer since one has to only deal with these kind of data
types. Additionally the BTL provides unit support and convert functionality for
convenience of the developer and to make sure that e.g. distances are always the
same as well as angles and can be easily converted if necessary.

Listing 5.3 shows a stripped-down version of a MapAnnotation which is used to
represent information about the surrounding of the robot based on a pre-recorded
SLAM map. The example shows the annotation for the label kitchen (see line 3)
and the area on the map covered by this label (see lines 17-23). The viewpoint
labeled fridge (see line 4) contains a robot position (see lines 5-8) that describes a
position on the map from which the robot can perceive an object or area. In this
case it can see the fridge, multiple robot positions for one label are possible.

5.2. Control Flow: Enabling Reusable
Building-blocks

The most important part of the Bonsai framework is the implementation of the
behavior modules. Not only because they in the end generate the robot behavior
but also because the requirements presented in Sec. 4.1 have a big impact on
behavior modules: They need to fulfill all of them and are influenced by the sensors
and actuators as well as the control layer on top. This means that to meet the
requirements it is important to restructure the way the functionality of a system is
implemented. This will in the end help the developer to easily implement behavior
modules, thus, increasing the behavioral spectrum of the robot.
1 <?7xml version= encoding= 7>

2 <scxml =xmlns= version=
initial= >
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<state id= >
<transition event= target= />
</state>
<state id= >
<transition event= target= />
<transition event= target= />
</state>
<state id= >
<transition event= target= />
<transition event= target= />
</state>
<state id= >
<transition event= target= />
</state>
7 </scxml>

Listing 5.4: SCXML example of a stop watch with states ready, running, paused
and stopped.

As it was explainer earlier in Sec. 4.2.6 the Bonsai skills are the implementation
of behavior modules that is used in the Control Layer (see Fig. 4.1) to generate
a robot behavior. In this Section I will give a detailed introduction to the Bonsai
skills, how they are structured and why and how they are combined and executed.
The implementation of the control layer in Bonsai relies on statecharts (see Exc.
5.2.1) and the according working draft published by the World Wide Web Con-
sortium (W3C) for SCXML °. There are different implementations available for
SCXML, the one used in Bonsai is the Apache Commons SCXML library 6. This
is because it is not only capable of parsing and validating SCXML but also pro-
vides an execution environment for the resulting state machines and because it
was published under an open source license it is reasonably easy to extend and
maintain. A short example for a simple stop watch defined in SCXML can be
found in Listing 5.4. It describes a state machine that has four states, stopped,
paused, running and ready with ready being the initial state. The transitions are
defined as events, e.g. watch.start, and each have a target state, referred to by
name.

5.2.1. Skills

All Bonsai skills extend the AbstractSkill class, which basically defines the life
cycle of any skill within the Bonsai framework (see Fig. 5.4), a stripped version
of the class can be found in Listing 5.5. As it was explained in Section 4.2.6 a
behavior module can be split into three phases: Interrogation, activity and recla-

Shttp://www.w3.org/TR/scxml/
Shttp://commons.apache.org/scxml/
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Statecharts

Figure 5.2.: Simple state

The so called state and transition explosion,
times also referred to as exponential blow-up,
describes the exponential growing multitude of
states and according transitions when describ-
ing a complex system with simple state diagrams
(as seen in Fig. 5.2). They require a distinct
node for every valid combination of parameters
that defines the state. However, statecharts are
a visual formalism [46], which is also part of
the Unified Modeling Language (UML), to tackle
this problem and provide modular, hierarchical
and well-structured state graphs for complex sys-

some-

. tems by allowing the modeling of superstates,
diagram. . o
orthogonal regions, and activities as part of a
state.

With statecharts it becomes possible to
model multiple state diagrams within one
statechart, which allows to have transitions
between internal (sub-)state machines with-
out affecting one another in the statechart.
This circumvents the exponential blow-up
and also introduced the history of states.
This allows to model complex systems more
easily, because it is possible to enter a group
of states (superstate) by referring to the his-
tory, which typically refers to the state within
that superstate that was last active.

More recently the development of the State

Superstate 2

Figure 5.3.: A simple statechart.

Chart extensible Markup Language (SCXML) ¢, which provides a generic state-machine
based execution environment, has gained attention by different communities as a stan-

dard implementation for state machines.

“http://www.w3.org/TR/scxml/

Excerpt 5.2.1: Statecharts: A Visual Formalism
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instantiate
o configure()
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Skill
Life Cycle

activit
execute()

ExitStatus.
ERROR
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init()

Figure 5.4.: The life cycle of a Bonsai skill.

mation. Theses phases are represented by the abstract functions described in the
AbstractSkill in lines 12-14, which means the developer can implement the func-
tions according to the needs of a skill, thus, implicitly abiding the requirements.

The AbstractSkill also provides status information that are used to communicate
the success of each phase to the skill engine as well as the result of the skill itself.
They are described in Listing 5.5 (lines 6-8). Obviously SUCCESS represents a
successful execution of a phase, whereas FRROR stands for a precondition that
does not hold for the next phase. If, for example, certain information that are re-
quired by the activity phase are unavailable during the init (), then the FxitStatus
will be ERROR. If there is a software failure during one of the phases, e.g. a sensor
is unreachable (failed connection), the ExitStatus will be FATAL. This distinction
enables the developer to react to semantic failures, which are normally recoverable
from within the skills, whereas a software failure normally is not recoverable from
within the skills.

The skill engine describes the execution environment for all Bonsai skills based
on an SCXML state machine. For execution of the state machine as well as pars-
ing /validating the SCXML description the Apache Commons library, as mentioned
above, was used and extended. The engine also allows to communicate the Fxit-
Status of each phase facilitating events, which means that the init (), execute ()
and end () functions of each skill will always trigger such an event. In turn the skill
engine holds a state machine object as well as a system configuration to enable
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the activation of the different skills as well as canceling skills when the situation
(or interaction) has changed.

public abstract class AbstractSkill extends Thread {

public enum ExitStatus {

SUCCESS ( ),
ERROR ( ),
FATAL ( )

}

public abstract ExitStatus init();
public abstract ExitStatus execute();
public abstract ExitStatus end();

Listing 5.5: Stripped down Java class for an AbstractSkill.

The skill life-cycle is depicted in Fig. 5.4 combined with the interactions with
the skill engine between the different phases. On robot startup a Bonsai instance,
called the BonsaiManager, creates the different sensors and actuators according to
a system configuration file (see App. A.2). After that the skill engine instantiates
all necessary skills as described in the SCXML file, facilitating the sensors and
actuators of the BonsaiManager via the configure() function depicted in the upper
left of Fig. 5.4. When ready a skill is activated by the skill engine and enters the
interrogation phase by calling the init() function of a skill. If not successful
(ERROR or FATAL) an event is triggered to inform the skill engine and the
skill itself is stopped (see right on Fig. 5.4). Otherwise the activity phase is
entered by calling the execute() function which will produce an action of the
robot. If successful the last phase, reclamation phase, is entered by calling the
end () function. Additionally the skill engine can cancel a skill during the phase
transitions, e.g. when a parallel skill has detected a change of the current situation
or when a human user gives a new command to the robot.

Which skills are activated and when is defined by an SCXML which eventually
is describing the robot behavior. This state machine also holds the information on
how to react to the triggered FxitStatus events, e.g. what to do when necessary
information is not available.

5.2.2. Control Layer and SCXML

The Listing 5.6 shows a shortened SCXML file describing the activation of the
different Bonsai skills, in this case a skill setting a target position according to

61



1

2
3
4

5. Implementing the Bonsai Framework

a map annotation (SetTargetByAnnotation) followed by a DriveToPosition skill
that will check if a position was set (Interrogation) and than try to reach the
position with the robot. A complete example for an SCXML used with Bonsai can
be found under A.3, the basic core features of the current SCXML standard can
be found online .

<scxml xmlns= version=
initial= >
<state 1id= >
<transition event=
target= />
<transition event=
target= />
<transition event=
target= />
</state>
<state id= >
<transition event=
target= />
<transition event=
target= />
<transition event=
target= />
</state>
<state 1id= >
<transition event=
target= />
</state>
<final id= />
</scxml>

Listing 5.6: Stripped down SCXML example for setting a target position from an
annotation on a map.

Two other main features of the SCXML implementation shall be introduced
here since they underline the benefit of using this standard and additionally play
an important role when coordinating the Bonsai skills: The send and the parallel
feature.

As it was explained before, the skill engine exchanges information about the
FExitStatus during the different phases via events which are also included in the
SCXML describing the transitions between different skills. These events are skill
specific because they have to be defined by the developer of the skill. However,
when using the skills in different scenarios it is important to be able to add scenario
specific events. For this the send feature of SCXML was used, as described in
Listing 5.7, which allows to define individual events inside the SCXML file that

"http://www.w3.org/TR/scxml/#Basic
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also can trigger transitions between skills.

<state id= >
<onentry>

<send event= delay= />
</onentry>

<transition event= target= />

</state>

Listing 5.7: Example for a scenario specific event handled via the Bonsai skill
engine.

The example shows a timeout for a skill. The lines 2-4 define the event Skilll.timeout
which automatically will be triggered by the skill engine with a delay of 30 sec-
onds after activation of the skill. The transition defined in line 6 will be performed,
switching to AnotherSkill, after 30 seconds, fully independent of the FxitStatus of
the skill itself.

However, the send feature alone is not enough to cope with the complexity of
some skills. Even though they should be as minimal as possible, some of them
may still need multiple outcomes after the activity phase. A good example is the
Grasp skill described in Listing 5.8. To achieve this all Bonsai skills can set a
ProcessingStatus at the end of the activity phase which is automatically added to
the EzitStatus event. The benefit of that is, even if the SCXML does not react
to the specific event including the ProcessingStatus, it can still be recognised as a
normal EzitStatus event. In the example the Grasp skill is able to differentiate 3
error situations and adds an according ProcessingStatus to each event.
<state id= >

<transition event= target= />

<transition event= target=

/>
<transition event= target= />
<transition event= target=
/>

<transition event= target= />

<transition event= target= />
</state>
Listing 5.8: Stripped

example of a GraspObject skill facilitating the ProcessingStatus for
transition.

They can be identified in the SCXML and activate skills to e.g. cope with
the situation or make the robot ask for help: No object was grasped (line 3),
at least one motor of the robot arm is blocked (line 4) or a potential collision
was detected (line 5). In any other case a simple error event is send (line 6).
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The ProcessingStatus allows the developer of a skill to add additional information
about the result of the activity phase to the FEwzitStatus. This is very helpful to
differentiate error situations as described but also for skills that have different
results, e.g. when recognizing objects or persons. The ProcessingStatus can also
be used to prevent skills that are more time consuming or skills that need to
wait for longer computations to finish (e.g. learning objects or faces) to remain
interruptible. In such a situation the ProcessingStatus can be used to indicate that
the activity phase is not finished yet and make the skill engine activate the very
same skill by adding itself as a transition target in the SCXML. The same skill
will be activated again and check if e.g. the processing is done, very much like a
monitor state.

<parallel id= >
<state id= />
<transition event= target= />
<transition event= target= />
<transition event= target= />
</state>
<state id= />
<transition event= target= />
<transition event= target= />
<transition event= target= />
</state>
</parallel>

Listing 5.9: A shortened SCXML example for a parallel skill.

The parallel feature, which is described in Listing 5.9, allows to activate multiple
skills in parallel. The Listing describes a situation where two skills, Skilll and
Skill2, are activated in parallel and depending on which skill finishes (SUCCESS)
first, the according transition is made (SkillOne or SkillTwo). Another common
use case for parallel skills is the responsiveness of the robot. In this situation one
skill is active, e.g. a person follow skill, and another skill is checking for user input,
e.g. a stop command.

5.3. Contribution

With the implementation of the Bonsai framework it is possible to quickly put
together interactive robot behavior for different scenarios and systems. With the
Bonsai skills it is possible to easily reuse tested behavior modules to compose new
robot behavior in new scenarios as well as test new, possibly experimental, skills
together with proven and tested skills of the robot, which is very important for
e.g. research platforms. This is because the same skills are instantiated by the
skill engine for all different scenarios, improvements are made in one place (the
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code of the skill). Due to the joint skill life-cycle and the usage of the same
sensors/actuators, newly implemented skills can be easily included into scenarios.

As a side effect the availability of skills also allows for improved software testing
because single skills can be tested separately, without the need of a whole system,
and often automatically inside the build pipeline, whereas writing software tests
for a whole robot behavior still is a bigger challenge. Hence, often only few tests
for the robot behavior are written, which can be improved with the Bonsai skills
to ensure at least that these parts are working as they are supposed to do.

From a system perspective the Bonsai framework allows to adapt the robot
behavior independently of the functional components (see Fig. 4.1) of the system
and vice versa. This greatly contributes to the stability of a frequently adapted
system because it avoids unintended changes on the behavior when changing a
component. This also highlights the easy separation of the actual robot behavior
from the control flow: There are two separate instances that manage what the
robot does (skills) and when or how it should be done (skill engine). This strict
separation also circumvents the sequencer problem (see Sec. 2.1.2). Here, the
sequencing is explicitly modeled via the SCXML.
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Science is the systematic classification of
experience.

George Henry Lewes

Evaluation is essential in order to design any kind of usable systems. For in-
teractive robots the evaluation of the system may be even more important, not
only because the interplay of many components needs to be tested under realistic
conditions but especially because user interaction with a system needs to be tested
since this is still difficult to do in simulation.

In this part I want to present the different scenarios that where used to evaluate
the Bonsai framework. Obviously the overall system behavior does play an impor-
tant role because this is one aspect that I am striving to improve with Bonsai over
time but it is certainly not the only aspect.

The evaluation results for the extended home tour scenario will be presented in
Sec. 6.1 and in Sec. 6.2 for the RoboCup competition. Additionally to this I have
considered aspects that are more important for the developers of such systems:
The portability of developed skills to other platforms/systems and the usability if
the Bonsai framework itself is. Both aspects are evaluated in Sec. 6.3.

6.1. System Evaluation: The Extended Home Tour

The driving question for this evaluation of the Bonsai framework was how it could
be possible to easily re-use robot behavior that has been evaluated in other scenar-
ios. The hypothesis is that with the Bonsai skills at hand it is possible to re-use
the skills in other scenarios than they where originally developed for and with
the separate modeling of the control flow the failure cases during an interaction
caused by the system rather than the robot behavior can be reduced. This ques-
tion is highly relevant because user studies and their design take a lot of time and
effort. Thus, it would be a great advantage if we were able to improve and re-use
robot skills that have been tested and worked well in e.g. other scenarios or other
studies before.

In addition to the home tour scenario described in Exc. 2.1.4 the scenario
for this evaluation was extended: After the robot was introduced to rooms and
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Figure 6.1.: The robot apartment. The path of the tour (green) starts in the living

D = table
mmmm = heater
room via the hall to the dining room.
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objects of the apartment (e.g. ”This is the kitchen!”), the robot needed to guide
the human to one location it has remembered before. This not only shows that
the robot actually remembered what was introduced to it before but also added an
autonomous part where the robot had to navigate through the apartment instead
of following a person.

Participants

For this study a group of participants was invited to the robots apartment that
had not interacted with the robot BIRON before. 14 participants, 7 male and 7
female, took part. Their ages ranged from 18 to 54 years with a mean of 38.9
years. Based on a questionnaire presented to all subjects prior to the study where
all participants had to do a self-assessment, their experience with computers was
3.1 on ascale of 1 " no experience at all” to 57 a lot of experience”. Their experience
with robots based on this assessment was 1.7 on the same scale as above (1 to 5).
All participants were native speakers of German and interacted with BIRON in
German. All subjects interacted voluntarily with the robot and could stop the
interaction at any point without a reason.
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Setup

The subjects were welcomed at the robots apartment and then received a written
introduction to the study, a short description of the home tour scenario (see Exc.
2.1.4) and the robot (see Sec. 3.1) and an overview of the phases of the study. All
participants had to answer a questionnaire on demographic data and their expe-
rience with computers and experience interacting with robots prior to the study.
After that the subjects had a short training period on using the speech recogni-
tion of the robot (i.e. proper distance to microphone) and were asked to speak
some phrases for habituation. In the following the users were handed a tutorial
script for practice to reduce hesitant behaviors. In this phase the subjects also
where allowed to ask questions about the robot, which was not allowed during the
interaction. The script contained all commands they would need later on and the
users were asked to try them out with the robot. The instruction for this main
task was to:

Greet the robot,

Guide the robot from the living room to the dining room via the hall (see Fig. 6.1),
Show and label the living room and the dining room,

Show the bookshelf in the living room and the floor lamp in the dining room,

Ask the robot to go back to one of the rooms or objects and

Say good-bye.

The tasks were chosen based on the scenario of the predecessor study in 2007
and covered a number of abilities that the robot was able to autonomously perform
at that point of time. The whole interaction was recorded with three cameras, one
stationary camera in the kitchen, another stationary camera in the dining room
and the interaction itself was recorded with a hand held camera. For the latter
the camera person was instructed to stay out of sight of the subject and the robot
sensors to not interfere in any way with the interaction. After the interaction, all
participants were interviewed and answered a second questionnaire that included
items on liking of the robot, attributions made towards the robot, and usability of
the robot.

Results

There are different outcomes of this study, some are directly evident such as the
logging functionality of the Bonsai skills that is helpful to produce reasonable data
for video annotation. Another positive effect was actually having an interaction
scripts in terms of a state automata on the robot (see Sec. 5.2.2) that not only
helps the experimenter to determine the course of the interaction but also makes
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Task | count 2010 | failures 2010 | count 2007 | failures study 2007
Greet 14 0 45 10
Intro 14 0 5) 2
Offer 133 4 - -
Farewell - - 18 4
Guiding 69 12 109 9
Teaching Object 58 19 66 31
Teaching Room 47 14 40 10
Showing Object 8 2 - -
Showing Room 6 5 - -
Register 20 0 38 4
Obstacle - - 25 0
Reset - - 18 5)
Stop 16 2 29 3
Sum 385 58 393 78

Table 6.1.: The tasks from the robot studies in 2010 & 2007. Cells marked with
7" where not part of the particular scenario.

the interaction easily reproducible for all subjects. The outcome in terms of the
robot behavior is only apparent in contrast to the former robot study conducted in
2007 (see [76]). The analysis of the robot behavior is based on the SInA approach
(Systemic Interaction Analysis in HRI [77]). In this approach the overall interac-
tion is divided into small reoccurring interaction episodes called tasks. A task has
a defined start and end action, e.g. the task Greeting starts with the user saying
something like Hello robot! and typically ends with a confirmation of the user. An
example dialog for a Greeting task could look like this:

human: Hello robot!

robot: Hello. What is your name?
human: My name is Sarah.

robot: I understood Sarah. Is this correct?
human: Yes, that’s correct.

In order to analyse the interaction there where 10 different tasks in both studies
which can be found in Table 6.1. Given theses tasks a simple measure for the
quality of interaction is to count the overall number of tasks occurring and iden-
tify the tasks in which the interaction was unexpected or problem related. The
expectation was to reduce the share of tasks that had problems or failures in them
with the Bonsai framework, which was the case as it also can be seen in Table 6.1:
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Only taking the bare numbers into account the number of problem related tasks
dropped from 20% to 15% with Bonsai. Additionally the Obstacle and Reset tasks
where only introduced to recover the interaction when the robot got stuck or the
interaction could not be continued by the user. Especially the reset is interesting,
which still would fail almost 1/3 of the time and was necessary at 18 occasions
with only 14 participants. This particular problem will be discussed further in
Sec. 7.2.

The RoboCup Competition

The RoboCup [5] (or Robot World Cup) was established in 1997 as an attempt to
promote intelligent robotics research via an international scientific initiative with the
goal to improve the current state-of-the-art of autonomous or intelligent robots. Since
then it has become the biggest international robotics competition in the world with
many different challenges for robots ranging from soccer to housekeeping. One of the
main objectives reads as follows:

By mid-21st century, a team of fully autonomous humanoid robot soccer
players shall win the soccer game, comply with the official rule of the
FIFA, against the winner of the most recent World Cup.®

Starting with robot soccer, the RoboCup today has diversified into different leagues.
Every league represents a special field of robotics application, e.g. the rescue league
deals with disaster management tasks where a robot has to collect information and
search the environment e.g. for injured victims in cooperation with human workers.
One task here is that the robot has to build up a map of the searched environment
that the human workers can use to find victims. Another relatively new league is the
@QHOME league where robots have to autonomously fulfill tasks in a domestic home
environment. One task here is e.g. to interact with people and correctly identify
them to help them with house holding tasks such as cleaning. One specialty of the
league is that the set of rules gets changed every 2 years to adapt to new capabilities
of the robots and to provide new challenges. One future challenge is e.g. to enable
robots to use public transport. Currently there are 5 main areas of research (soccer,
rescue, @home, junior and logistics) organised in 12 different leagues. They all have
in common that they attempt to promote research in a certain area by providing a
common domain and common tasks for benchmarking.

%http://www.robocup.org/about-robocup/objective/

Excerpt 6.1.1: About the RoboCup
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6.2. Performance & Stability: The RoboCup
Experience

The RoboCup competition (see Exc. 6.1.1) provides a unique opportunity for
robotic researchers to not only test their systems and methods under realistic,
sometimes even harder than real-world (e.g. with an audience watching), condi-
tions but also the chance to continuously improve system behavior over time. The
guiding question in the Bonsai context was ” Can we improve the performance and
stability over time by integrating experience gained from the competition into the
Bonsai skills?” and an additional question was 7 Is the Bonsai framework usable
even for untrained developers that never have worked with the robotic platform
before” .

The RoboCup team ToBI ! was founded in 2009 and mainly consists of students
in their bachelor/master that have no experience with a robot platform like the
one used in the competition (see Sec. 3.2). A long research history in human-robot
interaction at the Bielefeld University clearly indicated that the composition of a
robot behavior for such systems still is a complex task. Reusability in such systems
is usually difficult because one change often needs to be made in different compo-
nents of the system and the developer needs to pay close attention to dependencies
and effects between components. Thus, changes take a lot of time and a lot of
knowledge. As a matter of fact in the beginning of this thesis the composition of
a robot behavior could only be done by system experts and adaptation of existing
behavior was difficult and defective.

This evaluation covers the RoboCup@HOME participation of team ToBI from
2009 until 2012, which includes the RoboCup German Open as well as the World
Championship of each year.

Participants

The participants where selected from the bachelor /master students at the Bielefeld
University with an average age of 24 years in 2012 (2011: 24.33, 2009/10: 24.53).
The programming experience was rather similar over the 4 years with a focus on
Java experience as shown in Fig. 6.2. From 2009-2012 team ToBI had 34 (2009:7,
2010:8, 2011:10, 2012:9) different developers, 32 male and 2 female.

Procedure

To be able to integrate the lessons learned from the RoboCup competition in each
year, this part focuses on the Bonsai relevant aspects of the preparation and the

lywww.cit-ec.de/ToBI
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Programming Experience

Team ToBI 2012

W Java

W C/C++
m Python
HBASH

m Tcl/Tk

uPHP

u Perl

® Ruby

Visual Basic

more experience

little experience

——
—

beginner r
r—

no knowledge

S
N
N
w
N
o
o
~
©
©
5

Figure 6.2.: The programming experience of the team ToBI members in 2012. An
accumulated graphic for 2009/2012 as well as for 2011 can be found
in B.1

competition.

Every year the developers where asked to give feedback via an online ques-
tionnaire about their experience with Bonsai (and of course the rest of the soft-
ware/system). Additionally, since the evaluation is based on the competition, the
reasons for e.g. tasks where we got little or no points where back-traced as well as
common programming errors. This can be something like missing functionality of
an actuator, e.g. the isGoalReached() function of the NavigationActuator, or
repeated errors resulting from re-implementing a state machine pattern for every
task. Hence, there where different main focus points over the years to tackle these
problems. The driving question every year was: Where did we loose a lot of time
in the development and points in the competition?

2009: Sensors and Actuators In the first year of the team ToBls participation
in the RoboCup@HOME it is obvious that the main functionality of the Bonsai
sensors and actuators was the main focus. This directly relates to new software
components that where added to the system due to tasks the robot had to per-
form. At the time only simple implementations of the NavigationActuator existed
along with the SpeechActuator and a number rudimentary sensors such as the
LaserSensor.
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RoboCup Participants | 2009/2010* | 2011 | 2012

Average understanding Sensors/Actuators 4.00 4.11 | 4.44

Average Understanding of the System 3.80 3.56 | 3.67

Average confidence in fixing errors 4.33 4.44 | 4.22
Standings of Team ToBI in the World Cup 8/7 5 3

Table 6.2.: *: joint data acquisition in 2010. Data analysis of the RoboCup ques-
tionnaire until 2012. Scale: 1 not at all — 5 Very good

Skill Engine (SCXML) s ——————— )

Y

(Informed) Strategies

A4

Skills

\ 72

Sensors & Actuators

2009 2010 2011 2012

Figure 6.3.: Availability of the Bonsai features through the different years of the
RoboCup competition.
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The main challenge was to implement a proper NavigationActuator that can
handle local and global navigation with a planner component. This would enable
the Bonsai framework to work on a map representation. As mentioned earlier
the Actuator did not support a checking if the robot reached a certain position
on the map. This has lead to robot behavior where the robot simply stands at a
position and does not proceed with necessary actions because it could not reach the
desired position for different reasons (e.g. stuck on carpet/doorway). The interface
was also extended to support a precision radius and angle for the robot to avoid
prancing behavior of the robot. This means the robot has actually reached the
goal but the low-level parameters of the navigation are more strict than necessary
for the scenario. In this case the robot will try to reach a goal very precisely which
leads to continuous small movements of the robot on the spot.

The second challenge within Bonsai in 2009 was the integration of person de-
tection and recognition, which is very important for interactive robots. Within
the Bonsai framework this aspect was covert with the PersonSensor and the
FaceIdentificationSensor. The PersonSensor was first build as a simple in-
terface to make the information of a person tracking component available to the
Bonsai level. During the development it became obvious that there was more
functionality needed. The person tracking component of the ToBI system only
tracks persons in the robot vicinity but for the different tasks in the competition
the robot needed to be able to keep information about persons outside the robots
vicinity.

The FaceIdentificationSensor basically provides the functionality of switch-
ing between learning faces online and recognizing faces. Due to the very limited
resources of the robot platform in terms of CPU and memory the functionality of
activating/deactivating was integrated. Team ToBI finished 8" place on their first
appearance in the world cup.

2010: Middleware Abstraction & extended services After having established
the sensor/actuator abstraction in 2009 and analysing the problems that have
occurred during the competition it became clear that actually crashing components
have caused a number of errors. Unsurprisingly not all the components are equally
well tested and may be considered as stable on a research platform such as the
one used by team ToBI during the competition. Almost all software components
where under development and the team members are normally not the experts in
any of the specific components used. The middleware used at the time (XCF, see
Sec. 3.3) did enable a loose coupling of the components, which does increase the
stability of the system since an error or crash of a single component does not affect
other components as much. For the robot behavior, however, this means that data
needed to go on with a certain part of the behavior may become unavailable. The
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robot gets stuck in its current task.

The system components normally can be restarted automatically after a crash at
runtime but the middleware did not support auto-reconnecting to the components.
To fully detach the middleware from the behavior code inside Bonsai the complete
Bonsai core was re-implemented to improve the middleware abstraction and add
missing functionality necessary to improve the stability of the behavior code inside
Bonsai, which included auto-reconnecting sensors and actuators if the connection
was lost e.g. after a crash (see Sec. 5.1.1). This greatly improved the stability of
the robot behavior and resulted in an 7% place in the world cup.

2011: Strategies With the increasing complexity of tasks in the RoboCup@HOME
league it became necessary to configure a certain Robot Behavior according to the
current situation. For example: If the robot is supposed to autonomously explore
its surroundings it may use a rather simple open space exploration (see [146])
purely based on the current laser readings of the system. For a person follow it
is necessary to determine what kind of distance the robot should allow between
itself and the person guiding. The computation of these factors for robot behawv-
tor is basically always the same but may vary in certain parameters. To enable
a dynamic and context-sensitive adaption of robot behavior at runtime the Bon-
sai strategies where introduced (see Sec. 4.2.6). As a result of the experience in
the QHOME league the concept of strategies was further extended to informed
strategies, enabling more complex information fusion operations and adding more
sensor input which allows to execute robot behavior according to semantic context
information generated from the available sensor data. With these strategies at
hand team ToBI was able to finish 5" place in Istanbul 2011.

2012: Skills & SCXML In that year reusability of robot behavior became an
important factor. Meanwhile a number of building blocks of robot behavior where
available in Bonsai but to be actually reusable in other scenarios and tasks it was
necessary to reduce scenario-specific code inside the building blocks. This means
that details of the RoboCup rulebook where encoded in the building blocks of robot
behavior, e.g. number of persons to search for in a person search behavior. To
address this problem the Bonsai skills and the SCXML state machine abstraction
(see Sec. 5.2) was introduced. The basic approach is to break up robot behavior in
smaller, more reusable pieces of code (skills) and compose them using the SCXML
description.
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Figure 6.4.: Assessment of the RoboCup participants 2012 of the additional Bonsai
modeling concept.

Results

Coming back to the two main questions covered by this rather long an uncommon
type of evaluation, whether the behavior building blocks inside Bonsai can be im-
proved over time by integrating experience gained from the RoboCup competition
and if the Bonsai framework is usable by untrained developers, it is save to say
that the students participating in the RoboCup as team ToBI had no problems
with using Bonsai to compose robot behavior. The chosen nomenclature and the
according building blocks, as visible in Table 6.2 and in Fig. 6.4, where well un-
derstood and used by the students. The 2009/10 data are shown consolidated
because the data was acquired with the same online questionnaire in 2010.

In this regard it is important to mention that even though the overall system
understanding is not as high (see Table 6.2), all participants feel very confident to
be able to fix errors in the robot behavior. This means that the used robot still
is a complex system with many components but the structure of Bonsai seems to
make it easy to find and fix errors, especially for developers that have never been
working with the system before.

The students where additionally asked to assess usability features of Bonsai
(same features as in Sec. 6.3.2) based on their own experience. The combined
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Practical Usage of BonSAl
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Figure 6.5.: Practical Usage Assessment of Bonsai during the RoboCup competi-
tion from 2009/10-2012. The according questions (bold) can be found
on the right for each time period (2009/10, 2011 and 2012)

results from 2009/10-2012 can be found in Fig. 6.5. It shows that the two most
important aspects of Bonsai in this context where reducing the time to compose
a robot behavior and providing functionality of the robot in a meaningful way.
The latter also corresponds to the high confidence in fixing errors. In terms of
saving time it was possible to compose a complete new robot behavior (Finals
2012) and integrate a new skill (opening a door) on location in Mexico within
only a few hours and successfully perform the task live in front of the audience.
As said earlier, the competition itself is an evaluation of Bonsai and the system.
As indicated in Table 6.2 team ToBI was able to improve every year while the
competition got harder (more complex tasks, more competitors), the rules/tasks
where changed twice (2010 and 2012) and the team members changed every year.
This is an indicator that the capabilities of the system where well retained within
Bonsai and could be improved over the years.
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6.3. Portability & Usability: Bonsai Developer
Studies

The Bonsai framework was developed to provide capsulated functionality of a
robot platform, detached from underlying system components and middleware. An
important factor was to identify commonalities of different scenarios and platforms
to produce behavior code that can be reused more easily between those.

(TN )

@ Speech recognition
@® Image processing
© Speech synthesis
@ Navigation

@ Object manipulation

Figure 6.6.: The different functionality provided by the hardware of the NAO robot
(left) and the BIRON platform (right): Speech recognition (1), Image
processing (2), Speech synthesis (3), Navigation (4), Object manipu-
lation (5).

To verify the suitability of the chosen level of abstraction for this purpose the
Bonsai skills developed during the RoboCup competition where ported to a differ-
ent platform, in this case the NAO robot [42], with the condition that the behavior
code must be untouched. Hence, only the implementation of the sensors and ac-
tuators for the new platform where allowed to be adapted. The examination and
integration was part of the bachelor thesis of Sebastian Schneider [114] that was
successfully completed in 2010.
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Figure 6.7.: left: Example for calculating the NAO odometry. right: Schema for
computing the person angle with the NAO platform.

6.3.1. Bonsai Portability

The driving questions for this experiment where: ” Is it possible to integrate a new
robotic platform into the existing architecture?” and ” Is it necessary to change the
existing architecture to achieve this?”.

Procedure

For comparing the System Behavior on the two different platforms the ”Who is
Who” task of the 2009 RoboCup [94] was chosen. In this task the robot has to
find people inside an apartment and after detecting a person the robot has to learn
their names and faces. One of the persons in the room is already known to the
robot. After the searching phase the robot is going back to the entrance of the flat
and all detected persons step in front of the robot. The robot then has to recognise
their faces and say the correct name of the person. It is important to mention that
this task is possible to perform without a SLAM running on the robot. There are
versions of the NAO available that have an additional laser sensor for mapping
and more recently there also is a version with a 3D sensor available. At the time
when this test was conducted only the standard version was available. Hence, only
tasks without SLAM could be taken into account.

The first step was to identify the Bonsai functionality within the new platform.
In Fig. 6.6 the different functionality provided by the different platforms is shown.
This is the first level of abstraction, both platforms can provide a similar func-
tionality. The next step is to identify the sensors and actuators used within the
Bonsai skills with the main challenge of providing all necessary information from
the limited sensory data available on the NAO platform, namely the Odometry
data and the Person data which allow the robot to track its position and detect
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persons in its vicinity. Both information could be provided by adding a piece of
software to the component level (see Fig. 4.1).

The NAO platform is a two-legged platform that does not provide odometry in-
formation. The according component can interpolate this information by counting
the steps the robot has taken. On startup the navigation component will mark
the current position as (0/0). The NAO robot can perform so called walk patterns,
predefined sequences of movements of the legs to navigate the robot. The accu-
racy of the execution of this pattern defines the accuracy of the odometry. This is
similar to the odometry information of the BIRON platform, where wheel rotation
is counted to estimate traveled distances.

In case of the person data it was possible to follow a similar approach: The
person information of the BIRON platform consisted of face information, including
the distance and the angle of a person towards the robot and if the person is looking
at the robot ("gazing) or not. Most of the information could be provided easily
by the internal face tracking of the NAO platform.

The person distance and angle of the person with respect to the robot could
be gained from the face tracking by taking the position and size of the faces in
the camera image of the NAO into account. With an average face size in a fixed
distance (e.g. 1 meter) it is easily possible to compute the distance of the person.
For the person angle it was necessary to take the head orientation of the NAO
robot into account. Since the optical center of the camera is calibrated to 0 degree
of the head of the robot this computation comes down to add the head angle
and the measured image angle of the detected face. A schematic overview can be
found in on the right in Fig. 6.7. All other components either already used the
same data structure as the BIRON platform because of high reuse of components
between the labs or could be adapted in the same manner as described for the
odometry/person data.

Results

After some first tests of the Robot Behavior on the NAO platform it became
obvious that the scenario for the NAO had to be adapted due to an unexpected
problem: The NAO is only 60cm tall, which means that it can only see the faces of
people standing around the robot from a certain distance. This distance (approx.
1.5m) is problematic in an indoor environment because the person must neither
be too far away nor to close for the integrated sonar sensor of the platform. This
problem could have been overcome by changing the according skills but this was
prohibited by the experimental settings.

To be able to still search for persons without changing the actual behavior we
decided to conduct the tests with all persons in the room sitting down. In the
successive rules of the RoboCup competition, robots had to be able to detect
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persons that where sitting, which means this was only a minor change to the
scenario with no effects on the actual behavior.

Apart from that the sensor/actuator abstraction of Bonsai made it possible to
port the robot behavior from one platform to another without changing the be-
havior code. Underlaying components that may become necessary as explained
earlier can be easily integrated into the system by following an information-driven
integration (see Sec. 3.3) approach of Bonsai. Coming back to the original ques-
tions it has been shown that it is possible to integrate a new robotic platform into
the existing architecture and the existing architecture supports the developer in
doing so. Thus, it is not necessary to change the existing architecture because
the chosen level of abstraction of the Bonsai sensors and actuators does provide
sufficient unification and ability to support different robotic platforms.

6.3.2. Bonsai Usability

In contrast to the prior studies, which mainly focused on the improvement of the
robot behavior itself, this part covers an additional aspect of the Bonsai framework:
The usability for a developer of a robot behavior. The framework should be able
to hide the complexity of underlying processes as described in Sec. 4.2.4 and
4.2.5. Hence, the driving question behind this study was: ” Can developers with
no experience with Bonsai create robot behavior with little introduction in a short
period of time?”. This is relevant for different reasons. The first is that for a
framework that aims to enable continuous evaluation and improvement of robot
behavior it is crucial that the chosen interfaces are easily comprehensible. To
enable a developer to understand how to produce a certain behavior of the robot
and the same time get an idea of where to check if something unexpected happens
is maybe the most important factor in terms of usability for a developer of such a
system.

Another reason why this is important for a framework like Bonsai is rapid proto-
typing. In robotics research, especially in the behavior context, rapid prototyping
often is the only way to test if a certain behavior or part of a behavior works as
expected. This is especially true for qualities that can’t be simulated properly, e.g.
user interaction scenarios.

Participants

The subjects where selected among students of computer science from the Bielefeld
University that had good Java knowledge and where familiar with XML. There
where 17 subjects with an average age of 27.8 years ranging from 24 to 32 years.
The average knowledge of the BIRON system on a scale from 1 not at all to 5 very
well was 2.3. The programming experience of the subjects can be found in Fig.
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Figure 6.8.: The programming experience of the subjects of the Bonsai Study in
2012.

6.8, which shows that all except 3 subjects consider themselves as more experienced
in Java, none had no experience. Interestingly no one considered himself as expert.
All subjects had developed software in a team before, none of the participants had
used Bonsai with SCXML before and only one had been working with the BIRON
system but not with Bonsai.

Procedure

All subjects where informed that participation was voluntary and that they could
stop at any point without giving a reason. After that they had to fill out a
short questionnaire for personal data before they started the assignment. After
filling out the first questionnaire the two pages of instructions where handed to
the participants. They included a short overview of the Bonsai framework and its
building blocks as well as the actual programming task. The original instruction
sheets can be found in B.2.

The task of what the robot should do was described as follows: The robot should
walit in front of the entrance door until it is open. After that the robot should drive
to the kitchen and check for persons in the robots vicinity. If a person was detected
the robot should announce that and leave the apartment. It was suggested that
the participants start with creating an SCXML file for the overall task and after
that program the necessary CheckForPerson skill for the task.
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Figure 6.9.: The programming environment eclipse as it was prepared for the par-
ticipants. Image taken from the original screen capture during the
study.

For all parts, except the checking for persons, there where skills available in
Bonsai but the participants had to look for them themselves. For the navigation
there was an annotation file of the apartment prepared with example code on
how to use the annotation within Bonsai. Only help given at that point was
where to look for example code and how the annotation looked like and could
be used. For that purpose there where two additional help sheets that could be
used by all participants (laying next to the monitor) that included a list of all
sensors/actuators available as well as a short intro on how to use SCXML, the
annotation file and the State Machine Viewer GUI (see Fig. 6.10 on the left). All
participants where given the same programming environment (see Fig. 6.9) with
an empty SCXML file and an open Bonsai project. The simulation for testing was
already running on the same computer, which means all participants could focus
on the task and test by simply starting the State Machine Viewer via the Run
option of the programming environment. The original help sheets can be found in
B.3.

After successfully implementing the task and testing it in simulation the partic-
ipants had to fill out a second questionnaire about their experience with Bonsai.
The overall assignment took between 60 and 90min for each participant, including
all questionnaires.
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Kolmogorov-Smirnov-Test | Personal Data | Questionnaire
Standard Deviation 0.809 0.717
Median 4 1
Average Absolute Deviation from Median 0.647 0.529
P 0.23 0.01

Table 6.3.: Results of the Kolmogorov-Smirnov test for ’‘Complexity to create robot
behavior’ question before & after using Bonsai.

Results

The first and one of the most important results is that none of the participants
could not finish the test. This is important because it means that it is possible
without experience to code a complete robot behavior with Bonsai. For the second
questionnaire the same scale from 1 to 5 was used as before in the RoboCup evalu-
ation. The average understanding of the concepts behind Bonsai where very good:
Average understanding of sensors/actuators was 4.41. The average understanding
of skills was 4.35. The participants also where pretty confident about what they
where doing, the average for the question ” How well do you think have you solved
the assignment?” was 4.24.

In terms of complexity Bonsai was also perceived very well. All participants
where asked prior to the study how complex they think, from their own experience,
the creation of an overall robot behavior is. Prior to the study it was an average of
4.18. On the second questionnaire they where asked how complex the creation of
the overall robot behavior was with Bonsai, which resulted in an average of 1.53.

To check these numbers, due to the rather small number of participants, a two-
sample Kolmogorov-Smirnov test was used. As the results in Table 6.3.2 indicate,
the sample population cannot be assumed to be normally distributed. This means
to test these numbers if they have occurred by chance alone (statistical hypothesis
test) the Wilcoxon Signed Rank Test should be used. The results from a Wilcoxon
Signed Rank Test are W = 136,n,, = 16,z = 3.5, which indicates that the
numbers are statistically significant. In other words: The improvement of the
complexity value before (4.18) and after (1.53) the assignment follows from the
Bonsai experience and not from chance.

The second questionnaire also included an assessment of the programming func-
tionality of the Bonsai framework by the participants similar to the one done with
the RoboCup team ToBI. The participants where asked to rank Bonsai from their
experience in the seven categories visible in Fig. 6.11. The scale was from 1 not
at all to 5 very much.

Two of the questions stand out a little: The first one is ” Has Bonsai led to prob-
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Figure 6.10.: The simulated test environment (background right) and the SCXML
starter GUI (left front). Image taken from the original screen capture
during the study.

lems because of errors?” and the second one is ” Has Bonsai provided functionality
in a meaningful way?”. For both questions the anwers have been very positive,
12 people said that no problems at all occurred and the remaining 5 people still
rated for rather no problems. The key factor here certainly was that the partic-
ipants could focus on their programming with Bonsai, the necessary simulation
was already running. But this also underlines the continuous improvement of the
framework since its initiation in 2008. The 5 people answering rather not may
have been the ones where a component of the simulation needed to be restarted
before the last test but this was clearly not an error of the Bonsai framework.
The second question is very positive, all participants agreed that Bonsai provides
functionality in a meaningful way. This again underlines the well chosen level of
abstraction as well as the chosen nomenclature within the Bonsai framework that,
apart from enabling the structuring of the robot behavior, was meant to be easily
comprehensible by developers.

In terms of re-usability the participants perceived Bonsai as helpful, 15 partici-
pants say Bonsai helped them to produce re-usable code and all but one said that
Bonsai can help saving time creating a robot behavior. There was one participant
who was actually uncertain because he had never developed a robot behavior before
and could not say if approx. 60min was fast or not.
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Figure 6.11.: The subjects’ assessment of the programming functionality of the
Bonsai framework.

In the second part of the questionnaire the participants where asked if they
think, again from their own experience, if Bonsai was applicable on other robots
or in other scenarios and if Bonsai was suitable for complex scenarios. Apart
from 3 participants who where not sure all participants feel that Bonsai is suitable
for other and more complex scenarios and can be used on other robots, which is
congruent with my findings from other evaluations (see Sec. 6.3.1). Finally all
participants where asked how well they think they have solved the programming
task themselves on a scale from 1 not at all to 5 very well. Five where unsure
(3), the other 12 participants thought they have done well (nine answered 4, three
answered 5, average 4.24).
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Figure 6.12.: The subjects’ assessment of the applicability of the Bonsai
framework.
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In science, arguing about a definition and
attempting to produce a single binary
decision is often a waste of time.

Aaron Sloman

In this thesis I have identified major the challenges when designing and improv-
ing an interactive system and the resulting challenges for developers and evaluators
of such systems. Firstly the evaluators, coming from different areas of expertise,
need to be able to easily compose a robot behavior and identify and locate errors of
the behavior modules without requiring a deep knowledge about the whole system.
Secondly the developers of such systems need to be able to implement improve-
ments of the robot behavior from observations, possibly done by the evaluators, in
real world interactions and easily extend the behavioral spectrum of the robot by
rapidly prototyping new behavior modules.

For this matter it was necessary to abstract from the multitude of components
within an interactive system and focus more on explicitly modeling the robot be-
havior instead of solely modeling the interplay of software components.

In the following section I will shortly discuss the architecture and the according
implementation with regard to these perspectives and again look at some existing
approaches followed by a more detailed discussion of the results from the different
evaluations presented in Sec. 6. Finally I will give an outlook into some future
challenges and possibilities with the Bonsai framework and mobile interactive sys-
tems at hand.

7.1. Interactive System Design with Bonsai

As I have pointed out in chapter 4 the development nowadays of interactive sys-
tems has changed its focus from putting together a system from scratch to evaluate
and improve an existing system that comprises a number of different functionality
and is deployable in different scenarios. The reason for this is obvious: There
are more system components available from different areas of research with im-
proved algorithms and they have gained a lot more functionalities over the past
few years. Additionally there is new hardware available, for perception as well as

89



7. Discussion & Conclusion

robot platforms. And lastly there is more computing power available to mobile
platforms, allowing the execution of more components in parallel on a single plat-
form, thereby enabling more complex scenarios and tasks that can be achieved
with a single platform.

These developments have affected the architectural style for mobile interactive
systems to a similar extent as three layered architectures, which still represents
a fair amount of systems and frameworks (3T, CLARAty, OROCOS). As it was
pointed out in Sec. 2.1.2, the subsumption architecture by Brooks [14], as one of
the foundations for behavior-based robotics, was one of the first attempts to allow
more complex systems to still be reactive but at the same time enable a task-based
decomposition of actions. But as Hartley [49] pointed out it has pitfalls that make
implementation of behavior-based robotic systems difficult with the mentioned
changes but are still effecting the development of such systems today.

The main challenges for behavior-based robotic systems, based on the identified
pitfalls of the subsumption architecture, are modularity, extensibility and execu-
tion context of the subsumption levels. Some of them have been clarified by Flynn
[28] but with increasing complexity of robots and scenarios today they needed to
be taken into consideration for the development of Bonsai. The existing frame-
works today, as e.g. explained in Sec. 2.2, are doing a great job in connecting and
controlling different software components of a system but barely support to build
different robotic applications to e.g. perform in different scenarios. The resulting
difficulty with modularity is that many software components are contributing to
a single subsumption level (see Fig. 2.3) or even multiple levels but the interac-
tion between the levels is fix. Brooks suggestion of reducing the communication
between software components softens the problems but still makes a flexible com-
bination of the levels of competence difficult. This is why skills in Bonsai are
implementing behavior modules that models a functionality of the robot rather
than a subsumption level.

The fixed interaction between the levels also accounts for the extensibility prob-
lem. Introducing new subsumption levels is only easily possible if they are added
on top of the existing levels, implying a higher level of abstraction every time. In
reality extensions in between the subsumption levels, e.g. for new capabilities or
changes, result in changes in almost all levels of the system because they cannot be
designed independently and become increasingly complex. Bonsai has introduced
the skill engine that allows to model the control flow of the system (SCXML)
independently of the skills, allowing to easily extend the behavioral spectrum of
the robot.

The execution context within a classical behavior-based system refers to the
problem of observing the environment and mapping it to a world state that triggers
the activation of a behavior. But in fact the same observation can have different
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implications depending on the context, which means different behaviors should be
activated. Brooks suggested that behaviors should have to "second guess” before
they are activated, e.g. by waiting on activation until necessary parts of the system
have been idle for some time. With Bonsai this problem is tackled via different
features: Robot behavior is composed via skills, which are not activated dependent
on a specific state of the world. The control via SCXML explicitly allows to have
a history for a skill (see Exc. 5.2.1) which represents an execution context of this
specific skill. Additionally the Bonsai strategies allow for an in-depth analysis, or if
you will multiple second guesses, of the information available to the whole system
before actuation of the robot. And finally during the interrogation phase of a skill
the necessary information is checked from a system memory, which is implicitly
sensitive to e.g. changes from other components of the system. In combination
this allows Bonsai to have a more flexible activation of skills.

From a developers point of view this flexibility often is referred to as the possi-
bility of a framework to enable rapid prototyping. A definition can also be found
in [54]:

The ease with which a system or component can be modified for use in
applications or environments other than those for which it was specif-
ically designed.

For robot behavior this means that a developer needs to be able to put together
a scenario from the existing system components in a short period of time. This
enables the developer to test the code quickly and often implement new features
more easily. As I introduced in Sec. 2.2.4, the SMACH library of ROS is currently
very popular because it allows rapid prototyping of scenarios with the components
provided via ROS. SMACH is a good example of how prototyping environments
for robotic systems often come together: An existing middleware abstraction is ex-
tended by a state-machine-based tool that allows to sequence the different software
components to produce a consistent system action. This often does not involve a
modeling of the robot behavior itself, which is also true for SMACH, but rather
implements a stateful sequencer of the system components. This is perfectly fine
to test and improve features of the system components but is insufficient for mod-
eling the robot behavior and test, improve or extend it over time. In fact, the
typical way of rapid prototyping for robot scenarios as it is done with SMACH is
counter productive for improving the robot behavior over time since it focuses on
system features and does not involve a proper behavior abstraction. With SMACH
the robot action and the control flow are modeled in the same place, the SMACH
states. This reduces the reusability of the states and leaves the developers to im-
plement robot behavior either inside the controller or in the system components
themselves. The strong dependency on the ROS middleware and the ROS mes-
sages intensifies this effect. To improve robot behavior of interactive mobile robots
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the user and the interaction with the user must be taken into account. This often
implies to have a continuous evaluation cycle with real users which increases the
importance of reusable behavior modules and independence of the middleware or
scenario. This is why Bonsai emphasises the behavior abstraction and provides
tools to model the robot behavior and the control flow separately. In the next sec-
tion I will give some more details on the experiences from the different real world
evaluations of the Bonsai framework.

7.2. lterative Behavior Modeling: From User
Studies to System Design

One of the main goals of this work was to improve behavior coordination for
mobile interactive robots. Hence, an important factor, not only for this work but
for mobile interactive robots in general, is the evaluation of the system in real world
scenarios. As it was mentioned before, the simulation of user interaction is still
difficult to do because simulation environments such as morse * or V-Rep ? offer
the possibility to have virtual humans inside the simulation but mostly to move
them around the environment where they are rather used as ”dynamic obstacles”
than as real interaction partners for a robot.

But to improve the robot behavior in terms of interaction capabilities it was
necessary for this thesis to make real world evaluation a part of the design process
of Bonsai and enable developers to implement improvements gained from these
interactions. This implies an iterative system design, as also pointed out by Lohse
[74], with different scenarios as it was explained in Sec. 6.1 and 6.2. Some of
the difficulties from the perspective of a system designer for such scenarios, e.g.
with extensibility as described above, could only be uncovered by deploying the
framework in the RoboCup@HOME scenario (see Exc. 6.1.1), which is based on
the paradigm of regularly changing the scenario for the robot. The experience
gained during the competition influenced the design of the Bonsai framework and
has led to a 3" place in the world championship in 2012 for the Team of Bielefeld.

This also stresses another important aspect during the development of the Bon-
sai framework that is crucial for systems that are continuously evaluated in real
world scenarios: Reusability. For obvious reasons it is comfortable for developers
when they do not have to re-code the software when they want to create a differ-
ent robot behavior. In fact the usage of Bonsai saved a lot of time for the team
members of ToBI and reduced the time for testing cycles. But this is not the only
reason why reusability has become a factor for interactive mobile robots: When a

"https://www.openrobots.org/wiki/morse
’http://coppeliarobotics.com/
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system is improved over time it is indispensable to keep the improved functionality
somewhere in the system. If it is not reusable, the whole procedure of iterative
design becomes inoperative. And lastly the challenges for dynamically changing
the robot behavior and move away even further from pre-configured robot perfor-
mances is even more difficult if the code that produces the robot behavior needs
to be re-compiled for changes to take effect.

The resulting benefits from having this improved behavior level (see Fig. 4.1)
available are also observable from the results of the home tour evaluation that was
explained in Sec. 6.1. The quality measure that was introduced by Lohse [76],
measuring the quality of an interaction based on so called problem-related tasks (see
Tab. 6.1), helps to understand the benefit of the Bonsai skills: Problems during
a real world interaction often result from unforeseen situations with a real user or
difficulties from single components of the system that are not recoverable from the
component level at that moment (e.g. object recognition). Once identified, Bonsai
allows the implementation of strategies to cope with such situations and keep the
interaction alive. Another common problem observed in the predecessor study (in
2007) during interactions was the transition between different interaction states of
the system. With behavior code inside the system components it was necessary
to switch control between many components, each of which had to keep track of
the current interaction progress (see e.g. [122]). The recovery for situations like
that, as e.g. described in [123], was to detect an error situation and then reset the
control switch and restart the whole interaction. The user was able to reset the
interaction by saying ” Reset” at any time during an interaction. With Bonsai the
behavior code was removed from the system components which makes the control
switch between different components obsolete and allows to more flexibly compose
the robot behavior. The improved recoverability with skills can also be observed
from dramatic reduction of failure cases during the interaction in 6.1 from 2007
and 2010. This also allows us to improve the System Grounding, as e.g. introduced
by [101], which means that the current state of the user interaction is aligned with
the current state of the system. The ”reset approach is problematic because it
interrupts the interaction and makes flexible behavior composition difficult since
the code that produces the robot actions is spread over many components and
unwanted side effects when changing components is almost inevitable. Arguing
from the results of the Home Tour and the RoboCup scenario, Bonsai did improve
the interaction capabilities of the robot. The problem related tasks have been
reduced and the flexible control made a "reset” of the system during the interaction
unnecessary.

Another positive side effect of the Bonsai architecture was explained in Sec.
6.3.2: The usability of the framework. With the behavior code spread over the
system it was difficult for novice developers to improve existing capabilities or
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implement new features because they had to know a number of the system com-
ponents in advance. The results of the usability evaluation indicates that it is
possible to compose robust robot behavior even for users that have not been work-
ing with the system before. All participants where able to combine and program
skills within approx. one hour, sometimes including the time to fill out the ques-
tionnaires. This is only possible via the separation of skills and the necessary
control flow via the SCXML. In fact, if a new scenario can be handled with ex-
isting skills of the framework the task of the developer comes down to editing an
XML file. This possibility has proven very helpful for the RoboCup team as well
who sometimes need to put together a complete new scenario (e.g. when reaching
the finals of the competition) within a couple of hours.

In spite of the improvements made with the Bonsai framework there are also
certain limitations. As it was explained in Sec. 6.3.1 the Bonsai skills are generally
portable to other platforms, however, the usage of the skills is limited by the hard-
ware of the platform. This emphasises that, even though the skills are decoupled
from e.g. middleware dependencies of a system, the system configuration still is an
important part for the skills to work. Additionally Bonsai assumes, as mentioned
in chapter 4, certain design paradigms to be fulfilled by the component layer, e.g.
decoupled components and information-driven integration, which are useful for
complex robotic systems and do improve the maintainability of the system. But
this means that systems that do not fulfill these requirements can not make use of
Bonsai skills. Also, even though the presented approach would also work on low
level systems, the current implementation is not adequate for systems that have
real-time requirements. All systems presented in this work where soft real-time
for HRI, which means processing cycles of more than 100ms and less than 1sec.
And lastly the Bonsai framework is capable of producing dynamic robot behavior
to a certain extend but with the current implementation the developer ultimately
designs the skills of the robot and the improvements. However, there are prelim-
inaries to dynamically activate skills (see also next Sec. 7.3). This also implies
that direct learning from an ongoing interaction is currently not done with Bonsai.
But the level of abstraction and the existing skills are a practical basis.

7.3. Future Work

Challenges arising from the work with a mobile interactive robot have been de-
scribed and tackled in this thesis. It is safe to say that the Bonsai framework in
its current status provides a good basis for further improving the robot behavior
and the interaction capabilities of systems, such as the BIRON system as well as
others.

But the question remains: What else is now possible with Bonsai and may be
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achieved in the future? For the short term, there are still technical improvements to
further ease the work of the developers of robot behavior. The Bonsai skills already
contain a representation of the system configuration, e.g. the available system
components, that is evaluated by Bonsai on system startup. The configuration is
defined by a developer in an XML config file (see A.2), which means it is done
by hand, and is obviously a critical point (and a possible point of failure) for any
system and behavior. A system check via Bonsai or the skill engine is possible
that can automatically detect which components are running (service discovery)
and instantiate the according skills.

Additionally the current implementation of Bonsai also includes lists of required
sensors and actuators of each skill to check e.g. what can be run in parallel. To
enable more dynamic activation of skills it is possible to have system components
send requests for the activation of skills to the skill engine, similar to what is
currently done with the dialog used on the BIRON/ToBI system (see [102]) based
on the task-state pattern by Liitkebohle [78]. Based on methods described by
Golombek [41] it would also be possible to introduce system health sensors and
actuators to improve the robot behavior in situations where system components
produce problems at runtime. This could be used to model the health status of
the system and e.g. avoid usage of components that currently ”hurt”.

On a larger scale this could be the basis for investigating the impact of different
arbitration mechanisms on more complex systems. As it was explained in Sec.
3.1, the system used during this thesis can be considered as discrete event system
(see Sec. 2.1.1) with a state-based arbitration. The main question here is not how
to do the arbitration, available methods range from command-fusion and priority-
based approaches over Bayesian decision analysis to reinforcement learning and
cover a research history of more than 30 years, but how these approaches influence
the robot behavior. Bonsai could be used to test different approaches on the
same system with the same behavior spectrum to minimize other factors than the
arbitration mechanism.

And finally the ability to directly learn from interaction still is one of the biggest
challenges for mobile interactive systems today. Currently we can distinguish two
general scenarios for learning on the behavior level: The first scenario is to learn
an action from the user that the robot then can do, e.g. handling of a tool or
home furnishings. Existing approaches learn e.g. the movement of a toy [91] or
how to use a pair of scissors [58]. The second scenario is to learn from observing
the user to improve the interaction or help the user, e.g. detecting what the user
does and providing help. If a robot could detect that the user is preparing a meal
it could autonomously start to lay the table. Existing approaches use e.g. inverse
reinforcement learning as a tool to recognize agents’ behavior [108] but many
approaches in scenarios like this use common-sense knowledge about the user’s
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actions. A mobile platform could help to further analyze a certain task and the
recognition problem and identify relevant information, or processable information
for a robot, that can be used to train a behavior recognition framework suitable

for interactive robots.
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A. Bonsai Implementation

Additional information about the implementation of the Bonsai framework. Com-
plete Bonsai configuration files as well as Statechart XMLs that where used e.g.

in the RoboCup competition are presented here.

A.1. Bonsai Configuration XML Schema

<?7xml version= encoding= 7>
<xsd:schema xmlns:xsd=

<xsd:complexType name= >
<xsd:sequence>

<xsd:element name= minOccurs= max0ccurs=

>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base= >
<xsd:attribute name= type=
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name= >
<xsd:complexContent>
<xsd:extension base= >
<xsd:attribute name= type=
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<! -- TODO this also needs an wnterface for complete
decoupling

/>

/>

middleware

that can default to the standard sensor interface -->
<xsd:complexType name= >
<xsd:sequence>
<xsd:element name= type= minOccurs=
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maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="key'" type="xsd:string" use="required" />
<xsd:attribute name="dataTypeClass" type="xsd:string"
use="required" />
<xsd:attribute name="listTypeClass" type="xsd:string"
use="optional" />
<xsd:attribute name="factoryClass'" type="xsd:string"
use="required" />
<xsd:attribute name="sensorClass'" type="xsd:string" use="
required" />
</xsd:complexType>

<xsd:complexType name="actuator'">

<xsd:sequence>

<xsd:element name="OUptions" type="options" minOccurs="1"
maxOccurs="1" />

</xsd:sequence>

<xsd:attribute name="key" type="xsd:string'" use="

<xsd:attribute name="factoryClass'" type="xsd:string"
use="required" />

<xsd:attribute name="actuatorClass" type="xsd:string"
use="required" />

<xsd:attribute name="actuatorlnterface" type="xsd:string"

required" />

use="required" />
</xsd:complexType>

<xsd:element name="BonsaiConfiguration">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="FactoryUptions'" type="factoryoptions"
minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="Sensor" type="sensor" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="Actuator'" type="actuator'" minOccurs="0"
max0Occurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:unique name="uniqueFactorylOptions">
<xsd:selector xpath="FactoryUptions" />
<xsd:field =xpath="QclasslName" />
</xsd:unique>

<xsd:unique name="uniqueSensors'>
<xsd:selector xpath="Sensor" />
<xsd:field xpath="0Qkey" />
</xsd:unique>
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<xsd:unique name="uniquelActuators">
<xsd:selector xpath="Actuator" />
<xsd:field xpath="Gkey" />
</xsd:unique>

</xsd:element>

</xsd:schema>

Listing A.1: The XML schema for Bonsai configuration files.

A.2. Bonsai Configuration File Example

<?xml version="1.0" encoding="utf-8"7>

<BonsaiConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema —

14

24

instance"
xsi:noNamespaceSchemalocation="/vol/robocup/trunk/etc/schemas/
BonsaiConfiguration.xsd">

<FactoryOptions factoryClass="de.unibi.citec.clf.bonsai.xcf.
XcfFactory">
<Option key="errorOnlInitialSubscription'">true</Option>
<Option key="subscriberCheckInterval">30000</0Option>
<Option key="remoteServerCheckInterval'">30000</0ption>
</FactoryOptions>

<! -- <Sensor key="PlaceSensor" dataTypeClass="de.unibi.airobots.
btl.data.vision3d.SRPlaceData"
factoryClass="de.unibi.citec.clf . .bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlPublisherSensor">
<Options> <0Option key="publisherName'">PlaceLabel</0Option> </
Options> </Sensor> -->
<Sensor key="ObjectSensor3D" dataTypeClass="de.unibi.airobots.
btl.data.object.ObjectShapelList"
factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf .bonsai.xcf.sensors.
XcfBtlPublisherSensor">
<Options>
<Option key="publisherlName'">odcObject3D</0Option>
</0Options>
</Sensor>

<Sensor key="SlamSensor'" dataTypeClass='"de.unibi.airobots.btl.

data.map.BinarySlamMap"
factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"
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sensorClass="de.unibi.citec.clf .bonsai.xcf.sensors.
XcfBinarySlamSensor">
<Options>
<Option key="publisherName">SlamMap</Option>
</0Options>
</Sensor>
<Sensor key="objectsRecognized3DMemorySensor" dataTypeClass="de.
unibi.airobots.btl.data.object.ObjectShapeList"
factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf.bonsai.xcf.sensors.
XcfBtlMemorySensor">
<Optiomns>
<Option key="memorylName">Scene</Option>
<Option key="xPath">objectsRecognized3D</Option>
</0Options>
</Sensor>

<Sensor key="PlaneSensor" dataTypeClass="de.unibi.airobots.btl.
data.vision3d.PlanelList"
factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf .bonsai.xcf.sensors.
XcfBtlMemorySensor">
<Options>
<0Option key="memoryName'">ShortTerm</Option>
</Options>
</Sensor>
<Sensor key='"LastPositionDataSensor'" dataTypeClass="de.unibi.
airobots.btl.data.navigation.PositionData"
factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf.bonsai.xcf.sensors.
XcfBtlMemorySensor">
<Options>
<Option key="memorylName'">Scene</0Option>
<Option key="=xPath">lastPositionData</Option>
</0Options>
</Sensor>
<Sensor key="GlobalPlanSensor'" dataTypeClass="de.unibi.airobots.
btl.data.navigation.GlobalPlan"
factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlPublisherSensor">
<Options>
<Option key="publisherName">GlobalPlan</Option>
</0Options>
</Sensor>

<Sensor key="NavigationMemorySensor"
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61 dataTypeClass="de.unibi.airobots.btl.data.navigation.
NavigationGoalData"

62 factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlMemorySensor">

63 <Options>
64 <Option key="memoryName'">Scene</Option>
65 </0Options>

66 </Sensor>

67

68 <Sensor key="HandPosSensor" dataTypeClass="de.unibi.airobots.btl
.data.person.HandPos"

69 factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"

70 sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlPublisherSensor">

71 <Options>

72 <Option key="publisherName">HandPos</Option>

73 </Options>

74 </Sensor>

76 <Sensor key="GlobalPlannerStateChangeSensor"

77 dataTypeClass="de.unibi.airobots.btl.data.navigation.
GlobalPlannerStateChange"

78 factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"

79 sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlPublisherSensor">

80 <Options>

81 <Option key="publisherName">GlobalPlannerState</Option>

82 </Options>

83 </Sensor>
84 <Sensor key="PositionSensor" dataTypeClass="de.unibi.airobots.
btl.data.navigation.PositionData"

85 factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"

86 sensorClass="de.unibi.citec.clf .bonsai.xcf.sensors.
XcfBtlPublisherSensor">

87 <Options>

88 <0Option key="publisherlName'">interpolatedSlamPos</Option>

89 </0Options>

90  </Sensor>

91

92 <Sensor key="PersonSensor'" dataTypeClass="de.unibi.citec.clf.
bonsai.sensors.data.PersonlList"

93 factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"

94 sensorClass="de.unibi.citec.clf .bonsai.xcf.sensors.
XcfActiveMemoryPersonSensor">

95 <Options>

96 <Option key="memorylName'">Scene</Option>

97 </0Options>

98 </Sensor>
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<Sensor key="SpeedSensor" dataTypeClass="de.unibi.airobots.btl.

data.navigation.SpeedData"
factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf . .bonsai.xcf.sensors.
XcfBtlPublisherSensor">
<Options>
<Option key="publisherlName'">SpeedData</Option>
</0Options>

</Sensor>

<Sensor key="SpeechSensor" dataTypeClass="de.unibi.airobots.btl.

data.speechrec.Utterance"
factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf.bonsai.xcf.sensors.
XcfBtlPublisherSensor">
<Optiomns>
<Option key="publisherName">isr</Option>
</0Options>

</Sensor>
<Sensor key="ObjectSensor" dataTypeClass="de.unibi.airobots.btl.

data.object.ObjectShapelist"
factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf .bonsai.xcf.sensors.
XcfBtlPublisherSensor">
<Options>
<Option key="publisherName">odcObject</0Option>
</0Options>

</Sensor>

<Sensor key="LaserSensor" dataTypeClass="de.unibi.airobots.btl.

data.visionld.LaserData"
factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlPublisherSensor">
<Options>
<Option key="publisherName">LaserData</0Option>
</0Options>

</Sensor>

<Sensor key="SceneGridMapSensor" dataTypeClass="de.unibi.
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airobots.btl.data.map.DynamicGridMap"
factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf.bonsai.xcf.sensors.
XcfSceneGridMapSensor">
<Options>
<Option key="memoryName'">Scene</Option>
<Option key="maplame">Planes</Option>
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138 </0Options>

139 </Sensor>

140

141 <Sensor key="AnnotationSensor" dataTypeClass="de.unibi.airobots.
btl.data.map.Annotation"

142 factoryClass="de.unibi.citec.clf . .bonsai.xcf.XcfFactory"

sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlMemorySensor">

143 <Options>
144 <Option key="memorylName'">Scene</Option>
145 </0Options>

146 </Sensor>
147
148 <Sensor key="AnnotationListSensor" dataTypeClass="de.unibi.
airobots.btl.data.map.Annotation"
149 listTypeClass="de.unibi.airobots.btl.List" factoryClass="de.
unibi.citec.clf.bonsai.xcf.XcfFactory"

150 sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlMemorySensor">

151 <Options>

152 <Option key="memorylName'">Scene</Option>

153 </0Options>

154 </Semsor>

155

156 <Sensor key="objectsRecognizedMemorySensor"

157 dataTypeClass="de.unibi.airobots.btl.data.object.
ObjectShapelist"

158 factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"

sensorClass="de.unibi.citec.clf.bonsai.xcf.sensors.
XcfBtlMemorySensor">

159 <Options>

160 <Option key="memorylName'">Scene</Option>

161 <Option key="xPath">objectsRecognized</Option>
162 </0Options>

163 </Sensor>
164
165 <Sensor key='"graspedObjMemorySensor" dataTypeClass="de.unibi.
airobots.btl.data.object.0ObjectShapeData"
166 factoryClass="de.unibi.citec.clf . bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf . bonsai.xcf.sensors.
XcfBtlMemorySensor">

167 <Options>

168 <Option key="memorylName'">Scene</Option>

169 <Option key="xPath'">graspedObj</Option>

170 </0Options>

171 </Sensor>

172

173 <Sensor key="objectsRecognizedFilteredlMemorySensor"
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174 dataTypeClass="de.unibi.airobots.btl.data.object.
ObjectShapelist"
175 factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"

sensorClass="de.unibi.citec.clf.bonsai.xcf.sensors.
XcfBtlMemorySensor">

176 <Options>

177 <Option key="memoryName'">Scene</Option>

178 <Option key="=xzPath">objectsRecognizedFiltered</Option>
179 </0Options>

180 </Sensor>

181
182 <Sensor key="betterPositionMemSensor'" dataTypeClass="de.unibi.
airobots.btl.data.navigation.PositionData"

183 factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"

184 sensorClass="de.unibi.citec.clf.bonsai.xcf.sensors.
XcfBtlMemorySensor">

185 <Optiomns>

186 <Option key="memoryName'">Scene</0Option>

187 <Option key="xPath">betterPositionToGrasp</Option>

188 </Options>

189 </Sensor>

190

191 <Sensor key="ClassfilterForGraspingSensor" dataTypeClass="de.

unibi.airobots.btl.List"
192 factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
sensorClass="de.unibi.citec.clf bonsai.xcf.sensors.
XcfBtlMemorySensor">

193 <Optiomns>

194 <Option key="memorylName'">Scene</Option>

195 <Option key="xPath'">classfilterForGrasping</Option>

196 </0Options>

197 </Sensor>

198

199 <Sensor key="RefereePersonDataSensor'" dataTypeClass="de.unibi.
airobots.btl.data.person.PersonData"

200 factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"

sensorClass="de.unibi.citec.clf.bonsai.xcf.sensors.
XcfBtlMemorySensor">

201 <Optiomns>

202 <Option key="memoryName'">Scene</Option>

203 <Option key="xPath'">refereePersonData</Option>
204 </0Options>

205 </Sensor>

206
207
208 <Actuator key="IcewingChainSwitchActuator" factoryClass="de.
unibi.citec.clf.bonsai.xcf.XcfFactory"
209 actuatorInterface="de.unibi.citec.clf .bonsai.actuators.
IcewingChainSwitchActuator"
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actuatorClass="de.unibi.citec.clf . bonsai.xcf.actuators.
XcfIcewingChainSwitchActuator">
<Options>
<Option key="serverlName'">0dcChainSwitchServer</Option>
</0Options>
</Actuator>

<!-- memory actuators -->
<Actuator key="BtlMemoryAnnotationActuator" factoryClass="de.
unibi.citec.clf.bonsai.xcf.XcfFactory"
actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"
actuatorClass="de.unibi.citec.clf . bonsaili.xcf.actuators.
XcfBtlMemoryActuator">
<Options>
<Option key="serverlName'>Scene</Option>
</0Options>
</Actuator>

<Actuator key="betterPositionMemAcutator" factoryClass="de.unibi.

citec.clf .bonsai.xcf.XcfFactory"
actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"
actuatorClass="de.unibi.citec.clf bonsai.xcf.actuators.
XcfBtlMemoryActuator">
<Options>
<Option key="serverlName'>Scene</Option>
<Option key="xPath">betterPositionToGrasp</Option>
</0Options>
</Actuator>

<Actuator key="ClassfilterForGraspingActuator"
factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"
actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"
actuatorClass="de.unibi.citec.clf.bonsai.xcf.actuators.
XcfBtlMemoryActuator">
<Options>
<Option key="serverlName'">Scene</0Option>
<Option key="xPath">classfilterForGrasping</Option>
</0Options>
</Actuator>

<Actuator key="objectsRecognizedlMemoryActuator" factoryClass="
de.unibi.citec.clf.bonsai.xcf.XcfFactory"

actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"

actuatorClass="de.unibi.citec.clf . bonsai.xcf.actuators.
XcfBtlMemoryActuator">
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247 <Optiomns>

248 <Option key="serverlName'">Scene</Option>

249 <Option key="xPath">objectsRecognized</Option>

250 </0Options>

251 </Actuator>

252

253 <Actuator key="RefereePersonDatalctuator" factoryClass="de.
unibi.citec.clf.bonsai.xcf.XcfFactory"

254 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"

255 actuatorClass="de.unibi.citec.clf . bonsai.xcf.actuators.
XcfBtlMemoryActuator">

256 <Optiomns>

257 <Option key="serverlName'>Scene</Option>

258 <Option key="xPath'">refereePersonData</Option>

259 </0Options>

260 </Actuator>

261
262 <Actuator key="objectsRecognized3DMemoryActuator" factoryClass="
de.unibi.citec.clf.bonsai.xcf.XcfFactory"

263 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"

264 actuatorClass="de.unibi.citec.clf . bonsai.xcf. actuators.
XcfBtlMemoryActuator">

265 <Options>

266 <Option key="serverName'>Scene</Option>

267 <Option key="xPath">objectsRecognized3D</Option>

268 </Options>

269 </Actuator>

272 <Actuator key='"graspedObjlMemoryReturnActuator" factoryClass='"de.
unibi.citec.clf.bonsai.xcf.XcfFactory"

273 actuatorInterface="de.unibi.citec.clf.bonsai.actuators.
BtlMemoryActuator"

274 actuatorClass="de.unibi.citec.clf . bonsai.xcf.actuators.
XcfBtlMemoryActuator">

275 <Options>

276 <Option key="serverlName'">Scene</Option>

277 <Option key="xPath">objReturnType</0Option>

278 </0Options>

279 </Actuator>

280

281 <Actuator key="BtlMemoryActuator" factoryClass="de.unibi.citec.

clf .bonsai.xcf.XcfFactory"

282 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"

283 actuatorClass="de.unibi.citec.clf . bonsai.xcf.actuators.

XcfBtlMemoryActuator">
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284 <Options>
285 <0Option key="serverlName'">Scene</Option>
286 </0Options>

287 </Actuator>
288

289 <Actuator key="graspedObjMemoryActuator'" factoryClass="de.
unibi.citec.clf.bonsai.xcf.XcfFactory"

290 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"

291 actuatorClass="de.unibi.citec.clf.bonsai.xcf.actuators.
XcfBtlMemoryActuator">

292 <Options>

293 <0Option key="serverlName'">Scene</Option>

294 <Option key="xPath">graspedObj</Option>

295 </0Options>

296 </Actuator>

297

298

299 <Actuator key="objectsRecognizedFilteredMemoryActuator"
factoryClass="de.unibi.citec.clf.bonsai.xcf.XcfFactory"

300 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"

301 actuatorClass="de.unibi.citec.clf . bonsai.xcf. actuators.
XcfBtlMemoryActuator">

302 <Options>

303 <Option key="serverlName'>Scene</Option>

304 <Option key="xPath">objectsRecognizedFiltered</Option>

305 </0Options>

306 </Actuator>

307

308 <Actuator key="IsrActuator" factoryClass="de.unibi.citec.clf.
bonsai.xcf.XcfFactory"

309 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
IsrActuator"

310 actuatorClass="de.unibi.citec.clf.bonsai.xcf.actuators.
XcfIsrActuator">

311 <Options>

312 <Option key="serverlName'>isr</Option>

313 </0Options>

314 </Actuator>

315

316 <Actuator key="NavigationActuator" factoryClass="de.unibi.citec.

clf.bonsai.xcf.XcfFactory"

317 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
NavigationActuator"

318 actuatorClass="de.unibi.citec.clf.bonsai.xcf.actuators.
XcfNavigationActuator">

319 <Options>

320 <Option key="serverlName">Sunflower</Option>
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321 </0Options>

322 </Actuator>

323

324 <Actuator key="SpeechActuator" factoryClass="de.unibi.citec.clf.
bonsai.xcf.XcfFactory"

325 actuatorInterface="de.unibi.citec.clf.bonsai.actuators.
SpeechActuator"

326 actuatorClass="de.unibi.citec.clf . bonsai.xcf.actuators.
XcfSpeechActuator">

327 <Options>

328 <Option key="serverlName'">SaySrv</Option>

329 </Options>

330 </Actuator>

331 <Actuator key="DynamiclMoveBaseActuator" factoryClass="de.unibi.

citec.clf.bonsai.xcf.XcfFactory"

332 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
ROSDynamicReconfigurationActuator"

333 actuatorClass="de.unibi.citec.clf.bonsai.xcf.actuators.
XcfROSDynamicReconfigurationActuator">

334 <Options>

335 <Option key="serverName'>Sunflower</Option>

336 <Option key="methodNameRead">drcGetMoveBase</0Option>

337 <Option key="methodNamelWrite">drcSetMoveBase</0Option>

338 <Option key="dataTypeClass'">de.unibi.airobots.btl.data.

navigation.ROSMoveBaseConfiguration</Option>
339 </Options>
340 </Actuator>

341
342 <Actuator key="SeamTargetActuator" factoryClass="de.unibi.citec.
clf.bonsai.xcf.XcfFactory"

343 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
BtlMemoryActuator"

344 actuatorClass="de.unibi.citec.clf . bonsai.xcf. actuators.
XcfBtlMemoryActuator">

345 <Options>

346 <Option key="serverlName'>Scene</Option>

347 </0Options>

348 </Actuator>

350 <Actuator key="DynamicBaselLocalPlannerActuator" factoryClass="de
.unibi.citec.clf.bonsai.xcf.XcfFactory"

351 actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
ROSDynamicReconfigurationActuator"

352 actuatorClass="de.unibi.citec.clf.bonsai.xcf.actuators.
XcfROSDynamicReconfigurationActuator">

353 <Options>

354 <0Option key="serverName'>Sunflower</Option>

355 <Option key="methodNameRead">drcGetTrajectoryPlanner</Option

>
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<Option key="methodNamelWrite">drcSetTrajectoryPlanner</
Option>
<Option key="dataTypeClass'">de.unibi.airobots.btl.data.
navigation.ROSBaseLocalPlannerConfiguration</Option>
</0Options>
</Actuator>
<Actuator key="PoselActuatorTobi" factoryClass="de.unibi.citec.
clf .bonsai.xcf.XcfFactory"
actuatorInterface="de.unibi.citec.clf . bonsai.actuators.
PoseActuatorTobi"
actuatorClass="de.unibi.citec.clf . bonsai.xcf.actuators.
XcfPoseActuatorTobi">
<0Options>
<Option key="serverlName'">armControlServer</Option>
</0Options>
</Actuator>

</BonsaiConfiguration>

Listing A.2: The Bonsai configuration file for the RoboCup finals in 2012.

A.3. Bonsai SCXML Finals 2012

<?7xml version="1.0" encoding="UTF-8"7>
<scxml xmlns="http://www.w3.o0rg/2005/07/scxml" version="1.0"

initial="openDoor">
<datamodel>
<data id="#_STATE_PREFIX" expr="’de.unibi.citec.clf . bonsai.
skills.?" />
</datamodel>

<state id="openDoor" src="behaviors/openDoor .xml">
<transition event="OpenDoor.success'" target="enterArena' />
</state>

<state id="enterArena'" src="behaviors/
enterArenaDirectlyAfterOpening.xml">
<transition event="success'
target="arm.HomeGripperAfterDoorOpen#beforCharging" />
</state>

<state id="arm.HomeGripperAfterDoorOpen#beforCharging">
<transition event="HomeGripperAfterDoorlOpen.success"
target="dialog.Talk#driveOnStation" />
<transition event="HomeGripperAfterDoorlUpen.fatal" target="
Fatal" />
</state>

<state id="dialog.Talk#driveOnStation">

109



24

26
27
28

29

30

31
32
33

34

36
37
38
39
40
41
42

A. Bonsai Implementation

<datamodel>
<data id="#_MESSAGE" expr="’Going to charge.’" />
<data id="#_NONBLOCKING" expr="true'" />
</datamodel>
<transition event="Talk.success" target="
driveOntoChargingStation" />
<transition event="Talk.error'" target="
driveOntoChargingStation" />
<transition event="Talk.fatal" target="
driveOntoChargingStation" />
</state>

<state id="driveOntoChargingStation" src="behaviors/
driveOntoChargingStation.xml">
<onentry>

<send event="’driveUntoChargingStation.timeout’" delay="’60s

on />
</onentry>
<transition event="success'" target="dialog.Talk#Charging"
<transition event="fatal" target="Fatal" />
<transition event="driveOntoChargingStation.timeout"
target="dialog.Talk#Charging" />
</state>

<state id="dialog.Talk#Charging">
<datamodel>
<data id="#_MESSAGE" expr="'I1 am charging right now.’"
<data id="#_NONBLOCKING" expr="true' />
</datamodel>
<transition event="Talk.success" target="final ordering"
<transition event="Talk.error" target="final_ordering" />
<transition event="Talk.fatal" target="final_ ordering" />
</state>

<state id="final ordering" src="behaviors/final ordering.xml">

<transition event="success'" target="tasks.finale.
WaitForCleanUp" />

<transition event="fatal" target="tasks.finale.WaitForCleanUp"

/>
</state>

<state id="tasks.finale.WaitForCleanUp">
<transition event="WaitForCleanUp.success"
target="dialog.SimpleConfirmYesOrNo#validateCleanUp" />
<transition event="WaitForCleanUp.error"
target="dialog.SimpleConfirmYesOrNo#validateCleanUp" />
<transition event="WaitForCleanUp.fatal"
target="dialog.SimpleConfirmYesOrNo#validateCleanUp" />
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66 </state>

67

68 <state id="dialog.SimpleConfirmYesOrNo#validateCleanUp">

69 <transition event="SimpleConfirmYesOrNo.success.confirmYes"
70 target="mapWiping" />

71 <transition event="SimpleConfirmYesOrNo.success.confirmNo"
72 target="tasks.finale.WaitForCleanUp" />

73 <transition event="SimpleConfirmYesOrNo.fatal">

74 <send event="tasks.finale.WaitForCleanUp" />

75 </transition>

76 </state>

78 <state id="mapWiping" src="behaviors/scenelMapWiping.xml">
79 <transition event="success'" target="dialog.Talk#done" />
80 <transition event="fatal" target="dialog.Talk#done" />
81 </state>

83 <state id="dialog.Talk#done">

84 <datamodel>

85 <data id="#_MESSAGE" expr="’Done.’" />

86 <data id="#_NONBLOCKING" expr="true' />

87 </datamodel>

88 <transition event="Talk.success" target="End" />
89 <transition event="Talk.error'" target="End" />

90 <transition event="Talk.fatal" target="End" />
91 </state>

93 Kl kK k KKK KKK KKK KN K FATL k =k END *k kK kK kK kKKK K —=D
94 <state id="Fatal" final="true" />

95

96 <state id="End" final="true" />

o7 </scxml>

Listing A.3: The SCXML file of the task performed during the finals of the
RoboCup 2012.
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Additional data/information about the Bonsai evaluation.
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B.1. Team ToBIl Programming Experience in
2009/2010

Programming Experience

Team ToBI 2009/2010

I
expert —
e —
W Java
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HBASH
— u Tcl/Tk
i ; uPHP
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u Perl
 Ruby
Visual Basic
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0 2 4 6 8 10 12 14
Programming Experience
Team ToBI 2011
I
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I
W Java
e
more experience HC/C++
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I EEEEEEEEE——— mBASH
W Tel/Tk
S
little experience = PHP
¥ Ruby
Visual Basic
peginner l
no knowledge E

B.2. Usability Study Instruction Sheet

The instruction sheets that was given to the participants of the study.
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BonSAl-Studie 2012: Erlduterungen

In der folgenden Studie wird es darum gehen ein Verhalten fiir den Roboter BIRON zu entwickeln.
Dazu soll ein Ablauf aus bestehenden Fahigkeiten des Roboters (Skills) erstellt werden und ein
neuer “Skill” entwickelt werden. Im Anschluss soll das neue Verhalten in der Simulation getestet
werden. Um diese Aufgabe zu bewaltigen werden Dir hier einige Grundkonzepte des BonSAl-
Frameworks vorgestellt. Du kannst aber auch jederzeit mit dem Versuchsbegleiter sprechen und
Fragen stellen. Versuche jedoch immer erst selbstandig eine Losung zu finden, Du kannst Dich
dabei an den vorhandenen Skills und Beispielen orientieren. Im Anschluss méchten wir Dich bitten
noch einen weiteren Fragebogen auszufiillen, in dem wir Deine Erfahrungen mit BonSAl erfassen
wollen.

BonSAl:

Hierbei handelt es sich um eine Abstraktionsschicht flir das Verhalten des Roboters, die in Java
implementiert wurde. Es ist das Framework, mit dem Du gleich arbeiten wirst.

Komponente

Eine Komponente bezeichnet eine Software, die auf dem System lauft und entweder alleine oder
in Kombination bestimmte Daten/Informationen/Aktionen zur Verfugung stellt. Du hast in der Regel
nur mit den Daten der Komponenten zun tun — siehe BTL!

Bielefeld Type Library (BTL)

Die BTL ist eine Library, die Funktionalitdt zum Erstellen und Verarbeiten/Auslesen von XML-
Daten, z.B. der Komponenten, zur Verfligung stellt. Die BTL Gbernimmt z.B. das parsing, behalt
dabei aber die Erweiterbarkeit von XML. Eine BTL-Datenstruktur beschreibt also ein Minimum an
Information, das im System ausgetauscht wird. PersonData beschreibt z.B. die Informationen die
mindestens enthalten sein miissen, damit das System mit einer Person interagieren kann.

SCXML:

Steht fir State Chart XML und ist eine State Machine Notation die fiir die Abstraktion eines
Programmablaufs (Control Flow) verwendet wird. Dabei werden die Zustédnde der Maschine/
Ubergange der Maschine als XML modelliert, um dann von einer Engine ausgefiihrt zu werden
(z.B. innerhalb von BonSAl).

Sensor:

In BonSAI beschreibt ein Sensor eine Informationsquelle. Dabei kann es sich um einen echten
Hardwaresensor, z.B. LaserSensor, handeln, oder aber um eine Kette von Komponenten, die eine
bestimmte Aufgabe haben, z.B. PersonSensor. Sensoren liefern immer XML-Daten.

Actuator:

Innerhalb von BonSAl beschreibt ein Actuator ein ansprechbares/ausfiihrbares Ziel, z.B. einen
Hardware-Aktuator wie einen Greifarm (ArmActuator) oder aber eine Programmkette, die
angestoRen werden muss um eine Aktion auszufiihren, z.B. NavigationActuator. Ein Actuator
bietet i.d.R. ein Set von Funktionen an, die z.B. mit einem XML-Dokument als Parameter
aufgerufen werden kdnnen, z.B. navigationActuator.setGoal(NavigationGoalData data).

Skill:

Ein Skill ist die Beschreibung einer bestimmten Abfolge, die der Roboter ausfiihren kann, z.B.
einer Person folgen. Ein Skill entspricht i.d.R. einem Zustand in der SCXML-Beschreibung und
sollte méglichst nur eine Fahigkeit beschreiben. Loops, z.B. while(), sollten dringend vermieden
werden.
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Ein Skill besteht also aus einer Abfolge von Sensor/Actuator-Aufrufen um eine bestimmte Aufgabe
zu erfillen, z.B. einer Person folgen.

Aufgabenstellung:

Erstelle mit Hilfe von BonSAl folgenden Ablauf fir den Roboter BIRON: “Der Roboter
wartet vor der Eingangstir bis diese gedffnet wird und soll dann in die Kiche fahren. In
der Kiiche angekommen muss der Roboter nach Personen suchen und anzeigen, das er
eine Person gefunden hat. Danach fahrt der Roboter wieder zuriick zum Eingang wo er
die Aufgabe begonnen hat.” Alle bendtigten Skills, bis auf die Personensuche, sind bereits
in BonSAl enthalten.

1.) Erstelle bitte erst eine Statemachine mittels SCXML fir den Gesamtablauf. Dabei
kannst Du auf die bestehenden Skills zurlckgreifen, eine Datei ist vorbereitet. Die
Personensuche kannst Du erstmal raus lassen, da diese erst von Dir erstellt werden soll.
Ein nachtragliches einfligen ist sehr einfach.

2.) Erstelle den “CheckPerson” Skill, in dem Du eine entsprechende Klasse in einem der
bonsai.skill Pakete anlegst. In diesem Skill sollst Du Uberprifen ob sich eine Person im
Sichtfeld des Roboters befindet. Der Roboter soll dann durch sein Verhalten anzeigen,
dass er eine Person gefunden hat, z.B. etwas sagen oder auf die Person zu fahren.
Danach kannst Du die fertigen Skills verwenden um den Roboter in einen bestimmten
Raum fahren zu lassen. Diesen Teil musst Du noch in Deinem SCXML erganzen und
testen, detailliertere Erlauterungen dazu findest Du auf dem Blatt "Tips & Tricks”.

Du kannst Deinen Ablauf oder einzelne Skills zwischendurch immer in der Simulation
testen.

Netbeans/Eclipse ist bereits fertig eingerichtet, genauso wie das BonSAlI-Config-File. Du
kannst Dich voll auf den neuen Skill und die SCXML konzentrieren.

Hilfe:

e Bereits existierende Skills findest Du im package de.unibi.airobots.bonsai.skills.
Bereits existierende Strategies findest Du im package de.unibi.airobots.bonsai.strategies.
Ein neuer Skill muss von der Klasse AbstractState erben.
BTL-Daten haben die Funktion fromElement(Element e, Data d), um ein Objekt aus einem
XOM Element zu erstellen
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BonSAlI Tipps & Tricks

Hier werden Dir ein paar Tipps und Tricks bei der Programmierung mit BonSAl gegeben. Das ist keine
Vorgabe wie Du programmieren sollst, aber es kann Dir ein bisschen Zeit (beim Suchen) ersparen. Du
kannst aber auch erst selbststandig anfangen und Dir spater die Tipps bei Bedarf angucken.

Eine Ubersicht der verfiigbaren Sensoren/Aktuatoren in BonSAl findest Du in der folgenden Tabelle:

Sensoren Aktuatoren
LaserSensor ViewpointListActuator
SpeechSensor SpeechActuator
BtIMemorySensor NavigationActuator
ViewpointListSensor BtIMemoryActuator
PersonSensor
PositionSensor

AnnotationListSensor

GlobalPlanSensor

GlobalPlanSensor

SpeedSensor

SlamSensor

GlobalPlannerStateChangeSensor

NavigationMemorySensor

SCXML

Der erste Teil der Aufgabe ist eine SCXML Datei zu erstellen. Eine XML-Datei ist bereits vorbereitet,
die Du mit den States flillen musst. Ein State besteht immer aus einem <state id=""> TAG, die ID
bezieht sich dabei auf den Skill den Du ausfiihren méchtest. Befindet sich der Skill Drive ToPosition
z.B. im Packet navigation ware die id <state id="navigation.Drive ToPosition”>. Innerhalb des States
werden Transitions definiert, je nachdem was in einem Skill passiert: <transition event=""target=""/>
Es sind 3 Standardevents vorgegeben: success, error, fatal, die sich auf einen Skill beziehen miissen,
also z.B. <transition event="Drive ToPosition.success” target="" />, das Target gibt den State an, in
den Du dann wechseln méchtest. Hier muss wieder eine ID rein, z.B. dialog. Talk:

<transition event="Drive ToPosition.success” target="dialog. Talk” />. Das <state>-TAG kann wiederum
States enthalten (substate) und auch noch das <parallel id="">-TAG, das States enthalten kann die
parallel ausgefiihrt werden. Die ID bezieht sich nicht auf die Skills, muss aber eindeutig sein, z.B.
<parallel id="FollowingPerson”> <state ....>... </parallel>.
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Um z.B. dem Talk-Skill den Text ubergeben zu kdénnen, der gesagt werden soll, gibt es ein
<datamodel>-Tag. In diesem lassen sich <data>-TAGs definieren, die durch eine ID zugeordnet
werden. Folgedes Beispiel wiirde z.B. den Text “Hello World.” ausgeben:

<datamodel>
<data id="#_MESSAGE” expr="Hello World."”” />
</datamodel>

Um Daten in einem Skill auszulesen, z.B. aus einer Annotation einer Karte, wird ebenfalls das

<datamode/>-TAG verwendet:

<datamodel>
<data id="# ANNOTATION_LABEL” expr=""kitchen’” />
</datamodel>

Der zugehdrige Skill um an eine solche Position zu fahren heil3t navigation.SetTargetByAnnotation
und ist bereits vorhanden.

Annotation
Die Karte mit der Du in der Simulation arbeitest sieht wie folgt aus:
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Die farblich markierten Bereiche entsprechen den vorhandenen Annotationen, ROT = <data
id="# ANNOTATION_LABEL” expr="kitchen” /> BLAU = <data id="# VIEWPOIT_LABEL”
expr="searchPerson1” />.

Testing
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B.3. Additional Help Sheet

| State Machine Viewer 000
Overview | Logging
= Confi i
BonSAl configuration: ‘.’homé:birc-n.'workspace.bmsai-(orerrobo(upznlz.target.'c\asses_“xm\_:k-c-nsa\icc-nﬁg. ‘ Browse ... ‘Laad lEdl[‘
Teiile S AUl il efbiron/workspace/bensai-corefrobocup2012/target/classes/xmltasks Erowse iz [Ed:t
Current State Next States Sensors & Actuators
Controller
ne | v |[send| [=tart] [r i||stop|

Die Simulation fir das System lauft bereits im Hintergrund auf dem Laptop. Um den Ablauf testen zu
kénnen kannst Du in dem IDE Deiner Wahl (netbeans/eclipse) direkt auf das “Run Application”
Symbol klicken, die Test-GUI ist voreingestellt. Wenn Du etwas mehr Kontrolle haben mdchtest,
kannst Du auch die Klasse unter bonsai.engine.SCXMLStarter.java als “Java-Application” ausfiihren
lassen. In der GUI ist ein “Logging-Tab” zu sehen, in dem die Ausgaben aus Deinen Skills auftauchen.
Im “Overview-Tab” findest Du die Einstellungen fiir die Ausfiihrung, das BonSAl config ist bereits
korrekt voreingestellt und muss mit “Load” geladen werden. Danach kann ein SCXML file geladen
werden, ebenfalls durch “Load”. Tritt hier eine Fehlermeldung auf, im “Logging-Tab” sind dann
Ddetails zu finden, ist das SCXML file nicht korrekt, z.B. eine ID nicht eindeutig oder der
entsprechende Skill konnte nicht gefunden werden.

Wenn beide Dateien geladen sind kann mit den Schaltflachen unten (Send, Start, Reset, Stop) der
Ablauf getestet werden. Die “Send” Schaltflache erlaubt es einem Skill bestimmte Events zu schicken,
was flr diesen Versuch wahrscheinlich nicht notwendig ist. Bitte bedenke, das Du nach einem Stop
den Roboter in der Simulation ggf. wieder in die Ausgangsposition bringen musst.

Bei einem Neustart der GUI musst Du ebenfalls den Roboter in der Simulation wieder in die
Ausgangsposition schieben um den gesamten Ablauf testen zu kénnen.

Dabei kann es sein, das die Lokalisation des Roboters auf der Karte verloren geht. Wir haben das
Tool “rviz’ mit gestartet, dort kannst Du, nachdem Du auf “2D Pose Estimate” geklickt hast, durch
klicken auf die Karte in rviz die Position des Roboters vorgeben bzw. zuriicksetzen. Bevor Du die
Maustaste los lasst ziehst Du den Zeiger in die Richtung, in die der Roboter fahrt, also

click=Position des Roboters, drag=Orientierung

des Roboters. Der Roboter kann nur dann auf eine globale Koordinate auf der Karte, z.B. aus einer
Annotation, fahren, wenn er sich korrekt lokalisiert hat.
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