
Investigating speaker gaze and pointing behaviour
in human-computer interaction with the mint.tools collection

Spyros Kousidis Casey Kennington David Schlangen
Dialogue Systems Group / CITEC / SFB 673

Bielefeld University
spyros.kousidis@uni-bielefeld.de

Abstract

Can speaker gaze and speaker arm move-
ments be used as a practical informa-
tion source for naturalistic conversational
human–computer interfaces? To investi-
gate this question, we recorded (with eye
tracking and motion capture) a corpus of
interactions with a (wizarded) system. In
this paper, we describe the recording, anal-
ysis infrastructure that we built for such
studies, and analysis we performed on
these data. We find that with some initial
calibration, a “minimally invasive”, sta-
tionary camera-based setting provides data
of sufficient quality to support interaction.

1 Introduction

The availability of sensors such as Microsoft
Kinect and (almost) affordable eye trackers bring
new methods of naturalistic human-computer in-
teraction within reach. Studying the possibilities
of such methods requires building infrastructure
for recording and analysing such data (Kousidis et
al., 2012a). We present such an infrastructure—
the mint.tools collection (see also (Kousidis et
al., 2012b))1—and present results of a study we
performed on whether speaker gaze and speaker
arm movements can be turned into an information
source for an interactive system.

2 The mint.tools Collection

The mint.tools collection comprises tools (and
adaptations to existing tools) for recording and
analysis of multimodal data. The recording archi-
tecture (Figure 1) is highly modular: each infor-
mation source (sensor) runs on its own dedicated
workstation and transmits its data via the local area
network. In the setup described in this paper, we

1Available at http://dsg-bielefeld.de/
mint/.

kinect.srv faceLab.srv

MINT.tools

fo
r 

ac
qu

isi
tio

n
fo

r 
an

al
ys

is

instantIO instant
player

kinect.srv faceLab.srv

.xio

mumodo.py /
IPython

ELAN.mod
MPI, ELAN
annotation
tool

fame.rc

fame.rp

Fraunhofer instant reality

Figure 1: Overview of components of mint.tools;
our contributions denoted by italics font. Top mid-
dle shows example lab setup; middle right shows
corresponding VR scene, visualising motion cap-
ture and tracking of head posture, eye and gaze

perform motion capture via Microsoft Kinect and
head, eye and gaze tracking via Seeingmachines
Facelab 5.2 We have developed specialised plug-
ins that connect these sensors to the central com-
ponent in our architecture, Instantreality.3 This
is a VR environment we use for monitoring the
recording process by visualising a reconstructed
3D scene in real-time. A logging component si-
multaneously streams the timestamped and inte-
grated sensor data to disk, ensuring that all data are
synchronised. The data format is a shallow XML
representation of timed, typed events.

The tracking equipment used in this setting is
camera-based, providing for a minimally invasive
setting, as subjects are not required to wear any
equipment or tracking markers. In addition to the
tracking sensors, video and audio are recorded us-

2http://www.microsoft.com/en-us/
kinectforwindows/, http://www.
seeingmachines.com/product/facelab/, re-
spectively

3Built by IGD Fraunhofer, http://www.
instantreality.org



ing one HD camera. The AV channel is synchro-
nised with the stream data from the sensors by
means of a timecode in view of the camera.

Representative of the high modularity and flexi-
bility of the mint.tools architecture is the ease with
which components can be added. For the setting
described here, a GUI was created which connects
to the VR environment as an additional sensor,
transmitting all of its state updates, which then
are synchronously logged together with all other
stream data from the trackers. This allows us to
recreate the full scene (subject behaviour and the
stimuli they received) in the virtual reality envi-
ronment, for later inspection (see below Figure 6).

The analysis part of the mint.tools collection
comprises a package for the Python programming
language (described below) and a version of the
ELAN annotation tool (Lausberg and Sloetjes,
2009), which we modified to control the replay of
the virtual reality scene; this makes it possible to
view video, annotations and the 3D reconstruction
at the same time and in synchronisation.

Sensors are represented as nodes in a node-tree
within the 3D environment. The values of data
fields in these nodes are continuously updated as
new data is received from the network. Using
more than one sensor of the same type means sim-
ply another instantiation of that node type within
the tree. In this way, our architecture facilitates
tracking many people or complex setups where
many sensors are required to cover an area.

3 Procedure / The TAKE Corpus

Our experiment is a Wizard-of-Oz scenario in
which subjects (7 in total) were situated in front of
a 40” screen displaying random Pentomino boards
(Fernández et al., 2007). Each board configura-
tion had exactly 15 Pentomino pieces of various
colours and shapes, divided in four grids located
near the four corners of the screen (see Figure 3
below). At the beginning of the session, a head and
gaze model were created for the subject within the
FaceLab software. Next, the subjects were asked
to point (with their arm stretched) at the four cor-
ners and the center of the screen (with each hand),
to calibrate to their pointing characteristics.

In the main task, subjects were asked to
(silently) choose a piece and instruct the “system”
to select it, using speech and/or pointing gestures.
A wizard then selected the indicated piece, caus-
ing it to be highlighted. Upon approval by the

subject, the wizard registered the result and a new
board was created. We denote the time-span from
the creation of a board to the acknowledgement
by the subject that the correct piece was selected
an episode. The wizard had the option to not im-
mediately highlight the indicated piece, in order
to elicit a more detailed description of the piece
or a pointing gesture. What we were interested
in learning from these data was whether speaker
gaze and arm movements could be turned into sig-
nals that can support a model of situated language
understanding. We focus here on the signal pro-
cessing and analysis that was required; the model
is described in (Kennington et al., 2013).

4 Analysis and Results

We perform the analyses described in this sec-
tion using the analysis tools in the mint.tools col-
lection, mumodo.py. This is a python package
we have developed that interfaces our recorded
stream data with powerful, freely available, sci-
entific computing tools written in the Python pro-
gramming language.4 mumodo.py facilitates im-
porting streamed data into user-friendly, easily
manageable structures such as dataframes (tables
with extended database functionality), or compati-
ble formats such as Praat TextGrids (Boersma and
Weenink, 2013) and ELAN tiers. In addition, mu-
modo.py can remote-control playback in ELAN
and Instant Reality for the purpose of data view-
ing and annotation.

4.1 Gaze

Our post-processing and analysis of the gaze data
focuses primarily on the detection of eye fixations
in order to determine the pentomino pieces that the
subjects look at while speaking. This knowledge
is interesting from a reference resolution point of
view. Although Koller et al (2012) explored lis-
tener gaze in that context, it is known that gaze pat-
terns differ in interactions, depending on whether
one speaks or listens (Jokinen et al., 2009).

Facelab provides a mapping between a person’s
gaze vector and the screen, which yields an in-
tersection point in pixel coordinates. However,
due to limitations to the accuracy of the calibra-
tion procedure and noise in the data, it is pos-

4Especially IPython and Pandas, as collected for exam-
ple in https://www.enthought.com/products/
epd/. Example of finished analyses using this package
can be found at http://dsg-bielefeld.de/mint/
mintgaze.html



sible that the gaze vector does not intersect the
model of the screen when the subject is looking at
pieces near screen corners. For this reason, we first
perform offline linear interpolation, artificially ex-
tending the screen by 200 pixels in each direction,
by means of linear regression of the x, y compo-
nents of the gaze vector with the x, y pixel coordi-
nates, respectively (R2 > 0.95 in all cases). Fig-
ure 2 shows the probability density function of in-
tersection points before (left) and after this process
(right), for one of the subjects. We see on the right
plot that many intersection points fall outside the
viewable screen area, denoted by the shaded rect-
angle.

Figure 2: Probability density function of gaze in-
tersections on screen before (left) and after inter-
polating for points 200 pixels around screen edges
(right). Shaded rectangle shows screen size

In order to detect the eye fixations, we use two
common algorithms, namely the I-DT and ve-
locity algorithms, as described in (Nyström and
Holmqvist, 2010). The I-DT algorithm requires
the points to lie within a pre-defined “dispersion”
area (see Figure 3), while the velocity algorithm
requires the velocity to remain below a thresh-
old. In both algorithms, a minimum fixation time
threshold is also used, while a fixation centroid is
calculated as the midpoint of all points in a fixa-
tion. Increasing the minimum fixation time thresh-
old and decreasing the dispersion area or velocity
(depending on the algorithm) results in fewer fix-
ations being detected.

Figure 3: Fixation detection using the I-DT algo-
rithm, circles show the dispersion radius threshold

Gaze fixations can be combined with informa-
tion on the pentomino board in order to determine
which piece is being looked at. To do this, we cal-
culate the euclidean distance between each piece
and the fixation centroid, and assign the piece a
probability of being gazed at, which is inversely
proportional to its distance from the centroid.

Figure 4 illustrates the gazing behaviour of the
subjects during 1051 episodes: After an initial
rapid scan of the whole screen (typically before
they start speaking), subjects fixate on the piece
they are going to describe (the “gold piece”). This
is denoted by the rising number of fixations on the
gold piece between seconds 5–10. At the same
time, the average rank of the gold piece is higher
(i.e. closer to 1, hence lower in the plot). Subse-
quently, the average rank drops as subjects tend to
casually look around the screen for possible dis-
tractors (i.e. pieces that are identical or similar to
the gold piece).

We conclude from this analysis that, especially
around the onset of the utterance, gaze can provide
a useful signal about intended referents.

Figure 4: Average Rank and Counts over time (all
episodes)

4.2 Pointing Gestures
We detect pointing gestures during which the arm
is stretched from Kinect data (3D coordinates of
20 body joints) using two different methods. The
first is based on the distance of the hand joint from
the body (Sumi et al., 2010). We define the body
as a plane, using the coordinates of the two shoul-
ders, shoulder-center and head joints, and use a
threshold beyond which a movement is considered
a possible pointing gesture.

The second detection method uses the idea that,
while the arm is stretched, the vectors defined by
the hand and elbow, and hand and shoulder joints,
respectively, should be parallel, i.e. have a dot
product close to 1 (vectors are first normalised).



Figure 5: detection of pointing thresholds by dis-
tance of left(blue) or right(green) hand from body

In reality, the arm is never strictly a straight line,
hence a threshold (0.95-0.98) is set, depending on
the subject. The result of this process is an an-
notation tier of pointing gestures (for each hand),
similar to the one shown in Figure 5. To make
pointing gesture detection more robust, we only
consider gestures identified by both methods, i.e.
the intersection of the two annotation tiers.

Further, we want to map the pointing gestures to
locations on the screen. Following a methodology
similar to Pfeiffer (2010), we define two methods
of determing pointing direction: (a) the extension
of the arm, i.e. the shoulder-hand vector, and (b)
the hand-head vector, which represents the subjec-
tive point-of-view (looking through the tip of one’s
finger). Figure 6 shows both vectors: depending
on the subject and the target point, we have found
that both of these vectors perform equally well, by
considering the gaze intersection point (green dot
on screen) and assuming that subjects are looking
where they are pointing.

Figure 6: Hand-to-head and hand-to-shoulder
pointing vectors

In order to map the pointing gestures to ac-
tual locations on the screen, we use the calibra-
tion points acquired at the beginning of the ses-
sion, and plot their intersections to the screen
plane, which we compute analytically, as we al-
ready have a spatial model of both the vector in
question (Kinect data) and the screen location (In-

stantreality model).
Based on the pointing gestures we have de-

tected, we look at the pointing behaviour of par-
ticipants as a function of the presence of distrac-
tors. This knowledge can be used in designing
system responses in a multimodal interactive en-
viroment or in training models to expect pointing
gestures depending on the state of the scene. Fig-
ure 7 shows the result from 868 episodes (a subset
that satisfies minor technical constraints). Overall,
the subjects pointed in 60% of all episodes. Pieces
on the board may share any of three properties:
shape, colour, and location (being in the same cor-
ner on the screen). The left plot shows that sub-
jects do not point more than normal when only
one property is shared, regardless of how many
such distractors are present, while they point in-
creasingly more when pieces that share two or all
three properties exist. The plot on the right shows
that subjects point more when the number of same
colour pieces increases (regardless of position and
shape) and even more when identical pieces occur
anywhere on the board. Interestingly, shape by it-
self does not appear to be considered a distractor
by the subjects.

Figure 7: Frequency of pointing gestures as a
function of the presence of distractors. Dot size
denotes the confidence of each point, based on
sample size

5 Conclusions

We have presented a detailed account of analysis
procedures on multimodal data acquired from ex-
periments in situated human-computer interaction.
These analyses have been facilitated by mint.tools,
our collection of software components for mul-
timodal data acquisition, annotation and analysis
and put to use in (Kennington et al., 2013). We
will continue to further improve our approach for
manageable and easily reproducible analysis.



References
Paul Boersma and David Weenink. 2013. Praat: do-

ing phonetics by computer (version 5.3.48)[com-
puter program]. retrieved may 1, 2013.

Raquel Fernández, Andrea Corradini, David
Schlangen, and Manfred Stede. 2007. To-
wards Reducing and Managing Uncertainty in
Spoken Dialogue Systems. In Proceedings of the
7th International Workshop on Computational
Semantics (IWCS’07), pages 1–3.

Kristiina Jokinen, Masafumi Nishida, and Seiichi Ya-
mamoto. 2009. Eye-gaze experiments for conversa-
tion monitoring. In Proceedings of the 3rd Interna-
tional Universal Communication Symposium, pages
303–308. ACM.

Casey Kennington, Spyros Kousidis, and David
Schlangen. 2013. Interpreting situated dialogue ut-
terances: an update model that uses speech, gaze,
and gesture information. In Proceedings of SIGdial
2013.

Alexander Koller, Maria Staudte, Konstantina Garoufi,
and Matthew Crocker. 2012. Enhancing referen-
tial success by tracking hearer gaze. In Proceed-
ings of the 13th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 30–39.
Association for Computational Linguistics.

Spyros Kousidis, Thies Pfeiffer, Zofia Malisz, Petra
Wagner, and David Schlangen. 2012a. Evaluat-
ing a minimally invasive laboratory architecture for
recording multimodal conversational data. In Proc.
of the Interdisciplinary Workshop on Feedback Be-
haviours in Dialogue.

Spyros Kousidis, Thies Pfeiffer, and David Schlangen.
2012b. Mint.tools: Tools and adaptors supporting
acquisition, annotation and analysis of multimodal
corpora. In to appear in Proc. of Interspeech 2013.

Hedda Lausberg and Han Sloetjes. 2009. Coding ges-
tural behavior with the neuroges-elan system. Be-
havior research methods, 41(3):841–849.

Marcus Nyström and Kenneth Holmqvist. 2010. An
adaptive algorithm for fixation, saccade, and glis-
sade detection in eyetracking data. Behavior re-
search methods, 42(1):188–204.

Thies Pfeiffer. 2010. Understanding multimodal deixis
with gaze and gesture in conversational interfaces.
Ph.D. thesis, Bielefeld University, Technical Fac-
ulty.

Yasuyuki Sumi, Masaharu Yano, and Toyoaki Nishida.
2010. Analysis environment of conversational struc-
ture with nonverbal multimodal data. In Interna-
tional Conference on Multimodal Interfaces and the
Workshop on Machine Learning for Multimodal In-
teraction, page 44. ACM.


