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Summary

In this thesis, we explore the global behavior of complex systems composed of interacting local
dynamical systems, each set on a vertex of a network which characterizes the mutual interactions.
We consider heterogeneous arrangements, meaning that for each vertex the local dynamics can
be different. To better match potential applications we allow mutual interactions to be time de-
layed and subject to noise sources affecting either the orbits of the local dynamics and/or the
connectivity of the network. Within this very general dynamical context, we construct and focus
on interactions enabling a certain level of adaptation between the local dynamical systems. By
propagation of information via the coupling network, the local parameters are adaptively tuned
and ultimately reach a set of consensual values. This is explicitly and analytically carried out for
frequency- and radius-adapting Hopf oscillators. We then consider adapting the time scale and
the shape of periodic signals. We also study how adaptive mechanisms can be implemented in het-
erogeneous networks formed by a couple of subnetworks, the first one with adaptive capability and
the second one without. The first subnetwork defines interactions between phase oscillators with
adaptive frequency capability, the other subnetwork connects damped vibrating systems without
adaptation. Next, noise sources are introduced into the dynamics via stochastic switchings of the
network connections. This extra time-dependence in the network opens the possibility for paramet-
ric resonance and destabilization of a consensual oscillatory state, found for purely static networks.
Finally, we introduce external noise environments which corrupt the orbits of the local systems.
For “All-to-All” network topology, we analytically derive the effects of Gaussian and non-Gaussian
noise sources and unveil noise induced emergent oscillating patterns of the relevant order param-
eter that characterizes this dynamics. Although in this thesis the emphasis is made on deriving
analytical results, we systematically supplement our findings with extensive numerical simulations.
They not only corroborate and illustrate our theoretical assertions but provide additional insights
where analytical results could not be found.
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conférences. Merci Max pour toute ton aide et ta constante présence dans cette adventure.

Bielefeld, 12.12.12 Dr. Julio Rodriguez





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Time Delayed Interactions in Networks of Self-Adapting Hopf Oscillators . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Networks of Hopf Oscillators with Adaptive Mechanisms . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Local Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Coupling Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Adaptive Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Network’s Dynamical System with Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Miscellaneous Remark: Delayed Stabilization Mechanism . . . . . . . . . . . . . . . . . 12

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.A Stability Analysis for Case k = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Adaptation of Oscillatory Systems in Networks

- A Learning Signal Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Networks of Periodic Stable Signals with Adaptive Mechanisms . . . . . . . . . . . . . . . . . 19

3.2.1 Local Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Coupling Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Adaptive Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Network’s Dynamical System with Time Scale and Amplitude Adaptation . . . . . . . . 21
3.3.1 Miscellaneous Remark: Time Scale or Amplitude Adaptation Only . . . . . . . . . 23

3.3.1.1 Amplitude Adaptation Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1.2 Time scale Adaptation Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Time Scale and Amplitude Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Amplitude Adaptation Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.A Convergence Towards Compact Set K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



4 Frequency Adaptation in Networks of Vibrating-Oscillatory Systems . . . . . . . . 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Networks of Damped Vibrational Systems and Phase Oscillators with Adaptive

Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Network of Vibrating-Oscillatory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Network’s Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1.1 Adaptation in Homogenous q-DVSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1.2 Adaptation in Heterogenous qk-DVSs . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2.1 Synchronization in Homogenous q-DVSs . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2.2 Synchronization in Heterogenous qk-DVSs . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Network of Homogenous q-DVSs and Heterogenous qk-DVSs . . . . . . . . . . . . . . 44
4.5.2 Adaptation vs. Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.A Calculations for Equations (4.2), (4.3) and (4.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.B Verifying Properties For the Local Coupling Function in Example 2 . . . . . . . . . . . . . . 49
4.C Verifying Hypothesis For Coupling Potential E as Defined in Section 4.2.1 . . . . . . . . 49

4.C.1 Properties For function W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.C.2 Properties For function V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.C.3 Verification of Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.D Determining the rc,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Stochastic Parametric Resonance in Time-Dependent Networks of Adaptive

Frequency Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Network of Phase Oscillators with Time-dependent Adaptive Mechanisms . . . . . . . . 57
5.3 Network’s Dynamical System with Random Switching Topologies . . . . . . . . . . . . . . . . 59

5.3.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.A Synchronized Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.B Proof of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.C Commuting Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Noise Induced Temporal Patterns in Populations of Globally Coupled

Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Kuramoto-Sakaguchi Model Driven by Super-Diffusive Noise . . . . . . . . . . . . . . . . 72

6.2.1 A None Gaussian, Super-Diffusive Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 The Effect of The Non-Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.3 Extensions to More Complex Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Noise Induced “Zig-Zagging” - a Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.A Characterization of Full Synchronization via the Oder Parameter . . . . . . . . . . . . . . . . 77

7 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.A Comparison Between Synchronization and Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 82

XII



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

XIII





1

Introduction

O mathématiques sévères, je ne vous ai pas ou-
bliées, depuis que vos savantes leçons, plus douces
que le miel, filtrèrent dans mon cœur, comme une
onde rafrâıchissante.

Comte de Lautreamont

1.1 General Framework

Based on what has been presented in [42], a general framework of coupled heterogenous adapting
local systems in a noisy environment with delay and time-dependent interactions is

φ̇k(t) = Pk(φk(t), rk(t), Ωk(t)) − cφk

∂V

∂φk

(t, φ(t−t), r(t−t)) + eQk(t)

ṙk(t) = Rk(φk(t), rk(t), Ωk(t))
︸ ︷︷ ︸

local dynamics

− crk

∂V

∂rk

(t, φ(t−t), r(t−t))

︸ ︷︷ ︸

coupling dynamics

Ω̇k(t) = Ak(φk(t−t), rk(t−t))
︸ ︷︷ ︸

adaptive mechanisms

k = 1, . . . , n , (1.1)

where (φk, rk) are the state variables, (Pk, Rk) belonging to the class of PR systems (i.e. phase-
radius systems, generally describing oscillatory motion), V(t, φ, r) > 0 is a time-dependent coupling
potential, cφk

and crk
are coupling strengths, and Qk(t) is a noise source with noise intensity e > 0.

The adapting parameters are Ωk, and their adaptation is governed by the adaptive mechanisms Ak.

When Ak ≡ 0 for all k, then Ωk(t) = Ω̄k for all t and k, and so they are fixed and constant pa-
rameters for the local dynamics. In this case, Equations (1.1) describes the classical framework of
heterogenous local oscillatory motion coupled through delay and time-dependent interactions in a
random environment for which observation of any type of emerging common dynamical pattern
is of interest. Synchronization (i.e. oscillatory movement with the same frequency as its coupled
neighbors) is by far the most studied and among the most captivating phenomena occurring in
complex networks.

1.2 Aim

The main aim of this thesis is to study the resulting dynamics of System (1.1) with the adap-
tive mechanisms (i.e. Ak 6≡ 0) depending on delayed interactions or randomly switching networks.



Adaptation is a well establish research filed, as discussed in each chapter. The concept of adapta-
tion, as well as the word itself, has many definitions and its meaning depends on the context. In
this thesis, the general idea of adaptation can be expressed with the following example.

Consider Equations (1.1) with Ak ≡ 0 for all k, that is, local dynamics are equipped with fixed
and constant parameters Ω̄. Suppose that the system admits a synchronized solution SΩ(t) =
(S1,Ω(t), . . . , Sn,Ω(t)) (i.e. SΩ(t) solve Equations (1.1) and all Sk,Ω(t) are periodic with the same
period (i.e. synchronization)) and Ω = {Ω1, . . . , Ωn}. For any other parameter set Λ not to distant
from Ω (i.e. 0 6 ‖Ω − Λ‖ ≪ 1), one can suppose the existence of another synchronized solution
SΛ(t). Denote by Ξ the set of all parameter set for which corresponds a synchronized solution of
Equations (1.1). We say that adaptation occurs in the network if

I among all the parameter sets in Ξ, there exists at least one, denoted as Ω̄, for which Z(Ω̄) =
‖∇V(SΩ̄(t))‖ is minimum over one period and

II by letting the fixed and constant local parameters become time-dependent (i.e. Ωk ; Ωk(t))
and have their own dynamics governed by functions Ak (now introduced in Equations (1.1)),
the network dynamics behaves as

lim
t→∞

Ωk(t) = Ω̄k and lim
t→∞

(φk(t), rk(t)) = Sk,Ω̄(t) . (1.2)

Therefore, with this notion of adaptation, the aim is

I to explicitly construct adaptive mechanisms Ak,
II determine the conditions for which Limits (1.2) hold,
III determine the value of the set.

It is important to note that with this notion of adaptation, the idea of synchronization is preserved.
However, in the case where Z(Ω̄) is zero (i.e. the synchronized solution SΩ̄(t) cancels the coupling
dynamics), we note the following two important points

I SΩ̄(t), by definition, is not influenced by V1. This implies that for any change in V (e.g. change
in the network connections), the local dynamics are not perturbed.

II If the coupling dynamics is removed, the local dynamics continue their common motion since
in this case, it was not because of V that SΩ̄(t) is maintained.

In the first place, we continue to explore complex networks with adaptive mechanisms as done in
[42], but here we investigate the influence of time delayed interactions, heterogenous local systems
and stochastically switching networks. In a second part, we study the influence of a non-Gaussian,
super diffusive environment on an assembly of “All-to-All” coupled phase oscillators.

1.3 Contributions

The original contributions of this thesis are summarized bellow.

Chapter 2 Whereas the dynamics of coupled Hopf oscillators with adapting frequency and am-
plitudes has been studied in [42], we here investigated the resulting dynamics for delayed
adaptive mechanisms. The existence and conditions for converging towards a consensual oscil-
latory state are analytically given, as well as the asymptotic values for the consensual state.
This contribution was published in [47]

Chapter 3 Based on adaptive attractor mechanisms presented in [42], we investigated shape adap-
tation in networks of periodic signals. Our approach is systematic, directly implantable for any
signal given by its Fourier series and, contrarily to what has be presented in [42], does not
need beforehand any geometric information of the adapting attractor. Numerical experiments
show that, under certain conditions, the local systems converge towards a consensual oscillatory
state. The asymptotic values for this state are analytically determined.

1 In a synchronization problem, SΩ̄(t) depends on the coupling potential V and on the parameter set Ω.

2



Chapter 4 Derived from potential robotic applications in [13, 41], we constructed an heterogenous
complex system of interacting damped vibrating system and phase oscillators with frequency
adaptive mechanisms. The existence of and convergence towards a consensual oscillatory state
are analytically given, as well as the asymptotic values for the consensual state. We numerically
investigated the network dynamics for a case without adaptation (i.e. synchronization) and for
directed networks.

Chapter 5 Networks of frequency adaptive phase oscillators with deterministic time-dependent
(continuous) connections have been investigated in [42]. We here explored the discrete stochas-
tic switching version. For a class of network topologies and for predefined switching times,
we analytically determined the conditions for destabilizing the network through parametric
resonance phenomena.

Chapter 6 We introduced a new, non-Gaussian noise source in the Kuramoto model with ho-
mogenous frequency oscillators. Using well-known results for the homogenous frequency Ku-

ramoto model driven by Gaussian noise, we were able to identify phase transitions and set
up the corresponding bifurcation scenario. This contribution was published in [29, 30].

1.4 Organization

Each chapter is self-contained with its own Appendix, and hence any chapter can be read as an
individual article. Based on the notation from Equations (1.1), the list bellow outlines the exact
dynamical system that is investigated in each chapter.

Chapter 2 The system is composed of homogenous local dynamics - Hopf oscillators - coupled
through a Laplacian potential with time-independent connections, and with adaptive mech-
anisms (i.e. Ak 6≡ 0) on the parameters controlling the frequency and radius of each Hopf

oscillator. There are time delayed interactions (i.e. t > 0). There is no random environment
(i.e. e = 0).

Chapter 3 The system is composed of homogenous local dynamics - Periodic Stable signals (PSS)
- coupled through a general potential with time-independent connections, and with adaptive
mechanisms (i.e. Ak 6≡ 0) on the parameters controlling the time scale and the shape of each
PSS. There are no time delayed interactions (i.e. t = 0). There is no random environment (i.e.
e = 0).

Chapter 4 The system is composed of heterogenous local dynamics - Damped Vibrating Sys-
tems (DVS) and Phase Oscillators (PO)2 - coupled through a general potential with time-
independent connections, and with adaptive mechanisms (i.e. Ak 6≡ 0) on the parameters
controlling the frequency of the each PO. There are no time delayed interactions (i.e. t = 0).
There is no random environment (i.e. e = 0).

Chapter 5 The system is composed of homogenous local dynamics - Phase Oscillators (PO) - cou-
pled through a Kuramoto-type potential with time-dependent - deterministic and stochastic
switching - connections, and with adaptive mechanisms (i.e. Ak 6≡ 0) on the parameters con-
trolling the frequency of each PO. There are no time delayed interactions (i.e. t = 0). There is
no random environment (i.e. e = 0).

Chapter 6 The system is composed of homogenous local dynamics - Phase Oscillators (PO) -
coupled through a Kuramoto-type potential (“All-to-All” coupling) with time-independent
connections, and with no adaptive mechanisms (i.e. Ak ≡ 0). There are no time delayed inter-
actions (i.e. t = 0). There is a non-Gaussian random environment (i.e. e > 0).

2 When these two units are coupled, they form Vibrating-Oscillatory Systems (VOS).
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2

Time Delayed Interactions in Networks of Self-Adapting
Hopf Oscillators

The farther back you can look, the farther for-
ward you are likely to see.

Winston Churchill

Abstract

A network of coupled limit cycle oscillators with delayed interactions is considered. The parameters
characterizing the oscillator’s frequency and limit cycle are allowed to self-adapt. Adaptation is due
to time-delayed state variables that mutually interact via a network. The self-adaptive mechanisms
ultimately drive all coupled oscillators to a consensual oscillatory state where the values of the
parameters are identical for all local systems. They are analytically expressible. The interplay
between the spectral properties of the coupling matrix and the time-delays determine the conditions
for which convergence towards a consensual state takes place. Once reached, this consensual state
subsists even if interactions are removed. In our class of models, the consensual values of the
parameters neither depend on the delays nor on the network’s topologies.

2.1 Introduction

The harmonic excitation of an elementary damped harmonic oscillator

ẍ(t) + aẋ(t) + fx(t)
︸ ︷︷ ︸

system

= r sin(w t)
︸ ︷︷ ︸

environment

(2.1)

with a, f, r and w > 0 produces the well known asymptotic response (c.f. [53])

x(t) = k cos(w t − ϑ) .

where k and ϑ depend on the control parameters a, r and w. By construction, the oscillating
environment here materialized by the input r sin(wt) is totally insensitive to the oscillator x(t),
implying that x(t) in Equation (2.1) is slaved by the external forcing. The next stage of complexity
is to replace the harmonic oscillator in Equation (2.1) by a Lienard system

ẍ(t) + R(x(t), ẋ(t)) + fx(t) = r sin(w t) , (2.2)

where R(x(t), ẋ(t)) is a nonlinear controller. In absence of external excitation in Equation (2.2) (i.e.
when r = 0), we assume R to asymptotically drive the orbits towards a stable limit cycle which
is independent of the initial conditions - the paradigmatic illustration being here the Van der

Pol oscillator. When r 6= 0 and for a suitably selected range of parameters, the time asymptotic
response of Equation (2.2) can be qualitatively written as (c.f. [35, 25])



x(t) = S(t) (2.3)

with S(t) being a synchronized signal with the same periodicity as the environment (i.e. S(t+ 2π
w

) =
S(t)). By construction, the external forcing r sin(w t) in Equation (2.2) is, as before, insensitive to
the Lienard oscillator. In the resulting synchronized regime, the oscillator x(t) is caught by the
external excitation - in other words, the system adjusts itself to the environment but the environ-
ment remains insensible to the system. Observe that the dynamical response given by Equation
(2.3) only subsists as long as r sin(w t) acts on the system. That is, as soon as the environment
effect is removed (i.e r = 0 in Equation (2.2)), the system (i.e. the limit cycle oscillator), after a
transient time, recovers its original behavior - converges towards its limit cycle.

In our present paper, we shall extend the previous classical system-environment relationship in
order to allow more realistic situations where mutual interactions permanently affect both the
system and the environment. Such adaptive mechanisms can modify individual dynamics on a
permanent basis. To stylize this new situation, the basic dynamics given by Equation (2.2) is
modified as

ẍ(t) + R(x(t), ẋ(t)) + f (t) x(t) = r sin(ω(t) t) ,

ḟ (t) = Af (x(t), ẋ(t)) and ω̇(t) = Aω(x(t), ẋ(t)) ,
(2.4)

where f ; f (t) and w ; ω(t) are no longer constant parameters but variables of the global dy-
namics (and hence time-dependent) and the functions Af and Aω capture the mutual adaptation
of the system-environment dipole. Hence, the system of Equations (2.4) has now to be considered
globally - the system and its environment, are allowed to adaptively co-evolve.

The particular case of Equations (2.4) when Af ≡ 0 (i.e. f (t) := f for all t) has been studied in
[13, 41]. This type of dynamical system provides a cornerstone of bio-inspired robotics where legs (or
arms) of robots may be modeled by damped oscillators as Equation (2.1) (i.e. R(x(t), ẋ(t)) = aẋ(t)).
To ensure a maximum leg stride, the damped oscillators must be excited by r sin(ω(t) t) at the
damped oscillator’s resonant frequency (i.e. ω(t) ≃

√
f for all t). However, due to structural changes

on the robot (adding load, lengthening legs), the resonant frequency of the damped oscillator has
to be adjusted: f 7→ f̄. Hence, Aω drives ω(t) towards the value f̄ to systematically guarantee the
excitation at resonant frequency and thus maximum leg stride. Frequency adaptation (as well as
amplitude adaption) is also important in movement assistance (e.g. retrain the nervous system,
assist people with movement disorder) where robots and human beings must work in synchronous.
An example of an exoskeleton for the human elbow was studied in [49].

The case where neither Af nor Aω are trivial has been covered in [44, 43], where the authors not
only considered two adaptive coupled limit cycle oscillators, but n mutually interacting through a
network. Here, self-adapting oscillators can be applied to robot formation modeling. Each individ-
ual robot belonging to a swarm, circulating around a specific point, adapts its angular velocity in
order to lower the amount of exchanged information to maintain the formation. Self-adaptation in
networks is also considered in [54], where here the control signals (and not the local systems) of
the variables of the CPG adapt, and this, to quickly react to new situations and produce several
different behavioral patterns.

Building on what has been done in previous contributions [13, 41, 44, 43], we here consider a
network of limit cycle oscillators interaction with time-delayed state variables. The general form
of our dynamical system in the phase-radius coordinates (i.e. polar coordinates φk and rk) is

φ̇k(t) = P(φk(t), rk(t); Ωk) − ck

∂V

∂φk

(φ(t−t), r(t−t))

ṙk(t) = R(φk(t), rk(t); Ωk)
︸ ︷︷ ︸

local dynamics

− ck

∂V

∂rk

(φ(t−t), r(t−t))

︸ ︷︷ ︸

coupling dynamics

k = 1, . . . , n , (2.5)

where P and R govern the local dynamics, φ = (φ1, . . . , φn) and r = (r1, . . . , rn) are the state
variables, Ωk is a parameter set determining the local characteristics and ck > 0 are coupling
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strengths. The coupling dynamics is the gradient of a potential V depending on state variables
with time delay t. Adaptation of the local dynamics is accomplished by letting the constant pa-
rameters Ωk become time-dependent (i.e. Ωk ; Ωk(t)) with their own dynamics given by adaptive
mechanisms Ak. Delays being ubiquitous in applications, their influence on adaptive processes is
worth to be investigated and so, the general formalization is

φ̇k(t) = P(φk(t), rk(t),Ωk(t)) − ck

∂V

∂φk

(φ(t−t), r(t−t))

ṙk(t) = R(φk(t), rk(t),Ωk(t))
︸ ︷︷ ︸

local dynamics

− ck

∂V

∂rk

(φ(t−t), r(t−t))

︸ ︷︷ ︸

coupling dynamics

Ω̇k(t) = Ak(φ(t−t), r(t−t))
︸ ︷︷ ︸

adaptive mechanism

k = 1, . . . , n . (2.6)

We therefore confer to Ωk the status of variables of the whole dynamical system. Let us remark
that in this present contribution, adaptation occurs in the local systems. Note that in [52], the
authors introduce, with the help of the speed-gradient method, an adaptive mechanism on the
coupling constant that multiplies the delayed interactions.

This paper is organized as follows: In Section 2.2 we define the three components that together
form the global system. We then discuss the dynamics of our model in Section 2.3. An application
is presented in Section 2.4 which is then followed by some numerical experiments in Section 2.5.
Finally we conclude in Section 2.6.

2.2 Networks of Hopf Oscillators with Adaptive Mechanisms

We now present explicitly the local and coupling dynamics as well as the adaptive mechanisms on
which we shall focus on.

2.2.1 Local Dynamics

Each node of the network is equipped with a local dynamical system. In this contribution, a local
system is a Hopf oscillator presented here in its polar coordinates

P(φk, rk; Ωk) = wk

R(φk, rk; Ωk) = −(r2
k − rk)rk

k = 1, . . . , n . (2.7)

The state variables are (φk, rk) and Ωk = {ωk, rk} are, for the time being, fixed and constant
parameters. The parameter wk controls the frequency of the kth oscillator given by the phase
dynamics P. The radial dynamics R produces a stable circular limit cycle with radius

√
rk.

2.2.2 Coupling Dynamics

Associated to a n vertex connected and undirected network, denote by A the weighted adjacency
matrix with positive entries ak,j > 0. Let L be the corresponding Laplacian matrix (L := D − A

where D is the diagonal matrix with dk,k :=
n∑

j=1

ak,j). The coupling dynamics is given by the

gradient of the positive semi-definite function

V(φ, r) :=
1

2
〈 r |Lcos r 〉 =

1

2

n∑

k=1

rk

n∑

j=1

lk,jrj cos(φk − φj) > 0

with φ = (φ1, . . . , φn) and r = (r1, . . . , rn) and where the matrix Lcos has entries lk,j cos(φk − φj).
This matrix is positive semi-definite since all its eigenvalues are positive (i.e. nonnegative). This
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is a direct application of GERXGORIN’s circle theorem [22]: for any eigenvalue ζcos of Lcos, there
exists k such that

|ζcos − lk,k| 6

n∑

j 6=k

|lk,j cos(φk − φj)|

and so |ζcos − lk,k| 6
n∑

j 6=k

|lk,j cos(φk − φj)| 6
n∑

j 6=k

|lk,j | = lk,k. Specifically, the coupling dynamics

are

ck

∂V

∂φk

(φ, r) = −ck

n∑

j=1

lk,j rkrj sin(φk − φj)

ck

∂V

∂rk

(φ, r) = ck

n∑

j=1

lk,j rj cos(φk − φj)

k = 1, . . . , n , (2.8)

where ck > 0 are coupling strengths.

2.2.3 Adaptive Mechanisms

In this section, we now allow the fixed and constant parameters wk and rk to

I become time dependent, i.e. Ωk = {wk, rk} ; (ωk(t), ρk(t)) = Ωk(t), for k = 1, . . . , n .

II and each of them have their own dynamics, depending solely on the state variables φ and r,
that is

Ak(φ, r) = (Aω
k (φ, r), Ar

k(φ, r) ) for k = 1, . . . , n .

Among the numerous variants for changing the values of the parameter, we focus on those presented
in [44, 43, 42], that is

Aω
k (φ, r) = sk

n∑

j=1

lk,j rkrj sin(φk − φj)

Ar
k(φ, r) = −sk

n∑

j=1

lk,j r2
j

k = 1, . . . , n , (2.9)

where lk,j are the entries of L and sk are “susceptibility constants”: the larger sk is, the stronger
is the influence on ωk and ρk. Conversely, oscillators with small sk are reluctant to modify their
frequency and their limit cycle radius.

2.3 Network’s Dynamical System with Delay

We now discuss the resulting dynamics in presence of a time delay t > 0 affecting both, the coupling
dynamics, and the adaptive mechanisms. We hence consider

φ̇k(t) = ωk(t) + ck

n∑

j=1

lk,j rk(t−t)rj (t−t) sin(φk(t−t) − φj(t−t))

ṙk(t) = −(rk(t)
2 − ρk(t))rk(t) − ck

n∑

j=1

lk,j rj (t−t) cos(φk(t−t) − φj(t−t))

ω̇k(t) = sk

n∑

j=1

lk,j rk(t−t)rj (t−t) sin(φk(t−t) − φj(t−t))

ρ̇k(t) = −sk

n∑

j=1

lk,j rj(t−t)
2

k = 1, . . . , n . (2.10)

For Equations (2.10), we have
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Two Constants of Motion

The functions

J(ω) =
n∑

j=1

ωj

sj

, K(ρ) =
n∑

j=1

ρj

sj

(2.11)

are constants of motion - in other words, if ω(t) = (ω1(t), . . . , ωn(t)) and ρ(t) = (ρ1(t), . . . , ρn(t)) are
orbits of Equations (2.10), then

d
[
J(ω(t))

]

dt
= 〈∇J(ω(t)) | ω̇(t) 〉 =

d
[
K(ρ(t))

]

dt
= 〈∇K(ρ(t)) | ρ̇(t) 〉 = 0 .

Existence of a Consensual Oscillatory State

We can explicitly exhibit a consensual oscillatory state. Indeed, for given ωc and ρc > 0,

(
φk(t), rk(t), ωk(t), ρk(t)

)
:=
(
ωc t,

√
ρc, ωc, ρc

)
(2.12)

for all t ∈ [−t, 0] ∪ R>0 is a consensual orbit of Equations (2.10).

Observe that in absence of the radial component rk and without adaptation, Equations (2.10) yield
the famous Kuramoto model with delays [60, 39]1.

In absence of time delay (i.e. t = 0) and under appropriate conditions (c.f. [42] for details), the
adaptive mechanisms tune the value of frequencies ωk and the radii ρk of the attractors so that
the global dynamical system is driven into a consensual oscillatory state. In other words, we have
the following limit

lim
t→∞

‖
(
φk(t), rk(t), ωk(t), ρk(t)

)
−
(
ωc t,

√
ρc, ωc, ρc

)
‖ = 0 ∀ k (2.13)

with constants ωc and ρc and where ‖ ·‖ is the Euclidean norm. The consensual state is permanent
(i.e. even if interactions are switched off, all local dynamics still oscillate with the same frequency
and same amplitude). Let us now discuss the conditions for which Limit (2.13) holds when the
global dynamics is affected by a time delay (i.e. t > 0).

Convergence Towards a Consensual Oscillatory State

The Limit (2.13) raises two issues - 1) the existence itself and 2) the limit values ωc and ρc. For
expository reasons, we first discuss the limit values and then the convergence conditions.

Limit Values - Thanks to the constant of motions in (2.11), we have

J(ω(0)) = J(ω(t)) ∀ t and K(ρ(0)) = K(ρ(t)) ∀ t ,

with ω(t) = (ω1(t), . . . , ωn(t)) and ρ(t) = (ρ1(t), . . . , ρn(t)) orbits of Equations (2.10) with given
initial conditions. Supposing that Limit (2.13) holds, we hence have

J(ω(0)) = lim
t→∞

J(ω(t)) = ωc

n∑

j=1

1

sj

and K(ρ(0)) = lim
t→∞

K(ρ(t)) = ρc

n∑

j=1

1

sj

and so the asymptotic values are analytically expressed as

ωc =

n∑

j=1

ωj(0)
sj

n∑

j=1

1
sj

and ρc =

n∑

j=1

ρj(0)
sj

n∑

j=1

1
sj

. (2.14)

1 In these contributions, the authors considered the coupling dynamics with delay of the form:
n

P

j=1

lk,j sin(φk(t)−φj(t−t)), that is, delays concern the “exterior” variables φj and not the “local” variable

φk. This can be done here for the coupling dynamics but not for the adaptive mechanism on ωk, if we
require J to be a constant of motion J.
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It is important to emphasize that the consensual values ωc and ρc do not depend on the network
topology (i.e. not on L), nor on the initial conditions of the state variables (i.e. not on (φk(0), rk(0)))
nor on the time delay (i.e. not on t).

Convergence Conditions - To this aim we study the first order approximation of Equations
(2.10) in the vicinity of Solution (2.12) and assume that linear stability analysis is sufficient to infer
convergence conditions for the nonlinear system. Accordingly, we study the asymptotic behavior
of the small perturbations ǫφk

(t), ǫrk
(t), ǫωk

(t) and ǫρk
(t) and write

(φk(t), rk(t), ωk(t), ρk(t)) = (ωc t + ǫφk
(t),

√
ρc + ǫrk

(t), ωc + ǫωk
(t), ρc + ǫρk

(t)) .

Taking into account the constant of motions, we impose that

n∑

j=1

ǫωj
(0)

sj

= 0 and

n∑

j=1

ǫρj
(0)

sj

= 0 . (2.15)

First Order Approximation

Rearranging the variables (i.e. the first n are the φk, the second n are the rk, the third n are the
ωk and finally the last n are the ρk), the first order approximation of Equations (2.10) is








ǫ̇φ

ǫ̇r

ǫ̇ω

ǫ̇ρ








=








0 0 Id 0

0 −2ρcId 0
√

ρcId

0 0 0 0

0 0 0 0















ǫφ

ǫr

ǫω

ǫρ








+








−ρc[c]L 0 0 0

0 −[c]L 0 0

−ρc[s]L 0 0 0

0 −2
√

ρc[s]L 0 0















ǫ̌φ

ǫ̌r

ǫ̌ω

ǫ̌ρ








(2.16)

with the n × n identity matrix Id, diagonal matrices [c] and [s] with, respectively, the coupling
strengths and the susceptibility constants as entries and ǫφ := (ǫφ1

, . . . , ǫφn
), ǫr := (ǫr1

, . . . , ǫrn
),

ǫω := (ǫω1
, . . . , ǫωn

) and ǫρ := (ǫρ1
, . . . , ǫρn

), and where the delayed perturbations are ǫ̌φ = ǫφ(t−t),
ǫ̌r = ǫr(t−t), ǫ̌ω = ǫω(t−t) ǫ̌ρ = ǫρ(t−t).

Diagonalization

Suppose now that [s] = q[c] for some positive constant q and let O denote an orthogonal matrix

(i.e. O⊤ O = O O⊤ = Id) with real entries such that O⊤[c]
1

2 L[c]
1

2 O = [ζ], with [ζ] being a diagonal

matrix with the eigenvalues of the symmetric matrix [c]
1

2 L[c]
1

2 on its diagonal. The sign of these
coincide with those of the eigenvalues of L: they are all strictly positive except for one that is zero.
Hence, without lost of generality, one takes ζ1 = 0 and ζk > 0 for k = 2, . . . , n.

Changing the basis of System (2.16) with a 4×4 bloc matrix (each bloc of size n×n) with O⊤[c]−
1

2

on its diagonal, we can decompose the original system into 2n 2-dimensional systems of the form

(

ε̇φk

ε̇ωk

)

=

(

0 1

0 0

)(

εφk

εωk

)

+

(

−ρcζk 0

−ρcqζk 0

)(

ε̌φk

ε̌ωk

)

(2.17a)

(

ε̇rk

ε̇ρk

)

=

(

−2ρc
√

ρc

0 0

)(

εrk

ερk

)

+

(

−ζk 0

−2
√

ρcqζk 0

)(

ε̌rk

ε̌ρk

)

(2.17b)

with εφ := O⊤[c]−
1

2 ǫφ (respectively for ǫr, ǫω, ǫρ) and ε̌φ := O⊤[c]−
1

2 ǫ̌φ (respectively for ǫ̌r, ǫ̌ω, ǫ̌ρ)
for delayed perturbations obtained after the change of basis.

The case k = 1 is worked out in the Appendix 2.A. For k 6= 1, let us focus on the 2-dimensional
systems and we rewrite Equations (2.17) as linear second order time delayed differential equations
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ε̈φk
(t) + ρcζkε̇φk

(t−t) + ρcqζkεφk
(t−t) = 0 ,

ε̈rk
(t) + 2ρcε̇rk

(t) + ζkε̇rk
(t−t) + 2ρcqζkεrk

(t−t) = 0 .
(2.18)

The convergence towards a consensual state is hence determined by the asymptotic stability of the
zero solution of Equations (2.18). Stability follows if, and only if, all roots of the corresponding
characteristic equations have strictly negative real parts (c.f. [8] for details). For Equations (2.17a),
one can apply Theorem 3.3 in [14] which states that in this case the zero solution is asymptotically
stable if and only if

I tρcζk <
π

2
(2.19a)

II
t2ρcqζk

z2
< cos(z) where z is the unique solution in ]0,

π

2
[ of sin(z) =

tρcζk

z
(2.19b)

for k = 2, . . . , n. We emphasize that the consensual value ρc influences the condition for conver-
gence whereas it is not the case for ωc. This leads to the idea that shaping the attractor is more
delicate than tuning the angular velocity. This has been observed in [46].

Adaptation only on ωk - If there is no adaptation on the radii (i.e. ρk(t) := r for all k and t),
then the Equations (2.17b) reduce to

ε̇rk
(t) = −2rεrk

(t) − ζkεrk
(t−t)

for which the zero solution is asymptotically stable provided (c.f. [33] for details)

4r2 < ζ2
k and t < ť with ť =

cot−1
( −2r√

ζ2

k
−4r2

)

√

ζ2
k − 4r2

. (2.20)

The zero solution is unstable when t > ť. Note that stability is guaranteed for any t when ζ2
k < 4r2

or ζ2
k = 4r2 6= 0.

No Time Delay in the Coupling Dynamics - If there is no time delay in the coupling dynamics
(i.e. the coupling dynamics is defined as in Equations (2.8) with no delay), then Equations (2.18)
become, for k = 2, . . . , n,

ε̈φk
(t) + ρcζkε̇φk

(t) + ρcqζkεφk
(t−t) = 0 , (2.21a)

ε̈rk
(t) + (2ρc + ζk)ε̇rk

(t) + 2ρcqζkεrk
(t−t) = 0 . (2.21b)

Invoking Theorem 3.5 in [14], the zero solution for Equations (2.21a) and Equations (2.21b) is
asymptotically stable if and only if

For Equations (2.21a): −t2ρcqζk + (z2 + t2(ρcζk)2) cos(z) > 0 where z is the

unique solution in ]0, π
2 [ of z sin(z) = tρcζk cos(z)

(2.22a)

For Equations (2.21b): −2t2ρcqζk + (z2 + t2(2ρc + ζk)2) cos(z) > 0 where z is the

unique solution in ]0, π
2 [ of z sin(z) = t(2ρc + ζk) cos(z)

(2.22b)

for k = 2, . . . , n.

Summary

For a network (with arbitrary topology but with symmetric, positive entries adjacency matrix)
of Hopf oscillators (as defined in Section 2.2.1 by Equations (2.7)) interacting through time
delayed Kuramoto type coupling (as defined in Section 2.2.2 by Equations (2.8)) and with time
delay adaptive mechanisms (as defined in Section 2.2.3 by Equations (2.9)) on the frequencies and
amplitudes of the local systems - in other words, for Equations (2.10) - we have

I two constants of motions (c.f. (2.11))
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II the existence of a consensual oscillatory state (c.f. (2.12))
III the consensual oscillatory state is linearly (i.e. locally) stable if all the roots of characteristic

equations corresponding to Equations (2.18) have strictly negative real parts
IV if there is no adaptation on the radii, the consensual oscillatory state is linearly (i.e. locally)

stable if (2.19a), (2.19b) and (2.20) hold
V if there is no delay in the coupling dynamics, the consensual oscillatory state is linearly (i.e.

locally) stable if (2.22a) and (2.22b) hold

2.3.1 Miscellaneous Remark: Delayed Stabilization Mechanism

In this section we discuss the particular case arising when the delay is introduced only in the
stabilization mechanism (i.e. dissipative part) of the local dynamics. The dynamical system is

φ̇k(t) = ωk(t) + ck

n∑

j=1

lk,j rk(t)rj (t) sin(φk(t) − φj (t))

ṙk(t) = −(rk(t−t)
2 − ρk(t))rk(t) − ck

n∑

j=1

lk,j rj (t) cos(φk(t) − φj(t))

ω̇k(t) = sk

n∑

j=1

lk,j rk(t)rj (t) sin(φk(t) − φj (t))

ρ̇k(t) = −sk

n∑

j=1

lk,j rj (t)
2

k = 1, . . . , n . (2.23)

Equations (2.23) still admit the existence of a consensual oscillatory state and two constants of
motion as in (2.11) and in (2.12) respectively. Linear stability analysis of the consensual state
reduces to the study of

ε̈φk
(t) + ρcζkε̇φk

(t) + ρcqζkεφk
(t) = 0 , (2.24a)

ε̈rk
(t) + 2ρcε̇rk

(t−t) + 2ρcqζkεrk
(t) = 0 , (2.24b)

for k = 2, . . . , n. The zero solution for Equations (2.24a) is asymptotically stable. For Equations
(2.24b), we apply Theorem 3.4 in [14] which states that in this case the zero solution is asymptot-
ically stable if and only if

I ∃ z ∈ Z≥0 := {0, 1, 2, . . .} such that (2z − 1)π + π
2 < t

√
2ρcqζk < 2zπ + π

2

II 0 > −2tρc > max
{
(2z − 1)π + π

2 − 2t2ρcqζk

(2z−1)π+π
2

, −(2zπ + π
2 ) + 2t2ρcqζk

2zπ+ π
2

}

for k = 2, . . . , n.

2.4 Applications

Conceptually, the problem of reliably distributing time and frequency among several spatial re-
mote location is a “letmotiv” in applications ranging from basic metrology, navigation and position
determination, signal processing, computer communications, energy distribution networks, swarms
robotics, bioengineering, multi-agents systems, life sciences, acoustics and musical art to give but
only a highly non-exhaustive list. Presently, a strong research impetus is devoted to complex inter-
acting oscillating systems able to exhibit self-adaptive capabilities leading to a resilient consensual
dynamic. Whatever the configurations under study, communication delays between the collection of
interacting subparts of the global systems are physically unavoidable. Depending on the underlying
time scales, delays do strongly affect the resulting dynamics. Our class of models explicitly study
the influence of delays and in particular their destabilizing effects, that modify the instantaneous
behavior. By an appropriate tuning of control parameters (e.g. susceptibility constants), our class
of models offer, via a unique formalism, the possibility to continuously explore interacting con-
figurations ranging from slave-master (i.e. system-environment relationship) to fully decentralized

12



regimes.

Alternatively, we may view this problematic in the context of soft controlled systems which
presently receive a sustain attention [26]. Here, a swarm of agents is infiltrated by a lure agent
(sometimes called a shill in economy). While the lure exhibits all the features of any ordinary
agent, it can be externally controlled by an operator. As the interactions between the lure and
any agent of the swarm remain unaffected (i.e. the lure remains incognito to ordinary agents), the
external control of the lure can ultimately drive the whole population to a specific configuration.
In our class of dynamics, a suitable choice of the susceptibility constant of a given local system (i.e.
oscillator) may convert it into a shill. Indeed, in view of Equations (2.14), the ultimate consensual
values ωc and ρc are weighted averages. Such weighted averages can be made to strongly dependent
on a very insensitive shill - stubborn to any external influence (i.e. with a very low susceptibility
constant).

In absence of time delays, convergence towards a consensual state is observed even for large het-
erogeneities (widely dispersed initial frequencies and radii and large discrepancies among the sus-
ceptibility constants). Hence, a shill agent can be easily introduced. However, our present study
shows, that time delays restrict the conditions for convergence towards a consensual state. As a
consequence, the implementation of a lure is more delicate matter (i.e. here, the dynamics is far
more sensitive to the value taken by the susceptibility constants).

2.5 Numerical Simulations

1

2

3 4

Fig. 2.1: Network topology

Adaptation on ωk and ρk - We consider four Hopf oscillators interacting on a network with
topology as in Figure 2.1. We choose the coupling strengths and susceptibility constants as
{c1, . . . , c4} = {0.1, 2, 5, 3} and sk = 0.8ck for k = 1, . . . , 4 (i.e. q = 0.8). The time delay is
t = 0.1. The initial function (i.e. history) is (φk(t), rk(t), ωk(t), ρk(t)) = (t, 1, 1, 1) for t ∈ [−t, 0[,
having a jump at t = 0 with values (φk(0), rk(0), ωk(0), ρk(0)) that are randomly uniformly drawn
from ] − 0.1, 0.1[×]0.9, 1.1[×]0.9, 1.1[×]0.9, 1.1[ with the exception for ω1(0) = 0.9. The ρk(0) are
rescaled such that the consensual value ρc is one.

The resulting dynamics is shown in Figure 2.2. With the same initial conditions, we carry out
another numerical simulation with here t = 0.12. This violates Condition (2.19b) for k = 4 and
hence the network does not converge towards a consensual state. This is shown in Figure 2.3.

Note that in Figure 2.2(a), the ωk(0) converge close to 0.9, that is, close to the initial value ω1(0).
This because the first oscillator’s susceptibility is “small” and hence it is this local system that
acts as a shill. It interacts with its neighbor in the same way as they act with it. It can control the
behavior of the network and this without being connected to all other local system.

13
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Fig. 2.2: Time evolution of ωk (Figure 2.2(a)) and ρk (Figure 2.2(b)) for four Hopf oscillators,
interacting through the network in Figure 2.1. In both figures, all variables converge towards a
constant and common consensual value.
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Fig. 2.3: Time evolution of ωk (Figure 2.3(a)) and ρk (Figure 2.3(b)) for four Hopf oscillators,
interacting through the network in Figure 2.1. In both figures, no common consensual value is
reached.

In the extreme case, when sk = 0 for all k (i.e. no adaptation), Equations (2.10) describe the dy-
namics of coupled oscillators with different limit cycles and frequencies and delayed interactions.
For small frequency and attractor’s shape heterogeneities, the network is able to synchronize. In
this case (i.e. without adaptive mechanisms for ωk and ρk), several numerical simulations show that
for delayed time t = 0.1175 synchronization is not systematically attained (i.e. it depends on the
initial conditions) - whereas it is attained in the absence of the time delay (i.e. t = 0). On the other
hand, when the adaptive mechanisms are switched on (i.e. sk = 0.8ck > 0 for all k), a consensual
state is reached - the linear stability criteria are still satisfied with t = 0.1175. Summarizing, here
adaptation enhances the syntonization capability of the network.

Adaptation only on ωk - Two Hopf oscillators, both having the same radius for the at-
tractor (i.e. ρk = r = 0.1 for k = 1, 2), are coupled with coupling strengths and susceptibil-
ity constants as {c1, c2} = {1, 14} and sk = ck for k = 1, 2 (i.e. q = 1). The time delay is
t = 0.1057. The initial function (i.e. history) is (φk(t), rk(t), ωk(t)) = (t,

√
0.1, 1) for t ∈ [−t, 0[,

having a jump at t = 0 with values (φk(0), rk(0), ωk(0)) that are randomly uniformly drawn from
]− 0.1, 0.1[×]

√
0.1− 0.05,

√
0.1 + 0.05[×]0.9, 1.1[. Under this configuration, Conditions (2.19) are

satisfied (hence the zero solution of Equation (2.17a) is asymptotically stable) but not Condition
(2.20) - the time delay is too large. Figure 2.4 displays the resulting dynamics. Observe that the
radii do not converge towards their attractor. However, the oscillators still adapt their frequencies.
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Fig. 2.4: Time evolution of rk (Figure 2.4(a)) and ωk (Figure 2.4(b)) for two Hopf oscillators. The
two oscillators manage to adapt their frequencies while their radii do not converge towards their
respective attractor.

2.6 Conclusion

It is more the rule than the exception that parameter adaptation in dynamical systems can be
achieved via delayed mechanisms. This therefore converts ordinary differential equations arising
in absence of delay to functional differential equations. Stability issues become more difficult to
discuss since, dealing with functional differential equations, an infinite number of degrees of freedom
is introduced into the dynamics. For the class of oscillatory networks with parametric adaptation
we here considered, we are able to observe how the time delay affects the adaptation mechanisms.
While it is intuitively expected, that large delays are likely to destabilize the dynamics, we are
here able to analytically quantify the underlying critical delays. The analytical linear stability
discussion is made possible since, for our class of dynamics, stability issues can be reduced to the
study of two linear second order functional differential equations for which suitable theorems can
be found. Finally, we emphasize that numerical simulations show that adaptation may enhance the
emergence of common dynamical pattern whereas in classical synchronization, time delays may be
too large for synchronous motion to be attained.

Appendix

2.A Stability Analysis for Case k = 1

Assuming that all perturbations εφk
, εrk

, εωk
, ερk

, ε̌φk
, ε̌rk

, ε̌ωk
and ε̌ρk

for k = 2, . . . , n converge to
zero, let us now study the case for k = 1. Here, ζ1 = 0 and so

ε̇φ1
= εω1

, ε̇ω1
= 0 and ε̇r1

= −2ρcεr1
+
√

ρcερ1
, ε̇ρ1

= 0

and therefore εω1
(t) = εω1

(0) and ερ1
(t) = ερ1

(0) for all t. Both of these constants εω1
(0) and ερ1

(0)

are zero. This is because the first orthonormal base vector (i.e. the normalized eigenvector for

the eigenvalue ζ1 = 0) is C( 1√
c1

, . . . , 1√
cn

) (with C := (
∑n

j=1
1
cj

)−
1

2 ) and the first coordinate of

O⊤[c]−
1

2 ǫω and O⊤[c]−
1

2 ǫρ is, respectively,

εω1
(0) = C

n∑

j=1

ǫωj
(0)

cj

= C q

n∑

j=1

ǫωj
(0)

sj

and ερ1
(0) = C

n∑

j=1

ǫρj
(0)

cj

= C q

n∑

j=1

ǫρj
(0)

sj

since we supposed that sj = qcj for all j. These two sums are zero according to Equations (2.15).
Therefore, ε̇r1

= −2ρcεr1
(i.e. lim

t→∞
εr1

(t) = 0) and εφ1
(t) = εφ1

(0) for all t. This allows to conclude

that all perturbations εrk
, ερk

and εωk
decay for all k. We now need to study how the perturbations

on the phases evolve. Since ǫφ = [c]
1

2 Oεφ, then
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lim
t→∞

ǫφk
(t) = lim

t→∞
√

ck

n∑

j=1

ok,jεφj
(t) =

√
ckok,1 lim

t→∞
εφ1

(t) = Cεφ1
(0) = C

2
n∑

j=1

ǫφj
(0)

cj

=

n∑

j=1

ǫφ1
(0)

cj

n∑

j=1

1
cj

since lim
t→∞

εφk
(t) = 0 for k = 2, . . . , n, ok,1 = C

1√
ck

(k = 1, . . . , n) and the first coordinate of the

product O⊤[c]−
1

2 ǫφ is εφ1
(0) = C

n∑

j=1

ǫφj
(0)

cj
. Hence all perturbations converge towards zero except

those on the phase that all converge towards a constant (i.e. average phase perturbation). This
corresponds to a phase shift.
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3

Adaptation of Oscillatory Systems in Networks
- A Learning Signal Approach

Dass der noch kaum zu Ende gedachte Gedanke,
das noch feucht hingeschriebene Wort in dersel-
ben Sekunde schon Tausende Meilen weit emfan-
gen, gelesen, verstanden werden kann und dass
der unsichtbare Strom, der zwischen den beiden
Polen der winzigen Voltaschen Säule schwingt,
ausgespannt zu werden vermag über die ganze
Erde von ihrem einen bis zum anderen Ende.

Stefan Zweig

Abstract

We consider a complex system of n periodic signal generators interacting through the gradient
of a coupling potential. Each local system has its own set of parameters Ωk, characterizing the
time scale of the signal and its shape (i.e. coefficients of a truncated Fourier series). Due to
additional coupling functions, the Ωk are allowed to adapt (i.e. modify their values). The adaptive
mechanisms, with the help of the usual state variable interactions, drive all local system towards
a consensual oscillatory state where they all have a common, constant set of parameters Ωc. Once
reached, the consensual oscillatory state remains invariant to the coupling functions. This implies
that if the interactions are removed, local system continue delivering the common and synchronized
signal. It also means that any perturbation due to the coupling does not affect the local systems.
This situation is to be contrasted with classical synchronization problems where common dynamical
patterns are attained and maintained thanks to the interactions. Also, in synchronization, the set
Ωk is constant, implying that all local system converge back towards their individual behavior in
the absence of interactions. The resulting value Ωc is analytically calculated. It does not depend on
the network’s topology. However, the conditions for convergence do dependent on the connectivity
of the network as well as on the coupling potential.

3.1 Introduction

Producing stable oscillatory motion is of great importance for a device delivering stable periodic
signals. Due to its stability mechanism, the apparatus sends out signals that are not drastically
altered even if it is placed in a noisy environment. However, structural changes within the device
may occur (e.g. the stability mechanism may itself be perturbed), and these create permanent
discrepancies, thus lowering the quality of the output signal. To overcome this problem, a signal
can be coupled to another of its likes. As an example, consider two coupled signals r1(t) and r2(t)

in the setup

ṙk = R(rk; Ωk) − ∂V

∂rk

(r1, r2) k = 1, 2 (3.1)



with the gradient of a potential V as coupling function. Here, the set of parameters 0 6= ‖Ω1−Ω2‖ ≪
1, due to a structural change. Synchronizing signals may enhance the overall quality in the sense
that now, under suitable conditions,

lim
t→∞

rk(t) = rk,V(t) k = 1, 2

with signals rk,V(t) having the same periodicity tV.

However, synchronized signals r1,V(t) and r2,V(t) only exit at the coast of maintaining the coupling
- if the coupling vanishes (i.e. V ≡ 0), the two individual signals return, respectively, towards
the signals produced by the vector fields R(·; Ωk) k = 1, 2. Furthermore, rk,V(t), and consequently
period tV, is subject to any change in the coupling: if V changes, the synchronized signals, as well
as their periodic behavior, are perturbed.

One way to tackle this problem is to construct systems that can synchronize and simultaneously
“adapt” local characteristics (i.e. Ωk) in order to be

I closer to their likes (i.e. reduce the difference ‖Ω1 − Ω2‖)
II less dependent on the coupling (i.e. find Ω̌k such that Z(Ω̌1, Ω̌2) = ‖∇V(ř1(t), ř2(t))‖ is minimum

over a period and řk(t) solves Equations (3.1))

An optimum solution for I and II is when there exists a consensual parameter set Ωc = Ωk, k = 1, 2
such that Z(Ω̌c, Ω̌c) = 0. In this situation, if the coupling is removed, the devices continue to deliver
the same signal. Furthermore, at this consensual state, any changes in the coupling does not affect
the signals since they are now independent if it.

Technically, for local parameters Ωk to adapt, they must become time-dependent (i.e. Ωk ; Ωk(t))
and have their own dynamics. For n coupled signals, having each an additional phase variable
controlling their time scale, the general complex networks dynamics is

φ̇k = P(φk, rk,Ωk) +
∂V

∂φk

(φ, r)

ṙk = R(φk, rk,Ωk)
︸ ︷︷ ︸

local dynamics

+
∂V

∂rk

(φ, r)

︸ ︷︷ ︸

coupling dynamics

Ω̇k = Ak(φ, r)
︸ ︷︷ ︸

adaptive mechanisms

k = 1, . . . , n (3.2)

with φ = (φ1, . . . , φn), r = (r1, . . . , rn), and P and R belonging to the same class of PR systems
(i.e phase-radius systems). Adapting parameters in complex systems has long been a busy filed of
research. Whereas in other contributions adaptation occurs in the coupling strength [36] or directly
in the connections [18], Equations (3.2) describe adaptation in the local systems. As mentioned in
[42], for local systems’ parameter adaptation, there exit two types: flow parameters controlling the
frequency or time scale on an attractor, and geometric parameters determining the shape of the
attracting set. Frequency or time scale controlling parameters have, in general, a high propensity
for adaptation and have been well studied in [20, 56, 4, 45]. However, not much has been accom-
plished for shaping local attractors, which, by nature, is a more delicate task - as stated in [46].

In this paper, we present new adaptive mechanisms for modifying the local system’s attractor.
Whereas in [46] the adaptive mechanisms implicitly depend on the parameter set Ωk via a func-
tional, ours solely depend1 on the state variables φk and rk. In [46], one needs to calculate or
numerically compute an integral beforehand to know the sign of the function for the adaptive
mechanism. Our approach is systematic for all parameters.

1 Note that adaptive mechanisms should only dependent on the stat variables since, in practice, these are
the only information available.
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This contribution is organized as follows: We present individually the components of our network’s
dynamical system in Section 3.2. In Section 3.3 we discuss the resulting dynamics and present
to related alternative to our system. Numerical simulations are reported in Section 3.4, and we
conclude in Section 3.5.

3.2 Networks of Periodic Stable Signals with Adaptive Mechanisms

Consider a n-vertex connected and undirected network with positive adjacency entries. To each
node corresponds a local dynamical system defined in Section 3.2.1. While the network topology
(i.e. adjacency matrix) of the underlying network indicates if the kth local system is connected to
the jth (and vice versa), it is the coupling dynamics discussed in Section 3.2.2 that describes how
the neighboring local dynamics interact. Described in Section 3.2.3, supplementary interactions
directly acting on the local systems’ parameters will play the role of adaptive mechanisms. Let us
now individually present each three dynamical components.

3.2.1 Local Dynamics

The local systems belong to the class of PR systems. We here focus on Periodic Stable Signals
(PSS) which we define as

P(φk, rk; Ωk) = wk

R(φk, rk; Ωk) = −(rk − Fk(φk))
︸ ︷︷ ︸

dissipative dynamics

+ F′
k(φk)wk
︸ ︷︷ ︸

oscillatory dynamics

k = 1, . . . , n (3.3)

with Fk(φk) = uk,0 +
q∑

s=1
uk,s cos(s φk) + vk,s sin(s φk). The set of parameters is

Ωk = {wk, uk,0, uk,1, vk,1, . . . , uk,q, vk,q}. Parameter wk controls the time scale of the phase,
which here oscillates uniformly (i.e. φk(t) = wk t + ϕk). The rest of the parameters determine
the shape of the stable periodic signal produced by a PSS. Stable here means that if the system
endures a perturbation, it will converge back to is oscillatory motion and continue delivering the
signal with its original shape given by the compact set Kk := {(φ, r) ∈ S1 × R | r − Fk(φ) = 0}.
The convergence towards Kk is discussed in Appendix 3.A. It is the dissipative dynamics that
is responsible for driving the orbits towards Kk. This term is the gradient (with respect to the
variable r) of the potential 1

2 (r − Fk(φ))2. It is seen as an energy controller that takes in and/or
gives out energy (depending on the system’s state) until it reaches its equilibrium state Kk. On
Kk, the PSS’s dynamics is governed by the oscillatory dynamics and so ṙk(t) − F′

k(φk(t))φ̇k(t) = 0,
which is consistence with Equation (3.3) when the dissipative dynamics is zero.

When Fk(φk) = uk,0, the PSS is a limit cycle oscillator with constant angular velocity and a circle
of radius uk,0 as an attractor. As sketched in Figure 3.1, PSS may form more complicated and
interesting attractors.

3.2.2 Coupling Dynamics

The coupling dynamics is here given by the gradient of a positive semi-definite coupling potential
V(φ, r) > 0 (see Section 1.1.2 in [42] for precise definition). On V, we have the following hypothesis

φ = y1 and r = z1 , y, z ∈ R =⇒ V(φ, r) = 0

with φ = (φ1, . . . , φn), r = (r1, . . . , rn) and 1 = (1, . . . , 1). Bellow, we present two examples.

Example 1. Laplacian Potential Define V as

V(φ, r) :=
1

2
〈 r |Lcos r 〉 =

1

2

n∑

k=1

rk

n∑

j=1

lk,jrj cos(φk − φj) > 0
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φk

rk

Fig. 3.1: Sketch of an attractor for a PSS. The dynamics evolves at a constant angular velocity
φk(t) = wk t on the black thick curve.

with φ = (φ1, . . . , φn) and r = (r1, . . . , rn), and where the matrix Lcos has entries lk,j cos(φk −
φj) with L being the corresponding Laplacian matrix (L := D − A where D is the diagonal

matrix with dk,k :=
n∑

j=1

ak,j). Matrix Lcos is positive semi-definite since, by GERXGORIN’s

circle theorem [22], all its eigenvalues are positive (i.e. nonnegative). Explicitly, the coupling
dynamics for this potential is

ck

∂V

∂φk

(φ, r) = −ck

n∑

j=1

lk,j rkrj sin(φk − φj)

ck

∂V

∂rk

(φ, r) = ck

n∑

j=1

lk,j rj cos(φk − φj)

k = 1, . . . , n ,

where ck > 0 are coupling strengths.

B Potential Define V as

V(φ, r) :=
1

2

n∑

k,j=1

ak,j

(
Bk,j(φk − φj) + Bk,j(rk − rj)

)
> 0

with edge weights 0 6 ak,j = aj,k, and where functions Bk,j satisfy Bk,j(x) > 0, Bk,j(x) = 0 ⇔
x = 0, Bk,j(x) = Bk,j(−x) (i.e. even function) and 0 < B′′

k,j(0). As for the edge weights, we
here impose Bk,j ≡ Bj,k. For the functions Bk,j , one may take

Bk,j(x) = 1
2x2 Diffusion Bk,j(x) = cosh(x) − 1

Bk,j(x) = 1 − cos(x) Kuramoto-type Bk,j(x) = log(cosh(x))

Explicitly, the coupling dynamics for this potential is

ck

∂V

∂φk

(φ, r) = ck

n∑

j=1

ak,j B′
k,j(φk − φj)

ck

∂V

∂rk

(φ, r) = ck

n∑

j=1

ak,j B′
k,j(rk − rj)

k = 1, . . . , n

with coupling strengths ck > 0.

20



3.2.3 Adaptive Mechanisms

Here, adaptive mechanisms are additional interactions that modify the values of the local
parameters. For this, the fixed and constant parameters Ωk are now time-dependent (i.e.
Ωk = {wk, uk,0, uk,1, vk,1, . . . , uk,q, vk,q} ; (ωk(t), µk,0(t), µk,1(t), νk,1(t), . . . , µk,q(t), νk,q(t)) = Ωk(t),
for k = 1, . . . , n) and each have their own dynamics, depending only on state variables φ and r

that is, for all k, ∂Ak

∂Ωk

= 0 with 0 a 2 + 2q dimensional vector of 0.

Time scale Adaptive Mechanisms

For adaptation on ωk, we apply the same idea as developed in [46, 42] and so the explicit dynamics
is

Aω
k (φ, r) = −sωk

∂V

∂φk

(φ, r) k = 1, . . . , n ,

where sωk
> 0 are susceptibility constants, technically playing the role of coupling strengths but

with the following interpretation: the smaller the value of sωk
, the less the PSS is willing to modify

its value, and vice versa - the larger the value of sωk
, the more the PSS is willing to modify its value.

Amplitude Adaptive Mechanisms

Inspired by attractor-shaping mechanisms studied in [46, 42], we propose, for the PSS’s µk,0, µk,s

and νk,s, the following new adaptive mechanisms

A
µ0

k (φ, r) = −sµk,0

n∑

j=1

lk,j rj

∂Fj

∂µj,s

(φj) = −sµk,0

n∑

j=1

lk,j rj

A
µs

k (φ, r) = −sµk,s

n∑

j=1

lk,j rj

∂Fj

∂µj,s

(φj) = −sµk,s

n∑

j=1

lk,j rj cos(sφj)

Aνs

k (φ, r) = −sνk,s

n∑

j=1

lk,j rj

∂Fj

∂νj,s

(φj) = −sνk,s

n∑

j=1

lk,j rj sin(sφj)

s = 1, . . . , q ,

where lk,j are the entries of L and strictly positive sµk,0
, sµk,s

and sνk,s
are susceptibility constants.

3.3 Network’s Dynamical System with Time Scale and Amplitude
Adaptation

Combining the individual components discussed in Section 3.2 yields the global dynamical system

φ̇k = −ωk − ck

∂V

∂φk

(φ, r)

ṙk = −(rk − Fk(φk)) + F′
k(φk)ωk

︸ ︷︷ ︸

local dynamics

− ck

∂V

∂rk

(φ, r)

︸ ︷︷ ︸

coupling dynamics

ω̇k = −sωk

∂V

∂φk

(φ, r)

︸ ︷︷ ︸

time scale adaptive mechanisms

µ̇0,k = −sµk,0

n∑

j=1

lk,j rj

µ̇k,s = −sµk,s

n∑

j=1

lk,j rj cos(sφj)

s = 1, . . . , q

ν̇k,s = −sνk,s

n∑

j=1

lk,j rj sin(sφj)

︸ ︷︷ ︸

amplitude adaptive mechanisms

k = 1, . . . , n . (3.4)
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For Equations (3.4), we have q + 1 constants of motion, the existence of a consensual oscillatory
state and the convergence towards it.

q + 1 Constants of Motion

The functions

Jµ0
(µ0) =

n∑

k=1

µk,0

sµk,0

, Jµs
(µs) =

n∑

k=1

µk,s

sµk,s

, Jνs
(νs) =

n∑

k=1

νk,s

sνk,s

s = 1, . . . , q (3.5)

with µ0 = (µ0,1, . . . , µ0,n), µs = (µ1,s, . . . , µn,s) and νs = (ν1,s, . . . , νn,s) are constants of motion.
Indeed, if µ0(t), µs(t) and νs(t) for s = 1, . . . , q are orbits of Equations (3.4), then

d
[
Jµ0

(µ0(t))
]

dt
= −

n∑

k=1

(
n∑

j=1

lk,j rj

)
= 0 ,

d
[
Jµs

(µs(t))
]

dt
= −

n∑

k=1

(
n∑

j=1

lk,j rj cos(sφj)
)

= 0

d
[
Jνs

(νs(t))
]

dt
= −

n∑

k=1

(
n∑

j=1

lk,j rj sin(sφj)
)

= 0

by Lemma D.2 in [42]. If we further suppose that
n∑

j=1

∂V
∂φj

(φ, r) = 0 for all (φ, r) (and this is true

for both types of coupling potentials in Example 1), then Equations (3.4) admit another constant
of motion, namely

Jω(ω) =

n∑

j=1

ωj

sωj

(3.6)

with ω = (ω1, . . . , ωn).

Existence of a Consensual Oscillatory State

Equations (3.4) admit a consensual oscillatory state. Indeed, for given common constants Ωc =
(ωc, µc,0, µc,1, νc,1, . . . , µc,q, νc,q),

(
φk(t), rk(t), Ωk(t)

)
:=
(
ωc t, Fc(t),Ωc

)
k = 1, . . . , n (3.7)

is a consensual orbit of Equations (3.4), with here Fc taking the value Ωc. Indeed, since points
given by Equations (3.7) are extrema of the V, then the coupling dynamics and the adap-
tive time scale mechanisms are zero. Hence, ωk(t) is a constant taking value ωc for all k, and
(φk(t), rk(t)) = (ωc t, Fc(t)) solves each local dynamics and cancels all amplitude adaptive mech-
anisms for all k. Therefore (µk,0(t), µk,1(t), νk,1(t), . . . , µk,q(t), νk,q(t)) are constants taking, respec-
tively, common values (µc,0, µc,1, νc,1, . . . , µc,q, νc,q) for all k.

Convergence Towards a Consensual Oscillatory State

If perturbations are introduced in Equations (3.7), we have the following limit

lim
t→∞

‖
(
φk(t), rk(t), Ωk(t)

)
−
(
ωc t, Fc(t),Ωc

)
‖ = 0 ∀ k (3.8)

with constant Ωc. This limit raises two problems: determining the limit values Ωc and finding the
conditions for convergence.

Limit Values - If the constant of motion in Equation (3.6) exists and if Limit (3.8) holds, then,
thanks to all the other constants of motion in Equations (3.5), we have
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Jω(ω(0)) = lim
t→∞

Jω(ω(t)) = Jω( lim
t→∞

ω(t)) = Jω(ωc1) = ωc

n∑

j=1

1

sωj

Jµ0
(µ0(0)) = lim

t→∞
Jµ0

(µ0(t)) = Jµ0
( lim
t→∞

ρ(t)) = Jµ0
(µc,01) = µc,0

n∑

j=1

1

sµj,0

Jµs
(µs(0)) = lim

t→∞
Jµs

(µs(t)) = Jµs
( lim
t→∞

µs(t)) = Jµs
(µc,s1) = µc,s

n∑

j=1

1

sµj,s s = 1, . . . , q .

Jνs
(νs(0)) = lim

t→∞
Jνs

(νs(t)) = Jνs
( lim
t→∞

νs(t)) = Jνs
(νc,s1) = νc,s

n∑

j=1

1

sνj,s

Hence, the consensual values of Ωc are analytically expressed as

ωc =

n∑

j=1

ωj(0)
sωj

n∑

j=1

1
sωj

, µc,0 =

n∑

j=1

µj,0(0)
sρj

n∑

j=1

1
sµj,0

, µc,s =

n∑

j=1

µj,s(0)
sµj,s

n∑

j=1

1
sµj,s

, νc,s =

n∑

j=1

νj,s(0)
sνj,s

n∑

j=1

1
sνj,s

s = 1, . . . , q .

(3.9)
Convergence Conditions - To prove the convergence in Limit (3.8), one can linearize Equations
(3.4) around a consensual oscillatory state. In general, the resulting n(4+2q)×n(4+2q) Jacobian
depends explicitly on time (since evaluated on a consensual oscillatory state) and therefore Flo-

quet exponents have to be computed. Note that for certain coupling potentials V and assumptions
on the coupling strengths and susceptibility constants, the Jacobian can be diagonalized in order
to reduce the computation of Floquet exponents to n systems, each of size n(4+2q)×n(4+2q).

We emphasize that numerous numerical simulations show that Limit (3.8) holds - and this for dif-
ferent topologies, coupling potential and values of coupling strengths and susceptibility constants.
For these numerical experiments, the coupling strengths were set around one and susceptibility
constants around 0.1.

Remark: Adaptation

Here, adaptation is to be interpreted as an asymptotic stability problem, which is directly related
to the study of Limit (3.8). Indeed, for initially different PSS, if Limit (3.8) holds, then the adap-
tive mechanisms, with the help of the coupling dynamics, drive all the local systems towards a
consensual oscillatory state as defined in Equations (3.7). Once this state is reached, the coupling
dynamics, as well as the adaptive mechanisms, may be removed - and all PSS will still continue
to deliver the same signal with the same time scale (i.e. local system are no longer dependent on
their environment to produce common dynamical patterns). This is because the values Ωk have
been permanently modified (i.e. lim

t→∞
Ωk(t) = Ωc). If the adaptive mechanisms are not switched on

initially, dynamical patterns may occur (due to the coupling dynamics) - but these are maintained
because of the network interactions. If the interactions are removed, all PSS converge back towards
their own shape, which is determined by Kk and their own time scale, given by wk.

With the adaptive mechanisms as defined in Section 3.2.3, the consensual values Ωc only depend
on the susceptibility constants and the initial values Ωk(0), but not on the network topology (i.e.
not on ak,j) or the initial conditions (φk(0), rk(0)).

3.3.1 Miscellaneous Remark: Time Scale or Amplitude Adaptation Only

We present here two alternatives of System (3.4). One alternative concerns amplitude rk adaptation
only (Section 3.3.1.1), whereas the other deals with time scale ωk adaptation only (Section 3.3.1.2).

3.3.1.1 Amplitude Adaptation Only

Consider Equations (3.4) with no phases φk (and hence no time scale adaptive mechanisms), and
for each local PSS, let φk(t) = t for all k. The system becomes
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ṙk = −(rk − Fk(t)) + Ḟk(t)
︸ ︷︷ ︸

local dynamics

− ck

∂V

∂rk

(r)

︸ ︷︷ ︸

coupling dynamics

µ̇0,k = −sµk,0

n∑

j=1

lk,j rj

µ̇k,s = −sµk,s
cos(s t)

∂V

∂rk

(r)
s = 1, . . . , q

ν̇k,s = −sνk,s
sin(s t)

∂V

∂rk

(r)

︸ ︷︷ ︸

amplitude adaptive mechanisms

k = 1, . . . , n . (3.10)

with Fk(t) =
q∑

s=1
µk,s cos(s t) + νk,s sin(s t). Note that for Equations (3.10) we still have q +

1 constants of motion (as given in Equations (3.5)), the existence of a consensual oscilla-
tory state

(
rk(t), Ωk(t)

)
:=

(
Fc(t),Ωc

)
for k = 1, . . . , n, and the convergence towards it (i.e.

lim
t→∞

‖
(
rk(t), Ωk(t)

)
−
(
Fc(t),Ωc

)
‖ = 0 ∀ k) as observed by numerous numerical simulations.

A priori, Equations (3.10) describe a system where adaptation only occurs on the shape of the
local attractors. However, by adequately setting the value of one or several constants of motion in
Equations (3.5), one can cancel the asymptotic values of the corresponding coefficients. Thus, by
changing the shape of the signal, one can change its frequency.

3.3.1.2 Time scale Adaptation Only

We here remark that PSS (i.e. belonging to the class of PR System) can be slightly modified in
order to be seen as Ortho-Gradient (OG) systems. For a precise definition and examples, see Section
1.1.1 in [42]. Briefly, OG systems are characterized by dissipative dynamics that are orthogonal to
their canonical - or here, oscillatory - dynamics. Let us consider the following network of PSS that
are also OG systems, and where there is only time scale adaptation

φ̇k = ωk + (rk − F(φk))F′(φk) − ck

∂V

∂φk

(φ)

︸ ︷︷ ︸

coupling dynamics

ṙk = ωkF′(φk) − (rk − F(φk))
︸ ︷︷ ︸

local dynamics

ω̇k = −sωk

∂V

∂φk

(φ)

︸ ︷︷ ︸

time scale adaptive mechanisms

k = 1, . . . , n . (3.11)

As shown in Lemma 1.1 in [42], each local dynamics in Equations (3.11), taken individually, pos-
sesses its own attractor given by K. Networks of OG systems with adapting angular velocities have
been studied. For the particular type of coupling dynamics and time scale adaptive mechanisms
(i.e. only on variables φk), one can directly apply Proposition 2.2 in [42] to show that System (3.11)
converges towards a consensual oscillatory state with consensual value ωc as in Equations (3.9).
For this convergence, one needs to suppose that 〈1 | ∇V(φ) 〉 = 0 for all φ and to make a technical
hypothesis on V.

3.4 Numerical Simulations

We report two sets of numerical simulations one with time scale and amplitude adaptation (refer
to Section 3.4.1) and one with amplitude adaptation only (refer to Section 3.4.2).
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3.4.1 Time Scale and Amplitude Adaptation

We consider 39 PSSs as in Equations (3.4) with network topology as in Figure 3.2(a). Here, each

PSS is given by Fk(φ) =
3∑

s=1
µk,s cos(s φ) + νk,s sin(s φ) for k = 1, 2 (i.e. s = 3). The coupling

strengths and the susceptibility constants are ck = 1, sωk
= sµk,0

= sµk,s
= 0.1 for k = 1, . . . , 39

and s = 1, 2, 3. A Laplacian potential, as in Example 1, is used for the coupling dynamics. The ini-
tial conditions (rk(0), φk(0), ωk(0), µk,0(0), µk,1(0), νk,1(0), µk,2(0), νk,2(0), µk,3(0), νk,3(0)) are randomly
uniformly drawn from ]Fk(0)− 0.225, Fk(0) + 0.225[×]− 0.225, 0.225[×]1− 0.225, 1 + 0.225[×]2−
0.225, 2 + 0.225[×]5− 0.225, 5 + 0.225[×]− 3− 0.225, −3 + 0.225[×]− 7 − 0.225, −7 + 0.225[×]−
5 − 0.225, −5 + 0.225[×]− 3 − 0.225, −3 + 0.225[×]7− 0.225, 7 + 0.225[.

The resulting dynamics for the variables rk and ωk is shown in Figure 3.3 and for variables µk,s and
νk,s for s = 1, 2, 3 in Figure 3.4. Note that the variables rk converge quickly to a common signal
where as the variables Ωk take more time to converge towards their asymptotic values. This is due
to a relatively strong coupling strength compared to the susceptibility constants. For this set up,
we have always observed converges towards a consensual oscillatory state. With the same set up,
but with a network as in Figure 3.2(b), convergence was not observed for all numerical experiments
as we report in Figures 3.5 and 3.6. However, for the exact the same initial conditions as in Figures
3.5 and 3.6, if all adaptive mechanisms are switched off (i.e. all susceptibility constants are zero),
the network is still able to synchronize as shown in Figure 3.7.

(a) (b)

Fig. 3.2: Two 39-vertex Network Topologies, “Manhattan” (Figure 3.2(a)) and Kïıvs~ke Metro
(Figure 3.2(b)).

3.4.2 Amplitude Adaptation Only

Two PSSs with amplitude adaptation only as in Equations (3.10) are considered, with here Fk(t) =
3∑

s=1
µk,s cos(s t)+ νk,s sin(s t) for k = 1, 2 (i.e. s = 3). The coupling strengths and the susceptibility

constants are ck = 2, sωk
= sµk,0

= sµk,s
= 0.5 for k = 1, 2 and s = 1, 2, 3. The coupling potential is

V(r) := (r1−r2)
2

2 . The initial conditions (rk(0), µk,0(0)) are randomly uniformly drawn from ]Fk(0)−
0.2, Fk(0) + 0.2[×]0.8, 1.1[ for k = 1, 2, (µ1,3(0), ν1,3(0), µ2,3(0), ν2,3(0)) are randomly uniformly
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Fig. 3.3: Time evolution of rk (Figure 3.3(a)) and ωk (Figure 3.3(b)) for 39 PSSs, interacting
through the network in Figure 3.2(a).

drawn from ]2.8 − 0.2, 3.2[×]4.8, 5.2[×]4.8, 5.2[×] − 7.2, −6.8[, (µ1,1(0), ν1,1(0), µ1,2(0), ν1,2(0)) =
(2,−2,−1, 1) and (µ2,1(0), ν2,1(0), µ2,2(0), ν2,2(0)) = (−2, 2, 1,−1).

The resulting dynamics for the variables rk, µk,1 and νk,2 is shown in Figure 3.8. For t ∈ [0, 15],
the coupling dynamics and the adaptive mechanisms are switched off and so each PSS generates
its individual signal. Because of the choice of the initial conditions (µk,s(0)), νk,s(0)) k, s = 1, 2,
the asymptotic values are (µc,s(0)), νc,s(0)) = (0, 0) for s = 1, 2, and so both amplitudes r1(t) r2(t)

converge towards Fc(t) = µc,3 cos(3 t) + νc,3 sin(3 t) (i.e. Fourier series with mode cos(3 t) and
sin(3 t) only). As a consequence, Fc(t) has a higher frequency than any of the two signals before
interactions are switched on. This is observed in Figure 3.8(a) where the two signals have a larger
period in the interval [0, 15] than when they are close to Fc(t).

3.5 Conclusion

PSS form a suitable class of system to investigate interaction of multi signal dynamics. Whereas
adapting the time scale is a fairly straightforward procedure, shaping the attractor is more compli-
cated. Nevertheless, our dynamical systems show that this can be implemented in a robust manner.
The adaptive mechanisms dependent solely on the state variables and no pre-calculations or infor-
mation on the curvature of the attractor is needed.

The asymptotic values from the resulting dynamics are analytically calculable. The network’s topol-
ogy and the nature of the coupling potential itself directly influence the conditions for attaining
a consensual oscillatory state. Determining basins of attraction with respects to the connectivity
and coupling functions are still open questions.

Apart from investigating the resulting dynamics for directed network connections with time-
dependent edges, perspective works also include merging two adapting PSS communities - one
belonging to the class of systems given by Equations (3.4), and the other described by Systems
(3.10).

Appendix

3.A Convergence Towards Compact Set K

The convergence towards the compact set K := {(φ, r) ∈ S1 × R | r − F(φ) = 0} follows from
L�PUNOV’s second method with L�PUNOV function

L(φ, r) =
1

2
(r − F(φ))2 > 0 .
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Fig. 3.4: Time evolution of µk,0 (Figure 3.4(a)), µk,1 and νk,1 (Figures 3.4(b) & 3.4(c)), µk,2 and
νk,2 (Figures 3.4(d) & 3.4(e)) and µk,3 and νk,3 (Figures 3.4(f) & 3.4(g)) for 39 PSSs, interacting
through the network in Figure 3.2(a).
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Fig. 3.5: Time evolution of rk (Figure 3.5(a)) and ωk (Figure 3.5(b)) for 39 PSSs, interacting
through the network in Figure 3.2(b).

By construction, we have that K = {(φ, r) ∈ S1 × R | L(φ, r) = 0}. Computing the time derivative

〈∇L(φ, r) | (φ̇, ṙ) 〉 = −(r − F(φ))F′(φ) φ̇ + (r − F(φ)) ṙ

= −(r − F(φ))F′(φ)w + (r − F(φ))
(
− (r − F(φ)) + F′(φ)w

)

= −(r − F(φ))2 .

Hence, 〈∇L(φ, r) | (φ̇, ṙ) 〉 < 0 for all (φ, r) ∈ (S1 × R) \ K.
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Fig. 3.6: Time evolution of µk,0 (Figure 3.6(a)), µk,1 and νk,1 (Figures 3.6(b) & 3.6(c)), µk,2 and
νk,2 (Figures 3.6(d) & 3.6(e)) and µk,3 and νk,3 (Figures 3.6(f) & 3.6(g)) for 39 PSSs, interacting
through the network in Figure 3.2(b).
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Fig. 3.7: Time evolution of rk for 39 PSSs with all their adaptive mechanisms switched off (i.e. all
susceptibility constants are zero), interacting through the network in Figure 3.2(b).
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Fig. 3.8: Time evolution of rk (Figure 3.8(a)), µk,1 (Figure 3.8(b)) and νk,2 (Figure 3.8(c)) for two
PSSs. Coupling dynamics and adaptive mechanisms are switched on at t = 15 (black solid line).
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4

Frequency Adaptation in Networks of Vibrating-Oscillatory
Systems

Mais toute une plage vibrante de soleil se pressait
derrière moi.

Albert Camus

Abstract

We study a complex system composed of damped vibrational systems and phase oscillators inter-
acting through heterogenous coupling functions. We introduce adaptive mechanisms that modify
the value of each parameter controlling the phase oscillator’s frequency. Thanks to the adaptive
mechanisms and the coupling dynamics, the system converges towards a common oscillatory state
in which all phase oscillators share a constant and common frequency - and continue to oscillate
as such even if all interactions are removed. For comparison’s sake, the same system is consid-
ered without the adaptive mechanisms. In both cases and for undirected networks, the common
frequency of all heterogenous local systems is independent of the underlying connecting topology
and is analytically calculated. In some cases, the convergence is proven analytically - in other
cases, numerical simulations show the emergence of common dynamical patterns. We report nu-
merical simulations displaying the adaptive mechanisms’ transient and corroborate the asymptotic
theoretical assertions.

4.1 Introduction

The theory of vibrational systems models the dynamics of periodic motion, commonly found in
different parts of robots and automatic machines. As typical examples, consider arms or legs of a
robot or devices in production chains with pick-and-place mechanisms.

Consider a robot dog as sketched in Figure 4.1(a) and concentrate on one of its legs, outlined
in Figure 4.1(b). Broadly put, the leg’s motion corresponds to an elementary damped vibrating
system (DVS) described by Equation (4.1) with fixed parameters q and f depending on engineering
contingencies.

θ̇ = q

ṙ = −fr .
(4.1)

For the leg to move, it must be set into motion by an engine. From a dynamical system point of
view, this can be conceptualized via a DVS being “entrained” by an external phase oscillator (PO)
φ(t) = w t as in



(a)

︸ ︷︷ ︸

r cos(θ)

(b)

Fig. 4.1: Qualitative sketch of a robot dog (Figure 4.1(a)) and one of its legs (Figure 4.1(b)).

Entrainment







θ̇ = q − r sin(θ − φ)

ṙ = −fr + r cos(θ − φ)

φ̇ = w

(4.2)

with fixed parameter w controlling the frequency and the “entrained solution” being

θ(t) = w t + ϑ r(t) = r̄ φ(t) = w t + ϕ

with ϑ = 1
2 sin−1(2(q−w)f)+ϕ, ϕ = φ(0) ∈ [0, 2π[ and r̄ =

√
1−2(q−w)f+

√
1+2(q−w)f

2f
(see Appendix

4.A). The coupling of a DVS with a PO as in Equation 4.2 is here known as a vibrating-oscillatory
system (VOS): “vibrating” refers to the DVS and “oscillatory” to the PO. It is well known from
the theory of vibrational systems1 that for the dog to move with maximum leg stride - or equiva-
lently, for maximum amplitude response r - the DVS must be entrained (i.e. forced/excited) at its
resonance frequency (here setting the value of w to equal q).

However, fixing w to its appropriate value once and for all is not realistic. Indeed, depending on
the environment, DVSs may endure structural changes, implying that the values of q and f will
be modified. As an example, consider the case represented in Figure 4.2. The robot dog in Figure
4.1(a) is sent out to collect and bring back a box of bottles. On its way towards its target (i.e.
collecting the box of bottles), each PO’s frequency is set at its corresponding DVS’s resonant fre-
quency, and hence guaranteeing maximum leg stride. However, once the robot is loaded (i.e. with
a box of bottles on its back), the values of q and f change due to the new setting. Hence, on its
way back, each PO is no longer entraining its corresponding DVS at its resonant frequency, and
therefore maximum leg stride is no longer attained.

We are therefore faced with the following problem

If q changes, what can be done to its corresponding PO (i.e. to φ̇ = w) to ensure resonance?

A first approach is to feed information from the DVS back to its PO in oder to “synchronize” the
phases θ and φ. For this, we consider a VOS of the form

Synchronization







θ̇ = q − r sin(θ − φ)

ṙ = −fr + cos(θ − φ)

φ̇ = w − r sin(φ − θ)

(4.3)

with the “synchronized solution” being

θ(t) =
q + w

2
t + ϑ r(t) = r̄ φ(t) =

q + w

2
t + ϕ

1 It can also been seen directly from the entrained solution.
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Going to target
q = w

(a)

Loading
q 7→ q̌

f 7→ f̌

(b)

Coming back
q̌ 6= w

(c)

Fig. 4.2: The robot dog on its way to collect the box of bottles (Figure 4.2(a)) - value of w set to
q, guaranteeing maximum leg stride. The box of bottles is loaded on the robot dog’s back (Figure
4.2(b)) - change in values of q 7→ q̌ and f 7→ f̌. The robot dog comes back (Figure 4.2(c)) - value w

does not equal new value q̌, maximum leg stride is no longer attained.

with ϑ = θ(0)+φ(0)
2 + 1

4 sin−1((q − w)f), ϕ = θ(0)+φ(0)
2 + 1

4 sin−1((w − q)f) and r̄ =√
1−(q−w)f+

√
1+(q−w)f

2f
(see Appendix 4.A). Although there is a gain in amplitude response from

the entrained solution, maximum leg stride is not attained, and this because

lim
t→∞

φ̇(t) =
q + w

2
6= q .

Note also that if |q − w| is too large (i.e. a considerable structural change occurs, here the heavy
load), then phase synchronization is no longer possible.

To overcome this problem and to follow what has been proposed in [13, 41], let the PO adapt its
frequency to the value q. That is, consider a VOS with an adaptive frequency mechanism

Adaptation







θ̇ = q − r sin(θ − φ)

ṙ = −fr + cos(θ − φ)

φ̇ = ω

ω̇ = −r sin(φ − θ)
︸ ︷︷ ︸

adaptive frequency mechanisms

(4.4)

with the “adapted solution” being

θ(t) = q t + ϑ r(t) =
1

f
φ(t) = q t + ϕ ω(t) = q

with ϑ = ϕ = θ(0) + φ(0) − q. Not only do the phases θ and φ have the same frequency q, but
they are also fully synchronized (i.e. in phase). As a consequence, r(t) = 1

f
, which corresponds to

its maximum amplitude, leading to the maximum leg stride. A L�PUNOV function (see Appendix
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4.B) proves that for initially different ω(0) := w 6= q, then lim
t→∞

ω(t) = q.

Hence, the PO entrains its DVS at resonant frequency, thus guaranteeing maximum amplitude
response. Furthermore, once this state is reached, the adaptive frequency mechanisms r sin(θ − φ)
can be removed and the PO will still continue to force its DVS at frequency q. This means that the
PO permanently modified its frequency. This has to be contrasted with the phase synchronization
approach, where the synchronized frequency q+w

2 is maintained only via persistent coupling.

Modifying the values of parameters through additional network interactions has attracted much
attention as a research field. In the context of networks of coupled dynamical systems, different
types of adaptation may exist. Tuning the coupling strength [36] or modifying the underlying topol-
ogy for enhancing synchronization [18] are among the generic examples directly involving network
characteristics. At the level of the local systems, adaptation may occur for frequency or time scale
controlling parameters [20, 56, 21, 45] or for shaping the local attractors [46].

There have been recent publications on frequency adaptation in noisy [57], time delayed [47], or
time-dependent [42] environments. However, in all these contributions, the authors considered a
collection of interacting homogeneous local systems (i.e. same functional determining local dynam-
ics). In the present contribution, our goal has been to explore frequency adaptation in a collection
of interacting local units which are divided into two distinct communities. The general form of the
dynamical system discussed is

θ̇k = P1(θk, rk; ∆k) − ak

∂E

∂θk

(θ, r, φ, h)

ṙk = R1(θk, rk; ∆k)
︸ ︷︷ ︸

local dynamics (type 1)

− bk

∂E

∂rk

(θ, r, φ, h)

φ̇k = P2(φk, hk,Ωk) − ck

∂E

∂φk

(θ, r, φ, h)

ḣk = R2(φk, hk,Ωk)
︸ ︷︷ ︸

local dynamics (type 2)

− dk

∂E

∂hk

(θ, r, φ, h)

︸ ︷︷ ︸

coupling dynamics

Ω̇k = Ak(θ, r, φ, h)
︸ ︷︷ ︸

adaptive mechanisms

k = 1, . . . , n (4.5)

with θ = (θ1, . . . , θn), r = (r1, . . . , rn), φ = (φ1, . . . , φn), h = (h1, . . . , hn), and (P1, R1) and (P2, R2)
belonging, respectively, to the same class of PR systems (i.e phase-radius system for which one has
limit cycle oscillators, damped vibrational systems, etc . . . ) - and where E(θ, r, φ) > 0 is a cou-
pling potential. While the parameters ∆k of the first community (i.e. local dynamics (type 1)) are
fixed and constant, the parameters Ωk of the second community (i.e. local dynamics (type 2)) are
time-dependent and have their own dynamics governed by the adaptive mechanisms Ak (i.e. they
acquire the status of variables of the global dynamics).

For Equations (4.5), when the first community is removed (i.e. P1 ≡ R1 ≡ 0), the complex systems
reduces to a homogenous collection of self-adapting PR for which a general framework has been
considered in [42]. On the other hand, when the second community is removed (i.e. P2 ≡ R2 ≡ 0),
Equations (4.5) describe the classical framework of interacting homogeneous units (with different
parameters), for which the observation of emergence of dynamical patterns is of interest. Hence,
the natural idea arises of merging the two communities. Heterogenous complex systems where each
component adapts at least one of its local parameters have been analytically discussed in [45].
Closely related to the present note, All-to-All coupled switches and phase oscillators with adapting
frequencies have been studied in [21], where synchronization features similar to homogenous cases
are observed. The aim here is therefore to investigate the dynamics of a community that not only
interacts and adapts among itself but must also interact and adapt to the other community, and
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this via arbitrary network topologies.

This contribution is organized as follows: In Section 4.2, we give explicit forms of the three com-
ponents of the local dynamics, coupling dynamics and adaptive mechanisms. Together, these com-
ponents form the global dynamical system of interest for which Section 4.3 provides analytical
asymptotic behaviors for different regimes. Numerical simulations are presented in Section 4.5. We
conclude and discuss perspective works in Section 4.6.

4.2 Networks of Damped Vibrational Systems and Phase Oscillators
with Adaptive Mechanisms

The general form of the dynamical system we focus on is

θ̇k = qk − ak

∂E

∂θk

(θ, r, φ)

ṙk = −fkrk
︸ ︷︷ ︸

local dynamics (DVS)

− Uk(θ, r, φ)

φ̇k = ωk
︸︷︷︸

local dynamics (PO)

− ck

∂E

∂φk

(θ, r, φ)

︸ ︷︷ ︸

coupling dynamics

ω̇k = −sk

∂E

∂φk

(θ, r, φ)

︸ ︷︷ ︸

adaptive mechanisms

k = 1, . . . , n (4.6)

with θ = (θ1, . . . , θn), r = (r1, . . . , rn) and φ = (φ1, . . . , φn) and the constituting elements are local
dynamics, coupling dynamics and adaptive mechanisms.

Local Dynamics Consider a 2n-vertex network where n vertices are endowed with a damped
vibrating system (DVS) - local dynamics (type 1), - and the n other vertices have a phase
oscillator (PO) - local dynamics (type 2)

θ̇k = qk

ṙk = −fkrk

φ̇ = ωk

damped vibrating system (DVS) phase oscillator (PO)

k = 1, . . . , n .

Here, qk and 0 < fk are fixed and constant parameters controlling, respectively, the frequency
of the vibrations and its relaxations rate. The ωk are variables of the global system with their
own dynamics determined by the adaptive mechanisms (see below). For the local dynamics
(Type 2), the radius dynamics is here R2 ≡ 0.

Coupling Dynamics The interactions between the phases θk and φk are characterized by the
respective coordinates of a coupling potential E(θ, r, φ) > 0. The rk are coupled through the
vertex-dependent function Uk defined as

Uk(θ, r, φ) = −
(
fkrk + bk

∂E

∂rk

(θ, r, φ)
)

k = 1, . . . , n .

Here, ak, bk, ck > 0 are coupling strengths. On E we make the following hypothesis

Hypothesis 1

I For rk > 0,

θk = φj and rk =
bk

fk
∀ k, j ⇐⇒ E(θ, r, φ) = 0
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II
n∑

k=1

( ∂E

∂θk

(θ, r, φ) +
∂E

∂φk

(θ, r, φ)
)

= 0 ∀ (θ, r, φ)

III for λ̄ = (θ̄1, . . . , θ̄n, b1

f1
, . . . , bn

fn
, φ̄1, . . . , φ̄n) with θ̄k = φ̄j ∀ k, j, suppose that

θk = φj and rk = 0 ∀ k, j ⇐⇒ 〈λ |D2E(λ̄)λ〉 = 0

with λ = (θ, r, φ) and where D2 is the second total derivative operator

Adaptive Mechanisms Inspired by the adaptive mechanisms studied in [42], the frequency of
each PO adapts via the partial derivative of E with respect to φk. Fixed and constant suscep-
tibility constants 0 < sk are technically the same as ck but have another interpretation. For
“small”-valued sk, the PO is unwilling to change its frequency. On the other hand, “large”-
valued sk correspond to a PO that is willing to modify its frequency.

Note that System (4.6) can be rewritten in a compact form as

θ̇k = qk − ak

∂E

∂θk

(θ, r, φ)

ṙk = −bk

∂E

∂φk

(θ, r, φ)

φ̇k = ωk − ck

∂E

∂φk

(θ, r, φ)

ω̇k = −sk

∂E

∂φk

(θ, r, φ)

k = 1, . . . , n . (4.7)

Equations (4.7) encompass coupled vibrating-oscillatory systems (VOS) which we discuss bellow.

4.2.1 Network of Vibrating-Oscillatory Systems

Defining the coupling potential as

E(θ, r, φ) =

n∑

k=1

Qk(θk, rk, φk) + W(θ, r) + V(φ) ,

System (4.7) becomes

θ̇k = qk − ak

∂Qk

∂θk

(θk, rk, φk) − ak

∂W

∂θk

(θ, r)

ṙk = − bk

∂Qk

∂rk

(θk, rk, φk) − bk

∂W

∂rk

(θ, r)

φ̇k = ωk − ck

∂Qk

∂φk

(θk, rk, φk)

︸ ︷︷ ︸

vibrating-oscillatory system

− ck

∂V

∂φk

(θ, r)

︸ ︷︷ ︸

network interactions

ω̇k = − sk

(∂Qk

∂φk

(θk, rk, φk) +
∂V

∂φk

(φ)
)

︸ ︷︷ ︸

adaptive mechanisms

k = 1, . . . , n . (4.8)

DVSs and POs are locally coupled to create vibrating-oscillatory systems (VOS). In this framework,
Equations (4.8) is to been seen as a n-vertex network where each node is endowed with a VOS.
For a collection of coupled VOS, we further suppose that the functions Qk fulfill the following
properties:

Hypothesis 2

Qk(θk, rk, φk) > 0 ∀ (θk, rk, φk)
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III for rk > 0

θk = φk and rk =
bk

fk
⇐⇒ Qk(θk, rk, φk) = 0

III for all k,
∂Qk

∂θk

(θk, rk, φk) = −∂Qk

∂φk

(θk, rk, φk) ∀ (θk, rk, φk)

IV −bk

∂Qk

∂rk

(θk, rk, φk) = −fkrk + Yk(θk, rk, φk)

V for λ̄k := (θ̄k, bk

fk
, φ̄k) with θ̄k = φ̄k,

θk = φk and rk = 0 ⇐⇒ 〈λk |D2Qk(λ̄k)λk 〉 = 0

with λk = (θk, rk, φk) and where D2Qk(λ̄k) is the 3 × 3 Hessian of Qk evaluated at
(θ̄k, bk

fk
, φ̄k)

We now present an example of local coupling function Qk.

Example 2. Define Qk as

Qk(θk, rk, φk) = S(

√

fk

bk

rk,

√

fk

bk

bk

fk
, θk, φk) =

1

2

( fk

bk

r2
k +

bk

fk
− 2rk cos(θk − φk)

)

with

S(x, y, θ, φ) =
1

2
〈
(

x

y

)

|
(

1 − cos(θ − φ)
− cos(θ − φ) 1

)(
x

y

)

〉

for real numbers x, y, and θ and φ belonging to S1.

The properties in Hypothesis 2 are explicitly verified in Appendix 4.B. Additionally to the local
interaction, both the DVS and PO interact with their likes (and only with their likes) through their
own n-vertex network via the gradients of W(θ, r) and V(φ) respectively. To picture this, consider
the sketch in Figure 4.3.

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7

(b)

1

2

3

4

5

6

7

(c)

represents a PO represents a DVS

Fig. 4.3: A connected network characterizing the interactions for the PO (Figure 4.3(a)). An
unconnected network characterizing the interactions for the DVS (Figure 4.3(b)). Each PO is
coupled to one (and only one) DVS (gray arrows) forming a VOS-interacting network (Figure
4.3(c)).

We now present an explicit example for W and V that, together with the Qk, fulfill Hypothesis 1
(refer to Appendix 4.C).
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Example 3. Define W and V as

W(θ, r) =
1

2

(
n∑

k=1
j>k

ak,jS(
rkfk

bk

,
rjfk

bj

, θk, θj) and V(φ) =

n∑

k,j=1

a
φ
k,jBk,j(φk − φj)

)
> 0

with edge weights 0 6 ak,j = aj,k, function S defined as in Example 2, other edge weights 0 6

a
φ
k,j = a

φ
j,k and where functions Bk,j satisfy Bk,j(x) > 0, Bk,j(x) = 0 ⇔ x = 0, Bk,j(x) = Bk,j(−x)

(i.e. even function) and 0 < B′′
k,j(0). As for the edge weights, we here impose Bk,j ≡ Bj,k. For the

functions Bk,j , one may take

Bk,j(x) = 1
2x2 Diffusion Bk,j(x) = cosh(x) − 1

Bk,j(x) = 1 − cos(x) Kuramoto-type Bk,j(x) = log(cosh(x)) .

With Examples 2 and 3, System (4.8) becomes

θ̇k = qk − akrk sin(θk − φk) + ak

n∑

j=1

lk,jrkrj

fk

bk

fj

bj

sin(θk − θj)

ṙk = −fkrk − bk cos(θk − φk) − bk

n∑

j=1

lk,jrj

fk

bk

fj

bj

cos(θk − θj)

φ̇k = ωk − ckrk sin(φk − θk)
︸ ︷︷ ︸

vibrating-oscillatory system

− ck

n∑

j=1

a
φ
k,jB

′
k,j(φk − φj)

︸ ︷︷ ︸

network interactions

ω̇k = − sk

(
n∑

j=1

a
φ
k,jB

′
k,j(φk − φj)

)

︸ ︷︷ ︸

adaptive mechanisms

k = 1, . . . , n , (4.9)

where lk,j are the entries of the associated Laplacian matrix (i.e. lk,j = −ak,j 6 0 and

lk,k =
n∑

j 6=k

ak,j). As mentioned above, Equations (4.9) describe the dynamics of two interacting

networks merged together. Through one adjacency matrix (with entries ak,j), DVS are coupled
among themselves just as the POs interact with their likes via another adjacency (with entries

a
φ
k,j). Each DVS is coupled to one and only one PO (via its corresponding Qk function).

4.3 Network’s Dynamical System

We now analytically discuss some dynamics belonging to System (4.7). We distinguish between
adaptation and synchronization. For both, we analyze the system for a collection of homogeneous
q-DVSs and heterogeneous qk-DVSs.

4.3.1 Adaptation

In this section we study Equations (4.7) when sk > 0 for all k. Remark that in this case, System
(4.7) possesses a “pseudo” constant of motion.

“Pseudo” Constant of Motion

If θk(t) and ωk(t) solve Equations (4.8) for all k, then

n∑

k=1

(θk(t)

ak

+
ωk(t)

sk

)
=
(

n∑

k=1

qk

ak

)
t + K
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with K :=
n∑

k=1

( θk(0)
ak

+ ωk(0)
sk

)
. Indeed, calculating the derivative with respect to t gives (omitting

the arguments of the functions)

n∑

k=1

( θ̇k(t)

ak

+
ω̇k(t)

sk

)
=

n∑

k=1

(qk

ak

− ∂E

∂θk

− ∂E

∂φk

)
=

n∑

k=1

qk

ak

−
n∑

k=1

∂W

∂θk

+
∂W

∂φk

and by Hypothesis 1 II we have
n∑

k=1

∂W
∂θk

+ ∂W
∂φk

= 0.

4.3.1.1 Adaptation in Homogenous q-DVSs

Here we study Equations (4.7) when all DVSs have the same vibrating frequency (i.e. q = qk for
all k). We first discuss the existence of a consensual oscillatory state, then the convergence towards
it.

Existence of a Consensual Oscillatory State

Due to the left-hand side implication in Hypothesis 1 I, θk(t) = φj (t) and rk(t) = bk

fk
for all k, j and

t is an extremum of E, so that it cancels the coupling dynamics. Therefore, Equations (4.8) possess
a consensual oscillatory state of the form

(
θk(t), rk(t), φk(t), ωk(t)

)
=
(
q t,

bk

fk
, q t, q

)
. (4.10)

As stated in [42, 45], adaptation can be interpreted as a stability problem of a particular state.
Therefore, we want to study the asymptotic stability of Orbit (4.10). That is, if the network
interactions and adaptive mechanisms are switched on, do we have

lim
t→∞

|θk(t)−φk(t)| = 0 , lim
t→∞

|φj (t)−φk(t)| = 0 , lim
t→∞

rk(t) =
bk

fk
and lim

t→∞
ωk(t) = q ∀ k, j ?

(4.11)
In the context of a network of VOSs, Limit (4.11) is interpreted as follows: once a consensual state
is reached, all VOSs oscillate with the same frequency q and this even if network interactions and
adaptive mechanisms are removed. Hence, from an array of homogenous DVSs and coupled POs
with initially different frequencies, network interactions and adaptive mechanisms drive the global
system towards a synchronized oscillating state where each individual VOS no longer depends on
its environment to maintain synchronization.

Convergence Towards a Consensual Oscillatory State

The convergence is proven in Lemma 1. For this lemma, we need to define the nonempty and
compact set

K := {(θ, r, φ, ω) ∈ (S1)n × R
n
>0 × (S1)n × R

n | (θ, r, φ) ∈ M andω = q1} ,

where M is the consensual compact submanifold defined as

M := {(θ, r, φ) ∈ (S1)n × R
n
>0 × (S1)n |M(θ, r, φ) = 0}

with M(θ, r, φ) =
(
L̂(θ, φ)⊤, r − b

f

)
, and where L̂ is an (2n− 1) × 2n matrix with l̂k,k = 2n− 1 for

k = 1, . . . , 2n − 1, and where all other entries are −1, and b
f

= ( b1

f1
, . . . , bn

fn
)⊤. An element λ in M

is such that

θk = φj , rk =
bk

fk
and ωk = q ∀ k, j .

Lemma 1. For coupling potentials E in Equations (4.8) fulfilling Hypothesis 1, then there exists a
neighborhood U of K such that all orbits (θ(t), r(t), φ(t), ω(t)) solving Equations (4.8) (here q = qk

for all k) with initial conditions in U converge towards K.
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Proof. The convergence towards K follows from L�PUNOV’s second method with L�PUNOV func-
tion

L(θ, r, φ, ω) = E(θ, r, φ) +
1

2

n∑

k=1

(ωk − q)2

sk

> 0 .

We then have that K = {(θ, r, φ, ω) ∈ (S1)n × Rn
>0 × (S1)n × Rn | L(θ, r, φ, ω) = 0}. The time

derivation of
d
[
L(θ(t),r(t),φ(t),ω(t))

]

dt
is (omitting the dependence on time and the arguments of the

functions)

〈∇L(θ, r, φ, ω) | (θ̇, ṙ, φ̇, ω̇)⊤ 〉 =

n∑

k=1

∂L

∂θk

θ̇k +

n∑

k=1

∂L

∂rk

ṙk +

n∑

k=1

∂L

∂φk

φ̇k +

n∑

k=1

∂L

∂ωk

ω̇k

with
n∑

k=1

∂L

∂θk

θ̇k =

n∑

k=1

∂E

∂θk

·
(
q − ak

∂E

∂θk

) = q

n∑

k=1

∂E

∂θk

−
n∑

k=1

ak(
∂E

∂θk

)2 ,

n∑

k=1

∂L

∂rk

ṙk =
n∑

k=1

∂E

∂rk

· (−bk

∂E

∂rk

) = −
n∑

k=1

bk(
∂E

∂rk

)2 ,

n∑

k=1

∂L

∂φk

φ̇k =

n∑

k=1

∂E

∂φk

·
(
ωk − ck

∂E

∂φk

) =

n∑

k=1

ωk

∂E

∂φk

−
n∑

k=1

ck(
∂E

∂φk

)2 ,

n∑

k=1

∂L

∂ωk

ω̇k =
n∑

k=1

(ωk − q)

sk

· (−sk)
∂E

∂φk

= −
n∑

k=1

ωk

∂E

∂φk

+ q

n∑

k=1

∂E

∂φk

.

Hence

〈∇L(θ, r, φ, ω) | (θ̇, ṙ, φ̇, ω̇)⊤ 〉 = −
n∑

k=1

(

ak(
∂E

∂θ
)2 +bk(

∂E

∂rk

)2 +ck(
∂E

∂φk

)2
)

+q

n∑

k=1

( ∂E

∂φk

+
∂E

∂θk

)

︸ ︷︷ ︸

=0

6 0 .

The last inequality is zero if and only if ∇E(θ, φ, r) = 0. Therefore, to guarantee strict negativity,
we need to prove the existence of a neighborhood Uλ of M such that ∇F(θ, r, φ) 6= 0 for all
(θ, r, φ) ∈ Uλ \ M. Such neighborhood exists (see Corollary E.2 in [45]) if, for all λ̄ ∈ M, we have

ker(D2E(λ̄)) = ker(M(λ̄)) ,

where ker(D2E(λ̄)) is the kernel of the 3n × 3n Hessian of E evaluated at λ̄, and ker(M(λ̄)) is the
kernel of the submanifold M evaluated at λ̄. We now verify the equality between the kernels.

Since
DM(λ̄) = 0 ⇐⇒ L̂(θ, φ)⊤ = 0 and Id r = 0

with n × n identity matrix Id, then, by definition of L̂, we have ker(M(λ̄)) = {θk = φj and rk =
0 ∀ k, j}.

Since D
2E(λ̄) is positive semi-definite (because λ̄ is a minimum of E) and symmetric, then

ker(D2E(λ̄)) = {λ ∈ (S1)n × Rn
>0 × (S1)n | 〈λ |D2E(λ̄)λ〉 = 0}. By hypothesis, we have

〈λ |D2E(λ̄)λ〉 = 0 ⇐⇒ λ = (θ, r, φ) such that θk = φj and rk = 0 ∀ k, j ,

and so
λ ∈ ker(D2E(λ̄)) ⇐⇒ λ ∈ ker(M(λ̄)) .

Finally, take a neighborhood Uω of {ω ∈ Rn |ω = q1} and define U as U := Uλ × Uω.
⊓⊔

Remark I

Numerical simulations show that if the symmetric hypothesis of the networks is relaxed directly
in Equations (4.9) (i.e. precisely, the ak,j and a

φ
k,j are no longer symmetric), the dynamics still

converges towards a consensual oscillatory state: that is, Limit (4.11) still holds.
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4.3.1.2 Adaptation in Heterogenous qk-DVSs

We here consider Equations (4.7) where the DVSs have vertex-dependent vibrating frequencies qk.
We discuss the existence of a consensual oscillatory state. The convergence towards it has been
numerically observed.

Existence of a Consensual Oscillatory State

If the complex system possesses a consensual oscillatory state, then by definition we have, for
k = 1, . . . , n,

θk(t) = qc t + ϑk , rk(t) = rc,k , φk(t) = qc t + ϕk , ωk(t) = qc

with phase shifts ϑk and ϕk. Note that the following conditions are necessary in order for the global
system to possess a consensual oscillatory state.

I
∂E

∂θk

(qc t + ϑk, rc,k, qc t + ϕk) =
qk − qc

ak

for all k and t

II
∂E

∂rk

(qc t + ϑk, rc,k, qc t + ϕk) = 0 for all k and t

III
∂E

∂φk

(qc t + ϑk, rc,k, qc t + ϕk) = 0 for all k and t

Let us determine the value qc. By the “pseudo” constant of motion, we have

n∑

k=1

qk

ak

=

n∑

k=1

( θ̇k(t)

ak

+
ω̇k(t)

sk

)
=

n∑

k=1

qc

ak

⇐⇒ qc =

n∑

k=1

qk

ak

n∑

k=1

1
ak

.

Remark I

Numerical simulations show that if the symmetric hypothesis of the networks is relaxed directly
in Equations (4.9) (i.e. precisely, the ak,j and a

φ
k,j are no longer symmetric), the dynamics still

converges towards a consensual oscillatory state. That is, Limit (4.11) still holds. However, the
value of the consensual frequency is no longer qc (i.e. lim

t→∞
ωk(t) = q̃c 6= qc).

Remark II

When E is taken as in Section 4.2.1 with local coupling functions defined as in Example (2) and
with W ≡ 0, the system becomes

θ̇k = qk − akrk sin(θk − φk)

ṙk = −fkrk + bk cos(θk − φk)

φ̇k = ωk − ck

(
rk sin(φk − θk) − ∂V

∂φk

(φ)
)

ω̇k = −sk

(
rk sin(φk − θk) − ∂V

∂φk

(φ)
)

k = 1, . . . , n , (4.12)

and the rc,k for the consensual oscillatory state are analytically determined (see Appendix 4.D for
details) as either O+

k (qc) or O−
k (qc) with

O±
k (x) =

√
√
√
√
√

1 ±
√

1 − 4( fk
bk

)2( qk−x
ak

)2

2( fk
bk

)2
k = 1, . . . , n . (4.13)

In numerical simulation, it has been observed that the rk(t) converge towards O+
k (qc) instead of

O−
k (qc). Note that we have O−

k (qc) 6 O+
k (qc) 6

bk

fk
since

(
bk

fk
)2 =

1 + 1

2( fk
bk

)2
=

1 +
√

1 − 4( fk
bk

)2( qk−qc

ak
)2

2( fk
bk

)2
.

Refer to Appendix 4.D to see that 0 6

√

1 − 4( fk
bk

)2( qk−qc

ak
)2 6 1.
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4.3.2 Synchronization

In this section we study Equations (4.7) when sk = 0 for all k. Remark that in this case, System
(4.7) possesses a “pseudo” constant of motion.

“Pseudo” Constant of Motion

If θk(t) and φk(t) solve Equations (4.8) for all k, then

n∑

k=1

(θk(t)

ak

+
φk(t)

ck

)
=
(

n∑

k=1

(
qk

ak

+
wk

ck

)
)
t + K

with K :=
n∑

k=1

( θk(0)
ak

+ φk(0)
ck

)
. Indeed, calculating the derivative with respect to t gives (omitting

the arguments of the functions)

n∑

k=1

( θ̇k(t)

ak

+
φ̇k(t)

ck

)
=

n∑

k=1

(qk

ak

+
wk

ck

− ∂E

∂θk

− ∂E

∂φk

)
=

n∑

k=1

(
qk

ak

+
wk

ck

) −
n∑

k=1

∂W

∂θk

+
∂W

∂φk

and by Hypothesis 1 II, we have
n∑

k=1

∂W
∂θk

+ ∂W
∂φk

= 0.

4.3.2.1 Synchronization in Homogenous q-DVSs

Here we study Equations (4.7) when all DVSs have the same vibrating frequency (i.e. q = qk for
all k). We discuss the existence of a synchronized oscillatory state. The convergence towards it has
been numerically observed.

Existence of a Synchronized Oscillatory State

If the complex system possesses a synchronized state, then, by definition, we have, for k = 1, . . . , n,

θk(t) = q̄ t + ϑk , rk(t) = r̄k , φk(t) = q̄ t + ϕk

with phase shifts ϑk and ϕk. Note that the following conditions are necessary in order for the global
system to possess a synchronized oscillatory state.

I
∂E

∂θk

(q̄ t + ϑk, r̄k, q̄ t + ϕk) =
q − q̄

ak

for all k and t

II
∂E

∂rk

(q̄ t + ϑk, r̄k, q̄ t + ϕk) = 0 for all k and t

III
∂E

∂φk

(q̄ t + ϑk, r̄k, q̄ t + ϕk) =
wk − q̄

ck

for all k and t

Let us determine the value q̄. By the “pseudo” constant of motion, we have

n∑

k=1

(
q

ak

+
wk

ck

) =
n∑

k=1

( θ̇k(t)

ak

+
φ̇k(t)

ck

)
=

n∑

k=1

( q̄

ak

+
q̄

ck

)
⇐⇒ q̄ =

q
n∑

k=1

1
ak

+
n∑

k=1

wk

ck

n∑

k=1

(
1
ak

+ 1
ck

)
.

Remark I

When E is taken as in Section 4.2.1 with local coupling functions defined as in Example (2) and
with W ≡ 0, the r̄k for the synchronized oscillatory state are analytically determined as either
O+

k (q̄) or O−
k (q̄) (see Equation (4.13)). In numerical simulation, it has been observed that the rk(t)

converge towards O+
k (q̄) instead of O−

k (q̄).
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4.3.2.2 Synchronization in Heterogenous qk-DVSs

We here consider Equations (4.7) where the DVSs have vertex-dependent vibrating frequencies qk.
We discuss the existence of a synchronized oscillatory state. The convergence towards it has been
numerically observed.

Existence of a Synchronized Oscillatory State

If the complex system possesses a synchronized state, then by definition we have, for k = 1, . . . , n,

θk(t) = qs t + ϑk , rk(t) = rs,k , φk(t) = qs t + ϕk

with phase shifts ϑk and ϕk. Note that the following conditions are necessary in order for the global
system to possess a synchronized oscillatory state.

I
∂E

∂θk

(qs t + ϑk, rs,k, qs t + ϕk) =
qk − qs

ak

for all k and t

II
∂E

∂rk

(qs t + ϑk, rs,k, qs t + ϕk) = 0 for all k and t

III
∂E

∂φk

(qs t + ϑk, rs,k, qs t + ϕk) =
wk − qs

ck

for all k and t

Let us determine the value qs. By the “pseudo” constant of motion, we have

n∑

k=1

(
qk

ak

+
wk

ck

) =

n∑

k=1

( θ̇k(t)

ak

+
φ̇k(t)

ck

)
=

n∑

k=1

(qs

ak

+
qs

ck

)
⇐⇒ qs =

n∑

k=1

(
qk

ak
+ wk

ck

)

n∑

k=1

(
1
ak

+ 1
ck

)
.

Remark I

When E is taken as in Section 4.2.1 with local coupling functions defined as in Example (2) and
with W ≡ 0, the r̄k for the synchronized oscillatory state are analytically determined as either
O+

k (qs) or O−
k (qs) (see Equation (4.13)). In numerical simulation, it has been observed that the

rk(t) converge towards O+
k (qs) instead of O−

k (qs).

4.4 Summary

Table 4.1 summarizes the asymptotics of Equations (4.7) for the different cases and under different
assumptions.

Adaptation Synchronization
General E E as in Section 4.2.1 General E E as in Section 4.2.1

Homogenous
q-DVS

U
.N

.

1 1

U
.N

.

6 7

D
.N

.

2 2

D
.N

.

8 8

Heterogenous
qk-DVS

U
.N

.

3 4

U
.N

.

9 10

D
.N

.

5 5

D
.N

.

11 11

Table 4.1: Summarizing Asymptotic Dynamics for System (4.7). U.N. and D.N. stand, respectively,
for undirected and directed networks.

Legend (COS and SOS stand, respectively, for consensual oscillatory state and synchronized oscil-
latory state)
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1 Convergence towards COS as defined in Section 4.3.1.1 is analytically proven (i.e. Limit (4.11)
holds).

2 Convergence towards COS as defined in Section 4.3.1.1 is numerically observed (i.e. Limit (4.11)
holds).

3 Convergence towards COS as defined in Section 4.3.1.2 with qc =

n
P

k=1

qk
ak

n
P

k=1

1

ak

is numerically observed.

4 Convergence towards COS as defined in Section 4.3.1.2 with qc =

n
P

k=1

qk
ak

n
P

k=1

1

ak

and r̄k = O+
k (qc) is

numerically observed.

5 Convergence towards COS as defined in Section 4.3.1.2 but here qc 6=
n

P

k=1

qk
ak

n
P

k=1

1

ak

is numerically

observed.

6 Convergence towards SOS as defined in Section 4.3.2.1 with q̄ =
q

n
P

k=1

1

ak
+

n
P

k=1

wk
ck

n
P

k=1

(
1

ak
+ 1

ck

) is numerically

observed.

7 Convergence towards SOS as defined in Section 4.3.2.1 with q̄ =
q

n
P

k=1

1

ak
+

n
P

k=1

wk
ck

n
P

k=1

(
1

ak
+ 1

ck

) and r̄k = O+
k (q̄)

is numerically observed.

8 Convergence towards SOS as defined in Section 4.3.2.1 but here q̄ 6=
q

n
P

k=1

1

ak
+

n
P

k=1

wk
ck

n
P

k=1

(
1

ak
+ 1

ck

) is numerically

observed.

9 Convergence towards SOS as defined in Section 4.3.2.2 with qs =

n
P

k=1

(
qk
ak

+
wk
ck

)

n
P

k=1

(
1

ak
+ 1

ck

) is numerically

observed.

10 Convergence towards SOS as defined in Section 4.3.2.2 with qs =

n
P

k=1

(
qk
ak

+
wk
ck

)

n
P

k=1

(
1

ak
+ 1

ck

) and r̄k = O+
k (qs)

is numerically observed.

11 Convergence towards SOS as defined in Section 4.3.2.2 but here qs 6=
n

P

k=1

(
qk
ak

+
wk
ck

)

n
P

k=1

(
1

ak
+ 1

ck

) is numerically

observed.

4.5 Numerical Simulations

We report two sets of numerical simulations. The first compares the transient and asymptotic
dynamics between seven homogenous q-DVSs and heterogenous qk-DVSs with undirected and
directed networks (refer to Section 4.5.1). The second compares the basin of attraction towards a
consensual state of two coupled VOSs with and without adaptation (refer to Section 4.5.2).

4.5.1 Network of Homogenous q-DVSs and Heterogenous qk-DVSs

Here, n = 7, and the network is defined as in Figure 4.3(c). The friction parameters are
fk = 1 + 0.1 (k − 1). The coupling strengths are chosen as ak = 0.3, bk = 1 for all k,
ck = 0.2 for k = 1, 2, 3, c4 = 0.15, ck = 0.1 for k = 5, 6, 7, and the susceptibility constants as
s1 = 0.1 and sk = 0.7 + 0.1 (k − 2) for k = 2, . . . , 7. The coupling function is Bk,j(x) = sinh(x)
for all k, j. The initial conditions (θk(0), rk(0), φk(0), ωk(0)) are randomly uniformly drawn from
] − 0.1, 0.1[×]0.9, 1.1[×]− 0.1, 0.1[×]0.9, 1.1[.
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For the network of homogenous q-DVSs, the frequencies are set as qk = 1 for all k, and for the
network of heterogenous qk-DVSs, the frequencies are are qk = 0.91 + 0.3 (k − 1) for k = 1, . . . , 7
and so qc = 1. For both cases, all ωk should converge towards one, and this is observed in Figure
4.4(a) and Figure 4.4(b).
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Fig. 4.4: Time evolution of ωk for seven homogenous q-DVSs (Figure 4.4(a)) and for seven het-
erogenous qk-DVSs, interacting through an undirected network as in Figure 4.3(c).

With the same configuration, another numerical integration is carried out, this time with a directed
network as in Figure 4.5. The resulting dynamics for ωk in a collection of homogenous q-DVSs
and heterogenous qk-DVSs is shown in Figures 4.4(c) and 4.4(d). Note that in Figure 4.4(d) the
asymptotic value of any ωk is not equal to one. As mentioned in Sections 4.3.1.1 and 4.3.1.2,
numerical experiments show that for a directed network of homogenous q-DVSs, Limit (4.11)
holds, while for a directed network of heterogenous qk-DVSs, the ωk converge towards a constant
value which is, in general, not equal to qc

4.5.2 Adaptation vs. Synchronization

Here, we consider two VOSs with only the POs are coupled (i.e. a1,2 = a2,1 = 0 and a
φ
1,2 = a

φ
2,1 = 1).

The parameters and coupling strengths are q1 = 0.9 and q2 = 1.1, and f1 = f2 = a1 = a2 = b1 =
b2 = c1 = c2 = 1. The coupling function is B(x) = sin(x). The initial conditions (θk(0), rk(0), φk(0))
are randomly uniformly drawn from ] − 0.1, 0.1[×]0.9, 1.1[×] − 0.1, 0.1[ and ω(0)1 = −0.15 and
ω(0)2 = 2.15.

For the first numerical experiment, the two VOSs are allowed to adapt their frequencies, and here
the susceptibility constants are sk = 1 for k = 1, 2. The resulting dynamics for rk and ωk is
displayed in Figures 4.6(a) and 4.6(b). Figure 4.6(c) shows the resulting dynamics when the two
VOSs do not adapt their frequencies (i.e. here sk = 0 for k = 1, 2 and so w1 := ω(0)1 = −0.15 and
w2 := ω(0)2 = 2.15). For both situations, qc = q̄ = 1.
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1
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6

7

Fig. 4.5: Directed Network Topology. The cubes at the end of the edges indicate that there is no
interaction with the vertex in question. For example, PO 5 interacts with PO 4, but PO 4 does
not interact with PO 5 (i.e. PO 4 receives information from PO 5 but not vice versa).

Observe in Figure 4.6 that for this parameter setting and with these initial conditions, the two
coupled VOSs are still able to adapt their frequencies and converge towards a consensual oscillatory
state. However, if they are not allowed to adapt, the amplitudes rk do not converge towards
a common and constant value, but rather towards a common oscillatory state. Still in the non-
adapting case and when B(x) = cosh(x)−1, it has been observed that the two VOSs do synchronize

with frequency q̄, and that the two rk converge towards the common value r̄ =

√

1+
√

0.96
2 . However,

when B(x) = log(cosh(x)), the VOSs do not synchronize. We observe the following: lim
t→∞

θ̇1(t) =

lim
t→∞

φ̇1(t) = m1 and lim
t→∞

θ̇2(t) = lim
t→∞

φ̇2(t) = m2, and the rk converge to a common and constant

value just under one (but which is not r̄).
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Fig. 4.6: Time evolution of rk and ωk for two heterogenous qk-DVSs with adapting frequencies
(Figure 4.6(a) & 4.6(b)), and time evolution of rk for two heterogenous qk-DVSs with no adaptation
(Figure 4.6(c)).
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4.6 Conclusions and Perspectives

We study a complex system composed of heterogenous local systems with qualitatively differ-
ent dynamics. The two different communities merged into one interacting complex network grasp
two well-known phenomena: synchronization and adaptation. Indeed, Equations (4.7) characterize
phase synchronization with the coupled θk variables. At the same time, these equations express
an adaptive frequency behavior with variables ωk. Therefore, for such systems, one can speak of
the “plastic” (i.e. synchronization) and “elastic” (i.e. adaptation) capabilities of the network to
produce common dynamical patterns. Plastic, since it concerns a synchronization problem: com-
mon dynamical patterns are attained and maintained thanks to the coupling dynamics - remove
the interaction and all local systems converge back towards their individual behavior. Elastic since
it deals with an adaptation approach: common dynamical patterns are attained thanks to the
coupling dynamics, but coupling is no longer needed in order to maintain the common dynamics -
remove the interactions and local systems self-perpetuate the common dynamical pattern.

In VOS networks with homogenous q-DVSs, adaptation leads the system to converge towards a
state where all DVSs are entrained with maximum amplitude. Here, it is important to note that
this consensual oscillatory state does not depend on the coupling dynamics. Hence, once this state
is reached, any changes in network topology will not perturb the local system. This is not true
for all three other cases, where the consensual or synchronized state does depend on the network
connections and thus a change in the environment automatically causes a disturbance for the local
dynamics.

Perspective works include a rigorous study of advantages and disadvantages of adaptive frequency
systems compared to phase synchronization systems. Also, as occurring in nature, time-dependent
connections in networks should be implemented. As discussed in [42], parametric resonance phe-
nomena may occur in networks of adaptive frequency oscillators.

Appendix

4.A Calculations for Equations (4.2), (4.3) and (4.4)

We verify that the entrained solution solves Equation 4.2. Since2 cos(1
2 sin−1(x)) = 1

2 (
√

1 − x +√
1 + x), then 1

f
cos(1

2 sin−1(2(q − w)f)) = 1
2f

(√

1 − 2(q − w)f +
√

1 + 2(q − w)f
)

and so r̄ =
1
f
cos(1

2 sin−1(2(q − w)f)). By direct computation, we have

θ̇ = w ↔ q − 1
f
cos(1

2 sin−1(2(q − w)f)) sin(1
2 sin−1(2(q − w)f)) = q − sin(sin−1(2(q−w)f))

2f

= q − q + w = w

ṙ = 0 ↔ −f 1
f
cos(1

2 sin−1(2(q − w)f)) + cos(1
2 sin−1(2(q − w)f)) = 0

φ̇ = w ↔ w

which concludes the verification.

We verify that the synchronized solution solves Equation 4.3. First note that for any orbits θ(t) and
φ(t) solving Equation (4.3), then θ̇(t)+ φ̇(t) = q−r(t) sin(θ(t)−φ(t))+w−r(t) sin(φ(t)−θ(t)) = q+w.
Hence, the system possesses a “pseudo” constant of motion θ(t) + φ(t) = (q + w) t + K with

2 Since cos( 1
2
y) = ±

q

1
2
(1 + cos(y)) and cos(sin−1(z)) =

√
1 − z2, then cos( 1

2
sin−1(x)) =

q

1
2
(1 +

√
1 − x2) for x ∈ [0, 1], which equals 1

2
(
√

1 − x +
√

1 + x) for x ∈ [0, 1] because

`1

2
(
√

1 − x +
√

1 + x)
´2

=
1

4
(2 + 2

p

1 − x2) =
1

2
(1 +

p

1 − x2) .
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K = θ(0) + φ(0). The synchronized solution is consistent with the “pseudo” constant of motion
since

θ(t) + φ(t) =
q + w

2
t +

θ(0) + φ(0)

2
+

1

4
sin−1((q − w)f)

+
q + w

2
t +

θ(0) + φ(0)

2
+

1

4
sin−1((w − q)f)

= (q + w) t + θ(0) + φ(0) .

Here, θ(t) − φ(t) = 1
4 sin−1((q − w)f) − 1

4 sin−1((w − q)f) = 1
2 sin−1((q − w)f and so, by direct

computation, we have

θ̇ = q+w
2 ↔ q − 1

f
cos(1

2 sin−1((q − w)f)) sin(1
2 sin−1((q − w)f)) = q − sin(sin−1((q−w)f))

2f

= q − q
2 + w

2 = q+w
2

ṙ = 0 ↔ −f 1
f
cos(1

2 sin−1((q − w)f)) + cos(1
2 sin−1((q − w)f)) = 0

φ̇ = q+w
2 ↔ w − 1

f
cos(1

2 sin−1((q − w)f)) sin(−1
2 sin−1((q − w)f)) = q + sin(sin−1((q−w)f))

2f

= w + q
2 − w

2 = q+w
2

which concludes the verification.

We verify that the adapted solution solves Equation 4.4. First note that for any orbits θ(t) and ω(t)

solving Equation (4.4), then θ̇(t) + ω̇(t) = q − r(t) sin(θ(t) − φ(t)) − r(t) sin(φ(t) − θ(t)) = q. Hence,
the system possesses a “pseudo” constant of motion θ(t) +ω(t) = q t+K with K = θ(0) +ω(0). The
adapted solution is consistent with the “pseudo” constant of motion since θ(t)+ω(t) = q t+ϑ+q =
q t + (θ(0) + ω(0) − q) + q = q t + K. By direct computation, we have

θ̇ = q ↔ q − 1
f
sin(q t + ϑ − w t + ϕ) = q

ṙ = 0 ↔ −f 1
f

+ cos(q t + ϑ − w t + ϕ) = 0

φ̇ = q ↔ q

ω̇ = 0 ↔ = − 1
f
sin(q t + ϕ − w t + ϑ) = 0

which concludes the verification.

The adapted solution is asymptotically stable and it is proven by L�PUNOV’s second method.
Define the nonempty compact set

M = {(θ, r, φ, ω) ∈ S
1 × R × S

1 × R | θ − φ = 0 , r − 1

f
= 0 , ω − q = 0} ,

let F be the vector field of Equation (4.4) (i.e. F(θ, r, φ, ω) =
(
q − r sin(θ − φ),−fr + cos(θ −

φ), ω,−r sin(φ − θ))
)
) and define a L�PUNOV function as

L(θ, r, φ, ω) =
f

2
〈
(

r
1
f

)

|
(

1 − cos(θ − φ)
− cos(θ − φ) 1

)(
r
1
f

)

〉 +
1

2
(ω − q)2 .

defined on S1×R>0×S1×R. Function L is positive because

(
1 − cos(θ − φ)

− cos(θ − φ) 1

)

is positive

semi-definite since its eigenvalues are 1 ± cos(θ − φ). Let us determine the real numbers x, y, and
the θ and φ belonging to S1 that satisfy

〈
(

x

y

)

|
(

1 − cos(θ − φ)
− cos(θ − φ) 1

)(
x

y

)

〉 = 0 . (4.14)

We consider the three following cases
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θ, φ ∈ [0, 2π[ and θ − φ 6= π nor θ − φ 6= 0 Here, the matrix in Equation (4.14) has two
eigenvalues that are strictly positive and so this implies that x = y = 0.
θ − φ = π In this case, Equation (4.14) becomes (x + y)2 = 0 and so x = −y.
θ − φ = 0 In this case, Equation (4.14) becomes (x − y)2 = 0 and so x = y.

Since L is defined for r > 0 and from the analysis of Equation (4.14), we have M = {(θ, r, φ, ω) ∈
S1 × R>0 × S1 × R | L(θ, r, φ, ω) = 0}. By direct computation, we have

〈∇L(θ, r, φ, ω) |F(θ, r, φ, ω) 〉 = r sin(θ − φ)
(
q − r sin(θ − φ)

)
+
(
fr − cos(θ − φ)

)(
− fr + cos(θ − φ)

)

+r sin(φ − θ)ω + (ω − q)(−r sin(φ − θ))

= −r2 sin(θ − φ)2 −
(
fr − cos(θ − φ)

)2
6 0 .

Therefore 〈∇L(θ, r, φ, ω) |F(θ, r, φ, ω) 〉 = 0 if and only if

r sin(θ − φ) = 0 and fr − cos(θ − φ) = 0 .

If r = 0, then cos(θ − φ) = 0, which implies that θ ≡ φ mod π
2 or θ ≡ φ mod 3π

2 . If r > 0,
the sin(θ − φ) = 0, which implies that θ ≡ φ mod 2π or θ ≡ φ mod π and so either r = 1

f

or r = −1
f

(excluded since r > 0). Therefore, there are only three points outside M for which
〈∇L(θ, r, φ, ω) |F(θ, r, φ, ω) 〉 = 0, and so M is asymptotically stable (refer to Appendix A in [42]
for definition).

4.B Verifying Properties For the Local Coupling Function in Example 2

Let us verify the properties. We here drop the index k.
[I] The matrix in function S is positive semi-definite since its eigenvalues are 1 ± cos(θ − φ).

[II] [⇒] For θ = φ and r = b
f
, we have cos(θ − φ) = 1 and so

Q(θ, r, φ) =
1

2b

(
f
b2

f2
+

b2

f
− 2

b

f
b
)

=
1

2b

(b2

f
+

b2

f
− 2

b2

f

)
= 0 .

[⇐] By the analysis done with Equation (4.14) we have θ = φ and r = b
f
.

[III] & [IV] By direct computation, we have

∂Q

∂θ
(θ, r, φ) = r sin(θ − φ) = −∂Q

∂φ
(θ, r, φ) and

−b
∂Q

∂r
(θ, r, φ) = −b(

f

b
r − cos(θ − φ)) = −fr + b cos(θ − φ) .

[V] For λ̄ := (θ̄, b
f
, φ̄) with θ̄ = φ̄, we have

D
2Q(λ̄) =





b
f

0 − b
f

0 f
b

0
− b

f
0 b

f





and so (with λ = (θ, r, φ)), 0 = 〈λ |D2Q(λ̄)λ 〉 = b
f
(θ − φ)2 + f

b
r2 is equivalent to θ = φ and r = 0.

4.C Verifying Hypothesis For Coupling Potential E as Defined in
Section 4.2.1

We first present some properties of functions W and V individually. We do this in the case where
the networks for W and V are time-dependent and connected for all times.
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4.C.1 Properties For function W

By definition, W can be written as

W(t, θ, r) =
1

2

n∑

k=1
j>k

ak,j(t)
(
(rkpk)2 + (rjpj)

2 − 2rkrjpkpj cos(θk − θj)
)

=
1

2

n∑

k=1
j>k

ak,j(t)〈
(

rkpk

rjpj

)

|
(

1 − cos(θk − θj)
− cos(θk − θj) 1

)(
rkpk

rjpj

)

〉

with here pk = fk
bk

.

[I] When the network is connected, we have: for rk > 0,

θk = φj and
rk

rj

=
pj

pk

∀ k, j ⇐⇒ W(t, θ, r, φ) = 0 ∀ t .

[⇒] For θk = θk and rk = rj
pj

pk
for all k, j, we have cos(θk − θj) = 1 and Bk,j(θk − θj) = 0 so

W(t, θ, r, φ) =
1

2

n∑

k=1
j>k

ak,j(t)
(
(rj

pj

pk

pk)2 + (rjpj)
2 − 2rj

pj

pk

pkrjpj

)

︸ ︷︷ ︸

=0

) = 0 .

[⇐] Since the eigenvalues of
( 1 − cos(θk−θj)
− cos(θk−θj) 1

)
are 1±cos(θk−θj) > 0 and since Bk,j(φk−

φj) > 0 then

W(t, θ, r, φ) = 0 ∀ t ⇐⇒
ak,j(t)

(
(rkpk)2 + (rjpj)

2 − 2rkrjpkpj cos(θk − θj)
)

= 0

and a
φ
k,j(t)Bk,j(φk − φj) = 0

∀ k, j, t .

Since the network is connected at all times, then for any t and any vertex k there exists a path
in the network to any other vertex j. By definition of a path between two vertices, there exists
a non-zero sequence {ak,j1(t), aj1,j2(t), . . . , ajm−1,jm

(t), ajm,j(t)}. Therefore, for any pair of indices
(s, m) corresponding to a term in the non-zero sequence, as,m(t) > 0 and so

as,m(t)
(
(rsps)

2 + (rmpm)2 − 2rsrmpspm cos(θs − θm)
)

⇐⇒ 〈
(

rsps

rmpm

)

|
(

1 − cos(θs − θm)
− cos(θs − θm) 1

)(
rsps

rmpm

)

〉 = 0 .

By the analysis done with Equation (4.14), θs ≡ θm mod 2π and rsps = rmpm for any pair of in-
dices (s, m) corresponding to a term in the non-zero sequence of a path between vertex k and vertex
j at time t. Hence θk ≡ θj mod 2π and rk

rj
=

pj

pk
for all k, j since k, j and t where chosen arbitrarily.

[II] By direct computation, we have
n∑

k=1

∂W
∂θk

(t, θ, r) = −
n∑

k=1

( n∑

j=1

lk,jrkrjpkpj sin(θk − θj)
)

= 0

since for any term ls,mrsrmpspm sin(θs − θm) there is also the term lm,srmrspmps sin(θm − θs) =
−ls,mrsrmpspm sin(θs − θm).

[III] When the network is connected, we have: for λ̄ = (θ̄1, . . . , θ̄n, 1
p1

, . . . , 1
pn

) with θ̄k = θ̄j ∀ k, j,

θk = θj and rk =
y

pk

∀ k, j and y ∈ R ⇐⇒ 〈λ |D2W(t,λ̄)λ〉 = 0 ∀ t .

Computing the first derivative with respect to (φ, r) gives
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D
1
(λ̄)W(t,θ,r) =

(
−

n∑

j=1

l1,j(t)r1rjp1pj sin(θ1 − θj), . . . ,−
n∑

j=1

ln,j(t)rnrjpnpj sin(θn − θj),

n∑

j=1

l1,j(t)rjp1pj cos(θ1 − θj), . . . ,

n∑

j=1

ln,j(t)rjpnpj cos(θn − θj) .

Computing the second derivative with respect to (θ, r) gives






























−
n∑

j 6=1

l1,j(t)r1rjp1pjc1,j l1,2(t)r1r2p1p2c1,2 . . . l1,n(t)r1rnp1pnc1,n

l2,1(t)r2r1p2pjc2,1 −
n∑

j 6=2

l2,j(t)r2rjp2pjc2,j . . . l2,n(t)r2rnp1pnc2,n

...
...

. . .
...

ln,1(t)rnr1pnp1cn,1 ln,2(t)rnr2p1p2cn,2 . . . −
n∑

j 6=n

ln,j(t)rnrjpnpjcn,j

−
n∑

j 6=1

l1,j(t)rjp1pjs1,j l1,2(t)r2p1p2s1,2 . . . l1,n(t)rnp1pns1,n

l2,1(t)r1p2p1s2,1 −
n∑

j 6=2

l2,j(t)rjp2pjs2,j . . . l2,n(t)rnp1pns2,n

...
...

. . .
...

ln,1(t)r1pnp1sn,1 ln,2(t)r2pnp2sn,2 . . . −
n∑

j 6=n

ln,j(t)rjpnpjsn,j

−
n∑

j 6=1

l1,j(t)rjp1pjs1,j −l1,2(t)r1p1p2s1,2 . . . −l1,n(t)r1p1pns1,n

−l2,1(t)r2p2p1s2,1 −
n∑

j 6=2

l2,j(t)rjp2pjs2,j . . . −l2,n(t)r2p2pns2,n

...
...

. . .
...

−ln,1(t)rnpnp1sn,1 −ln,2(t)rnpnp2sn,2 . . . −
n∑

j 6=n

ln,j(t)rjpnpjsn,j

l1,1(t)p1p1 l1,2(t)p1p2c1,2 . . . l1,n(t)p1pnc1,n

l2,1(t)p2p1c2,1 l2,2(t)p2p2 . . . l2,n(t)p2pnc2,n

...
...

. . .
...

ln,1(t)pnp1cn,1 ln,2(t)pnp2cn,2 . . . ln,n(t)pnpn























with ck,j = cos(θk − θj) and sk,j = sin(θk − θj). Evaluating this Jacobian on (t, λ̄), we have

D
2W(t,λ̄) =

(
L(t) 0

0 [p]L(t)[p]

)

,

where [p] is a diagonal matrix with (p1, . . . , pn) on its diagonal. Hence

〈
(

θ

r

)

|
(

L(t) 0

0 [p]L(t)[p]

)(
φ

r

)

〉 = 0 ∀ t ⇐⇒
〈φ |L(t)φ 〉 = 0 and

〈r | [p]L(t)[p]r 〉 = 0
∀ t .

The matrix L(t) is positive semi-definite and symmetric for all t, and since the network is connected
then {x ∈ Rn | 〈x |L(t)x 〉 = 0 ∀ t} = {x ∈ Rn |L(t)x = 0 ∀ t} = {x ∈ Rn |xk = xj ∀ k, j}.
Therefore

〈θ |L(t)θ 〉 = 0 and 〈r | [p]L(t)[p]r 〉 = 0 ∀ t ⇐⇒ θk = θj , rk =
y

pk

∀ k, j .

4.C.2 Properties For function V

[I] When the network is connected, we have: for rk > 0,
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φk = φj ∀ k, j ⇐⇒ V(t, φ) = 0 ∀ t .

[⇒] For φk = φj , we have, by definition, Bk,j(θk − θj) = 0 for all k, j, and so V(t, φ) = 0 for all
t.
[⇐] Since the network is connected at all times, then, for any t and any vertex k, there exists
a path in the network to any other vertex j. By definition of a path between two vertices, there
exists a non-zero sequence {ak,j1(t), aj1,j2(t), . . . , ajm−1,jm

(t), ajm,j(t)}. Therefore, for any pair of
indices (s, m) corresponding to a term in the non-zero sequence, as,m(t) > 0 and so

as,m(t)Bs,m(φs − φm) = 0 ⇐⇒ Bs,m(φs − φm) = 0 .

Therefore, φs = φm for any pair of indices (s, m) corresponding to a term in the non-zero sequence
of a path between vertex k and vertex j at time t. Hence φk = φj for all k, j since k, j and t where
chosen arbitrarily.

[II] By direct computation, we have
n∑

k=1

∂V
∂φk

(t, φ) =
n∑

k=1
j 6=k

( n∑

j=1

ak,jB
′
k,j(φk − φj)

)
= 0 since for any

term ak,jBk, j′(φk − φj), there is also the term aj,kBj, k′(φj − φk) = −ak,jB
′
k,j(φk − φj) since B′

k,j

is odd.

[III] When the network is connected, we have: for φ̄ = (φ̄1, . . . , φ̄n) with φ̄k = φ̄j ∀ k, j,

φk = φj ⇐⇒ 〈φ |D2V(t,φ̄)φ〉 = 0 ∀ t .

The second derivative with respect to φ evaluated on φ̄ is

D
2V(t,φ̄) = LB′′(t)

with LB′′(t) an n×n symmetric matrix with diagonal entries
n∑

k=1
j 6=k

a
φ
k,jB

′′
k,j(0) and off-diagonal entries

−a
φ
k,jB

′′
k,j(0), 0 < B′′

k,j(0) for all k, j. Hence

〈θ |LB′′(t)θ 〉 = 0 ∀ t ⇐⇒ φk = φj ∀ k, j .

4.C.3 Verification of Hypothesis

Let us verify the properties for the coupling potential E. We here suppose that the network for V

is connected.

Hypothesis I: This directly follows from the properties of Qk and Property I from Section 4.C.2.

Hypothesis II: This directly follows from Property III from Section 4.C.2 and Property III from
Section 4.C.2.

Hypothesis III: Define F(θ, r, φ) :=
n∑

k=1

Qk(θk, rk, φk). Since D2E(λ̄) is positive semi-definite

(because λ̄ is a minimum of E) and symmetric, then ker(D2E(λ̄)) = {λ ∈ (S1)n × Rn
>0 ×

(S1)n | 〈λ |D2E(λ̄)λ〉 = 0} and so 〈λ |D2E(λ̄)λ〉 = 〈λ |D2F(λ̄)λ〉+ 〈λ |D2W(λ̄)λ〉+ 〈λ |D2V(λ̄)λ〉 with
all three terms being positive semi-definite (since λ̄ is a minimum for all three). Thus

λ ∈ ker(D2E(λ̄)) ⇐⇒ 〈λ |D2F(λ̄)λ〉 = 0 and 〈λ |D2W(λ̄)λ〉 = 0 and 〈λ |D2V(λ̄)λ〉 = 0 .

By direct computation, we have 〈λ |D2F(λ̄)λ〉 =
n∑

k=1

〈λk |D2Qk(λ̄k)λk〉 with λ̄k = (θ̄k, bk

fk
, φ̄k),

θ̄k = φ̄k and λk = (θk, rk, φk). Since D2Qk(λ̄k) is positive semi-definite for all k (because λ̄k is
a minimum of Qk for all k), then 〈λ |D2F(λ̄)λ〉 = 0 ⇔ 〈λk |D2Qk(λ̄k)λk〉 = 0 for all k, and this by
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hypothesis is equivalent to θk = φk and rk = 0 ∀ k.

By hypothesis,
〈φ |D2V(λ̄)φ 〉 = 0 ⇐⇒ φk = φj ∀ k, j

with no constraints on θ nor on r. Hence

〈λ |D2F(λ̄)λ〉 = 0 and 〈λ |D2V(λ̄)λ〉 = 0 ⇐⇒ θk = φj and rk = 0 ∀ k, j ,

where these points satisfy 〈λ |D2E(λ̄)λ〉 = 0.

4.D Determining the rc,k

The rc,k are one of the two positive roots of the polynomial

(
fk

bk

)2 x4 − x2 + (
qk − qc

ak

)2 = 0 k = 1, . . . , n .

From Equations (4.12), we have ṙk(t) = 0 = −fkrc,k + bk cos(ϑk − ϕk), so
fkrc,k

bk
= cos(ϑk − ϕk).

From Equations (4.12), we also have θ̇k(t) = qc = qk − ak sin(ϑk − ϕk), so qk−qc

akrc,k
= sin(ϑk − ϕk).

Therefore, 1 = cos(ϑk − ϕk)2 + sin(ϑk − ϕk)2 = (
fkrc,k

bk
)2 + ( qk−qc

akrc,k
)2, which is equivalent to

x2e − x + g = 0

with x := r2
c,k, e := ( fk

bk
)2 and g := ( qk−qc

ak
)2. The roots are x± = 1±√

1−4eg

2e
. Both roots x±

are positive because 0 6 1 − 4eg and 1 >
√

1 − 4eg. This is true since 1
rc,k

= fk
bk cos(ϑk−ϕk) , so

( qk−qc

ak
) fk

bk cos(ϑk−ϕk) = sin(ϑk − ϕk), and so 2( qk−qc

akbk
)fk = sin(2(ϑk − ϕk)). Hence, for consistency,

|2 qk−qc

akbk
fk| 6 1 and therefore 4( fk

bk
)2( qk−qc

ak
)2 6 1, and so 0 6 1 − 4( fk

bk
)2( qk−qc

ak
)2 = 1 − 4eg. Since

0 6 e, g, then 1 > 1− 4eg, and therefore 1 >
√

1 − 4eg. Thus, the polynomial y4e− y2 + g = 0, has
four roots, two positive and two negative.
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5

Stochastic Parametric Resonance in Time-Dependent
Networks of Adaptive Frequency Oscillators

Po�mite, [. . . ℄, �to mehanizm naxihqeloveqeskih dux - �to mehanizmkaqele�, gde ot naisil~ne�xego vzleta vstoronu Blagorodstba Duha i boznikaetnaisil~ne�xi� otlet v storonu �rostiSkota. Mihail AGEEV
Abstract

We consider a network of interacting phase oscillators endowed with adaptive mechanisms, leading
the collective motion to a consensual dynamical state. Specifically, for a given network topology
(i.e. an adjacency matrix) governing the mutual interactions, the adaptive mechanisms enable all
oscillators to ultimately adopt a consensual frequency. Once reached, the consensual frequency
subsists even if interactions between the oscillators are switched off. For the class of models we
consider, the consensual frequency is independent of the network topology. Even though this inde-
pendence might suggest that extension to time-dependent networks is straightforward, this is not
true here. For time-dependent networks and spectra of the underlying Laplacian matrices, one may
observe the emergence of more complex dynamics. Due to their high degree of complexity, these
dynamics generally offer little hope for analytical tractability. In this paper, we focus on connected
time-dependent networks with circulant adjacency matrices. The simple spectral structures and
commutativity properties enjoyed by circulant matrices enable an analytical instability analysis
of the consensus state. We are able to reduce the instability analysis to a dissipative harmonic
oscillator with parametric pumping.

5.1 Introduction

The concepts of synchronization, adaptation and learning capabilities cross disciplinary boundaries
and there is ongoing demand for tractable dynamical models unveiling their numerous facets. One
fruitful approach is given by studying the emerging collective behavior observed in networks of
mutually interacting dynamical systems, for example oscillators. These complex systems can be
approximately discussed via analytical tools, an approach which offers insights into the underlying
mechanisms enabling self-organization and adaptation.

Adaptation can be seen as the modification of local agents’ characteristics through the interactions
with their environment, in order to make them less dependent on their surroundings. To illustrate
this idea, consider the basic example of coupled phase oscillators which is given by



φ̇k = wk
︸︷︷︸

local dynamics

− ck

∂V

∂φk

(φ)

︸ ︷︷ ︸

coupling dynamics

k = 1, . . . , n , (5.1)

where wk are local individual frequencies, coupling strengths ck > 0 and where V is a coupling
potential. If the complex system synchronizes, then, by definition,

lim
t→∞

φk(t) = wc t + ϕk ∀ k

with phase shift ϕk. For coupling potentials satisfying the orthogonal relation 〈1 | ∇V(φ) 〉 = 0,
the synchronized frequency is given by

wc =

n∑

j=1

wk

ck

n∑

k=1

1
ck

and the phase shift ϕk can be explicitly determined in certain cases (see Appendix 5.A for details).
Although wc does not depend on the topology, the synchronized state is attained and maintained
by the interactions and thus dependent on its environment. Furthermore, if a phase oscillator is
isolated, it will converge back to oscillate at its eigenfrequency wk. Hence, and following what as
been done in [44, 42], local systems may adapt their frequencies by letting wk acquire the status
of variables of the global dynamical system and have their own dynamics (i.e. wk ; ωk(t)). These
dynamics are to be interpreted as adaptive mechanisms and lead to an extension of Equations (5.1)
in the form

φ̇k = ωk
︸︷︷︸

local dynamics

− ck

∂V

∂φk

(φ)

︸ ︷︷ ︸

coupling dynamics

ω̇k = −sk

∂V

∂φk

(φ)

︸ ︷︷ ︸

adaptive mechanisms

k = 1, . . . , n (5.2)

with susceptibility constants sk > 0 (technically playing the role of coupling strengths). For coupling
potentials satisfying 〈1 | ∇V(φ) 〉 6 0, the complex system will be driven towards a consensual
oscillatory state, that is

lim
t→∞

|φj(t) − φk(t)| = 0 and lim
t→∞

ωk(t) = ωc ∀ k, j

for a certain value ωc (see Appendix 5.B). Once this state is reached, the coupling dynamics are
zero (by definition), and thus the local systems no longer depend on the environment in order to
keep oscillating with ωc. This is due to the permanent change in their local frequencies. Further
imposing the orthogonality hypothesis 〈1 | ∇V(φ) 〉 = 0, ωc is determined as (see Appendix 5.B)

ωc =

n∑

j=1

ωk(0)
sk

n∑

k=1

1
sk

.

Again, the value ωc is a weighted average (weighted with respect to sk instead of ck for the
synchronized orbit of Equations (5.1)), and independent of the network topology. However, the
convergence rate is strongly affected by the network connectivity [44]. Therefore, and as mentioned
in [42], adaptation can alternatively be interpreted as an optimal control problem where the aim
is to find potential functions V from an admissible set V (see Appendix 5.B) in oder to minimize
the payoff functional

E(V) =

∞∫

0

| 〈1 | ∇V(φ(t)) 〉 | dt .
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Frequency adaptation, whether in a coupled oscillator framework [20, 56, 4, 45] or in an individual
forced oscillator context [41], is a well studied and ongoing field of research. Recently, frequency
adaptation has been studied in a noisy environment [57], with time delayed interactions [47], and
in deterministic time-dependent networks [42].

Except for a rather small portion ([9, 11, 55, 38, 59]), the vast literature devoted to complex
systems focuses on time-independent connections between the dynamical subsystems forming the
network. Often, however, connections ruling the interactions are themselves subject to varying with
time. Connections can be oscillating in strength, prone to deterministic or random intermittence.
Though the effects of such time-dependent connectivity states between the members of an inter-
acting assembly are obviously difficult to determine in general, they may potentially generate new
types of dynamics.

In this contribution, we discuss the dynamical behavior of coupled phase oscillators when the net-
work for the adaptive mechanisms randomly switches from one topology to an other. The presence
of time-dependent network connections introduces extra time-dependent control parameters into
the dynamics. This ultimately enhances the complexity of the dynamical analysis. Among the sim-
plest possible examples of time-dependent parameter systems, there is the parametric harmonic
oscillator subject to parametric pumping instability. One might remember having sat on a set of
swings as a child, where oscillating energy can be scavenged from suitably tuned time oscillations
of an eigenfrequency.

As far as networks are concerned, we may legitimately raise the following question: “What hap-
pens when switches between different network configurations are implemented over time and in
particular, does the common consensual state remains stable?”. We shall show that the answer is
closely related to the parametric pumping paradigm. Indeed, two time scales compete: i) the time
scale characterizing the oscillations between the different network connection states and ii) the
characteristic rate convergence towards the consensus. If both time scales are appropriately tuned
- and the present paper will analytically state the conditions - a parametric instability is created
and the consensual state becomes unstable (i.e. the local oscillators actually scavenge energy from
the time-dependent connection). Finally, we show how the phenomenon of parametric resonance
depends on coupling strengths, susceptibility constants, topologies of the underlying networks, and
the randomness of the switching.

This paper is organized as follows: We present the network’s dynamical system in Section 5.2, which
we then discuss analytically in Section 5.3. We report a selection of numerical experiments which
corroborate our analytical findings in Section 5.4. We finally conclude and present perspective
works in Section 5.5.

5.2 Network of Phase Oscillators with Time-dependent Adaptive
Mechanisms

The dynamical system of interest is

φ̇k = ωk
︸︷︷︸

local dynamics

− c

n∑

j=1

a
φ
k,j sin(φk − φj)

︸ ︷︷ ︸

coupling dynamics

ω̇k = −s

n∑

j=1

aω
k,j(t) sin(φk − φj)

︸ ︷︷ ︸

adaptive mechanisms

k = 1, . . . , n . (5.3)

Local Dynamics Local systems are phase oscillators with frequencies ωk. Here ωk are variables
of the global system with their dynamics governed by the adaptive mechanisms that we discuss
below.
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Coupling Dynamics Interactions among the local systems are characterized by the gradient of
the coupling potential

V(φ) =
1

2

n∑

k=1

n∑

j=1

a
φ
k,j

(
1 − cos(φk − φj)

)
> 0

with 0 6 a
φ
k,j = a

φ
j,k being the entries of the adjacency matrix of a connected and undirected

network. The gradient of this potential produces Kuramoto-type interactions. The coupling
strength 0 < c is vertex independent.

Adaptive Mechanisms Kuramoto-type interactions modify the local frequencies ωk. In the
general case, these interactions occur via a different network than for the phase interac-
tions. This network is time-dependent, connected, and undirected at all times. The entries
0 6 aω

k,j(t) = aω
j,k(t) < +∞ of its adjacency matrix are positive and bounded for all time.

The vertex-independent susceptibility constant 0 < s is technically the same as c but has an-
other interpretation here. A “small” s describes a community of oscillators unwilling to change
their frequencies. Conversely, a “large” s indicates that oscillators are prone to modify their
individual behaviors according to their neighbors.

Edge Dynamics As mentioned above, we consider two networks: a time-independent one for the
interactions of the state variables φk, and another, time-dependent one, governing the adaptive
mechanisms. Let Lφ and Lω(t) be, respectively, the associated Laplacian1 matrices. We here
focus only on networks that possess the two following commutation rules

auto-commutation rule Lω(s)Lω(t) = Lω(t)Lω(s) for all t, s ,

hetero-commutation rule LφLω(t) = Lω(t)Lφ for all t .

Such commutation rules are fulfilled in particular by the class of circulant matrices defined as
(c.f. [17] for details)

circ(a1, . . . , an) :=








a1 a2 · · · an

an a1 · · · an−1

...
. . .

...
a2 a3 · · · a1








.

In what follows, the adaptive mechanisms’ network will switch from one topology to another
at given times. Let us define these switching times and topologies for System (5.3).

Switching Times

The time line R≥0 is partitioned into disjoint intervals I
Bj

j (i.e. R≥0 =
⋃∞

j=0 I
Bj

j ), where
{Bj}∞j=0 is a sequence of independent Bernoulli random variables with states u and d, that
is

Bj =

{
u with probability p

d with probability 1 − p
j = 0, 1, 2, . . . .

The intervals Iu
j and Id

j are defined as

I
u
j := [tj , tj + tu] ∪ [tj + tu, tj+1] I

d
j := [tj , tj + td] ∪ [tj + td, tj+1]

with tj := j(tu + td), where tu, td > 0 are two positive real numbers. This partitioning is
sketched in Figure 5.1.

1 The Laplacian matrix associated to a given network is defined as L(t) := A(t)−D(t), where A(t) is the
adjacency matrix D(t) is the diagonal matrix with dk,k(t) :=

Pn

j=1 ak,j(t).
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︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

t0 t1 t2 t3 t4

I
B0

0
I
B1

1
I
B2

2 I
B3

3

(a)

︸︷︷︸ ︸︷︷︸

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

t0 t1 t2 t3 t4

︸︷︷︸ ︸︷︷︸ ︸︷︷︸︸︷︷︸ ︸︷︷︸︸︷︷︸

tutd td td tdtu tu tu

I
u

0 I
d
1 I

d
2

I
u

3

(b)

Fig. 5.1: R≥0 is partitioned into disjoint intervals I
Bj

j , here j = 0, 1, 2, 3 (Figure 5.1(a)). Depending
on the random realization (here, for example, B0 = u, B1 = d, B2 = d and B3 = u), the intervals

I
Bj

j are partitioned with tu and td respectively (Figure 5.1(b)).

Switching Topologies

Consider two different networks for the adaptive mechanisms and denote the adjacency matri-
ces by Aω

u and Aω
d respectively. On interval Iu

j , System (5.3) evolves with Aω
u between tj and

tj + tu with initial condition taking the values of the state of the system at tj . Between tj + tu
and tj+1, System (5.3) evolves with Aω

d , with initial condition being the values of the system’s
state at tj + tu. Similarly, on interval Id

j , System (5.3) evolves with Aω
d between tj and tj + td,

with initial condition taking the values of the state of the system at tj . Between tj +td and tj+1,
System (5.3) evolves with Lω

u with initial condition being the values of the system’s state tj +td.

5.3 Network’s Dynamical System with Random Switching Topologies

For sufficiently continuously differentiable functions aω
k,j(t), and under appropriate conditions (c.f.

[42] for details), the adaptive mechanisms tune the ωk so that the global dynamical system given
by Equations (5.3) reaches a consensual oscillatory state:

lim
t→∞

‖
(
φk(t), ωk(t)

)
−
(
ωc t, ωc

)
‖ = 0 ∀ k (5.4)

with constant ωc determined as

ωc =
1

n

n∑

j=1

ωj(0) .

Once reached, the consensual state remains unchanged even if interactions are switched off. That
is, if the coupling dynamics and adaptive mechanism are both zero after convergence, all local
systems keep oscillating in phase with identical ωc.

We here want to study the resulting dynamics when Aω(t) randomly alternates between two dif-
ferent adjacency matrices Aω

u and Aω
d as defined at the end of Section 5.2. For both Aω

u and Aω
d

taken individually, the system is encompassed in Equations (5.2), therefore Limit (5.4) holds. The
core of this paper can be summarized with the following question:

“Can these time-dependent alternating topologies affect the
convergence in Limit (5.4)?”

We answer this question within the framework of a linear stability analysis around a consensual
state. We therefore compute the first order approximation of the vector field given by Equations
(5.3), and we diagonalize the resulting Jacobian.
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First Order Approximation

Rearranging the variables (i.e. the first n are the φk and the n others are ωk), the first order
approximation of Equations (5.3) is

(

ǫ̇φ

ǫ̇ω

)

=

(

−cLφ Id

−sLω(t) 0

)(

ǫφ

ǫω

)

(5.5)

with the n×n identity matrix Id, Laplacian matrices Lφ and Lω(t) associated with their respective
network and ǫφ := (ǫφ1

, . . . , ǫφn
) and ǫω := (ǫω1

, . . . , ǫωn
).

Diagonalization

Both Lφ and Lω(t) are symmetric for all t, and thanks to their commutation rules there exists
an orthogonal matrix O with real time-independent entries that simultaneously diagonalizes Lφ

and Lω(t) for all t (see Appendix 5.C). That is, there exists an orthogonal matrix O such that
O⊤LφO = D(ζφ) and O⊤Lω(t)O = D(ζω(t)) for all t, with diagonal matrices D(ζφ) and D(ζω(t))

having, respectively, on their diagonals, the spectrum ζ
φ
k and ζω

k (t) (k = 1, . . . , n) of Lφ and Lω(t).
As O is time-independent, for a change of variable (εφ, εω) = (O⊤ǫφ, O⊤ǫω) we have (ε̇φ, ε̇ω) =
(O⊤ ǫ̇φ, O⊤ǫ̇ω). Therefore, changing the basis of System (5.5) with a 2 × 2 bloc matrix (each bloc
of size n × n) with O⊤ on its diagonal, we obtain n 2-dimensional systems of the form

(

ε̇φk

ε̇ωk

)

=

(

−cζ
φ
k 1

−sζω
k (t) 0

)(

εφk

εωk

)

(5.6)

or equivalently

ε̈φk
+ cζ

φ
k ε̇φk

+ sζω
k (t)εφk

= 0 . (5.7)

In order to study the linear stability of System (5.3), we focus on the general form of Equation
(5.7) which is

ẍ + fẋ + F(t)x = 0 . (5.8)

Despite the apparent simplicity of Equation (5.8), stability conditions and related dynamics are
an ongoing research topic (c.f. [19, 6, 24]). In this contribution, we focus on parametric resonance
instabilities that may occur in Equation (5.8) (c.f. [6, 24]).

Let F(t) from Equation (5.8) switch between two different values, that is, on interval Iu
j

F(t) = u for t ∈ [tj , tj + tu] and F(t) = d for t ∈ [tj + tu, tj+1]

and on Id
j

F(t) = d for t ∈ [tj , tj + td] and F(t) = u for t ∈ [tj + td, tj+1] .

Let us now study the asymptotic behavior of Equation (5.8) for the particular choice u := 1 + h,
d := 1 − h with 0 < h ≪ 1, ū := 4u − f2, d̄ := 4d − f2, and finally tu = π√

ū
and td = π√

d̄
. For F(t),

taking a constant value v, Equation (5.8) is

ẋ = y

ẏ = −vx − fy

and the solution is
(

x(t)

y(t)

)

=
exp(− tf

2 )√
v̄

(
f sin( t

2

√
v̄) +

√
v̄ cos( t

2

√
v̄) 2 sin( t

2

√
v̄)

−2v sin( t
2

√
v̄) −f sin( t

2

√
v̄) +

√
v̄ cos( t

2

√
v̄)

)(
x0

y0

)

(5.9)

with v̄ := 4v − f2 and initial condition (x0, y0). Denote by (xj , yj) the state of the system at time
tj . On interval Iu

j , the system first evolves with v = u (i.e. v̄ := ū) on [tj , tj + tu]. Hence, the state
of the system at time tj + tu is
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exp(− πf

2
√

ū
)

√
ū

(
f 2

−2u −f

)(
xj

yj

)

. (5.10)

On the interval [tj + π√
ū
, tj+1], the system evolves according to Equation (5.9), with v = d (i.e.

v̄ := d̄) and with initial condition given by Equation (5.10). Hence, at time tj+1, the system is at
state

exp(− πf

2
√

d̄
)

√
d̄

exp(− πf

2
√

ū
)

√
ū

(
f 2

−2d −f

)(
f 2

−2u −f

)(
xj

yj

)

=
exp(−πf

2 ( 1√
d̄

+ 1√
ū
))

√
d̄
√

ū

(
−ū 0

2f(u − d) −d̄

)(
xj

yj

)

.

(5.11)

Similarly, on interval Id
j , the system first evolves with v = d (i.e. v̄ := d̄) on [tj , tj + td], and then

with v = u (i.e. v̄ := ū) on [tj + π√
ū
, tj+1]. Hence, at time tj+1, the system is at state

exp(−πf
2 ( 1√

ū
+ 1√

d̄
))

√
ū
√

d̄

(
−d̄ 0

2f(d − u) −ū

)(
xj

yj

)

. (5.12)

Observe that in both cases the resulting matrices are lower triangular matrices.

5.3.1 Stability Analysis

We separately consider different regimes. The first two are deterministic and without friction [p = 1
and p = 0, f = 0]. The next two are deterministic with small friction [p = 1 and p = 0, 0 < f ≪ 1].
Finally, we look at case with random switching and with small friction [0 < p < 1, 0 < f ≪ 1].

[p = 1, f = 0] In this case, we have to study the eigenvalues of the matrix in Equation (5.11),
which are

ξ1 = −
√

ū√
d̄

= −
√

1 + h√
1 − h

ξ2 = −
√

d̄√
ū

= −
√

1 − h√
1 + h

with eigenspaces Eξ1
= < (1, 0)⊤ > and Eξ2

= < (0, 1)⊤ >. Hence, |ξ1| > 1 and |ξ2| < 1, and so
for any initial condition belonging to Eξ2

the system is stable, and for any initial condition not
belonging to Eξ2

the system is unstable.

[p = 0, f = 0] In this case, we have to study the eigenvalues of the matrix in Equation (5.12).

This case is symmetric to the case above, where here ξ1 = −
√

1−h√
1+h

and ξ2 = −
√

1+h√
1−h

and so |ξ1| < 1

and |ξ2| > 1. Therefore, for any initial condition belonging to Eξ1
the system is stable, and for any

initial condition not belonging to Eξ1
the system is unstable.

[p = 1, 0 < f ≪ 1] The eigenvalues of the matrix in Equation (5.11) are

ξ1 = − exp
(
− πf

2
(

1√
ū

+
1√
d̄
)
)
(

√
ū√
d̄
) and ξ2 = − exp

(
− πf

2
(

1√
ū

+
1√
d̄
)
)
(

√
d̄√
ū
) .

It is immediate that |ξ2| < 1, hence for any initial condition belonging to the eigenspace Eξ2
= <

(0, 1)⊤ >, the system is stable. For the system to be stable for all initial conditions, f and h must
satisfy

|ξ1| < 1 ⇐⇒ exp
(
− πf

2
(

1√
ū

+
1√
d̄
)
)
(

√
ū√
d̄
) < 1 ⇐⇒ 1

f

ln(

√
4(1+h)−f2√
4(1−h)−f2

)

( 1√
4(1+h)−f2

+ 1√
4(1−h)−f2

)
<

π

2
.

Since 1
q

(4−f2)(1± 4h

4−f2
)

= 1√
(4−f2)

1
q

1± 4h

4−f2

= 1√
(4−f2)

(
1 ± 1

2
4h

4−f2
+ O(( 4h

4−f2
)2)
)
, then

61



1
√

4(1 + h) − f2
+

1
√

4(1 − h) − f2
≃ 2
√

(4 − f2)
.

Since ln(1+x
1−x

) = 2
∞∑

j=1

x2j−1

2j−1 for x2 < 1, then 1
2 ln(

1+ 4h

4−f2

1− 4h

4−f2

) = 4h
4−f2

+ O(( 4h
4−f2

)2), then

π

2
>

1

f

ln(

√
4(1+h)−f2√
4(1−h)−f2

)

( 1√
4(1+h)−f2

+ 1√
4(1−h)−f2

)
≃ 1

f

2h√
4 − f2

.

Neglecting f2 gives a further approximation, which is

π

2
>

h

f
.

[p = 0, 0 < f ≪ 1] This case is symmetric to the case directly above, where here any

initial condition belonging to the eigenspace Eξ1
=< (1,

2f(u−d)
√

ū√
d̄
−

√
d̄√
ū

)⊤ > (with eigenvalue ξ1 =

− exp
(
− πf

2 ( 1√
ū

+ 1√
d̄
)
)
(
√

d̄√
ū
)) will converge to zero (asymptotic stability). The conditions on f

and h for asymptotic stability for any general initial condition are similar to the above case.

[0 < p < 1, 0 < f ≪ 1] We first analyze how the perturbations evolve on a finite time interval.
At time tm, the state of the system is given by the matrix

exp(−mπf
2 ( 1√

ū
+ 1√

d̄
))

(
√

ū
√

d̄)m

(
(−ū)q (−d̄)m−q 0

z (−d̄)q (−ū)m−q

)

(5.13)

with z ∈ R, and where q is the number of times the dynamical system evolved with v := u. Hence
m − q is the number of times the dynamical system evolved with v := d. In other words, q is the

realization of the the random variable �m :=
m∑

j=1

Iu(Bj).
2 The eigenvalues of Matrix (5.13) are

ξ1,m = (−1)m exp
(
− mπf

2
(

1√
ū

+
1√
d̄
)
)
(

√
ū√
d̄
)2q−m

ξ2,m = (−1)m exp
(
− mπf

2
(

1√
ū

+
1√
d̄
)
)
(

√
ū√
d̄
)−(2q−m) .

The initial perturbation (x0, y0) decreases in magnitude at time tm if

|ξ1,m| < 1 and |ξ2,m| < 1 .

This implies

|ξ1,m| < 1 ⇐⇒ exp
(
− mπf

2
(

1√
ū

+
1√
d̄
)
)
(

√
ū√
d̄
)2q−m < 1

⇐⇒ (2q − m) ln(

√
ū√
d̄
) < m

πf

2
(

1√
ū

+
1√
d̄
)

⇐⇒ q

m
<

πf
4 ( 1√

ū
+ 1√

d̄
)

ln(
√

ū√
d̄
)

+
1

2
=: ō

and

2 We define the function Iv(x) as

Iv(x) =

(

1 if x = v

0 if x 6= v
.

62



|ξ2,m| < 1 ⇐⇒ exp
(
− mπf

2
(

1√
ū

+
1√
d̄
)
)
(

√
ū√
d̄
)−(2q−m) < 1

⇐⇒ q

m
>

1

2
−

πf
4 ( 1√

ū
+ 1√

d̄
)

ln(
√

ū√
d̄
)

=: o .

For large m, the random variable Dm := 1
m

�m ∈ [0, 1] (for which q
m

is a realization) approximately

behaves as N (p,
p(1−p)

m
) (normally distributed with mean p and variance p(1−p)

m
). Therefore, as m

approaches infinity, then D∞ ∼ D(p), a Dirac distribution with parameter p in the sense that
P(D∞ = p) = 1. Hence, the necessary and sufficient condition for the system to be asymptotically
stable is

lim
m→∞

|ξ1,m| < 1 and lim
m→∞

|ξ2,m| < 1 ⇐⇒ o < p < ō .

A sufficient condition for the system to be unstable for all initial conditions is that at time tm,

|ξ1,m| > 1 and |ξ2,m| > 1

and so proceeding with similar calculations, we have

lim
m→∞

|ξ1,m| > 1 and lim
m→∞

|ξ2,m| > 1 ⇐⇒ p ∈ [0, 1] \ [o, ō] .

Figure (5.2) shows the resulting stability diagram. The black domain represents the stable region,
and its boundaries are given by ō and o for a given h = 0.05. The unstable regions are given in
gray. Therefore, for this specific second order linear differential equation with time-dependent co-
efficients, we analytically calculated the bifurcation values between three parameters: the friction
of the system (i.e. f), the change in shape of the trajectories (i.e. h), and the randomness from
the environment affecting the system (i.e. p). This analysis enables us to discuss the stability of
the first oder approximation of a network of coupled phase oscillators with frequency adaptation.
Numerical simulations show that this linear stability analysis is indeed precise, even when the
nonlinear contributions are considered.
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Stability Diagram

Fig. 5.2: Stability diagram for parameters f and p for the System (5.8) with discrete stochastic
switching F(t). The stable region is given in black, the unstable regions in gray.
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Conditions for Parametric Resonance in Switching Networks

To summarize, linear analysis shows that parametric resonance occurs in Equations (5.3) when

the associated Laplacian matrices of the switching networks Au and Ad have at lest one eigen-
vector (i.e. there exists a k in Equation (5.7)) for which the corresponding eigenvalues are such
that 0 < |ζω

u,k − ζω
d,k| ≪ 1 ,

the susceptibility constant is defined as s := 2
ζω

u,k
+ζω

d,k

,

the coupling strength c is sufficiently small ,

the switching times are defined as tu := π
q

4sζω
u,k

−(cζφ

k
)2

and td := π
q

4sζω
d,k

−(cζφ

k
)2

.

With these hypotheses, sζω
k (t) is switching between 1+ h and 1− h (as F(t) in Equation (5.8)) and

cξ
φ
k plays the role of f. Hence, one can find values of c and p in order to be in the gray zone of

Figure 5.2, for which parametric resonance destabilizes the dynamical system.

Geometric Interpretation of Parametric Resonance Phenomena

Equation (5.8) describes a damped oscillator with alternating frequencies. For each realization of
the frequency taken individually (i.e. not switching between two values), the fixed point zero is an
attractor (c.f. Figure 5.3). However, due to parametric resonance, instabilities occur for an appro-
priate switching of the frequencies. A similar phenomenon occurs for the alternating networks we
are here discussing. Following [37], this can be heuristically understood as explained in Figure 5.4.

Note that in Figure 5.4(a), at end point (i.e. black point), the trajectory will either switch to a gray
spiral with probability p or continue on the same black spiral with probability 1 − p. If this is the
case (i.e. case with probability 1 − p), after one revolution, the system will be at a state closer to
the origin (i.e. converging towards it). Therefore, one immediately sees the interplay between the
friction of the system and its stochasticity. For a fixed friction value (in the appropriate parameter
range), the system will perform parametric resonance as long as p is close enough to one. If there
is too much randomness, parametric pumping may not occur.
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Fig. 5.3: Qualitative sketches of orbits of System 5.8 when F(t) = 1 + h for all t (Figure 5.3(a)),
and when F(t) = 1 − h for all t (Figure 5.3(b)) with here, 0 < h ≪ 1. Therefore, one has, a priori,
the illusion that the system is always asymptotically stable no matter when the switchings occur
- and this because of the dissipative nature of the system. However, by adequately switching from
one type of spiral to another at specific times, the perturbation may increase, and this even when
the system is damped (Figure 5.4). Crosses represent the initial conditions (starting points) and
arrows the direction of the dynamics.
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Fig. 5.4: Qualitative sketches of the parametric resonance phenomenon. The systems starts at
(1, 0), follows a black spiral orbit, automatically switches to a gray orbit once crossing the y-axis,
and circulates along it until it reaches the x-axis (Figure 5.4(a)). With probability p, it switches
to a black spiral orbit and evolves on it until, again, it automatically switches to a gray orbit once
crossing the y-axis. It follows this gray spiral until it reaches the x-axis (once more) (Figure 5.4(a)).
Hence, after one revolution, the system is further away from the origin compared with its initial
state (i.e. an increase in amplitude). The cross represents the initial condition (starting point), the
thick black line is the evolution of the system with the black point its end point, and the arrows
show the direction of the dynamics.

5.4 Numerical Simulations

We numerically exhibit the parametric resonance phenomenon produced by the time-dependent
adaptive mechanism. For this, four phase oscillators are coupled through a “All-to-All” network
Aφ = circ(0, 1, 1, 1). The networks for the adaptive mechanisms are Aφ

u = circ(0, 1, 1, 1) and

A
φ
d = circ(0, 1, 17

21 , 1) (i.e. a switching between an “All-to-All” network and a “Second Neighbor”
topology with second neighbor weights being smaller than one). The respective spectra of the Lapla-

cian matrices are (ζφ
1 , . . . , ζ

φ
4 ) = (ζω

u,1, . . . , ζ
ω
u,4) = (0, 4, 4, 4) and (ζω

d,1, . . . , ζ
ω
d,4) = (0, 76

21 , 4, 76
21 ). The

coupling strength is chosen as c = 0.005 and the susceptibility constant as s = 21
80 . The initial

conditions (φk(0), ωk(0)) are randomly uniformly drawn from ] − 0.1, 0.1[×]0.9, 1.1[.

With this set up, we analytically obtain sζω
u,k = 21

80 4 = 1.05, sζω
d,k = 21

80
76
21 = 0.95 for k = 2, 4 and

cζ
φ
k = 0.02 for k = 2, 3, 4. Hence, depending on the value of p, the network will either converge

towards a consensual oscillatory state (for p < 0.81417 . . . ) or be destabilized by a parametric
resonance effect (for p > 0.81417 . . . ). This is clearly observed in Figure 5.5. Note that for both
simulations, the parameter p is chosen close to the theoretical bifurcation value. The simulations,
which take into consideration the none linearities of the system, corroborate the theory.

5.5 Conclusions and Perspectives

Sustaining permanent communications between subparts of complex systems may often be impos-
sible for structural or technical reasons, and/or prohibitively costly. Also, the ubiquitous presence
of environmental noise can contribute to communication failures and hence fluctuating interactions
between the various subsystems. Despite their direct relevance for applications, switching networks
remain scarcely investigated. One practical reason for this is that any time-dependence affecting
the networks introduces additional complications into the analytical discussion of the dynamics.
Difficulties remain even for linear stability analysis which are essentially based on sets of Flo-

quet exponents. Highly stylized, our class of models nevertheless enables to analytically unveil
how parametric resonance occurs for local systems wired via stochastically flashing networks. An
appropriate tuning between the local relaxation time and the flashing rate of the networks produces
parametric resonance. In other words, part of the energy which sustains the network switchings
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Fig. 5.5: Time evolution of the ωk of four coupled phase oscillators, interacting through a “All-to-
All” network. The networks for the adaptive mechanisms switch from an “All-to-All” to a “Second
Neighbor” network. For the converging case (Figures 5.5(a) & 5.5(b)), the probability parameter
is p = 0.8, and for the parametric resonance case (Figures 5.5(c) & 5.5(d)), p = 0.82. The coupling
strength is c = 0.005 and the susceptibility constant is s = 21

80 . The numerical integration is for the
interval [0, 500] (Figures 5.5(a) & 5.5(c)) and for the interval [0, 3000] (Figures 5.5(b) & 5.5(d)).

is scavenged by the local systems which are parametrically pumped. This is fully reminiscent of
a child’s swing subject to alternating changes of its barycenter. Since our work is situated in the
context of resonance phenomena, it opens a door for applications concerning signal detection and
spectral analysis.

Among perspective works, one could consider other stochastic processes in the adjacency matrices.
The challenge here is to find stochastic processes on the aω

k,j(t), such that the networks remain
connected at all times and where we have information on the resulting stochastic eigenvalues
ζω
k (t) of the associated Laplacian matrix. Also, further developments enabling to relax the two

commutation rules of the respective Laplacian matrices would be welcome.

Appendix

5.A Synchronized Solution

Consider a network of coupled phase oscillators

φ̇k = wk − ck

∂V

∂φk

(φ) k = 1, . . . , n (5.14)

with a coupling potential satisfying 〈1 | ∇V(φ) 〉 = 0 for all φ. If the complex system synchronizes,
then, by definition, we have, for k = 1, . . . , n,

lim
t→∞

φk(t) = wc t + ϕk
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with phase shift ϕk. Lets determine the value wc. Observe that

n∑

k=1

φ̇k(t)

ck

=

n∑

k=1

(wk

ck

− ∂V

∂φk

(φ)
)

=

n∑

k=1

wk

ck

and therefore, integrating with respect to time, gives

n∑

k=1

φk(t)

ck

=
(

n∑

k=1

wk

ck

)
t + K ∀ t

with a constant of integration that is determined as
n∑

k=1

φk(0)
ck

= K. Therefore, for a synchronized

state (wc t + ϕ1, . . . , wc t + ϕn), we have

n∑

k=1

wc t + ϕk

ck

=
(
wc

n∑

k=1

1

ck

)
t +

n∑

k=1

ϕk

ck

=
(

n∑

k=1

wk

ck

)
t + K ∀ t

and hence

wc =

n∑

k=1

wk

ck

n∑

k=1

1
ck

and

n∑

k=1

ϕk

ck

=

n∑

k=1

φk(0)

ck

.

We want to determine the ϕk. For this we consider the following coupling potential

V(φ) :=
1

2

n∑

k=1

n∑

j=1

ak,j

(
1 − cos(φk − φj)

)
> 0

with 0 6 ak,j = aj,k the entries of the adjacency matrix of a connected and undirected network.
The components of the gradient of this potential give the famous Kuramoto-type interactions

ck

∂V

∂φk

(φ) = ck

n∑

j=1

ak,j sin(φk − φj) .

Evaluating Equations (5.14) with Kuramoto-type interactions at a synchronized state gives

wc = wk + ck

n∑

j=1

lk,j sin(ϕk − ϕj) k = 1, . . . , n .

This leaves us with the n + 1 equations for the ϕk

wk − wc

ck

=

n∑

j=1

ak,j sin(ϕk − ϕj) k = 1, . . . , n and

n∑

k=1

ϕk

ck

=

n∑

k=1

φk(0)

ck

.

This nonlinear system is, in general, not explicitly solvable. However, in the particular case for a
“All-to-One” network (i.e. all vertices are connected to the nth vertex), one can explicitly calculate
the ϕk. In this case we have

wk − wc

ck

= ak,n sin(ϕk − ϕn) k = 1, . . . , n − 1

and therefore ϕk = ϕn + sin−1(wk−wc

ckak,n
). We then have

K =

n∑

k=1

ϕk

ck

=
ϕn

cn

+

n−1∑

k=1

ϕn + sin−1(wk−wc

ckak,n
)

ck

= ϕn

n∑

k=1

1

ck

+

n−1∑

k=1

sin−1(wk−wc

ckak,n
)

ck
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and so

ϕn =

K −
n−1∑

k=1

sin−1(
wk−wc
ckak,n

)

ck

n∑

k=1

1
ck

.

The case n = 2, we have (we here drop the index of the edge, that is a1,2 = a2,1 = a > 0)

ϕ1 = (
1

c1
+

1

c2
)−1
(
K +

sin−1(w1−wc

c1a
)

c2

)
and ϕ2 = (

1

c1
+

1

c2
)−1
(
K +

sin−1(w2−wc

c2a
)

c1

)

since

w1 − wc

c1a
=

w1

c1
+

w1

c2
− w1

c1
− w2

c2
1

c1
+ 1

c2

c1a
=

( c2

c1
)

w1

c2
− w2

c2
1

c1
+ 1

c2

( c2

c1
)c1a

=

w1

c1
+

w2

c2
− w2

c1
− w2

c2
1

c1
+ 1

c2

c2a
=

wc − w2

c2a
= −w2 − wc

c2a
.

5.B Proof of Convergence

Let V be a coupling potential (see Section 2.3 in [45] for precise definition) with basic hypothesis

V(φ) = 0 ⇐⇒ φk = φj ∀ k, j (5.15a)

∀ φ̄ ∈ M , 〈φ |D2V(φ̄) φ 〉 = 0 ⇐⇒ φk = φj ∀ k, j , (5.15b)

where D2V(φ̄) is the second total derivative (i.e. the Hessian) of V evaluated at φ̄, and M is the
consensual compact submanifold defined as

M := {φ ∈ (S1)n | L̂φ = 0}

where L̂ is an (n − 1) × n matrix with l̂k,k = n − 1 for k = 1, . . . , n − 1, and all other entries are
−1.

Define the set of potential as

V := {V : (S1)n → R>0 | 5.15a and 5.15b are satisfied and 〈1 | ∇V(φ) 〉 6 0 ∀ φ} .

Define the none empty and compact set K := {(φ, ω) ∈ (S1)n ×Rn |φ ∈ M andω = ωc1}. We have
to prove that there exists a neighborhood U of K such that for all orbits (φ(t), ω(t)) of Equations
(5.2) with initial conditions in U converge towards K. The convergence towards K follows from
L�PUNOV’s second method with L�PUNOV function

L(φ, ω) = V(φ) +
1

2

n∑

k=1

(ωc − ωk)2

sk

> 0 .

We then have that K = {(φ, ω) ∈ (S1)n ×Rn | L(φ, ω) = 0}. The time derivation of
d
[
L(φ(t),ω(t))

]

dt
is

(omitting the dependence on time)

〈∇L(φ, ω) | (φ̇, ω̇)⊤ 〉 =
n∑

k=1

( ∂V

∂φk

(φ) (ωk − ck

∂V

∂φk

(φ)) − (ωc − ωk)

sk

(−sk

∂V

∂φk

(φ))
)

= −
n∑

k=1

ck

∂V

∂φk

(φ)2 + ωc

n∑

k=1

∂V

∂φk

(φ) 6 0 .

Observe that
n∑

k=1

ck
∂V
∂φk

(φ)2 = 0 if and only if ∇V(φ) = 0. We therefore need to prove the existence

of a neighborhood Uφ of M such that ∇V(φ) 6= 0 for all φ ∈ Uφ \M. Such a neighborhood exists
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since for all φ̄ ∈ M, the kernel ker(D2V(φ̄)) is equal to the kernel of the submanifold M which
is ker(L̂). Then, invoking Corollary E.2 in [45] guarantees the existence of Uφ. We then define a
neighborhood U of K as U := Uφ × Uωc

, where Uωc
is a neighborhood of ωc1. Therefore, there

exists a neighborhood U of K such that for all orbits (φ(t), ω(t)) of Equations (5.2) with initial
conditions in U, strict negativity 〈∇L(φ, ω) | (φ̇, ω̇)⊤ 〉 < 0 holds for all (φ, ω) ∈ U \ M.

In the case where 〈1 | ∇V(φ) 〉 = 0 for all φ, the above arguments for the convergence still hold,
but one must define Uωc

as a neighborhood of ωc1 included in the hyperplane

{ω ∈ R
n |

n∑

k=1

ωk

sk

=

n∑

k=1

ωk(0)

sk

} . (5.16)

This is due to the system’s constant of motion

J(ω1, . . . , ωn) =

n∑

k=1

ωk

sk

.

Indeed, for ωk(t) orbits of Equations (5.2), we have

d
[
J(ω1(t), . . . , ωn(t))

]

dt
=

n∑

k=1

ω̇k(t)

sk

=
n∑

k=1

−sk

sk

∂V

∂φk

(φ) = 0 .

Thus orbits with initial conditions in Hyperplane (5.16) will, for all time, belong to this set.

Therefore,
n∑

k=1

ωk(0)
sk

=
n∑

k=1

ωk(t)
sk

for all t, and due to the convergence,
n∑

k=1

ωk(0)
sk

= ωc

n∑

k=1

1
sk

and

therefore

ωc =

n∑

k=1

ωk(0)
sk

n∑

k=1

1
sk

.

5.C Commuting Matrices

Lemma 2. Let {A(t)}t∈I be a collection of symmetric matrices. We have

A(t)A(s) = A(s)A(t) ∀ t, s ∈ I ⇐⇒







there exists an orthonormal matrix O with real entries

such that

O⊤A(t)O =







ξ1(t) . . . 0

· · ·
0 . . . ξn(t)







∀ t ∈ I .

Proof.
[=⇒] Let {A(t)}t∈I be a family of symmetric and commutative matrices. Denote by H the vector
subspace generated by the family (i.e. H = < A(t) | t ∈ I >. We have that

AB = BA ∀ A, B ∈ H .

This is because any A and B in V are expressed as A =
l∑

i=1

aiA(ti) and B =
k∑

j=1

bjA(sj). Hence

AB =

l∑

i=1

k∑

j=1

aibjA(ti)A(sj) =

l∑

i=1

k∑

j=1

aibjA(sj)A(ti) = BA .
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Since H is finite dimensional (because it is a subspace of the space of symmetric matrices), there
exists A1, . . . , Am ∈ H such that H = < A1, . . . , Am >. Therefore any matrix A(t) in H is expressed

as A(t) =
m∑

j=1

aj(t)Aj . By Lemma 3, there exists an orthogonal matrix O such that O⊤AjO is

diagonal for every j and so

O⊤A(t)O = O⊤(
m∑

j=1

aj(t)Aj)O =
m∑

j=1

aj(t)O
⊤AjO

is diagonal.

[⇐=] Let t, s ∈ I. Denote by [ξ(t)] (respectively [ξ(s)]) the diagonal matrix with ξ1(t), . . . , ξn(t)
(respectively ξ1(s), . . . , ξn(s)) on its diagonal. Since [ξ(t)] and [ξ(s)] commute, then

A(t)A(s) = O[ξ(t)]O⊤O[ξ(s)]O⊤ = O[ξ(t)][ξ(s)]O⊤ = O[ξ(s)][ξ(t)]O⊤ = A(s)A(t) .

⊓⊔

Lemma 3. Let A1, · · · , Am be symmetric matrices such that AiAj = AjAi for every 1 6 i, j 6 m,
then there exists an orthonormal matrices O such that OT AjO is diagonal for every 1 6 j 6 m.

Proof.
We proceed by induction. We first consider the case m = 2. Let A and B be symmetric and
commutative matrices. The eigenspaces of A form an orthogonal decomposition

R
n = Eξ1

⊕ · · · ⊕ Eξk
.

If x ∈ Eξj
, then A(Bx) = BAx = ξj(Bx) and thus Bx ∈ Eξj

. Therefore B(Eξj
) ⊆ Eξj

for every j.
Since, for each j, B|Eξj

(i.e. B restricted to Eξj
) is a symmetric operator, there exists an orthonor-

mal basis jx1, . . . ,j xsj
of Eξj

. The reunion of these forms simultaneously an orthonormal basis of
eigenvectors of A and B.

We now consider the case m ⇒ m + 1. Let A1, . . . , Am, B be a family of commutative symmetric
matrices. By induction hypothesis, there exists an orthonormal matrix O whose columns, denoted
by o1, . . . , on, are eigenvectors for every Aj (j = 1, . . . , m). For every j, the eigenspaces form an
orthogonal decomposition

R
n = E

j
1 ⊕ · · · ⊕ E

j
vj

.

Each of the subspace E
j
k are generated by a choice of o1, . . . , on. The indices of the vectors o1, . . . , on

that belong to E
j
k are denoted as I

j
k (i.e. I

j
k := {s ∈ {1, . . . , n} | os ∈ E

j
k}). For each j, we have a

decomposition
{1, . . . , n} = I

j
1 ⊔ · · · ⊔ I

j
vj

.

We can take the minimal decomposition generated by these decompositions (i.e. the decomposition
that is included in all others), and we denoted it as

{1, . . . , n} = J1 ⊔ · · · ⊔ Jk .

Define Fp = < os | s ∈ Jj > for j = 1, . . . , p. The corresponding orthogonal decomposition

R
n = F1 ⊕ · · · ⊕ Fp

is such that each vector of Fj is an eigenvector for each Aj and that B(Fj) ⊆ Fj (as in the case
m = 2). Since B preserves all orthogonal decomposition, there exists an orthonormal basis of Rn

which consists of eigenvectors of B and which are in the spaces Fi (same argument as in the case
m = 2). So o1, . . . , on forms a basis of orthonormal eigenvectors of Aj for all j and B.

⊓⊔
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6

Noise Induced Temporal Patterns in Populations of
Globally Coupled Oscillators

El tiempo se bifurca perfectamente hacia innu-
merables futuros.

Jorge Luis Borges

Abstract

The population dynamics of an assembly of globally coupled homogeneous phase oscillators is
studied in presence of non-Gaussian fluctuations. The variance of the underlying stochastic process
grows as t + b2t2 (b being a constant) and therefore exhibits a super-diffusive behavior. The
cooperative evolution of the oscillators is represented by an order parameter which, due to the
ballistic b2t2 contribution, obeys to a surprisingly complex bifurcation diagram. The specific class
of super-diffusive noise sources can be represented as a random superposition of two Brownian
motions with opposite drift and this allows to derive exact analytic results. We observe that
besides the existence of the well known incoherent to coherent phase transition already present for
Gaussian noise, entirely new and purely noise induced temporal patterns of the order parameter
are realized. Hence, the ballistic contributions of the fluctuating environment does structurally
modify the bifurcation diagram obtained for Gaussian noise. To illustrate potential implications
of the developed class of models, we explore the dynamic behavior of a swarm formed by a planar
society of particles with coupled oscillator dynamics. For this collective dynamics, we discuss how
noise induced periodic orbits of the swarm’s barycenter may emerge.

6.1 Introduction

In the vast research domain in relation with cooperative dynamics, a wealth of applications are
successfully stylized by the dynamics of interacting phase oscillators evolving in a random environ-
ment. In this context, one of the most successful models is doubtlessly the Kuramoto-Sakaguchi

(KS) model [34], [51]. It consists of a population of n coupled phase oscillators where the phase of
the kth oscillator, denoted by φk, evolves in time according to

φ̇k = wk +
c

n

n∑

j=1

sin(φj − φk) +
√

2e�k(t) k = 1, . . . , n. (6.1)

Here, c is an “All-to-All” coupling constant and wk is the natural frequency of oscillator k which
is drawn at random from some probability distribution G(w). The random environment is additive
Gaussian white noise (GWN),

√
2e�k(t), with noise strength e > 0. The model can be studied in

terms of a complex order parameter ρ exp(ıα) given by

ρ exp(ıα) :=
1

n

n∑

j=1

exp(ıφj) (6.2)



with notation ı2 = −1. The amplitude ρ ∈ [0, 1] measures the phase coherence of the oscillators
and α represents an average phase of the system. Thanks to ρ, we can identify the cooperative
state of the oscillators assembly, namely ρ = 1 indicates a fully synchronized motion (see Appendix
6.A for details), ρ = 0 characterizes a fully incoherent behavior and when 0 < ρ < 1, the assembly
possesses a partially synchronized state.

After the pioneering works [34, 51], the behavior of Equations (6.1) has been further analyzed in
presence of Gaussian noise sources �k(t) having white or colored spectral densities [1, 50]. In
the limit n → ∞, it can be shown that, tuned by the coupling strength c, a second order type
phase transition occurs between the fully incoherent and a partially synchronized state at a criti-
cal bifurcation value č. The explicit dependence of č on the underlying control parameters, (noise
amplitude e, noise coloration,. . . ), has been derived analytically for several Gaussian noise sources
and a rather large class of frequency distributions G(w). These analytical and numerical studies
underline the following intuitive picture: an increase of the noise correlations decreases the value
of č.

The injection of non-Gaussian noise into the dynamics given by Equations (6.1) will generally
preclude analytical discussion and hence do enforce numerical studies to be performed. This nu-
merical approach has recently been adopted in [7] for a class of stationary processes for which the
invariant measure exhibits a symmetric non-Gaussian, uni-modal probability density. The authors
report that the global qualitative picture of the phase transition is preserved. However, the bifur-
cation value č explicitly depends on the non-Gaussian character of the noise. Adopting a similar
research direction, the present work aims to analyze the behavior of Equations (6.1) in presence
of a super-diffusive, non-Gaussian noise having a variance growing as t + b2t2, b being a constant.
The b-controlled non-Gaussian character, produces a surprisingly enriched phase transition dia-
gram which includes regimes with time oscillations of the order parameter ρ. This stable temporal
modulation is entirely due to the non-Gaussian character of the driving noise tuned by b. For the
limiting case b = 0, the noise model coincides with the standard WGN case. Note that contrary to
[7], our noise process is non-stationary and exhibits a bi-modal transition probability density.

6.2 Kuramoto-Sakaguchi Model Driven by Super-Diffusive Noise

In the following, we consider the KS like-dynamics given in Equations (6.1) where the �k(t) are
replaced with non-Gaussian noise sources and where all the natural frequencies wk are equal. By
going into a rotating frame we can assume wk = 0 and the homogeneous frequency model reads as

φ̇k =
c

n

n∑

j=1

sin(φj − φk) +
√

2eQk(t) k = 1, . . . , n . (6.3)

The non-Gaussian noise sources Qk(t) we will consider in Equations (6.3) are formal derivatives
dZk(t)

dt
of none linear diffusion processes Zk(t) with Langevin equationQk(t) =

dZk(t)

dt
= b tanh(bZk(t)) +�k(t) , Zk(0) = 0 (6.4)

and where the �k(t) are independent WGN processes verifying for k = 1, . . . , n,

〈�k(t)〉 = 0 and 〈�k(t)�j(s)〉 = D̄k,j D(t − s) . (6.5)

To study the dynamics given by Equations (6.3), we briefly review some relevant features of the
noise source delivered by Equations (6.4).

6.2.1 A None Gaussian, Super-Diffusive Noise

Due to the absence of correlations between the noise components in Equations (6.5), we focus on a
single noise component and will omit the subscript. Observe that the transition probability density
(TPD) P(z, t|0, 0) associated with the non-linear diffusion process Equations (6.4) reads as [27, 28]
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P(z, t|0, 0) = cosh(bz) 1√
2πt

exp(− b2t2−z2

2t
)

= 1
2N+(z, t) + 1

2N−(z, t) ,
(6.6)

where

N±(z, t) =
1√
2πt

exp(− (z ± bt)2

2t
) . (6.7)

The TPD Equation (6.6) is the sum of two Gaussian densities and therefore the non-Gaussian
character of Q(t) is obvious. Elementary quadratures using the density given by Equation (6.6)
yield the moments

〈Z2m+1(t)〉 = 0 , 〈Z2m(t)〉 =

(−t

2

)n

H2m

(

ı

√

bt

2

)

(6.8)

for m = 1, 2, . . . and where H2m are the Hermite polynomials. In particular we have

〈Z(t)Z(s)〉 = min(t, s) + b2ts (6.9)

for the covariance and for the second moment we find

〈Z2(t)〉 = t + b2t2 . (6.10)

The b parameter multiplies the ballistic contribution of order t2 and hence controls in a simple way
the super-diffusive character of the noise source. For b → 0, Q(t) converges to the standard WGN.
The process Z(t) defined by Equations (6.4), possesses several interesting mathematical properties
which renders Z(t) particularly useful for stochastic modeling. We cite the two mayor ones.

I L. Rogers and J. Pitman remarked in [48] (See example 2, on page 581) that Z(t) can be
represented as the random Gaussian mixture (see also Equation (6.6)):Z(t) = Bbt +X(t) , Z(0) = 0 , (6.11)

where X(t) is the standard Wiener process and B ∈ {−1, +1} is a symmetric Bernoulli
variable independent of X(t).

II I. Benjamini and S. Lee remarked in [10] that conditioning the Z(t) process so that Z(0) =Z(t) = 0, with t > 0 a fixed time instant, the resulting conditioned new process, say Z̃(t), is a
Brownian bridge. Moreover, it is the unique Brownian bridge with none linear drift term. Note
that the time-discrete version of the Z(t) process is discussed in [31].

6.2.2 The Effect of The Non-Gaussian Noise

By using the representation given by Equation (6.11), it is straightforward to see that Equations
(6.3) can be effectively rewritten as

φ̇k = wk +
c

n

n∑

j=1

sin(φj − φk) +
√

2eQk(t) k = 1, . . . , n (6.12)

where the frequencies wk are now drawn randomly from a probability distribution G(w)

G(w) =
1

2
D(w − b

√
2e) +

1

2
D(w + b

√
2e) (6.13)

Hence we can summarize this observation by saying

“The effective action of the non-Gaussian noise sources on the homogeneous frequency model of
Equations (6.3) is equivalent to drive an heterogenous bi-frequency KS model with Gaussian noise
sources”.

The stronger the non-Gaussian character (i.e the stronger b), the larger the variance of the distri-
bution G(w) in Equation (6.13). The resulting dynamics defined by Equations (6.12) and (6.13) is
thoroughly discussed in [3, 15]. It exhibits the following salient features
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a) Close to Gaussian noise regime. When 0 ≤ b <
√

e
2 , a phase transition between a fully

incoherent state to a partially synchronized state occurs at a bifurcation value č(b, e) = 2e+4b2.
While the bifurcation value č(b, e) is b-dependent, the resulting bifurcation diagram topologi-
cally coincides with the Gaussian b = 0 case (cf. Figure 1, in [12]).

b) Far from Gaussian noise regime. When b >
√

e
2 entirely new dynamic features emerge

and a sketch of the (conjectured) global bifurcation diagram is given in Figure 5, Ref. [12]. In
summary, one finds b and e dependent critical values c1(b, e) > 4e and c2(b, e) < c1(b, e) such
that

For 4e ≤ c < c1(b, e), temporal oscillations of the OP occur and the zero value ρ(t) = 0 is
repeatedly attained. Both the oscillations amplitude and their period increase with c. Due
to the symmetry of G(w) in Equation (6.13), the global average phase α in Equation (6.2) is
time-independent during partial synchronization with ρ > 0. Its value depends on the initial
angle distributions [2, 12]. Hence, the value of the average global phase can be modified at
times when full incoherence, ρ(t) = 0, is reached.

For c1(b, e) ≤ c < c2(b, e) and depending on the initial conditions, one observes either a
temporal oscillating behavior of ρ(t) or a purely stationary partially synchronized regime
with ρ(t) = ρ̄ ∈]0, 1[ (ρ̄ a constant).

For c2(b, e) ≤ c, only stationary synchronized regimes exist and the fully synchronized case
ρ = 1 is asymptotically reached for c → ∞.

6.2.3 Extensions to More Complex Noise Sources

Several generalizations of the basic KS model Equations (6.3) have recently being discussed, for
example with frequency distributions given by

a) G(w) = aD(w − w0) + (1 − a)D(w + w0), this case is studied in [2],

b) G(w) = aD(w) + (1 − a)
(

1
2D(w − w0) + 1

2D(w + w0)
)
, this case is studied in [3],

with a ∈ [0, 1]. The results obtained for both cases a) and b) can be reinterpreted as resulting from
KS dynamics with specific non-Gaussian noise sources.

In case a) the corresponding dynamics will be

φ̇k =
c

n

n∑

j=1

sin(φj − φk) +
√

2eQ̂k(t), (6.14)

where Q̂k(t) is a biased super-diffusive process which can be represented as the solution to the
stochastic differential equationQ̂k(t)dt = dZk(t) = (B̂kb)dt + dXk(t) , Zk(0) = z. (6.15)

Here B̂k is a biased Bernoulli random variable taking, independently of the Wiener processesXk(t), the values +1 and −1 with respective probabilities 1+tanh(bz)
2 and 1 − 1+tanh(bz)

2 .

The global bifurcation diagram corresponding to this case is given in [2]. The asymmetry of G(w)
reduces the parameter range for which the incoherent behavior is stable and precludes the exis-
tence of purely stationary synchronized states (i.e. states having simultaneously constant ρ and
α). The synchronized phases branch off from incoherence as traveling waves thereby implying a
time increasing phase α(t) and either a constant amplitude (for coupling strength c close to the
bifurcation point) or time oscillating amplitudes (for larger c).

In the case b), the corespondent dynamics is

φ̇k =
c

n

n∑

j=1

sin(φj − φk) + a
√

2e�k(t) + (1 − a)
√

2eQk(t) , (6.16)
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where the parameter a ∈ [0, 1] is a mixing constant to balance between a non-Gaussian contribution
due to Qk(t) as defined by Equations (6.4) and a Gaussian white noise part �k(t). Again, for small
deviations from Gaussian noise, characterized by b <

√
e
2 , a transition from de-synchronized to a

synchronized regime, similar to the pure Gaussian case, arises. For strongly non-Gaussian regimes
b >

√
e
2 the following picture emerge [3]

4e < c1 < c ≤ c2. Bifurcation to a stationary partially synchronized regime.

c2 < c < c3. Strictly positive time-oscillations of ρ(t) > 0.

c3 < c < c4. Bi-stable region with possibility, depending on initial conditions, of either time-
oscillations of ρ(t) or pure stationary states with partial synchronization.

c4 < c. Stationary and partially synchronized states with ρ = ρ̄ (ρ̄ a constant).

The above results clearly exhibit the possibility to generate synchronized stable time-oscillating
patterns by a non-Gaussian noise injection and this even in presence of symmetric noise (i.e.
vanishing odd moments to any order).

6.3 Noise Induced “Zig-Zagging” - a Case Study

The complex dynamic pattern observed in the previous section opens new potentialities for ap-
plications. As an illustration, let us study how super-diffusive noise environments may potentially
produce spectacular effects in the collective motion of large assemblies of agents such as bacteria,
flies, quadrupeds, fish, etc . . . . In this context, recently published self-driven particle models have
been shown to capture the collective mechanisms for the formation of compact swarms evolving
as quasi-solid bodies [16, 32, 58]. In [16], the authors are able to quantify the agents interac-
tions strength leading to the swarms formations. In particular, observations of the barycenter of
a swarm’s collective often reveals “zig-zag” type motions with alternations between traveling in
definite direction, almost stopping and restart in a new direction. To unveil one possible mechanism
behind this collective dynamics, one now considers simple situations involving n agents, with fixed
unit amplitudes velocities, traveling on a plane. In these models, the agents individual direction
angles φk, k = 1, . . . , n will be autonomously updated according to interaction rules dependent
on the behavior of observed neighbors. Due to the ubiquitous presence of random fluctuations,
noise sources are injected into the dynamics and this obviously produces a tendency to weaken
the mechanisms generating collective patterns. This type of modeling is exposed in [40]. Therein
particles with coupled oscillators dynamics describe the collective behavior of a planar assembly
of n agents with positions rk(t) ∈ C (the plane is identified with the complex C-plane) and the
orientations φk(t) ∈ [0, 2π[. The velocity norm being fixed to unity, the assembly dynamics follows:

φ̇k = Pk(φ, r,�k(t))

ṙk = exp(ıφk)
k = 1, . . . , n (6.17)

with φ = (φ1, . . . , φn) and r = (r1, . . . , rn), and where the agents’ phases interact via functions Pk

and where �k(t) are independent stochastic processes. Restricting, similar to [23] and [5], the Pk

functions to pure angle dependence of the additive form

Pk(φ,�k(t)) = arg
( 1

n

n∑

j=1

exp(ıφj)
)

+
√

e�k(t)

with e ∈ R>0 a constant, the swarm’s barycentric position G(t) = 1
n

n∑

k=1

rk(t) moves with velocity

Ġ(t) =
1

n

n∑

k=1

ṙk(t) =
1

n

n∑

k=1

exp(ıφk(t)) =: ρ(t) exp(ıα(t)) . (6.18)

The variable ρ(t) ∈ [0, 1], in Equations (6.18) coincides with the OP introduced in Equation (6.2).
Hence, for ρ = 0 which characterizes the fully incoherent motion (named the balanced-phase motion
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in [40]), the swarm’s barycenter stays fixed in time. When ρ > 0 the swarm’s barycenter performs a
net motion in direction α(t). The complex behavior of the OP, due to non-Gaussian noise sources,
affects the swarm’s motion. In particular, from the previous sections, we can conclude that for sym-
metric G(w) distributions and appropriate b and c parameters, noise induced temporal modulation
of the barycentric swarm’s velocity occur. An increase of b reduces the oscillation frequency and
increases its amplitude, [12]. Remember that for symmetric G(w) distributions, oscillations may
force the OP to periodically vanish. In such instances of full incoherence a re-actualization of the
global phase follows. This changes the velocity direction of the swarm’s barycenter and ultimately
produces a zig-zag motion. This is shown in the two graphs Figure (6.1) and Figure (6.2) where
Equations (6.12) is numerically integrated (Euler’s method, step size h = 0.005) with wk = 0 (i.e.
G(w) = 0), N = 7500, c = 6, e = 1 and b = 2√

2
). Figure 6.1 shows the oscillating modulus of the OP.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

|O
P

|

Modulus of Order Parameter (OP)

Fig. 6.1: Time evolution of the OP.
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Fig. 6.2: Time evolution of the swarm’s BC. The BC starts at the origin. At instances of almost
full incoherence (OP small) a re-actualization of the global phase changes the velocity direction of
the swarm’s BC and produces a zig-zag motion.

Due to finite size effects, the balanced-phase motion is not completely reached and accordingly
the various local minima of ρ do not completely vanish. The time evolution of the swarm’s BC
is captured in Figure 6.2. The evolution of both, the OP and the swarm’s BC are displayed in a
sequence of black, grey and red curves, starting at the origin (0, 0) and finishing at the black spot.
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Color changes synchronously for the BC and the OP every time the OP passes through a local
minimum.

6.4 Conclusion

It is truly remarkable that the dynamics of the Kuramoto-Sakaguchi model can be analytically
explored for a class of non-Gaussian noise sources characterized by the presence of a ballistic type
term b2t2 in the variance growth of the process. This ballistic contribution does fundamentally alter
the bifurcation scenario previously calculated for dynamics driven by purely Gaussian fluctuations.
Even in presence of noise sources with vanishing odd moments of any order, surprisingly complex
and entirely noise-induced temporal patterns of the underlying order parameter emerge.

Appendix

6.A Characterization of Full Synchronization via the Oder Parameter

For the oder parameter ρ exp(ıα) := 1
n

n∑

k=1

exp(ıφk) we have

ρ = 1 ⇐⇒ φk ≡ φj mod 2π ∀ k, j .

Proof. [⇒] By definition

ρ = | 1
n

n∑

k=1

exp(ıφk)| = | 1
n

n∑

k=1

cos(φk) + ı sin(φk)| =

√
√
√
√
( 1

n

n∑

k=1

cos(φk)
)2

+
( 1

n

n∑

k=1

sin(φk)
)2

and therefore

1 = ρ =
1

n

√
√
√
√
(

n∑

k=1

cos(φk)
)2

+
(

n∑

k=1

sin(φk)
)2 ⇐⇒ n2 =

(
n∑

k=1

cos(φk)
)2

+
(

n∑

k=1

sin(φk)
)2

.

By direct computation, we have

n2 =

n∑

k=1

cos(φk)2 +
∑

k>j

2 cos(φj) cos(φk) +

n∑

k=1

sin(φk)2 +
∑

k>j

2 sin(φj) sin(φk)

=

n∑

k=1

(
cos(φk)2 + sin(φk)2

)
+

n∑

k>j

(
2 cos(φk) cos(φj)
︸ ︷︷ ︸

cos(φk+φj)+cos(φk−φj))

+ 2 sin(φk) sin(φj)
︸ ︷︷ ︸

cos(φk−φj)−cos(φk+φj))

)

= n + 2

n∑

k>j

cos(φk − φj) .

We hence have
n(n − 1)

2
=

n∑

k>j

cos(φk − φj)

and the right hand side of the above equality has n(n−1)
2 terms, each being between −1 and 1.

Since they must sum up to n(n−1)
2 , then all terms must equal one and so

cos(φk − φj) = 1 ⇐⇒ φk ≡ φj mod 2π ∀ k, j .

[⇐] By direct computation, we have
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1

n

n∑

k=1

exp(ıφk) =
1

n

(
n∑

k=1

cos(φk) + ı

n∑

k=1

sin(φk)
)

=
1

n
(cn + ısn) = (c + ıs)

with c := cos(φk) = cos(φj + mk,j2π) and s := sin(φk) = sin(φj + mk,j2π). Hence ρ = |c + ıs| =√
c2 + s2 = 1.

⊓⊔
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7

Conclusions and Perspectives

Que ferai-je à l’avenir? Si tous les projets ne
se mesuraient à longueur de la vie, je voudrais
reprendre des études mathématiques et physiques
délaissées depuis un quart de siècle, rappren-
dre cette belle langue. J’aurais alors l’ambition
de faire de la ≪ Poétique ≫ un chapitre des
mathématiques. Projet démesuré certes, mais
dont la réussite ne porterait préjudice ni à
l’inspiration, ni à l’intuition, ni à la sensualité. La
Poésie n’est-elle pas aussi science des nombres?

Robert Desnos

7.1 Conclusions

Adaptation to time-dependent environments and efficient coordination and synchronization of ac-
tions can be found in nature and are often central to sustaining life forms or economic activity.
Adopting an holistic point of view as synthesized by Nicholas Georgescu-Roegen in his contri-
bution “The Entropy Law and the Economic Process”, our human activity is pursued away from
thermodynamical equilibrium - thus implying a permanent and coordinated supply of matter, en-
ergy and information. The following short list of keywords should serve to outline a possible context
of such a philosophical perception translated into mathematical terms: dynamical systems com-
plex networks, steady and time-dependent network connectivity, feedback mechanisms, emerging
dissipative dynamical patterns, synchronization, learning and adaptation rules, consensual states
for multi-agents systems, centralized and decentralized optimal control theory, leaders and soft
control, fluctuating environments. Based on these theoretical cornerstones, our work tries to offer
an explicit mathematical playground to better understand and quantify some aspects of dynamic
adaptation for different configurations and environments, including those with randomness. We
are fully aware of basic limitations inherent to our approach - and analytical results can often
be obtained only at the price of renouncing generality. Nevertheless, we think that our models
contribute to the necessary corpus of analytical illustrations in this field.

Through out the main part of this thesis, we investigated adaptive mechanisms in coupled oscil-
latory systems with delayed and time-dependent interactions. Here, adaptation always occurred
through additional coupling functions. If these functions were systematically zero (or, if their cor-
responding susceptibility constants were zero), the systems that we studied no longer belong to
the problematic of adaptation, but rather to one of synchronization.

Therefore, to close on this work, we compare the two phenomena, synchronization and adaptation,
in a network of adaptive frequency oscillators. For this, consider the two following systems



φ̇k(t) = wk + c

n∑

j=1

lk,j(t) sin(φk(t−t) − φj(t−t)) k = 1, . . . , n (7.1)

and

φ̇k(t) = ωk(t) + c

n∑

j=1

lk,j(t) sin(φk(t−t) − φj (t−t))

ω̇k(t) = s

n∑

j=1

lk,j(t) sin(φk(t−t) − φj(t−t))

k = 1, . . . , n , (7.2)

where we suppose that the entries of the adjacency matrix are bounded positive smooth functions
of time, and the auto- and hetero-commutation rules from Chapter 5 apply for L(t). We list three
important characteristics for the two phenomena bellow (see Appendix 7.A for details).

Existence of a Common Oscillatory State

The two systems possess a common oscillatory state. System (7.1) possesses a synchronized oscil-
latory state

φk(t) = wc t + ϕk k = 1, . . . , n

with wc = 1
n

n∑

j=1

wk existing with certain constrains on c and L. System (7.2) possesses a consensual

oscillatory state
φk(t) = ωc t k = 1, . . . , n

with ωc = 1
n

n∑

j=1

ωk(0) existing without any constrains. Note that both systems have the same fre-

quency for their common oscillatory state if wk = ωk(0), but that oscillators are out of phase for
System (7.1).

Convergence Towards a Common Oscillatory State for Non-Delayed Interactions

For non-delayed interactions, both systems converge towards their respective common oscillatory
state. There are no conditions on L(t) for converging towards a synchronized oscillatory state. How-
ever, conditions on L(t) are required to guarantee convergence towards a consensual oscillator state.

Convergence Towards a Common Oscillatory State for Time-Independent Networks

For time-independent networks, both systems converge towards their respective common oscillatory
state but, in both cases, only for a time delay t not exceeding a critical value - ts,n for System (7.4)
and ta,n for System (7.5). Here, we have ta,n 6 ts,n, and so System (7.4) allows for a larger time
delay.

7.2 Perspectives

The following list contains new ideas for further research based on this work.

Further Investigations on Adaptation vs. Synchronization

As presented in Section 7.1, one can list the advantages and disadvantages between adaptive and
synchronization phenomena, and this for different types of local dynamics. Among the different
issues to investigate, comparing the basin of attractions would be of great interest.

Frequency Adaptation for Phase Oscillators in Noisy Environment

Having studied coupled phase oscillators in noisy environments without adaptation, we would like
to investigate the resulting dynamics when adaptive frequency mechanisms are introduced. More
precisely, the explicit system to analyze is
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dφk =
(
ωk − c

n

n∑

j=1

sin(φk − φj)
)
dt +

√
2edZk

dZk = b tanh (bZk) dt + dZk

dωk = − s
n

n∑

j=1

sin(φk − φj) dt

k = 1, . . . , n (7.3)

with rk(0) = 0, φ(0) ∈ [0, 2π[ (uniformly distributed), ωk(0) = 0 and Zk(0) = 0. To gain some insight,
we performed a numerical experiment, considering n = 10000, and with parameter values c = 4,
s = 1, e = 1 and b = 2√

2
. We used Euler’s method with a set size of h = 0.005. The dynamics

of the modulus of the order parameter (OP) is displayed in Figure 7.1. Observe the oscillatory
behavior of the OP before converging towards a steady value.
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Fig. 7.1: Evolution of the modulus of the oder parameter (OP) for System (7.3).

Analyzing Time-dependent Delayed Differential Equations

To determine conditions (based on linear stability analysis) for convergence towards a consensual
oscillatory state for Equations (7.2), we need to find the conditions for asymptotic stability for the
zero solution of the linear second order delay differential equation with time-dependent coefficients
taking the general form as

ẍ(t) + F1(t)ẋ(t−t) + F2(t)x(t−t) = 0 .

Adaptation in the Context of Optimal Control

Although we barely touch upon optimal control theory in this work, our synthetic dynamical
models can offer an appropriate framework to derive relevant dynamic programming equations
when supplemented by objective functions. While this remains a mere perspective at this stage,
let us emphasize that objective functions to be minimized (or maximized) via optimal control can
be formulated in terms of L�PUNOV functions. It goes without saying, and as we mentioned at the
beginning of our conclusions, that optimal control issues are of the utmost relevance for example
in the context of a steadily increasing world population, where we struggle with the problem of
sustaining limited resources.
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Appendix

7.A Comparison Between Synchronization and Adaptation

The first variational equations (after digonalization) of Systems (7.1) and (7.2) for their respective
common oscillatory states are, respectively,

ε̇φk
(t) = −cζcosk

(t)εφk
(t−t) k = 1, . . . , n (7.4)

with ζcosk
(t) eigenvalues of matrix Lcos(t) with entries lk,j(t) cos(ϕk − ϕj), and

ε̇φk
(t) = εωk

(t) − cζk(t)εφk
(t−t)

ε̇ωk
(t) = −sζk(t)εφk

(t−t)
k = 1, . . . , n . (7.5)

with ζk(t) eigenvalues of matrix L(t). For the synchronization case, we suppose that |ϕk − ϕj | is
sufficiently small so that cos(ϕk − ϕj) ≃ 1.

Comparing Stability of Common Oscillatory State for Non-Delayed Interactions

When t = 0, the stability of the zero solution of Equations (7.4) is easily discussed since

εφk
(t) = εφk

(0) exp(−c

∫ t

0

ζcosk
(s) ds) .

Hence lim
t→∞

εφk
(t) = 0 for k = 1, . . . , n and for k = 1, εφ1

(t) = εφ1
(0), which accounts for the phase

shift. The stability of the zero solution of Equations (7.4) is delicate since it is the dynamics of a
pendulum with time-dependent friction and frequency

ε̈φk
(t) + cζk(t)ε̇φk

(t) +
(
cζ̇k(t) + sζk(t)

)
εφk

(t) = 0 .

Conditions for asymptotic stability are given in [42].

Comparing Stability of Common Oscillatory State for Time-Independent Networks

When the edges of the network are time-independent (i.e. constant), the stability of the zero
solution of Equations (7.4) is discussed as follows. For each k (k = 2, . . . , n), the zero solution is

asymptotically stable provided (c.f. [33] for details) t < ts,k with ts,k =
π
2

cζcosk

. Since 0 < ζcos2 6

· · · 6 ζcosn
, then

ts,n =
π
2

cζcosn

>

π
2

cζcosk

= ts,k k = 2, . . . , n .

Hence, if t < ťs,n, the zero solution is asymptotically stable for k = 2, . . . , n. The case k = 1
accounts for the phase shift.

Among the conditions for the zero solution to be asymptotically stable for Equations 7.5, there is

(c.f. Theorem 3.3 in [14]) t < ťa,k with ta,k =
π
2

cζk
. Therefore, t must at least verify t < ta,n. Since

Lcos is a subnetwork of L, then by Lemma 4 ζcosn
6 ζn, and so ta,n 6 ts,n. Thus, System (7.4)

allows for a larger time delay.

Lemma 4. Let L̂ and Ľ be, respectively, n × n Laplacian matrices associated to connected and
undirected networks with positive adjacency entries (i.e. a Laplacian matrix is defined as L := D−A

where D is the diagonal matrix with dk,k :=
n∑

j=1

ak,j and here, we further suppose, 0 > ak,j = aj,k >

0 for all k, j). Suppose that the network associated to Ľ is a subnetwork of the one associated with
L̂ (i.e. there exist a n × n Laplacian matrix L (associated to a connected and undirected network
with positive adjacency entries) such that L̂ = L + Ľ). We then have

ζ̂2 > ζ̌2 and ζ̂n > ζ̌n ,

where ζ̂j and ζ̌j denote the respective eigenvalues of L̂ and Ľ.
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Proof. By Lemma (5), we have ζ̂2 = min
x∈E

{〈x | L̂x 〉}, with E := {x ∈ Rn | ‖x‖ = 1, 〈x |1 〉 = 0}.
Hence

ζ̂2 = min
x∈E

{〈x | L̂x 〉} = min
x∈E

{〈x |Lx 〉 + 〈x | Ľx 〉} > min
x∈E

{〈x |Lx 〉} + min
x∈E

{〈x | Ľx 〉} = ζ2 + ζ̌2 6 ζ̌2

and so ζ̂2 > ζ̌2. Again by Lemma (5), we have ζ̂n = max
x∈E

{〈x | L̂x 〉} and ζ̌n = max
x∈E

{〈x | Ľx 〉}. Since

âk,j > ǎk,j for all k, j, then

〈x | L̂x 〉 =

n∑

j>k

âk,j(xk − xj)
2

>

n∑

j>k

ǎk,j(xk − xj)
2 = 〈x | Ľx 〉 ∀ x ∈ R

n

and so
ζ̂n = max

x∈E

{〈x | L̂x 〉} > max
x∈E

{〈x | Ľx 〉} = ζ̌n .

⊓⊔

Lemma 5. Let A be a symmetric positive semi-definite matrix such that A1 = 0 (1 is a n dimen-
sional vector of 1). Denote its spectrum by 0 = ζ1 6 ζ2 6 · · · 6 ζn. Then

ζ2 = min
x∈E

{〈x |Ax 〉} and ζn = max
x∈E

{〈x |Ax 〉}

with E := {x ∈ Rn | ‖x‖ = 1, 〈x |1 〉 = 0}.

Proof. Let x ∈ E, and so x =
n∑

j=2

yjoj with yj ∈ R and oj orthonormal eigenvectors of A. Since

〈x |x 〉 =
n∑

j=2

y2
j = 1 and 〈x |Ax 〉 =

n∑

j=2

y2
j ζj , then

ζ2 = ζ2

n∑

j=2

y2
j 6 〈x |Ax 〉 =

n∑

j=2

y2
j ζj 6 ζn

n∑

j=2

y2
j = ζn .

Hence the statement is true since the minimum value is reached by taking x = o2 and the maximum
value is reached by tacking x = on.

⊓⊔
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politehniqni� institut”, Kïıv, Ukräına.
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