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Chapter 1

Introduction

1.1 Motivation and Goals

For humans, manual interaction with the surrounding objects and its recognition is an
essential cognitive ability. When we observe, how others interact with objects, we usually
see continuous movements of the fingers accompanied in some cases by an acoustic noise.
Nevertheless, we are capable of splitting these observations into chunks and assigning them
to semantic categories, such as “grasping”, “pouring” or “shaking”.

The common challenge of the various scientific disciplines investigating recognition of
manual interaction, is a deep understanding and modeling of this human ability. On the
one hand, neuroscience and psychology are looking for insights into the embodied and
cognitive representation of interaction [38]. On the other hand, humanoid robotics requires
a method for replication of human manual interaction and its recognition for applications in
human-robot interaction [24]. Vital for both research directions is the human self-relative
perception for which the multimodality, encompassing vision, proprioception and hearing,
plays a crucial role. Therefore, the aspiration of this work is to establish methods for
recognition of manual interaction on a semantic level, incorporating a rich set of modalities
comparable to human perception.

In the context of this work, the most general question “how to recognize manual in-
teraction” can be split up in three more specific questions. The first question is: How to
conceptualize the recognition of manual interaction? This question is of a great relevance
for our work, however we do not propose a conceptual framework of our own. From the
very beginning we seize a widely recognized conceptualization, characterized by interaction
decomposition. Embracing this approach as a conceptual basis, the second question fol-
lows directly: How can an interaction be decomposed into smaller chunks, such as action
primitives, to make the recognition of the rich variety of interactions feasible? Examination
of this question leads to a search for a definition and a computational model of an action
primitive. Due to the crucial role played by multimodality in human perception, the third
question is: What is the role played by different perceptual modalities?

1



2 CHAPTER 1. INTRODUCTION

During the past decade the theories concerning the first question “how to conceptual-
ize recognition of interaction” seem to converge towards a hierarchical approach, the so
called Activity Theory. The roots of this approach can be traced back to Russian psychol-
ogy in the beginning of the 20th century (a detailed discussion of this issue can be found
in Chapter 2). Rather than specifying concrete action categories, this approach envisions
abstract interaction decomposition and identification on hierarchically organized semantic
levels called “action primitives”, “actions” and “activities”1. Recent psychological experi-
ments have derived manual action primitives in an action segmentation task [39]. Hemeren
et al. argue that decomposition is guided by change in the low-level features, including the
velocity-based features of the hand.

Motivated by these findings, our work mainly focusing on the second question, “how
to decompose interaction into action primitives”, is guided by the goal to detect change
within a homogeneous observation flow of an interaction. To this end, we employ a Bayesian
segmentation method, accommodating besides the homogeneity characteristics of the action
primitives, also their length [27]. Our aspiration is that this decomposition method can serve
as a building block for a higher-level modeling and representation of interaction. To support
this claim, we present an approach towards unsupervised recognition of the decomposed
interaction.

The third posed question is concerned with the role of multiple modalities, such as vi-
sion, proprioception, the sense of force, temperature, and texture, for recognition of manual
interaction, in particular, the action primitives. Based on the neuroscientific findings, in-
cluding those of B. Stein and A. Meredith, it can be assumed that multiple modalities are
directly integrated for the recognition of manual interaction during self-relative perception
or observation of others. Therefore, based on multimodal time series captured with a num-
ber of wearable and ambient sensors, we investigate the benefit of multiple modalities for
both, decomposition of interaction and identification of action primitives.

The rest of the chapter is structured as follows: Section 1.2 introduces our approach
to the multimodal interaction on the data level. Section 1.3 establishes the background of
our approach to multimodal interaction recognition, consisting of decomposition into action
primitives and their recognition. The final section presents the structure of the thesis.

1.2 Multimodal Manual Interaction Data

Historically, the research of interaction developed from speech recognition and analysis of
video sequences. The development of unimodal video-based approaches focused on interac-
tion recognition from observations of actions conducted by other individuals, and evolved
from heavily constrained to more challenging realistic scenarios (described by e.g. Lopes
et al. [58]). Despite the great advances in this field, experience with processing of mono,
stereo or multiple view-point recordings has showed some difficulties connected with purely
video-based approaches: computational complexity, occlusions, or ambiguity caused by e.g.
3D into 2D projection. Some of these problems can be solved by employing marker-based
motion tracking setups capable of recording selected three-dimensional trajectories, e.g.
VICON. Nevertheless, the problem of occlusion remains.

Recently developed interaction recognition applications take the occlusion problem into
consideration and, therefore, much stronger rely on data captured by a variety of wearable or

1Note that “action primitive” corresponds to the lowest level in the hierarchy.
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non-visual sensors [87, 65, 82]. Nevertheless, the employed methods further build upon the
ones that have been successfully applied in video-based approaches. Importantly, in contrast
to the video-based methods, the data acquired with the help of wearable sensors can be
captured continuously throughout the interaction, and is therefore gap- and occlusion-free.

Similarly, in our approach to multimodal interaction capture, a combination of different
non-visual sensors providing gap-free data for three modalities – audio, hand posture and the
applied force – plays a central role. Firstly, human self-relative action perception strongly
relies on multiple modalities, such as proprioception and hearing that undoubtedly provide
an essential sensory feedback. Secondly, this choice of sensors helps to overcome the above-
mentioned limitations of video-based methods.

Altogether, our multisensory data acquisition for the left and the right hands serves as
a basis for a novel approach to interaction recognition encompassing both essential aspects
of manual interaction, the multimodality and the bimanuality. To our knowledge, bimanual
interaction recognition based on the combination of the three above-mentioned modalities
has not yet been conducted before. Our experiments are based on a representative set of
bimanual action primitives, including grasping, shaking, pouring, and screwing.

1.3 Recognition of Manual Interaction Through Action Primitives

Until now, there has been no consensus on how an action primitive should be defined. On
a very general level, it is commonly described as the smallest unit of a semantic relevance
and characterized by a homogeneity of a space-time trajectory in some configuration space
(e.g. [14]). Identification of such homogeneous regions, entailing a semantically relevant de-
composition of manual interaction into action primitives, is the focus of our work. The main
challenges of this task include the high dimensionality and multimodality of the data, vari-
ability of action execution, unknown structure of the interaction. The purpose of the next
paragraphs is to address these challenges, and, in the context of the previously employed
methods, to derive the requirements on our approach.

The first challenge for the identification of action primitives is the unknown structure
of an interaction, i.e. unknown action primitives as well as their number and locations. In
previous work, two approaches have been commonly employed for identification of action
primitives. The simplest method involves manual segmentation, or augmentation of data
with pauses or special moves, that can be easily detected and deleted during the postpro-
cessing. The other common approach involves domain-specific knowledge, such as action
primitive templates or segmentation heuristics, that enable identification of the predefined
action types. Although this method is well suited for the limited domains, it has a ma-
jor drawback: it does not scale to situations with previously unknown actions, which are
common in everyday scenarios.

In order to overcome the above-mentioned drawbacks, and provide a method that gen-
eralizes well for a wide range of actions, we employ an alternative approach based on homo-
geneity as a central characteristic of an action primitive. Mainly, our choice is motivated
by the recent psychological finding, deriving action primitives based on change within the
homogeneous interaction flow2 [39]. Other than a change detection algorithm employed for
e.g. fault detection and designed to generate arbitrarily small or large segments, estimation
of change for detection of action primitives requires a Bayesian approach. In our work

2A similar motivation can be found in e.g. the work of Kohlmorgen et al. [49]
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we demonstrate the first application of a Bayesian algorithm for multiple change detection
introduced by P. Fearnhead [26, 27] to decomposition of interaction. The algorithm has
been previously used for detection of multiple change points in one-dimensional time series,
and in multivariate time series [89] (in the following paragraph we outline our extension
of Fearnhead’s algorithm for applications to multimodal data). Two further characteristics
of this method are vital for our approach. Firstly, the generated segmentation is optimal
in the sense that a combination of a prior distribution on segmentations and the segment-
wise likelihoods is maximized. Secondly, Fearnhead’s approach employs marginal likelihood,
therefore avoiding a tuning of model parameter (a detailed description of the method can
be found in Chapter 4).

The next challenge for identification of action primitives is the integration of multisen-
sory data acquired for both hands from a variety of multimodal hardware devices. Tra-
ditionally, modalities are segmented independently from one another and later common
borders over all modalities are calculated with the help of a heuristic procedure. With the
growing dimensionality and multimodality of bimanual data it becomes more challenging to
find such a procedure. In order to address the challenge of multimodal integration, we pro-
pose two novel approaches to bimanual multimodal segmentation: a hierarchical approach
and a parallel approach. The main characteristic of the hierarchical approach is its sequen-
tial consideration of individual modalities in a series of segmentation and subsegmentation
steps. The parallel approach processes all modalities in a single pass, thus finding action
primitives with a coherent temporal structure w.r.t. all modalities.

The introduced multimodal segmentation methods are not primarily designed to provide
semantically relevant labeling of the generated segments. Nevertheless, they can serve as a
building block for higher-level interaction recognition methods, e.g. classification of action
primitives. To support this claim, we present a robust procedure for identification and
representation of action primitives based on the proposed segmentation methods. We show
an example of clustering of action primitives based on ordered means models (OMMs)
[36]. The resulting multimodal approach is modular with respect to multiple modalities,
has a high generalization capability and can be employed in a wide range of applications,
e.g. supporting robot learning from interactions performed by human demonstrators, for
processing of financial and sociological time series, or in music, for producing automatized
transcriptions.

1.4 Structure of the Thesis

The structure of the thesis is as follows: Chapter 2 presents an overview of the current
approaches in segmentation and recognition of interaction. We present the relevant con-
cepts and terminology, fields of application, major challenges and solution strategies, which
provides the basis for our choice of relevant algorithms.

In Chapter 3 we describe the data acquisition and the experimental scenario. Within
this chapter we give a detailed description of the hardware devices, the recorded data, and
the acquisition of the ground truth used for evaluation of experimental results for both,
segmentation and classification. Finally, we give an overview of the data characteristics for
all modalities, motivating our approach to modeling and segmentation.

Chapter 4 is dedicated to the theoretical background of the segmentation framework.
The first Section 4.1 introduces the Bayesian segmentation framework by P. Fearnhead.
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Integrated into this framework is our choice of models, suitable for detection of structural
changes in the recorded data (described in Section 4.2). In the last Section 4.3 we present
our two approaches to multimodal segmentation: the hierarchical and the parallel approach.
Chapter 5 describes and compares experimental results for unimodal, bimodal, and multi-
modal segmentation. Furthermore, it presents quantitative evaluations of the influence of
central parameters on the segmentation.

Chapter 6 is dedicated to an approach towards higher-level representation. The first two
sections of this chapter present the theoretical background of the unsupervised classification
approach (Sections 6.1 and 6.2). Furthermore, Section 6.4 presents experimental results.
The influence of different modalities on the results of clustering is investigated. Parts of the
Chapters 3-6 are based on earlier publications (see [34, 5, 7, 6]).

We conclude this work and discuss its possible implications in Chapter 7.





Chapter 2

Conceptual Basis and Related Work

In this chapter we review the relevant findings addressing multimodal interaction recogni-
tion. We begin our discussion with the question: How to conceptualize the interaction?
Building upon this discussion, we then describe the neuroscientific, the psychological and
the computational aspects of the multimodal interaction recognition.

2.1 Action Primitive, Action, Activity

When discussing conceptualizations of interaction, most researchers in psychology and cog-
nitive robotics refer to different levels of granularity or complexity (e.g. [85, 13, 51]). These
range from recognition of detailed local trajectory chunks to action goals and styles [55].
Hence, in order to solve the complex task of recognizing a large number of interactions, the
strategy consists in breaking up an interaction episode into chunks (that may e.g. corre-
spond to subtasks) and then focus on the recognition of these simpler constituents.

This approach can be traced back to the Activity Theory, a conceptual framework that
has been developed by a group of Russian psychologists led by S. Rubinstein, L. Vygotsky,
A. Luria and A. Leontiev and starting from the beginning of the 20th century. The theory
includes principles of object-orientedness and the hierarchical structure of activity [54]. The
principle of object-orientedness proposes that humans’ interaction with the world is orga-
nized around objects [45]. The second principle states a three-layered hierarchical structure
of activity. Activities constitute the topmost level and are composed of actions. Actions
are then composed of action primitives on the lowest level1 (see Figure 2.1). According to
this principle, an activity is directed by a motive, actions are oriented towards goals and
action primitives are adjusted to conditions. We will return to the discussion of these terms
shortly. Activity Theory has been recently described in [15, 83].

Most approaches to interaction recognition in computer science are inspired by the Ac-
tivity Theory. Surprisingly, until now there is not yet a consensus on the use of terminology
in the related literature. A wide variety of terms has been used to describe components of

1For consistency reasons, in this work, we use the term “action primitive” instead of “operation”.

7
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Action primitive Action primitive ...

ActionAction

Activity

t

Motive

Goals

ConditionsAction primitive Action primitive

Figure 2.1: Sketch of the hierarchical structure of activity according to the Activity Theory
(similar to [45]).

the above-mentioned hierarchy. In 1988 in his work on machine perception of motion Hans
Nagel refers to “change, event, verb, episode, history” [63]. During the following twenty
years the following terms have also been employed: movements, simple actions, actions,
primitives, complex actions, behaviors, activities and many others.

In our work, following the original Activity Theory, we adopt the previously introduced
terminology (see Figure 2.1): “action primitives”, “actions” and “activities”. Action primi-
tives are the smallest chunks used in connection with recognition of human movements and
involve an approximately homogeneous motion pattern. Bobick describes action primitives
as follows2: “motion whose execution is consistent and easily characterized by a definite
space time trajectory in some configuration space” [13]. Traditionally the meaning of the
terms is illustrated on an example of playing tennis [51, 60]. Swinging the tennis racket
back to the left, to the right, or up, hitting the ball from the left, right or up could serve
as examples for action primitives. Following Bobick we describe an action as a “statistical
sequence of movements”3. “Recognition of such a motion requires knowledge about both
the appearance of each constituent movement and the statistical properties of the tempo-
ral sequence” [13]. Returning to the tennis example, “back-hand”, “forehand” or a “volley”
serve as examples for actions. In order to recognize activity “a system has to include a
rich knowledge base about the domain and be able to hypothesize and evaluate possible
semantic descriptions of the observed motion”, writes Bobick in [13]. This notion lies at “a
boundary of where perception meets cognition”. “Playing tennis” traditionally serves as an
example to illustrate activity.

Our work is dedicated solely to the lowest level of the activity hierarchy: decomposition
of interaction into action primitives and their recognition. The rest of this chapter is
organized as follows:

• Section 2.2 presents an overview of the domains employing uni- and multimodal meth-
ods for interaction recognition, motivating the direction taken in this work.

• Section 2.3 discusses relevant findings in neuroscience and psychology.

• Section 2.4 outlines the state of the art methods employed for time series segmentation,
and motivates the choice of the segmentation method employed in this work.

2An action primitive is called “movement” in [13].
3An action is called “activity” in [13].
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• Section 2.5 discusses the related work for representation and identification of interac-
tion focusing on approaches to interaction recognition based on multiple modalities.

• Section 2.6 summarizes this chapter.

2.2 Unimodal and Multimodal Interaction Recognition

Until nowadays, domain-specific interaction recognition has been dominated by unimodal
approaches. Hoey et al. describe automatic video-based guidance and prompting of patients
to compensate for cognitive disability [40]. The method is illustrated on the example of a set
of manual tasks. Analysis of manual interaction with the help of surface electromyography
(sEMG) has been used for prosthesis control [18]. Applications based on acceleration are
directed towards fitness control in e.g. [12]. Grosshauser et al. describe how the manual
pressure recorded with tactile sensors mounted on a violin can be used to detect inaccu-
rate playing, cramping, or malposition [35]. A framework for gesture and sign language
recognition and generation is described in e.g. [90].

However, with the development of wearable on-body sensors, such as acceleration, ori-
entation sensors and microphones employed in e.g. millions of mobile devices, multimodal
integration has become one of the central issues in interaction analysis. Motivated by con-
text aware collaboration and intelligent information presentation, multimodal integration
is conducted for manual and whole-body activity recognition and monitoring in industrial
settings (see e.g. [82]). Multimodal integration for activity recognition in absence of static
assumptions about sensor availability is the aim of the European Union research project
“Opportunity” [73], which is centered around a ten-modality synchronized benchmark data
set. Furthermore, in human-computer interaction, Perceptual User Interfaces (PUIs) are
being developed to enhance the traditional mouse-keyboard interaction with online multi-
modal action and activity recognition: “With flexible multimodal interfaces users can take
advantage of more than one of their natural communication modes during human-computer
interaction, selecting the best mode or combination of modes that suit their situation and
task” [21]. For these purposes, a wide range of different multimodal devices are used: “Mul-
timodal systems process two or more combined user input modes - such as speed, pen,
touch, manual gestures, gaze and head and body movements - in a coordinated manner
with multimedia system output” [43]. Oviatt et al. emphasize: “Our voice, hands, and
entire body, once augmented by sensors such as microphones and cameras, are becoming
the ultimate transparent and mobile multimodal input device” [67]. Common are speech-
and gesture-based solutions, exemplified by e.g. text-input interface by Hoste et al. [41].

Because many of the above-mentioned domains require an interaction recognition
method for multiple modalities, the aspiration of this work is towards a generic interac-
tion recognition framework. Due to a big diversity of application domains, and a large
number of employed modalities, our work focuses on two essential aspects: 1) integrating
a wide range of modalities and 2) scaling to a large number of interactions. Building upon
the Activity Theory, and targeting identification of a small representative set of action
primitives, constituting a large number interactions, our approach envisions embedding in
numerous applications in wearable and pervasive computing, human-computer interaction,
etc. For example in humanoid robotics, biologically-inspired generation and recognition of
actions aspires to empower a robot to conduct tasks in everyday scenarios and to facilitate
human-robot interaction. Hence, in the context of e.g. imitation learning [16], our frame-
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work aspires to be employed for learning and identification of interaction chunks within the
recorded multimodal interaction time series.

2.3 Neuroscientific and Psychological Experiments

For our work in modeling of human manual interaction, the findings of neuroscience and
experimental psychology, addressing the questions of biological interaction perception, such
as multisensory integration and identification of action primitives, are essential. In the
context of our work, the central questions are: How do humans integrate multiple perceptual
modalities? How do we decompose interaction and what is the embodied representation of
action primitives?

The question of multimodal integration has not played a central role until the beginning
of the 90s. Until then research had been mostly conducted with the unimodal approach.
King [47] reports: “. . . studies in sensory physiology have concentrated on the primary
neural pathways that encode sensory information in a modality-specific way”. In [50] Krebs
describes the “old” approach to multisensory integration:

In this “old” view information is processed initially on a sense-by-sense basis,
with each sense processed in a specific part of the cortex – sound in the auditory
cortex; touch in the somato-sensory cortex and vision in the visual cortex, then
and only then, are the individual fully formed sense perceptions integrated much
later in sensory processing [50].

However, the unimodal approach has been challenged by the findings that a modality-
specific perception can be directly influenced by other senses. Understanding of the mech-
anisms by which the brain combines and integrates different sensory sources has become a
fundamental issue (e.g. [17, 50]).

For integration of multiple modalities, the superior colliculus and the multisensory neu-
rons found in animal studies and explored at the level of the single cell, play an important
role: “The superior colliculus is of a particular interest for the study of multisensory in-
tegration because it contains topographically aligned visual, auditory and somatosensory
representations, and also because many of the neurons in its deeper layers receive inputs
from more than one modality” [47]. Barry Stein, Alex Meredith and their colleagues have
conducted a long-term study of superior colliculus and formulated the spatial, temporal and
inverse effectiveness principles of neural multisensory integration4. In the latest experiments
on rats, the multisensory neurons found at the borders between the neighboring modality-
specific cortices have demonstrated the ability to integrate a cross-modal input [86]. These
findings motivate the early integration of multiple modalities that we pursue in both, the
segmentation and the recognition of action primitives (see Chapters 4 and 6 for a detailed
discussion).

The current theories concerning the second question, the embodied representation of
actions in humans, are commonly based on the mirror system. Briefly, the mirror neu-
rons play a fundamental role in both, the visual recognition and motor execution of certain

4The spatial and temporal principles predict that the firing rate of multisensory neurons increases when
two or more stimuli of different modalities arise approximately from the same location or at the same time.
The inverse effectiveness principle states that the magnitude of multisensory integration inversely depends
on the magnitude of the isolated unimodal stimuli [81].
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actions [78]. Flanagan et al. suggest that the mirror neurons become activated when
an object-oriented goal-directed action is observed, but not when its components are ob-
served [29]. Several theories are concerned with internal modeling of actions and action
primitives. Pazzo et al. hypothesize that mirror neurons are a basis for action representa-
tion and perception based on internal models [72]. The chain model described by Chersi et
al. suggests that local pools of mirror neurons representing action primitives are connected
in chains in order to create a complex action [19].

Based on the mirror system, the newly published work by Hemeren et al. proposes
to derive the representation of action primitives based on their perception [39]. In their
work Hemeren et al. investigate the results of a segmentation task. Participants of the
experiment observed object-centered hand and arm actions represented by 12 point-light
movies in two scenarios. The results of the experiment are as follows: in both scenarios,
where the high-level recognition has been either impaired or not impaired, the participants
reliably segmented the actions according to lower-level kinematic variables, such as change
of direction, velocity, and acceleration of wrist (thumb and finger tips) [39]. Based on
the segmentation of movement kinematics, and the mirror system, coupling perception
with possible internal representation, the findings suggest an embodied representation of
action primitives as parts of more complex actions. Hemeren et al. also suggest that
the results obtained for the impaired and the not impaired scenarios, indicate that both,
top-down and bottom-up action perception lead to similar results when performing an
unconstrained segmentation task. Inspired by the findings of Hemeren et al. [39], our
approach to decomposition of interaction is guided by detection of change, e.g. of low-level
velocity-based features of the fingers (see Section 5.3).

2.4 Recognition of Interaction Through Decomposition

As described in the previous sections, our work focuses on the decomposition of interaction
into action primitives as the first step towards interaction recognition. Inspired by the
psychological findings presented in Section 2.3, we pursue this goal by detecting change in
the low-level features of time series representing manual interaction. Thus, the following
discussion of the state of the art segmentation methods, such as template- and heuristic-
based segmentation, focuses on segmentation by change point detection. Before we resume
the discussion on the state of the art segmentation approaches, Subsection 2.4.2 briefly
introduces the basics of change point detection (CPD), and outlines the main characteristics,
essential for usage of a CPD as a first step towards recognition of interaction.

2.4.1 Change Point Detection for Recognition

Historically, CPD has been motivated by monitoring of plants, quality control, industrial
maintenance and automatic fault detection. Common applications can be found in geophys-
ical signal processing, continuous speech recognition [3], econometric modeling [70], spam
filtering and medical diagnostics.

Change detection in time series typically examines whether one or multiple changes
have occurred and identifies the corresponding time points, which we will refer to as change
points5. The goal of a CPD algorithm is, given a finite sequence of observations y1, . . . , yN ,

5Accordingly, the data between a pair of adjacent change points is called a “segment”.
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to detect an unknown set of change points Ξ:

Ξ := {τ0, . . . , τk}, 1 = τ0 < . . . < τk = N. (2.1)

In some cases the output includes a set of corresponding models {θ0, . . . , θk−1}, which may
represent the mean, variance, correlation, spectral properties, etc. of the data between
the adjacent change points. CPD procedures can be categorized according to three main
characteristics: 1) additive vs. nonadditive, 2) Bayesian vs. non-Bayesian, and 3) online
vs. offline.

According to the first characteristic, the type of detected change, the CPD algorithms
can be divided into two groups: additive changes and nonadditive or spectral changes.
Additive changes are “changes in a signal or a linear system that result in changes only in
the mean value of the sequence of observations” [10]. Nonadditive changes are “more general
and difficult cases where changes occur in the variance, correlations, spectral characteristics,
dynamics of the signal or system” [10]. According to the second characteristic, CPD methods
are divided into Bayesian and the non-Bayesian approaches [10]. In a Bayesian approach
typically a prior distribution of the segment length is assumed. The first Bayesian change
detection problem was proposed in the year 1952 [30] to solve an online quality control
problem. The first investigation of non-Bayesian change detection algorithms was made
in [68]. According to the third characteristic, CPD methods are divided into online and
offline algorithms. Depending on the application requirements one of these classes may be
more suitable. The online procedures detect change based on sequential hypothesis testing
as the data arrives. The offline change detection procedures receive the complete time series
at once and are required to output all detected change points.

In order to employ a CPD method as a basis for a recognition application, specific
characteristics are particularly important. In [10] Basseville proposes:

“A possible approach to recognition-oriented signal processing consists of using
an automatic segmentation of the signal as the first processing step. A seg-
mentation algorithm splits the signal into homogeneous segments, the lengths
of which are adapted to the local characteristics of the analyzed signal. The
homogeneity of a segment can be in terms of the mean level or in terms of the
spectral characteristics”.

First of all, incorporating prior length modeling in the CPD enables generation of seg-
ments whose lengths can be influenced by prior knowledge, therefore an arbitrary length
is less probable. Secondly, the usage of an offline method can be beneficial, because an
online algorithms that make decisions without the knowledge of the complete time series
may be less precise. Finally, model uncertainty in each segment should be allowed to be
able to model different types of homogeneities on the lowest level. All these requirements
are satisfied by the Bayesian CPD method by Fearnhead [26] discussed in the following
section.

2.4.2 State of the Art Segmentation Approaches

Major state of the art segmentation approaches are based on the change point detection,
templates or data-related segmentation heuristics.
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Bayesian multiple change point detection procedures for offline estimation of unknown
location and number of change points based on Markov chain Monte Carlo (MCMC) meth-
ods have been proposed by Green [32] and used by Punskaya et al. [74]. In contrast to
Punskaya, Fearnhead proposes a deterministic method to solve the problem of multiple
change point detection in scalar time series with a finite set of models [27]. The advantage
of this approach is that it avoids MCMC’s problem of diagnosing convergence. Based on
Fearnhead’s work, Xuan and Murphy propose a procedure for automatic detection of change
points in multivariate time series [89]. Employing singular spectrum analysis (SSA) for seg-
mentation of scalar time series has been proposed by Moskvina [61]. All above-mentioned
approaches have been previously used on scalar time series or, in the work of Xuan and
Murphy, multivariate time series.

Approaches towards detection of change within action sequences with the goal of estimat-
ing the borders of action primitives without action-specific knowledge have been researched
by many groups. The related work by Kohlmorgen et al. [49] and Kulic et al. [53] is based
on the assumption that data belonging to the same action primitive has similar statistical
properties. Koenig et al. [48] estimate boundaries of action primitives by means of variance
analysis within a sliding window. Takano [84] learns probabilistic correlation and further
uses the difference between the predicted and actual feature vectors for detection of bound-
aries of motion patterns. Ward et al. in [87] segment a sequence of continuous workshop
activities analyzing the sound intensity recorded at two different locations and employing a
threshold-based method.

A number of segmentation procedures involve action-specific prior knowledge: motion
templates, action-specific heuristic description or a sequence-specific heuristic for genera-
tion of segment borders. In the first case a set of action primitives is specified a priori
[52] and can be then recognized in action sequences. Individual heuristic characterization
of action primitives can be found in [91]. In [46] Kawasaki et al. show a multimodal ap-
proach to heuristic segmentation on a pick-and-place task, based on several features: object
velocity, fingertip position, etc. In order to segment and identify predefined components
of the sequence, the authors heuristically specify the corresponding patterns. Ibarguren
et al. describe a method for determining of the change points based on a heuristic rule
[42]. Here the authors define the segment borders by examining the dynamics of the hand
during execution of different gestures of the sign language. In this case low hand activity
corresponds to intervals in which the sign is being showed.

The restriction of these methods is the usage of domain-specific knowledge that concerns
either the primitives themselves or the heuristics for determining of the segment borders, the
change points. Often in the recognition-oriented approaches the problem of automatic seg-
mentation is completely ignored. The time series is either segmented manually or particular
action primitives are executed and recorded separately.

Altogether, the interaction segmentation approach proposed in this work aims at high
scalability w.r.t multiple modalities as well as a wide range of interaction scenarios. As a
most suitable starting point for its development we use the offline Bayesian change point
detection based on the method introduced by Fearnhead [27]. To realize the above goals,
we extend Fearnhead’s method for application in multimodal and bimanual segmentation
(see Chapter 4). In contrast to the heuristic-based approaches described in e.g. [48, 53], the
proposed approach allows multimodal and simultaneous consideration of various spectral
and additive modality-specific properties. Extension to multimodal time series could not be
conducted with the SSA-based methods in a similar fashion. In contrast to other template-
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based approaches e.g. [52, 91, 46], the proposed segmentation method does not employ any
action-specific knowledge. The number and locations of action primitives do not need to be
specified, although a prior distribution on segment lengths is required. Due to the marginal
likelihood approach in the segmentation framework of Fearnhead [26] no model parameters
have to be estimated or learned. In Chapter 6 we show that this approach can serve as a
building block for a recognition approach.

2.5 Recognition of Interaction with Multiple Modalities

Historically, recognition of interaction has been conducted based on video sequences with
mono- and multicamera systems, starting with the work by Nagel [62]. Until now the
most common applications are e.g. assisting and monitoring systems, surveillance, HCI.
Turaga et al. [85], Moeslund et al. [60], Aggarwal et al. [1] and Poppe et al. [71] describe
applications in perception of the human actions and activity based on video. A meta survey
can be found in a 46-page work by Lopes et al. “Action Recognition in Videos: from Motion
Capture Labs to the Web” [58].

Table 2.1: Modeling approaches for action representation.

Domain Method References
whole-body motion temporal templates Bobick et al. [14]
whole-body motion spatio-temporal templates Gorilick et al. [31]
manual manipulations semantic graphs Aksoy et al. [2]
whole-body motion semantic attributes Liu et al. [57]
simple whole-body interactions dynamic Bayesian network Park et al. [69]
simple whole-body movements prob. context-free grammars Ogale et al. [64]
activity detection state space models Cuntoor et al. [22]

Processing of video sequences is commonly guided by the hierarchical framework de-
scribed in the beginning of this chapter. On the lowest level feature extractors such as
optical flow, point trajectories, blob detection are often used. On the level of action primi-
tive description, different modeling methods are used to represent the captured data. Tra-
ditionally modeling is motivated by interpersonal and intrapersonal variance in recorded
trajectories, differences in execution velocity, high data volume, etc. Most popular models
for representation of action primitives and actions use different variants of dynamic Bayesian
networks, manifolds, and linear dynamic systems (e.g. [53, 69, 80]). For activity recogni-
tion graphical models, context-free grammars, and logic-based systems have been employed.
Modeling techniques associated to different approaches are listed in the Table 2.1.

Since huge advances have been made in the field of wearable sensors, action recognition
from video sequences (e.g. [66]) coexists with action and activity spotting and recognition
based on different types of markers, ambient and on-body sensors. The methods developed
for modeling of interaction based on vision features are further applied to the features
extracted from wearable sensor output.

Data recorded by a number of unimodal and multimodal wearable sensors has been
used for recognition of manual interaction. An approach based on 24-dimensional joint-
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angle data has been proposed by Steffen et al. [80]. The authors employ an unsupervised
kernel regression (UKR) method for representation of a series of gestures. Matsuo et al.
[59] propose a method for learning of action primitives based on tactile feedback of a spe-
cially constructed tactile object. The primitives, formed with an EM-based algorithm, are
mapped onto a robotic hand to impose appropriate contact forces. In [11] Bernardin et
al. describe an approach towards multimodal classification of grasps based on CyberGlove
and an array of tactile sensors. This approach uses an offline trained HMM-recogniser as
a mechanism of integration of different input modalities. Ogris et al. introduce in [65] a
method for multimodal activity spotting, based on motion and force sensors and ultra-wide
band (UWB) tags for tracking user position. Their way of dealing with multiple modalities
is masking passes. The processing by a sequence of masking passes applies a pass, defined
by a modality- or feature-specific classifier. After the masking is finished a final merge of
the classifier outputs is necessary. Li et al. describe their approach for both, mutlimodal
segmentation (Vicon and CyberGlove) and recognition of hand gesture stream by classifi-
cation [56]: “SVM classifiers with class probability estimates are explored for classifying the
feature vectors in order to segment and recognize motion streams.”

In our work we show an application of EM-clustering to chunks of multimodal data
generated by the proposed segmentation procedures (see Chapter 6). As a method for
representation we have chosen to employ a HMM-based model, an established method for
representation of dynamic and multimodal data. A specific realization of the model are the
ordered means models (OMMs) described in [36]. The absence of transition probabilities
distinguishes this model from the HMM and makes it more efficient and robust in classifi-
cation of incomplete segment data with different execution speeds and sampling rates [34].
OMMs have demonstrated a good generalization capacity in a large number of applica-
tions [88, 33, 35]. In Chapter 6 we describe our recognition approach in detail and discuss
the influence of different modalities on the classification results.

2.6 Summary

Our approach to manual interaction recognition is conceptually based on the Activity The-
ory, and motivated by neuroscientific and psychological findings, suggesting i) multisensory
neurons for early multimodal integration ii) action (or motor) primitives as the smallest
structural chunks of embodied and cognitive recognition and representation iii) action prim-
itives detection through change in low-level kinematic velocity-, acceleration- and direction-
based features.

A number of segmentation approaches, such as change point detection, templates and
heuristics-based methods, have been discussed. Motivated by the findings outlined above,
the basis of our approach is a change point detection method that extends an earlier proposal
by Fearnhead [26]. Our approach realizes a Bayesian change point detection framework for
multimodal bimanual interaction with the goal to improve scalability and to overcome the
limitations of the heuristic- and template-based approaches that strongly rely on domain-
specific knowledge. Finally, for the purpose of identification of action primitives, a rationale
for the use of the ordered means models [36], developed for higher-level modeling of incom-
plete, multimodal, and dynamic data, has been given.





Chapter 3

Experimental Setup and Scenario

In this chapter we present the data pool that serves as a basis for our empirical study
of multimodal manual interaction. Based on the acquired data, the main goals that we
pursue are: empirical assessment of the decomposition and recognition approaches, as well
as the role of multiple modalities for both of the above issues (see Chapters 5 and 6). To
realize these goals, on the one hand, we need to choose a representative manual interaction
scenario, in which a human demonstrator conducts a sequence of actions on an object. On
the other hand, we need suitable sensing devices to capture representative multimodal data.

We target a scenario that consists of a set of actions common in an everyday life. Im-
portantly, most actions on an object are highly multimodal. Firstly, the human hand is
involved in numerous perceptual modalities, such as sense of force, temperature, texture and
proprioception. Secondly, the object’s impact on the environment, as well as the change of
its own state during an interaction may comprise multimodal phenomena, such as change of
shape, content, etc. Nevertheless, the common approaches towards interaction data acqui-
sition are coarse object- or hand-centered recordings. Often either the object’s position and
orientation, or the recordings of the position and orientation of the hand are represented by
at most two trajectories (see e.g. [37, 20, 4]). In contrast to these approaches, in our work
we aspire a comprehensive multimodal capture of manual interaction. In the following text
we motivate and discuss the scenario and the captured modalities.

Obtaining ground truth for an interaction episode is a challenging task, and is still an
open question. Traditionally, a time-costly manual annotation of interaction is carried out.
In our work we propose an alternative time-saving ground truth acquisition method based
on interaction triggering audio cues.

The rest of this chapter is structured as follows:

• Section 3.1 introduces the interaction scenario.

• Section 3.2 gives a detailed description of the hardware devices used in our experi-
mental setup.

17
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• Section 3.3 describes the ground truth acquisition, necessary for the quantitative as-
sessment of the experimental results.

• Section 3.4 gives an overview of the relevant characteristics of the acquired data,
motivating the methods of preprocessing, segmentation and representation described
in the following chapters.

• Section 3.5 summarizes this chapter.

3.1 Scenario

As the basis for our empirical study we chose an interaction scenario that is typical and
representative for a variety of daily manual actions. It involves a human demonstrator
performing uni- and bi-manual actions with a gravel-filled plastic bottle1 (see Figure 3.2).
The scenario is inspired by a daily task of taking a bottle of juice, shaking it, opening it,
pouring juice in a glass, and closing the bottle. Human demonstrators are instructed to
conduct the following actions:

• pick up the bottle with both hands

• shake the bottle with both hands

• put down and release the bottle

• unscrew cap and release it

• pick up the bottle with the right hand

• pour from the bottle

• put down and release the bottle

• screw cap and release.

Instructions given to the human demonstrators prior to recording of the action sequence
can be found in Appendix A.

3.2 Hardware Components

A typical manual interaction such as exemplified in our scenario, can be considered from at
least four different perspectives:

1. self-relative perception of the hands of the interacting person

2. state of the interaction object

3. external observation of the interaction

4. interaction trigger (optional).

To acquire information corresponding to all four items requires to choose suitable sensing
devices. In the following subsections we discuss our approach to their recording, whereby
one subsection is dedicated to each of the four above items.

1The use of gravel filling instead of liquid is due to safety concerns.
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Figure 3.1: Proprioceptive hand sensors. Left: Immersion CyberGlove II with FSR sensors
attached to the fingertips. FSR sensors are covered with a layer of foam to achieve a
better distribution of force. Middle: Immersion CyberGlove II from the back. The cables
connecting the FSR sensors with the Bluetooth communication module are mounted on
the back of the hand to avoid movement restrictions during object manipulation. Right:
FSR-402 sensor used on each fingertip for capturing of pressure.

3.2.1 Hand Sensors

Although temperature and texture might play a prominent role in a small number of manual
interactions, proprioception is essential to most manual interactions. Therefore, in our
setup, recording the dynamics of the hands during an interaction employs a number of
proprioceptive sensors for capturing of the joint-angles of the fingers, the palm as well as
pressure measurements at the fingertips of both hands.

High levels of finger activity are typical for a large set of actions associated with reaching,
grasping, releasing, screwing or unscrewing movements, etc. In our scenario the finger-
specific joint-angle trajectories of the hand are recorded by 22 proprietary resistive bend-
sensing joint-angle sensors of the Immersion CyberGlove II [23]. A CyberGlove has three
flexion sensors per finger, four abduction sensors, a palm-arch sensor, and sensors to measure
wrist flexion and abduction.

Tactile sensor output plays an important role, because it characterizes most actions
on an object, reflecting object’s weight, orientation, as well as the grasping force, type of
the grasp and the type of manipulation. The tactile pressure is measured with ten FSR-
402 sensors, one sensor per fingertip. The resistance of the sensor changes when pressure
is applied. Five sensors recording data for one hand are connected together to a micro-
controller equipped device employing a bluetooth module for wireless communication. This
device is referred to as “iHand” in the following.

The sensor setup for one hand is illustrated in Figure 3.1. The described array of sensors
allows a finger-specific tracking of applied force and finger movements characterizing a large
range of actions on objects.

3.2.2 Object Sensor

Analysis of audio signals in the past was commonly applied to language processing. However,
it has recently become a source of information for activity recognition, e.g. [87]. Numerous
interactions with an object are accompanied and characterized by sound. It carries a large
amount of information about the object itself as well as the action that is performed with it.
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Figure 3.2: View from the camera: plastic bottle instrumented with a contact microphone;
human demonstrator wearing CyberGloves with tactile sensors.

Examples are sounds coming from the kitchen that accompany cutting, shaking, stirring,
cutlery scratching the plate, placing of the dishes on the table. Apart from the information
about the kind of object we are interacting with, in many cases a human is able to recognize
the action being conducted or even the person, conducting it. Such observations motivate
the recording of the audio signal accompanying the interaction in order to obtain information
about the state of the object as well as capture its impact on the surroundings (e.g. the
table surface).

In our scenario the audio signal is recorded by a contact microphone mounted on the
object of the interaction. The advantage of such an arrangement is that the sensor records
only audio signal produced within the object or on its surface. It captures contact estab-
lishment with the hand, structural change (i.e. turning of the cap, opening of the lid) and
interaction with its environment (i.e. during pushing). At the same time, the microphone
filters out most of the sound coming from the environment and not associated with the
object itself, like speech or environmental noise. In our setup we use the microphone AKG
C411 L typically used for recording of music instruments.

3.2.3 External Setup View

To obtain reliable ground truth data, we use a video camera that records the human demon-
strator conducting actions on the test object. In our experiments we use a Logitech Quick
Cam Pro 900. The video and audio material recorded by the camera is used for manual an-
notation (see Subsection 3.3.1). Figure 3.2 shows an example view from the camera during
a recording session.

3.2.4 Interaction Trigger

The interaction trigger component as part of the ground truth acquisition is described in
detail in the following Subsection 3.3.2.
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3.2.5 Overview of the Hardware Components

An overview of all above-mentioned hardware devices sorted accorded to the represent-
ing components – the self perception of the hand, the object, external observations, and
interaction trigger - is presented in Table 3.1.

Table 3.1: Overview of hardware devices used during trial recording. The recording of the
hand and the object are used for the algorithmic analysis of the interaction, segmentation
and representation. Camera output and the recorded audio cue schedule serve as input for
the generation of ground truth. All components are synchronized based on the respective
timestamp logs.

Name Dimension Frequency [Hz] Component Modality
2 × CyberGlove 2 × 24 100 self perception joint-angles
2 × iHand 2 × 5 100 self perception tactile
contact microphone 1 44100 object state audio
camera 320 × 240 30 external observation video+audio
headphones+cues 1 interaction trigger timestamps

The captured data used for algorithmic processing of the interaction, segmentation and
recognition, is as follows (corresponding modality names appear in parentheses):

• microphone attached to the bottle (a).

• 2 × 24 joint-angles (j: both hands, jl: left hand, jr: right hand).

• 2 × 5 FSR pressure sensors attached to the fingertips of each CyberGlove (t: both
hands, tl: left hand, tr: right hand).

This collection of sensors yields a 29-dimensional (24 + 5) representation for each hand in
addition to a scalar audio signal.

3.3 Ground Truth Acquisition

To evaluate the algorithms that will be presented in the following chapters, we require
reliable ground truth data.

To obtain such data, we have considered two methods: manual annotation of the se-
quences (see Subsection 3.3.1) and automated cue-based ground truth acquisition (see Sub-
section 3.3.2). The first method is used traditionally and involves manual annotation or
hand labeling of the video recording of the executed sequence. The biggest disadvantage of
this method is that it is time-costly. Therefore, we also propose the automatized cue-based
method of ground truth acquisition.

The ground truth for an interaction is represented by a labeled segmentation, where
timestamps of the beginning and the end of segments mark the action primitives, and labels
indicate the respective type of an action primitive. The boundaries of action primitives are
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usually fuzzy and cannot be estimated precisely, therefore both methods of ground truth
acquisition yield just an approximate description of the interaction structure.

In cases, when the trials are recorded with the audio-cue interaction triggers, we refer to
them as constrained, and unconstrained otherwise. A detailed description of each type
can be found in the following two subsections. We discuss the evaluation of segmentation
with both methods in Section 5.4.

3.3.1 Manual Annotation

Manual annotation of action sequences is based on video and audio data obtained from a
simple camera recording of the hands and the object during the interaction (see Subsec-
tion 3.2.3). For annotation we have designed a code book consisting of

• three modality-specific label collections: audio, joints-angles and tactiles,

• semantic label collection: the union of the modality-specific labels,

• cue label collection: annotation marking the same events as the automatized cue
schedule (see Subsection 3.3.2).

In our work we consider annotation made only by a single annotator. Preliminary exper-
iments have showed a good consistency of annotations made by three different annotators.
This can be explained by the simple nature of annotation rules, marking i.e. “object contact”
vs. “no object contact” regions (see Appendix B), and a clear and unambiguous content of
the data (in contrast to data in e.g. [76]). Detailed descriptions of annotations for all label
collections can be found in Appendix B.

3.3.2 Automated Annotation using Audio Cues

An automated method for ground truth acquisition that has been used in our experiments as
an alternative to manual annotation, is interaction triggering audio cues. Such cues, similar
to beep tones, are provided to the subject by headphones and indicate the beginning or
the end of a particular action execution. The subject is asked to align her or his action
execution with these cues. The usage of headphones excludes the cue signals from the sound
recording by the microphones.

Each cue consists of a sequence of four beep sounds2: the first three are preparatory and
allow the subject to anticipate the fourth signal (main cue) which notifies the associated
event (beginning or end of action execution) to the subject. We write cαi,j , j ∈ {1, 2, 3, 4} to
denote the point in time at which the j-th signal of the i-th cue is emitted in trial α. We
omit the superscript α if the trial is not important. Figure 3.3 illustrates the structure of
the cues.

Audio cues are an automatization of ground truth acquisition with several disadvantages.
They constrain the velocity of the execution to the time interval provided by the cues.
Furthermore, the cues can provide only a partial description of the structure, if action
primitives follow rapidly one after the other. Mistakes made by the human subject in the
alignment or the action execution add up as temporal and structural errors in the statistical
evaluation of segmentation.

2Similar to the structure of beep tones before the time announcement in Deutschland Funk.
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Figure 3.3: Example of temporal relations between cues and the actual action execution.
The execution of an action by the subject is expected to start ( light green bar ) at the

beginning of the main cue signal ci,4, but the actual beginning of the execution usually

deviates ( dark green bar ).

To achieve a rich variance of timing between trials, the desired duration of most action
primitives was varied by superimposing Gaussian random variables ηi ∼ N (0, 0.5 s) on the
mean values of the following duration variables as specified in the parentheses:

• pick up and hold the bottle with both hands (2 s + η1)

• shake the bottle with both hands (0.7 s + η2 )

• hold the bottle with both hands (0.3 s + η3)

• put down the bottle, release and pause (1 s + η4)

• unscrew the cap with both hands (1.2 s + η5)

• release and pause (1 s + η6)

• grasp and lift the bottle with right hand (2 s + η7 )

• pour with right hand (1 s + η8 + 1 s + η9 )

• hold the bottle (0.3 s + η10)

• put down the bottle, release and pause (1 s + η11)

• screw the cap with both hands (1.2 s + η12 )

The overall length of the time series of a trial accumulates on average to approximately 30
seconds.

3.4 Properties of Recorded Data

This section presents several preliminary experiments investigating the properties of the
recorded data. The principal aim of the experiments is to explore, what kind of variability
as well as invariance is characteristic for the acquired interaction data. Basis for conducting
of such analysis is a set of action primitives identified according to the ground truth data3.

3Here we use the previously described semantic label collection acquired by manual annotation (see
Appendix B).



24 CHAPTER 3. EXPERIMENTAL SETUP AND SCENARIO

An example of multimodal trial time series, containing raw tactile, joint-angles and audio
data, along with high-lighted action primitives, is presented in Figure 3.4. The first two
rows present tactile time-series for each finger of the right and the left hands respectively.
The third and the fourth row of Figure 3.4 show joint-angles data for both hands recorded
during the same interaction sequence. The bottom row of Figure 3.4 shows the raw audio
signal. The audio modality contains the sound that accompanies the actions on object,
captured by the contact microphone.

We assume that the recorded data is influenced by many factors simultaneously, such
as weight and orientation of the object, the way of grasping, the texture of the object
surface, the degree of rigidness of the object, its velocity, shape, and the conducted action,
etc. We subdivide the above-mentioned factors into three main categories: object-, human
demonstrator-, and action-related. We argue that these factors make the absolute value of
the output difficult to interpret.

Because the scenario is focused on a single target object, in the following sections we
only investigate action- and human demonstrator-related variability. After introducing the
mean and the variance calculation designed for comparing multidimensional time series
representing action primitives, we illustrate and discuss different types of variability of the
recorded interaction time series.

3.4.1 Mean and Variance Measures

In this paragraph we introduce the calculation of specific mean and variance measures,
enabling us to build averages over subsequences corresponding to action primitives. These
measures serve solely the illustration of the properties of the action primitives presented in
the following paragraphs.

For a given modality-specific time series segment yαs:t|mod, s < t, representing an action
primitive i in the trial α, let µαi be the mean value over all modality dimensions j:

µαi = 1/d

d∑
j=1

µαi,j . (3.1)

Here d denotes the dimensionality of the modality mod and µαi,j denotes the mean of data
within action primitive i, i.e. yαs:t|mod in the dimension j. The variance of an action primitive
i in a trial α is calculated analogously:

σαi = 1/d

d∑
j=1

σαi,j . (3.2)

For notational convenience we leave out the square in all σ terms. Let further mean(µαi )
denote the mean of µαi over all trials α ∈ A, with the corresponding variance var(µαi ).
mean(σαi ) and var(σαi ) denote the mean value of σαi and its variance over all trials α ∈ A.
Based on these action-specific mean and variance measures, in the following subsections
we illustrate and discuss modality-, action-specific, inter- and intrapersonal variability. In
the final paragraph we compare the variability of cue-based constrained vs. unconstrained
trials.
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3c 1a 3b 3a 2a 1c 1b 4a 

Figure 3.4: An example trial recording of raw multimodal time series. First two rows
present tactile data for both hands. First row: five recorded measurements of the right-
hand tactile sensors. Four non-zero regions 1-4 correspond to the regions of hand-object
contact. Second row: five recorded measurements of the left-hand tactile sensors. Both
subplots clearly show a difference in quality of the recorded time series for different fingers.
This is due to occurrences of sensor slipping during the interaction. The third and the fourth
rows present an example of joint-angle data for both hands: the right hand (third row)
and the left hand (fourth row). The first change in the values of the angles corresponds
to grasping (region 1a), after a pause follows shaking (1b) that can be recognized by a
oscillating signal structure in most dimensions. After another pause the object is released
(end of 1c). The second half of the plot starts with the right-handed activity (region 3), while
the left hand remains static. After grasping (3a) and an idle phase, the following dynamics
in the right hand correspond to pouring (3b) followed by putting down and a release (end of
3c). After a pause the right hand conducts screwing of the cap (4a), marked by dynamics
in almost all dimensions, while the left hand remains idle after the grasp (throughout 4a).
The fifth row shows the contact microphone signal. The regions corresponding to grasping
(1a, 3a), shaking (1b), putting down (1c, 3c), screwing (2a, 4a) and pouring (3b) can be
clearly differentiated from the idle regions.
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3.4.2 Action-specific Variability

The purpose of this subsection is an exploratory study of the degree of variability for
individual action primitives constrained to a particular modality. Based on the mean and
variance values, we are looking for modality- and action-specific characteristics, as well as
patterns within the whole interaction episode that may be employed in order to detect
change in the respective modality (see Chapter 4).

Figures 3.5-3.7 demonstrate modality-specific values of mean and variance for each action
primitive. Here, each modality – tactile, audio and joint-angles – is represented by one figure
with two sub-figures. The top row of each figure illustrates modality-specific mean(µαi ) and
var(µαi ). The bottom row illustrates modality-specific mean(σαi ) and var(σαi ). Averages
are built over 40 constrained trials captured by three human demonstrators. Note that the
x-axis in each figure is labeled according to the names in the semantic label collection. The
description of each label is given in Appendix B.

Figure 3.5 illustrates the action-specific mean and variance values for tactile data y|t.
The top sub-figure reflects the mean pressure that has been applied to the object during
a particular action primitive, the bottom sub-figure demonstrates the corresponding vari-
ance. The figure shows high levels of mean for the action primitives associated with “object
contact”.

Figure 3.6 depicts the mean and variance of the action primitives calculated for the
joint-angles data y|j. The top sub-figure shows regions of approximately constant mean and
variance levels that approximately correspond to the action primitives within the “object
contact” regions, in which the hand configuration does not change once the object has been
grasped. The bottom sub-figure demonstrates the highest variance for the action primitives
corresponding to high level of finger activity, e.g. screwing, grasping, releasing.

Figure 3.7 depicts the mean and variance of the action primitives w.r.t. audio data y|a.
The top sub-figure shows high mean values and variance for loud actions4. The bottom
sub-figure distinguishes similarly to the top sub-figure the loud actions, such as shaking and
putting down. As expected, the silent action primitives, i.e. lifting, releasing or holding are
characterized by low levels of mean and variance in both sub-figures.

Altogether the figures suggest that, based on the tactile modality, the action primitives
can be assigned to “object contact” vs. “no object contact” categories. Based on the joint-
angles, the action primitives can be characterized by high and low overall finger activity.
Based on audio, the action primitives can be differentiated according to their loudness.

3.4.3 Inter- and Intrapersonal Variability

The goal of this section is to illustrate how action execution differs among human demon-
strators (interpersonal variability) and how it differs among trials of the same human demon-
strator (intrapersonal variability). Figures 3.8-3.10 compare action-specific means and vari-
ances for three human demonstrators. For each human demonstrator, hd1, hd2, and hd3,
the averages are built over 10 constrained trials.

Figure 3.8 illustrates the intrapersonal mean and variance of the tactile modality for each
of three human demonstrators. The top sub-figure shows that the level of force application
is HD-specific for most action primitives. At the same time the plot demonstrates similar

4Action primitives associated with high levels of accompanying noise are referred to as “loud actions”.
Analogously, we refer to actions that are not accompanied by sound, as silent.
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Figure 3.5: Action-specific variability for the tactile modality. Action-specific mean and
variance are built over 40 trials of three human demonstrators. Top row: mean(µαi ) and
var(µαi ). Between each grasping (labeled by e.g. close2s, close2as, close1 ) and each respec-
tive releasing (labeled by e.g. open2s, open2as, open1 ), we observe that the mean first goes
up, reaches a maximum and then gradually falls. Action primitives like lifting, pouring,
shaking, or screwing (labeled by lift2, shake, turn2ccw, turn2cw, pour) are characterized by
the highest application of force. Close to zero are the action primitives like idle, grasping
and releasing (labeled by e.g. idle, close2s, close2as, open1 ) that take place before and af-
ter the object interaction. Bottom row: mean(σαi ) and var(σαi ). The highest values mean
and variance are reached by e.g. screwing and unscrewing (labeled by turn2ccw, turn2cw),
action primitives that are characterized by the largest range of tactile values.
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Figure 3.6: Action-specific variability for the joint-angles modality. Action-specific mean
and variance are built over 40 trials of three human demonstrators. Top row: mean(µαi ) and
var(µαi ). Constant levels of the mean and of the corresponding variance are associated with
the regions of "object contact", during which the fingers have a constant configuration, e.g.
lift2, shake, hold2s, putdown2 and lift1, pour, hold1, putdown1. Bottom row: mean(σαi )
and var(σαi ). High level of variance and its variance is associated with the regions between
the object contact regions, where no constant grasp is established: screwing, unscrewing,
releasing, grasping (labeled by e.g. close2s, grasp2s, open2s, close2as, turn2ccw, open2as,
close1, open1 ). Unscrewing, labeled by turn2ccw, demonstrates the highest mean value of
the variance and its variance, implying the most variable styles of execution of this action.

patterns within the trial among all three HDs, e.g. the highest force application during
shaking, screwing, pouring that gradually decreases in the following action primitives. This
indicates that on average the human demonstrators apply individual levels of force with
a similar trend throughout the sequence. The variance of the mean values varies strongly
among the human demonstrators. The bottom sub-figure shows that the mean levels of
variance are also specific for each of the three human demonstrators.

Figure 3.9 presents the intrapersonal mean and variance for three human demonstrators
based on the joint-angles data. The top sub-figure shows, similar to the tactile modality, that
means and variances differ among the human demonstrators, but the sequential patterns
within the trial are comparable among the human demonstrators. The bottom sub-figure
shows that the levels of variance differ among the human demonstrators.

For each action primitive Figure 3.10 shows the intrapersonal mean and variance levels
of the audio signal for three human demonstrators. Both presented sub-figures demon-
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Figure 3.7: Action-specific variability for the audio modality. Action-specific mean and
variance are built over 40 trials of three human demonstrators. Top row: mean(µαi ) and
var(µαi ). Loud actions are characterized by a large variance of the mean values, e.g. grasp1
and put down. Bottom row: mean(σαi ) and var(σαi ). Loud actions are characterized by
high mean variance and its variance over trials.

strate different levels of mean and variance for the loud action primitives among the human
demonstrators.

All three presented figures showed that execution of an action primitive for each human
demonstrator may, to a large extent, be characterized by an individual level of intrapersonal
variability. However, similar temporal patterns within some parts of the interaction episode
(e.g. increase or decrease of the mean value) could be observed, especially for the joint-angles
and the tactile modalities. A tentative hypothesis to explain the interpersonal difference
are such factors as fitness, tiredness, or differences in the physiology of the hand among the
human demonstrators.

3.4.4 Constrained vs. Unconstrained Trials

We have assumed that the data acquired in constrained and unconstrained scenarios (see
Section 3.3) does not exhibit strong differences w.r.t. individual action primitives. In this
subsection we compare the means and their variance for action primitives recorded in the
constrained and the unconstrained scenarios. The averages for each case are built over 40
trials recorded by three human demonstrators.

Figure 3.11 contains a comparison of the modality-specific mean(µαi ) and var(µαi ) for
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Figure 3.8: Comparison of action-specific mean and variance of the tactile signal for three
human demonstrators hd1 (red), hd2 (green), and hd3 (blue). Top row: mean(µαi ) and
var(µαi ) for each human demonstrator. The top figure shows that the average level of
force and its variance is the lowest for the hd1 and the highest for hd3 for almost all action
primitives. We assume that the high mean value demonstrated by hd3 is due to the fact that
this individual is involved in extreme rock climbing. However, similar sequential patterns of
the mean values can be observed among HDs. Bottom row: mean(σαi ) and var(σαi ) for each
human demonstrator. hd3 shows the smallest average levels of variance and its variance,
implying the consistency of applied force over trials.
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Figure 3.9: Comparison of action-specific mean and variance of the joint-angles signal for
three human demonstrators hd1 (red), hd2 (green), and hd3 (blue). Top row: mean(µαi )
and var(µαi ) for each human demonstrator. In the top sub-figure the plot shows similar
dynamics of the mean values for all three HDs. Bottom row: mean(σαi ) and var(σαi )
for each human demonstrator. hd3 shows the lowest average variance, hd2 and hd1 are
comparably high. The variance is comparably high in the regions between "object contact",
e.g. during grasping, releasing labeled by close2s, open2s, close2as, open2as, open1, close1.
The variance is especially high during action primitives, such as screwing or unscrewing.
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Figure 3.10: Comparison of action-specific mean and variance of the audio signal for three
human demonstrators hd1 (red), hd2 (green), and hd3 (blue). Top row: mean(µαi ) and
var(µαi ) for each human demonstrator. Loud action primitives, like grasping, shaking,
putting down, releasing labeled by close2s, shake, putdown2, open2s, putdown1, open1 have
high variance for all human demonstrators. Bottom row: mean(σαi ) and var(σαi ) for each
human demonstrator. Loud action primitives are characterized by high levels of average
variance.
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Figure 3.11: Comparison of action-specific means and variances of the modality-specific sig-
nals for constrained (red) and unconstrained (green) trials. Top row: mean(µαi ) and var(µαi )
for the tactile modality in constrained and unconstrained case. Middle row: mean(µαi ) and
var(µαi ) for the joint-angles modality in constrained and unconstrained case. Bottom row:
mean(µαi ) and var(µαi ) for the audio modality in constrained and unconstrained case.

constrained and unconstrained trials. The top row compares the application of force in both
cases; the middle row compares the joint-angles dynamics and the bottom row illustrates the
averages for the audio modality. All three sub-figures show large similarity of constrained
and the unconstrained scenarios, in line with our assumptions.
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3.5 Summary

In this chapter we have motivated and introduced a scenario and the required hardware
setup for multimodal acquisition of manual interaction. The acquired data will be used for
empirical studies with methods developed in the next chapters.

In the beginning of this chapter we have presented the recorded interaction sequence,
consisting of a representative set of manual actions typical for a variety of daily scenarios.
We have then presented a detailed description of the multimodal sensor setup employed
for the recording of the following interaction components – the hands, the object, the ex-
ternal view of the interaction scene, and, optionally, the interaction triggers – aspiring a
comprehensive multimodal manual interaction capture. The description of the hardware
framework is followed by the description of two methods for ground truth acquisition: man-
ual annotation and automated cue-based ground truth. Finally, based on the ground truth
represented by the semantic label collection, the last section has presented several pre-
liminary experiments investigating the action- and modality-specific characteristics of the
multimodal data.

Taking the results of the preliminary experiments into consideration, firstly, different
semantic properties of the recorded modalities motivate modality-specific modeling of action
primitives. Secondly, the high levels of inter- and intrapersonal variability discourage from
modeling of the absolute values corresponding to the action primitive subsequences.

The following Chapter 4 presents the underlying theory and a detailed discussion of the
Bayesian segmentation framework employed in our work.



Chapter 4

Multimodal Interaction Decomposition:
Theoretical Background

The purpose of this chapter is to provide the theoretical background necessary for the decom-
position of interaction into action primitives. On its basis, the following Chapter 5 demon-
strates the experimental results for multimodal decomposition, and Chapter 6 presents an
approach towards identification of the resulting chunks.

Considering the state of the art methods (see Chapter 2) enormous advances have been
made in interaction decomposition. However, most approaches are designed for domain-
specific unimodal data, where either each action primitive is predefined, or a specific seg-
mentation heuristic is applied. At the same time, the growing complexity of considered
interaction scenarios (e.g. in cognitive robotics) requires an approach to decomposition
that generalizes well to a wide range of actions and applications. Hence, in our work we
aspire, firstly, a generic approach that scales well to a large number of actions and scenarios.
Secondly, we aim at modularity w.r.t integration of multiple modalities.

The rest of the chapter contains a detailed description of our approach with regard to
the above-mentioned issues:

• Section 4.1 introduces the employed generic decomposition framework handling the
challenge of unknown interaction structure.

• Section 4.2 is dedicated to our approach to modeling of action primitives. Based on
a series of simple stochastic models, our approach emphasizes scalability to a wide
range of modalities, and scenarios.

• Section 4.3 describes our approach to bimanual and multimodal integration.

• Section 4.4 presents a summary of this chapter.

35
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4.1 Decomposition Framework

Assuming that no action-specific or data-specific segmentation heuristics are available to
guide the decomposition, the structure of the interaction is to be considered as unknown,
i.e. action primitives constituting an interaction, as well as their number and locations
are unknown. Inspired by recent psychological findings, central for our approach is the
assumption that action primitives correspond to homogeneous regions within the time series.
Thus, in our work the task of segmentation is reduced to finding such homogeneous regions.

The above-mentioned considerations and the demand for high scalability motivate appli-
cation of a change point detection method. Due to the characteristics discussed previously
in Section 2.4, we propose to employ the Bayesian multiple change point detection method
introduced by P. Fearnhead [26, 27]. Importantly, this method has been previously applied
to scalar and multivariate time series1. In the further subsection we introduce Fearnhead’s
segmentation method, and come back to our approach extending it for integration of mul-
timodal and bimanual time series in Section 4.2.

4.1.1 Fearnhead’s Algorithm

In his work, Fearnhead proposes a deterministic method that maximizes the posterior distri-
bution of the number and location of change points w.r.t given observations. Central to the
method is a dynamic programming algorithm based on the filtering recursion, an approach
similar to the Viterbi algorithm [75] and methods for partition models [9, 8]. Hence, the
method exhibits quadratic computational complexity in the number of data points n. How-
ever, an approximate version which exhibits linear complexity w.r.t. n has demonstrated
negligible errors [27].

The goal of the algorithm is, given an observation time series y1:n of length n (repre-
senting an interaction in our use case)

y1:n = (y1, . . . , yn), (4.1)

to output a set of change points τi ∈ N0:

τ0 = 0 < τ1 < τ2 < . . . < τm < n = τm+1, (4.2)

partitioning the data into m+ 1 subsequences corresponding to action primitives.
The following paragraphs describe the algorithm in detail, starting with the essential

parts of the filtering recursion, the prior and the likelihood components used in our work
for action primitive modeling (described in Subsections 4.1.1.1 and 4.1.1.2 respectively).
Subsection 4.1.1.3 derives the filtering recursion. Finally, Subsection 4.1.1.4 presents Fearn-
head’s algorithm for change point detection based on the filtering recursion. In the following
text we employ the same notation as in [27].

4.1.1.1 Prior Distribution on Segment Length

The prior distribution on segment lengths employed in Fearnhead’s approach is the first
component of the action primitive modeling. We denote such prior by g(l), where l ∈ [1, n]

1Tests have been conducted on e.g. well log data published by Ruanaidh et al. [44].
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denotes the length parameter. There are various possibilities for the choice of prior. In [27]
g is specified by a negative binomial probability mass function:

g(l) =

(
l − k
k − 1

)
pk(1− p)l−k and g0(l) =

k∑
i=1

(
l − i
i− 1

)
pi(1− p)l−i/k,

where g0(l) is the probability mass function of the first change point after 0. “For small
values of p the negative binomial distribution can be thought of as a discrete version of the
gamma distribution. Larger values of k can reduce the number of very short segments” [27].
For the special case of k = 1 we receive a geometrical distribution, and the point process is
Markov:

g0(l) = g(l) = p(1− p)l−1

for some probability p. In [26] a prior is alternatively specified by a function dependent on
the length of the time series n and the number of change points m:

p(m,n) = pm−1(1− p)n−m

for some probability p.
The distribution function of the distance between two successive points is calculated by:

G(l) =

l∑
s=1

g(s) and G0(l) =

l∑
s=1

g0(s).

Then the probability of m change points occurring at positions τ1, . . . , τm is given by the
following product:

g0(τ1)

 m∏
j=2

g(τj − τj−1)

 (1−G(τm+1 − τm)),

where the first term corresponds to the prior of the first segment, the second term is a
product of priors for all following segments until the last one, and finally, the third term
corresponds to the prior of the last segment.

4.1.1.2 Marginal Likelihood

Marginal likelihood of a subsequence in Fearnhead’s approach estimates, how well a given
subsequence can be described by a particular model without the knowledge of the model
parameters. Let y1:n be the time series of observations and 0 < τ1 < . . . < τm < n denote
an arbitrary segmentation of the time series. The observation data restricted to a time
interval from i to k, i < k ∈ {1, . . . , n} is denoted by

yi:k = (yi, . . . , yk).

The j-th segment consists of the observations from τj−1 + 1 to τj .
Let a single parameter or a parameter vector θj specify the model associated with the

j-th segment, j = 1, . . . ,m + 1 (models employed in this work are discussed in detail in
Section 4.2). The priors for the parameters θj are denoted by π(θj) and are assumed to be
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statistically independent across segments. If time index i is within the j-th segment, then
the observation yi is distributed according to a density f(yi|θj). Based on the independence
assumption, the likelihood of the observations yt:s conditioned on the change point positions
and the parameter θ results in:

Pr(yt:s|t, s, in the same segment , θ) = π(θ)

s∏
i=t

f(yi|θ).

Let P (t, s) denote the marginal likelihood of time series data yt:s, t ≤ s, t, s ∈ {1, . . . n}
which is part of a single segment. Exploiting the independence assumptions the marginal
likelihood can be calculated as follows:

P (t, s) = Pr(yt:s|t, s in the same segment) (4.3)

=

∫ s∏
i=t

f(yi|θ)π(θ)dθ, (4.4)

where θ denotes the model parameters, as described above.

4.1.1.3 Filtering Recursion

For estimation of the maximum of the posterior distribution of segmentations w.r.t to
the observations, described in the next section, Fearnhead introduces a set of auxiliary
recursions.

For each t ∈ [2, n] let Q be defined as follows:

Q(t) = Pr(yt:n|change point at t− 1). (4.5)

For t = 1, Q(1) = Pr(y1:n). Further, according to the law of total probabilities and by
dropping the conditional on the change point at t−1 for notational convenience, Equation 4.5
can be represented as an average over the next change point positions s ≥ t:

Q(t) =

n−1∑
s=t

Pr(yt:n,next change point at s) (4.6)

+Pr(yt:n, no further change points). (4.7)

Furthermore, assuming the change point process to be Markov, for each s ∈ [t, n − 1] the
terms in Equation 4.6 can be calculated recursively as follows:

Pr(yt:n, next change point at s) (4.8)
=Pr(next change point at s)Pr(yt:n|next change point in s) (4.9)
=Pr(next change point at s)Pr(yt:s, ys+1:n|next change point in s) (4.10)
=g(s+ 1− t)Pr(yt:s|t, s in the same segment )Pr(ys+1:n|change point at s) (4.11)
=g(s+ 1− t)P (t, s)Q(s+ 1). (4.12)

The transition from Equation 4.8 to Equation 4.9 is according to the definition of conditional
probability. Equation 4.10-4.11, is firstly, according to the assumed Markov property of the
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change point process. Secondly, the definition of the prior distribution on segment length
g is applied, considering the conditional of the change point in t− 1. Equation 4.11-4.12 is
according to the definition of marginal likelihood and the definition of Q (see Equation 4.5).

Analogously follows the calculation of the term in Equation 4.7.

Pr(yt:n, no further change points) = P (t, n) · (1−G0(n− t)).

From the above derivation originating from [27] (Theorem I) follows for t = 2, . . . , n:

Q(t) =

n−1∑
s=t

P (t, s)Q(s+ 1)g(s+ 1− t) + P (t, n)(1−G0(n− t)) (4.13)

and

Q(1) =

n−1∑
s=1

P (1, s)Q(s+ 1)g0(s) + P (1, n)(1−G0(n− 1)). (4.14)

4.1.1.4 Change Point Detection Algorithm

In this section we describe the algorithm proposed by Fearnhead [26] for calculation of the
maximum a posteriori (MAP) estimate of the segmentation. This method is based on a
dynamic programming algorithm that first maximizes Q for each t ∈ {1, . . . , n} yielding
Q∗. In the second step, based on Q∗ the algorithm efficiently estimates the segmentation,
optimal in the sense that a combination of a prior distribution on segmentations and the
segment-wise likelihoods is maximized.

For a simple model specified by a marginal likelihood P (t, s) and t ∈ {1, . . . , n}, the
recursive estimation of Q∗ is defined analogously to the above Equations 4.13 and 4.14:

Q∗(t) = max{ max
t≤s≤n−1

(P (t, s)Q∗(s+ 1)g(s+ 1− t)), (P (t, n)(1−G(n− t))}. (4.15)

If the model is a mixture model, the maximum is taken additionally over the set of model
components m ∈M of the mixture modelM:

Q∗(t) = max
m∈M

{ max
t≤s≤n−1

(Pm(t, s)Q∗(s+ 1)g(s+ 1− t)), (Pm(t, n)(1−G(n− t))}, (4.16)

where analogously to the above, Pm(t, s) specifies the marginal likelihood function of the
mixture model component m ∈M. Q∗(n+ 1) is initialized as follows:

Q∗(n+ 1) = 1.

Further let s∗(t) and m∗(t) be the values that achieved the maximum. Then according to
the algorithm proposed by Fearnhead the estimate of the change points τ∗1 , . . . , τ∗m and the
corresponding mixture model components models m∗1, . . . ,m∗m can be obtained as presented
in Algorithm 1. This procedure for estimation of change points and the corresponding
mixture model components is employed in our experiments (see Chapter 5).
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Algorithm 1 Fearnhead’s algorithm for calculation of change points and the corresponding
models.
Require: s∗(t) and m∗(t)
τ∗0 ← 0, j ← 0
while τ∗j < n do

τ∗j+1 ← s∗(τ∗j + 1)
m∗j+1 ← m∗(τ∗j + 1)
j ← j + 1

end while

4.2 Modeling of Action Primitives

In this work we assume that a series of homogeneous regions corresponding to action prim-
itives (see Chapter 2) constitute an interaction. Accordingly we assume, that each change
point characterizes the beginning of an action primitive, and each homogeneous region is
generated by a particular model.

Previous section presented a change point detection framework by Fearnhead, in which
the subsequence modeling is defined by a marginal likelihood P (t, s) (see Equations 4.15
and 4.16 respectively). In this section we propose a set of simple models that specify the
calculation of marginal likelihood P (t, s), and are later employed for unimodal, multimodal
and bimanual modeling approaches of action primitives.

In the following subsections we first give an overview of different model types, used
for the modality-specific likelihood calculation: a linear model, a constant model and a
threshold model. Further we present a product and a mixture model that we propose for
likelihood calculation in bimanual and multimodal time series.

4.2.1 Linear Models

Linear models have been used within regression analysis for signal segmentation (i.e. [74]).
For two neighboring change points τi and τi+1 the linear regression for the observations
y(τi+1):τi+1

associated to the i-th segment is given as follows:

y(τi+1):τi+1
= G

(pi)
i βi + ε(τi+1):τi+1

,

where ε(τi+1):τi+1
is a vector consisting of independent and identically distributed (i.i.d)

Gaussian random variables εi,j modeling measurement noise with

εi,j ∼ N (0, σ2
i ),

and βi is a vector of coefficients, describing the dependency between explanatory variables of
the matrix G(pi)

i and response of the i-th segment yτ(i+1):τi+1
; G(pi)

i is the matrix consisting
of basis components of the linear model; pi denotes the type of the model within the i-th
segment.

In this paragraph we describe the selection of conjugate priors allowing analytical cal-
culation of marginal likelihood (Equation 4.3) for each s, t ∈ {1, . . . , n}, with t < s. For the
j-th regression parameter of the i-th segment βi,j we assume a normal prior with mean 0
and an unknown variance σ2

i δ
2
j independent of all other regression parameters:
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βi,j ∼ N (0, σ2
i δ

2
j ). (4.17)

For the variance of noise σi we assume an Inverse-Gamma prior with global hyperparameters
ν/2 and γ/2:

σ2
i ∼ Inv-Gamma(ν/2, γ/2). (4.18)

The priors are independent for different segments. This above choice of priors, given the
Gaussian noise model, allows marginalisation of nuisance parameters βi and σi [74]. In
[74, 26, 77] it is proposed to estimate the parameters γ, and δ1, . . ., δpi from data in order
to increase the robustness of the prior.

Consider the observation data yt:s, s ≥ t, and a linear regression model of a fixed order
q. Let G be the (s − t + 1) × q matrix of basis vectors for the q-th order linear regression
model on this segment. Under the assumption of i.i.d. Gaussian noise, for model parameters
θ = {σ, β} the likelihood of yt:s to form a segment is defined as follows:

P (yt:s|θ) = (2πσ2)−((s−t)/2) × exp

(
−‖yt:s −Gβ‖

2

2σ2

)
. (4.19)

Under the assumption of conjugate priors (see Equation 4.17 and 4.18) and the likelihood
defined in Equation 4.19, the marginal likelihood is calculated analytically by integrating
out the regression parameter β and the variance σ (see [74, 26]):

P (t, s) =

∫
θ

P (yt:s|θ)p(θ)dθ =

= |M |1/2(γ + ‖yt:s‖2P )−(ν+s−t+1)/2 ×
Γ
(
ν+s−t+1

2

)
Γ
(
ν
2

) q∏
j=1

δ−1
j ,

with
M = (GTG+D)−1,

P = (I −GMGT ),

and
‖y‖2P = yTPy,

where I is a (s− t+ 1)× (s− t+ 1) identity matrix and D defines the prior variance on the
regression parameters:

D = Diag(δ2
1 , . . . , δ

2
q ).

Particularly interesting special cases of the linear model, a polynomial and an autore-
gressive model are used by Punskaya et al. [74] and Fearnhead [26] for segmentation.

4.2.1.1 Polynomial and Autoregressive Models

The autoregressive (AR) model of order n assumes that the observations are generated
by an autoregressive process of order n. An example of a third-order model is:

G
(3)
t:s =


yt−1 yt−2 yt−3

yt yt−1 yt−2

... ... ...
ys−1 ys−2 ys−3

 .
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AR models of orders 1-3 are used in our work to describe the oscillating structure of the
audio signal.

The polynomial model assumes that the relationship between the response and the
explanatory variables can be modeled by a polynomial of a given degree n. Basis elements
of this model are the orthogonal monomials {xi}0≤i<n. In an example for n = 3, the matrix
G

(3)
t:s ∈ R(s−t+1)×3 contains basis elements for the constant, linear and quadratic component:

G
(3)
t:s =


1 xt x2

t

1 xt+1 x2
t+1

...
...

...
1 xs x2

s

 .

Application of polynomial model for segmentation is very promising and therefore part of
our future work.

4.2.2 Constant Models

A constant model estimates how well a segment yt:s of a scalar time series can be described
by a constant function f(x) = µ, where µ is the parameter of the likelihood function. Like
in the previous section we assume conjugate priors in order to integrate out the parameter
µ and analytically calculate the marginal likelihood P (yt:s|mc), where we denote a constant
model by mc. First of all the individual samples yk are assumed to be i.i.d. according to a
Gaussian distribution:

yk ∼ N (µ, 1) ,

where the mean µ is the unknown parameter of the constant model mc. We assume a
Gaussian prior distribution for µ as well, i.e. µ ∼ N (η, u), where we set η = 〈y〉. This
choice of η yields the following simplified log marginal likelihood of yt:s for the constant
model mc:

logP (yt:s | mc) = log

∫
P (yt:s | µ,mc)P (µ | mc)dµ (4.20)

= −uVar(yt:s) + C, (4.21)

where C is a constant. Except for the choice of η, this likelihood calculation is identical
to the one proposed by Fearnhead (see [27], Section 4.2). The result of the Equation 4.20
and 4.21 can be interpreted as follows: when the empirical variance of an approximately
constant segment gets close to zero, thus maximizing the log likelihood independent of
the exact value level µ, the segment can be well approximated by a constant function.
If the segment comprises two constant subsegments of different value level, the variance
will become much larger, indicating that such a segment cannot be well fitted by a single
constant model, but would be better fitted by two separate constant models. In our work
we apply constant model to preprocessed hand-posture trajectories and an energy-based
feature extracted from the audio signal.
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4.2.3 Threshold Models

A threshold model is a binary model designed to roughly estimate whether the data of a
segment mainly lies below or above a given threshold γ. The marginal likelihoods associated
to these models, denoted by m<γ and m>γ resp., indicate how well the time series segment
yt:s fits the assumptions of being below or above the threshold γ. With the independence
assumption for the individual samples yk, we define the improper marginal likelihood for
m<γ as follows:

P (yt:s | m<γ) =

s∏
k=t

p(yk|m<γ), (4.22)

where p(yk | m<γ) =

{
1, if yk < γ

po otherwise
(4.23)

where p(yk|m<γ) is the probability, that a single sample yk fits the model assumption.
The parameter po determines the probability that yk does not fit the assumption. De-
noting the segment length by u = s − t and the number of not fitting samples by
n = |{yk > γ | t ≤ k < s}|, and ignoring the constant normalization factor, we can de-
rive the following, more compact formulas for both models:

P (yt:s | m<γ) = po
n and P (yt:s | m>γ) = po

u−n (4.24)

As can be seen from Equation 4.24, the marginal likelihood becomes smaller, the more
data points are on the wrong side of the threshold. In our work we apply the threshold
model on preprocessed tactile data.

4.2.4 Product Models

A product model is a probabilistic model containing several component models, which
are combined in a multiplicative way, assuming statistical independence of the individual
models. In our work we assume that the multimodal data lies in a Cartesian product space
of independent modality spaces. This allows an application of the product model to the
multimodal sequences, where one modality or channel corresponds to one product model
component. We consider a special case of a product model with weighted components.
Assuming the independence of component models, marginal likelihood is calculated as a
product of the individual model marginal likelihoods:

P (t, s) =
∏
k∈K

Pk(t, s)wk ,

where K denotes the number of model components, Pk(t, s) denotes the marginal likelihood
of the k-th model and wk ∈ {w1, . . . , wK}, wk ∈ [0,∞[ denote the weights. The values of
wk-s determine the weights of the individual likelihood terms in the product. Within our
approach the parameter wk determines the influence of the k-th modality on the product
likelihood. In case of wk = 0 the corresponding likelihood term Pk(t, s)wk is set to 1 and is
therefore neutral to the product.
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4.2.5 Mixture Models

A mixture model is a probabilistic model consisting of K different components, whose
probability density functions are additively weighted to form the mixture probability density
function of the model.

Let a mixture model mmix consist of K model components with possibly vector-valued
parameters θ1, . . . , θK associated with each model component. Let φk denote the mixture
weight, i.e. prior probability p(k) of a particular mixture component k: p(k) = φk. With
Pk(t, s) denoting the marginal likelihood of yt:s for the model component k, marginal like-
lihood for a mixture model can be defined as follows:

P (t, s) =
∑

1≤k≤K

Pk(t, s)φk.

In our work a mixture model component is a product model, used for likelihood calculation
of a multimodal segment. We describe the application of the modeling approach to the
segmentation of multimodal time series in Chapter 5.

4.3 Multimodal Bimanual Segmentation Approaches

In this section we introduce our approach to multimodal integration within a decomposition
framework.

As previously described in the beginnig of the chapter, a common approach towards
integration of multiple modalities primarily conducts a modality-specific segmentation fol-
lowed by a heuristic-based merge of the segment borders over all modalities. In order to
overcome this limitation, in this section we propose an extension of Fearnhead’s algorithm
for bimanual and multimodal segmentation. This accounts for one of the main contributions
of this work.

We begin by briefly recapitulating the necessary notation. For a given time series y1:n

we use the notation y|mod to indicate the restriction to a modality mod ∈ {t, j, a}, where
t, j, a designate tactile, joint and audio modality respectively. An additional restriction of
the modality-specific time series to the left or the right hand is denoted for each modality
with an additional index l or r, i.e. y|tl or y|tr to refer to the tactile data for the left and
right hands resp. In the following text we use the term channel to address a time series
restricted in this way. Application of a feature extractor f is denoted by f(y1:n).

The rest of the section is structured as follows. In Subsection 4.3.1 we motivate and
describe our approach towards decomposition modeling of bimanual unimodal data. The
following two Subsections 4.3.2 and 4.3.3 describe two approaches to multimodal segmen-
tation: a hierarchical and a parallel approach respectively.

4.3.1 Bimanual Segmentation Approach

Each unimodal recording of a bimanual interaction, such as hand-posture trajectories, accel-
eration or pressure has two hand-specific channels. In the next paragraphs we discuss, what
method should be applied in order to estimate a common segmentation for both channels.

In order to motivate our approach, we first consider an example of a typical object
interaction, during which a human demonstrator grasps the object and then releases it.
During a typical grasping, illustrated in Figure 4.1 based on the tactile sensor output, both
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Figure 4.1: An example of a trial with synchronous bimanual movement, small asynchrony
is reflected in the tactile output. All three bimanual object contact regions (blue regions 1,2
and 4) demonstrate that in the beginning and in the end of the region, both hands establish
or loose contact asynchronously.

hands hardly ever establish object contact precisely at the same time. Based on these
observations, we assume that such asynchrony is inherent to some synchronous bimanual
actions, such as “grasping” or “releasing”. In the case when both channels are considered
separately, the output of the segmentation (e.g. for bimanual grasping) would contain
two temporally close segment borders for each hand relating to the beginning of the same
semantic action – the bimanual grasping. In order to avoid oversegmentation and to have a
common border for both hands for one bimanual action an additional fusion step employing
a heuristic algorithm would be needed.

Our approach aims to solve the asynchrony-related oversegmentation problem without
a heuristic-based merge. For this purpose we propose a joint modeling approach applied
within the segmentation framework of Fearnhead.

Consider an exemplary basic binary partition of the respective activities of both hands
during an interaction with an object into “object contact” and “no object contact” (see Fig-
ure 4.1). We denote the corresponding models bymL,mR (“object contact” with left or right
hand respectively) and ml, mr (“no object contact” with left or right hand respectively). As
both hands can act independently of each other, the above classification yields a combina-
tion of four possible states: contact for both hands, contact for the left hand only, contact
for the right hand only, no contact for both hands. Due to the independence assumption
the hand-specific models (e.g. ml and mR) in our approach are combined multiplicatively
to yield a joint bimanual model, denoted by mlR. We denote the composite models that
correspond to each of these states by mLR, mLr, mlR, mlr. Hence, the overall model is
then a mixture model consisting of four product model components. The corresponding
mixture model likelihood under the assumption of uniform component priors is as follows:

P (yt:s|t) =
1

4
P (yt:s|t | mlR)+

1

4
P (yt:s|t | mLr)+

1

4
P (yt:s|t | mLR)+

1

4
P (yt:s|t | mlr). (4.25)

Importantly, in order to estimate common segmentation of bimanual channels, we propose
to employ the above mixture model within the segmentation framework by Fearnhead.
Note, that within a product model, any two suitable models of the same type could be
employed for bimanual unimodal segmentation. In contrast to a heuristic-based approach,
the presented method not only allows simultaneous processing of data for both hands,
but also encompasses a prior distribution on segment lengths, a mechanism preventing the
oversegmentation and, therefore, making the method particularly suitable for modeling of
action primitives.
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Figure 4.2: An schematic example of a two-stage hierarchical segmentation; original data
(first row) is segmented in the step 1 resulting in yellow and orange segments (second row);
in step 2 the orange segments generated in step 1 are subsegmented (third row).

4.3.2 Hierarchical Segmentation Approach

The main concept of the hierarchical segmentation is an iterative refinement of the semantic
decomposition structure by conducting a series of segmentation and subsegmentation steps.
In each iteration of the algorithm, a different feature or modality serves as a basis for the
segmentation. Figure 4.2 illustrates the hierarchical segmentation approach on an example
of two subsequent segmentation steps.

For an arbitrary time series y1:n an outline of the procedure is presented in Algorithm 2.
Here, in each iteration step i ∈ {1, . . . , S} denoting the level of the segmentation hierarchy,
the algorithm explores the structure of a given feature time series fi(y|modi) by applying
Fearnhead’s algorithm. Essential for the multimodal integration is the fact that in each
iteration step i the hierarchical segmentation method only refines the segmentation struc-
ture previously generated for the time series y1:n in the step i − 1. And finally, the new
segmentation generated for the current level i is applied globally to y1:n. If we denote the
segmentation on the level i by Ξi, then from the design of the algorithm follows:

Ξ1 ⊂ . . . ⊂ ΞS . (4.26)

Filtering is an optional operation that allows to select or postprocess segments according to
their model description. Note, that the number of segmentation steps, the feature extractors
and the model sets Mi used in each step i have to be specified in advance based on the
prior knowledge.

The experimental evaluation of the hierarchical segmentation method will be presented
in Section 5.4. In this section we illustrate application of the method to bimodal data,
consisting of the tactile and the audio modalitie, and a detailed discussion of the employed
models.
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Algorithm 2 Outline of the hierarchical segmentation approach. Note: we use set and
tuple notation interchangeably for sets whose elements can be ordered.
Require: (λ1, . . . , λS) . Level-specific priors on segment lengths
Require: (M1, . . . ,MS) . Level-specific model definition

Ξ0 ← (τ1
0 = 1, τ2

0 = n), n0 ← 2 . Initialize the sequence of change points
M0 ← (). . and the corresponding model descriptors
for i = 1, . . . , S do

Ci ←
(
cji = yτj

i−1:τj+1
i−1
| 1 ≤ j < ni−1

)
. Partition y1:n into a sequence of chunks

. according to Ξi−1

if Mi−1 6= () then . Optional filtering
C ′i ←

(
cji ∈ Ci|c

j
i selected by Mi−1

)
. Perform filtering of Ci based on Mi−1

else
C ′i ← Ci

end if
for each chunk yτj

i−1:τj+1
i−1
∈ C ′i do

(Ξji ,M
j
i )← fearnhead(fi(yτj

i−1:τj+1
i−1 |modi

), λi,Mi) . Apply Fearnhead’s
. segmentation to chunk restricted to modality modi

end for
Ξi ← Ξi−1 ∪ Ξ1

i ∪ · · · ∪ Ξ
ni−1

i = (τ1
i , . . . , τ

ni
i )

Mi ← (M1
i , . . . ,M

ni
i ).

end for

4.3.3 Parallel Segmentation Approach

The parallel approach is a generalization of the unimodal bimanual approach (see Sec-
tion 4.3.1) for multiple modalities. Similar to the unimodal bimanual approach, the algo-
rithm estimates a segmentation for the complete multimodal time series y1:n in one pass
and is characterized by a mixture modelMmix, whose components are product models (see
Equation 4.25). In contrast to the unimodal bimanual integration, the mechanism of the
multimodal integration is realized with the product models that may contain modality-
specific components of different types. An essential feature of the parallel approach is
the weight vector controlling the influence of the individual modalities within the product
model. The procedure is outlined in Algorithm 3. Hence, given a mixture model, and the
weight vector, the procedure calculates a multimodal segmentation in one pass by applying
Fearnhead’s algorithm.

An empirical evaluation of the algorithm will be presented in Section 5.5. This section
presents a detailed description of the corresponding mixture model, a discussion of the
parameter choice (λ and the weight vector), and an application of the algorithm for all
three modalities.

4.4 Summary

This chapter has presented the theoretical framework aiming at decomposition of interaction
into action primitives. The proposed approach addresses the following three challenges:
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Algorithm 3 Outline of the parallel segmentation approach.
Require: (w1, . . . , wr) . Weight vector
Require: Mmix . Mixture model
Require: λ . Prior on segment lengths
ŷ1:n ← synchronize(f1(y1:m1|mod1), . . . , fr(y1:mr|modr )) . Synchronize the multimodal

. feature time series.
(Ξ,M)← fearnhead(ŷ1:n, λ,Mmix) . Apply Fearnhead’s segmentation

unknown interaction structure, modeling of action primitives, and integration of multiple
modalities.

Central for addressing the first challenge, the unknown structure of interaction, has
been the assumption that action primitives correspond to homogeneous regions within the
time series. Chapter 2 motivates the application of the Bayesian change point detection
framework introduced by P. Fearnhead [26, 27]. Briefly, it is a deterministic method that
maximizes the posterior distribution of the number and locations of change points w.r.t.
observations.

In order to address the second challenge, the decomposition approach builds upon var-
ious models of homogeneity, determining the semantics of the resulting action primitives.
Models proposed in Section 4.2 include simple models for unimodal segmentation (threshold,
constant, linear), as well as product and mixture models for segmentation of multimodal
and bimanual time series.

Section 4.3 proposes an extension of Fearnhead’s procedure for multimodal and bi-
manual time series, the third addressed challenge. Here, two proposed methods, parallel
and hierarchical segmentation, present individual mechanisms of multimodal and bimanual
integration. While the parallel approach integrates over all modalities in one step, the hi-
erarchical approach is based on iterative modality-specific semantic refinement. Chapter 5
presents results of the experimental evaluation for uni- as well as multimodal interaction
decomposition.



Chapter 5

Multimodal Interaction Decomposition:
Experimental Results

This chapter contains a significant part of the experiments investigating interaction decom-
position into action primitives with the methods derived in the previous chapter. Within
the chapter, the analysis is organized according to the usage of modalities: a series of
unimodal segmentation experiments, followed by the bimodal segmentations, and, finally,
segmentation based on the complete time series consisting of three captured modalities is
evaluated.

Each of the three modalities – tactile, joint-angles, and audio – has its individual se-
mantics. Therefore, the goal of the preliminary unimodal experiments is to investigate the
semantic relevance of the proposed modality-specific decomposition approach. The ma-
jor part of the experiments explores and illustrates the multimodal methods introduced in
Chapter 4. Their main target is to assess, how well the multimodal approaches can integrate
unimodal segmentations.

Ground truth plays a vital role in the evaluation of segmentation quality, however its
acquisition in the context of interaction identification is still an open question. Chapter 3
already presented and discussed the traditional ground truth acquisition methods, manual
annotation, and the proposed alternative, automated cue-based ground truth. To investi-
gate the advantages and the disadvantages of these two types of ground truth is a further
objective of our study. Building upon the ground truth, we propose four segmentation
quality measures, estimating the structural and temporal correctness of the segmentation.

The rest of the chapter is structured as follows:

• Section 5.1 presents the data pool, consisting of multimodal time series recorded by
four human demonstrators.

• Section 5.2 introduces an evaluation method for assessing the quality of the generated
segmentations, including its temporal and structural quality.

49
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• Section 5.3 presents the unimodal experiments, and consists of a tactile, a joint-angles
and an audio subsection, each containing a description of preprocessing, modeling and
segmentation experiments. The section is concluded by an overview of the modality-
specific segmentations generated by each of the three modalities.

• Sections 5.4 and 5.5 present the results of the multimodal approaches, based on two
and three modalities respectively. Section 5.6 compares the quality of segmentations
generated by both approaches.

• Section 5.7 presents a summary of all results.

5.1 Data Pool

This section presents the assembled data pool that has served as a basis for all conduced
experiments.

As described in Section 3.2, the data pool is recorded with the help of multiple sensing
devices, such as CyberGloves, iHands, a camera, and a contact microphone. Accordingly,
the captured time series consist of joint-angle and tactile trajectories, audio, video, and an
optional audio cue schedule. The interaction scenario recorded by four human demonstra-
tors hdi, i ∈ {1, . . . , 4} with one test object has been previously outlined in Section 3.1. The
scenario consists of an action sequence with a filled non-rigid plastic bottle. To prepare
the data recording, each human demonstrator was given a sheet describing the interaction
(see Appendix A). Although the structures of all trials should be identical except for timing
differences, it turned out to be rather difficult for the human demonstrators to perform
a large number of trials without errors. As a result, some trials exhibit structural differ-
ences like missing or additional tactile contacts or repeated actions. No correction of these
irregularities has been conducted.

According to the two types of ground truth acquisition we differentiate between con-
strained and unconstrained trials (see Section 3.3). Unconstrained trials are recorded with-
out providing audio cues to the subject and therefore with their natural execution speed.
Constrained trials are recorded with audio cues controlling the beginning and the end of
action execution. Figure 5.1 shows an example of a constrained trial (after preprocessing)
and a corresponding cue-based ground truth. For some cues the figure shows a temporal de-
viation of the actual action execution timing from the cue signal, typical for the constrained
scenario.

Table 5.1 presents an overview of the data set and its characteristics: recorded modali-
ties, type of scenario, and characteristics of the human demonstrators. The column “cues”
indicates whether data has been recorded with or without audio cues, corresponding to
constrained and unconstrained scenario respectively. The columns “l-r” and “gender” state
whether the human demonstrator is left- or right-handed (“l” and “r” respectively) and the
gender.

5.2 Measures of Segmentation Quality

Following a decomposition of an interaction episode, the key question is: how to measure
the quality of the resulting segmentation?
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Figure 5.1: Illustration of a trial time series after preprocessing. Ground truth is auto-
matically generated from the recorded audio cues that are drawn as black frames with an

indicator. Upper plot: preprocessed joint-angle trajectories for the left (red) and right
(blue) hand as well as the audio signal (brown). Lower plot: cumulative tactile feedback for
the left (red) and right (blue) hand. The actions "unscrew" and "screw" show an example
of bad alignment of a human demonstrator’s actions to the cues. The captured tactile data
shows a temporal offset between the actual start and the end of the action and the scheduled
cues.

Table 5.1: Overview of the recorded trials in 7 experimental conditions; abbreviations are
used to mark the recorded modalities: joint-angles (j), audio (a), tactiles (t), video (v); cues:
denote whether during the recording audio cues have been emitted to mark the beginning
or the end of the action execution; hd: denotes the human demonstrator; the column "l-r"
denotes whether a human demonstrator is left- or right-handed.

Condition Modalities Cues hd l-r Gender #Trials
1 j, t, a, v yes hd1 r m 10
2 j, t, a, v no hd1 r m 10
3 j, t, a, v yes hd2 l m 20
4 j, t, a, v no hd2 l m 20
5 j, t, a, v yes hd3 l m 10
6 j, t, a, v no hd3 l m 10
7 j, t, a yes hd4 r m 30

In this section we describe the measures designed to evaluate the quality of the generated
segmentation. For this purpose we compare the set of generated change points denoted by

Ξ := {τ1, . . . , τM} (5.1)

with the set of ground truth change points denoted by

C := {c1, . . . , cm}. (5.2)

Note that the change points are ordered: τi < τj and ci < cj for i < j. In order to evaluate
the overall correctness of the generated change points Ξ w.r.t. the ground truth change
points C, it is necessary to consider several aspects: how close to each other the generated
and the ground truth change points lie, what is the ratio between the number of generated
and the ground truth change points, what is the ratio of generated segment lengths and the
ground truth segment lengths? Therefore, inspired by Basseville [10], who introduced several
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Figure 5.2: An example of a search range Ig,i for calculation of segmentation granularity.

similar intuitive segmentation quality measures for online change detection, we consider the
following four performance measures:

• segmentation granularity µg,

• temporal accuracy µt,

• overlap ratio µr,

• missing segments ratio µm.

The four segmentation measures – to be defined in more detail shortly – assess the
quality and structure of the generated segmentation, considering the generated segmentation
between two neighboring ground truth change points, segment’s temporal alignment with
the ground truth and its length, in case it has been detected. The following subsections
describe the above measures and their calculation in detail.

5.2.1 Segmentation Granularity Index

The segmentation granularity index µg is the average number of change points that have
been generated between the two neighboring ground truth segment borders. This index is a
quality measure for the correctness of segmentation granularity. For a trial α and a ground
truth change point ci we define εαg,i by the number of change points generated within the
interval

Ig,i := [ci, ci+1] (5.3)

between neighboring trial-specific ground truth segment boundaries ci and ci+1:

εαg,i := |{τ ∈ Ξ | τ ∈ Ig,i}|. (5.4)

Figure 5.2 shows an example of an interval Ig,i. µg,i is an action-specific segmentation
granularity measure that is defined for a given ground truth change point ci by the average
of εαg,i over trials α ∈ A. The segmentation granularity index µg is an average over all
ground truth change points ci ∈ C:

µg,i :=
1

|A|
∑
α∈A

εαg,i (5.5)

µg :=
1

m

∑
1≤i≤m

µg,i. (5.6)
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Corresponding to µg,i and µg are the variances σg,i and σg:

σg,i :=
1

|A|
∑
α∈A

(εαg,i − µg,i)2 (5.7)

σg :=
1

m

∑
1≤i≤m

(µg,i − µg)2. (5.8)

A segmentation that has a perfect granularity w.r.t. the ground truth yields granular-
ity index µg equal one. Deviation from this value indicates either an undersegmentation,
insufficient number of generated segments (µg < 1) or an oversegmentation (µg > 1).

5.2.2 Temporal Accuracy Index

The temporal accuracy index measures how precise the timing of the generated segment
borders is with respect to a given ground truth set C. For a trial α and a ground truth
change point ci we define εαt,i as the distance between the generated and the expected change
point. In order to find the generated change point corresponding to the ground truth change
point ci, we define a search interval around it. For a predefined constant ε, let It,i be defined
as follows:

It,i := [ci − ε, ci + ε] ∩ [ci−1, ci+1]. (5.9)

Therefore, the interval It,i is an ε-neighborhood of ci limited from the sides by ci−1 and
ci+1. Let Ξ′ := It,i ∩Ξ (cf. Equation 5.1) be the subset of all change point positions Ξ that
lie within the search range It,i. If Ξ′ 6= ∅, then the change point

τ∗i := arg min
τ∈Ξ′
|ci − τ | (5.10)

is the closest to the ground truth ci and determines the calculation of the temporal error:

εαt,i :=| ci − τ∗i |. (5.11)

Because in this case it is not essential, whether the generated change point lies to the left
or to the right from the ground truth ci, we only consider the absolute value of the error in
the above Equation 5.11.

The averages µt,i, µt, and variances σt,i and σt are calculated similar to Equations 5.5
- 5.8. Importantly, only the ground truth change points for which Ξ′ 6= ∅ are used for
averaging. The case, when Ξ′ = ∅ for a given ci, increases the missing segments index (see
Subsection 5.2.4).

Altogether, the better the quality of the segmentation, the closer is the temporal accu-
racy index µt to zero.

5.2.3 Segment Overlap Ratio

In order to estimate the segment overlap ratio µr, we first consider how much one generated
segment p := [τ∗i , τ

∗
i+1] (see Equation 5.10) overlaps with the corresponding ground truth

segment Ig,i (see Equation 5.3). For calculation of the segment overlap ratio εαr,i, the
quotient of generated segment length |p| = (τ∗i+1− τ∗i ) to ground truth segment length |Ig,i|
is calculated as

εr,i := min{1, |p|/|Ig,i|}. (5.12)
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The averages µr,i, µr, and variances σr,i and σr are calculated analogously to Equations 5.5
- 5.8. The higher the overlap ratio µr, the better is the generated segmentation.

5.2.4 Missing Segments Index

The missing segments index is the percentage of change points that have not been detected.
εαm,i is 1 in case no segment has been detected within the interval It,i (see Equation 5.9) and
0 otherwise. The averages µm,i, µm, and variances σm,i and σm are calculated analogously
to Equations 5.5 - 5.8. The lower the index µm, the better is the segmentation.

5.3 Unimodal Segmentation

As a first study using the previously introduced data pool and the quality measures de-
scribed in Section 5.1 and Section 5.2, we focus on the case of unimodal segmentation.

Essentially, segmentation of unimodal data into action primitives involves a choice of
segmentation semantics, i.e. a decision about what kind of change to detect. The differences
in the semantic content of each recorded modality (discussed previously in Section 3.4) lead
to a modality-specific choice of the segmentation semantics. In order to represent different
unimodal semantics, we propose to employ a previously introduced set of simple models:
the threshold model, the constant model and th AR model (see Section 4.2). After a
modality-specific segmentation semantics has been linked to a suitable model, preprocessing
is necessary to produce an appropriate input for the chosen model.

After a brief parameter overview in Subsection 5.3.1, the following Subsections 5.3.2,
5.3.3 and 5.3.4 are dedicated to one of the three modalities: tactile, audio, and joint-angles.
For each unimodal approach, we discuss the motivation behind the adopted segmentation
semantics, the modeling and the corresponding preprocessing approach. Subsection 5.3.2,
describing the unimodal approach to the tactile modality, demonstrates a particularly de-
tailed example of the quantitative effect of the central parameters on the segmentation.
Similarly detailed accounts for unimodal segmentation experiments investigating the de-
pendency of the central parameters on the segmentation for the audio and the joint-angles
modalities can be found in Appendix C.

5.3.1 Parameter Overview and Evaluation Issues

All of our studies are characterized by a small set of parameters: two “global” parameters
λ and s relevant for all modalities, and further six remaining parameters characterizing
modality-specific processing. According to the above-mentioned considerations, the param-
eters can be further categorized into preprocessing-, modeling- and segmentation-relevant
parameters. Table 5.2 presents a parameter overview, arranged according to these cate-
gories.

The first global parameter 0 < λ < 1 defines the prior distribution on segment lengths
within the Bayesian framework:

p(t) = λ(1− λ)(t−1). (5.13)

Here parameter t denotes the length of a segment, i.e. values of the parameter λ closer to
1 favor smaller segments. The number of generated segments is a monotonously increasing
function of λ.
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Table 5.2: Overview of the segmentation parameters for audio (a), joint-angles (j) and
tactile (t) modalities.

Name Parameter type Modalities Description
λ segmentation a, j, t prior on segment lengths distribution
γ model t threshold parameter
po model t p(yk) being an outlier w.r.t. model
s preprocessing a, j, t subsampling rate of the time series
ρ preprocessing a signal range
c preprocessing a filtering threshold of high amplitude values
w preprocessing a width of the sliding window (variance calculation)
σ preprocessing j Gaussian smoothing parameter

The second global parameter s defines the subsampling rate of the time series. Higher
subsampling rate leads to reduction of the number of data points, which in turn results
in information loss, making the calculation less computationally expensive, less sensitive to
small artifacts, but also less precise. The remaining local parameters, presented in Table 5.2
will be discussed in the corresponding modality-specific subsections below.

In the three following subsections we will explore the influence of the global parameters
λ and s on the segmentation based on the quality measures µt, µg, µr, and µm (see Sec-
tion 5.2). In order to calculate the above measures, the search around each ground truth
change point for a corresponding generated change point has to be constrained (see Equa-
tion 5.9). Consequently, the generated segments that are not included in the calculation of
µt, µr, increase the missing segments index µm. Hence, the above quality measures only
serve as an approximation to the resulting segmentation quality. Therefore, in the following
sections we will mainly discuss the relative influence of the parameters on the segmentation
quality, such as improvement or deterioration of a quality measure, rather than aiming to
find an optimal set of parameters based on the conducted experiments.

Another important evaluation issue arises in the cases, in which the video-based an-
notation for the ground truth change points cannot be clearly seen in the corresponding
modality data and consequently do not get detected for a large range of parameter values.
In this case, for an appropriate choice of values for e.g. λ and s, it is necessary to compro-
mise between the values of the segmentation granularity µg and the missing segments index
µm: the growing granularity goes along with the falling missing segments index. In the
case if we try to get a “difficult” change point detected and reach a zero missing segments
index, we may, at the same time, drive our procedure into a high oversegmentation. Such
a situation corresponds to the case, when the additionally generated segment border does
not only correspond to the ground truth, but also lie between the ground truth segment
borders. Altogether, if a further increase of, e.g. λ, might decrease the missing segments
index, it is necessary to ensure that the corresponding granularity stays beyond 1. A sim-
ilar tradeoff has to be made between the missing segments ratio µm and the overlap ratio
µr. A decreasing number of missing segments indicates an increasing number of generated
segments. This may result in a decrease of the segment overlap ratio, that should, in the
optimal case, be close to 1.
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In all experiments, averages for the calculation of each segmentation index are built
over 20 trials recorded by one human demonstrator in a constrained scenario. Because the
aim of following Subsections 5.3.2-5.3.4 is to explore the appropriateness of the proposed
modeling approach for the unimodal semantics, and to present an exploratory study of the
influence of the main parameters, no corroboration of the findings with statistical confidence
measures will be provided.

5.3.2 Tactile Modality

The tactile modality reflecting the force applied to the object, presents a rich source of
information about the interaction with an object. The absolute values of the tactile modality
data integrate many factors, such as object weight and orientation, the executed action and
the human demonstrator. At the same time, the data exhibits a high degree of inter- and
intrapersonal variability (illustrated in Section 3.4.1). Hence, in our work the semantics,
chosen for the tactile modality is the binary “object contact” vs. “no object contact” for
both hands (see Section 4.3.1). Such segmentation semantics is certainly one of the simplest
possible, however, it is advantageous due to its invariance on the object, person or on the
type of the grasp. In our future work we would like to conduct experiments with a more
informative modeling approach.

In order to receive the above-mentioned segmentation semantics for the tactile data,
we propose to employ binary threshold models (see Section 4.2.3). The jointly modeled
bimanual segmentation can be conducted with the help of a mixture model containing
multiplicatively combined simple threshold models, one for each hand (see Section 4.3.1).

The complete set of simple models employed for unimanual modeling consists of the
following four: ml, mL, mr and mR, where ml and mr denote “no object contact” and mL

and mR - “object contact” for the left and the right hands respectively. In the following
we will also refer to ml and mr models as “off-models”, and to mL and mR as “on-models”.
The following table shows an overview of these simple models:

Notation Hand Description
ml left no contact
mL left contact
mr right no contact
mR right contact

The mixture model for bimanual activity (see Section 4.3.1, Equation 4.25) must consider
all possible combinations for both hands and, therefore, contains four states: “no contact
for both hands” (mlr), “contact for left hand only” (mLr), “contact for right hand only”
(mlR), and “contact for both hands” (mLR). The marginal likelihood, e.g. P (ys:t | mlR) is
computed as a product of the individual likelihoods:

P (ys:t | mlR) = P (ys:t | ml) · P (ys:t | mR).

Table 5.3 shows an overview of the resulting four mixture model components.
Preprocessing of the tactile time series is based on the assumption that for segmentation

of an interaction in our scenario no finger-specific force measurements are needed. Hence,
the tactile values for each hand are summed up to yield a cumulative tactile force. This
approach aims to compensate for different limitations of the hardware and to reduce the
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Table 5.3: Overview of the four product model components of the mixture model.

Notation Description
mlr no contact for both hands
mlR contact for the right hand only
mLr contact for the left hand only
mLR contact for both hands

Figure 5.3: Preprocessing of the tactile time series: first and second rows: raw signal of the
left and right hands ytl and ytr respectively; Each one of the two rows shows five trajectories,
one for each finger. The tactile feedback is susceptible to different levels of noise or missing
sensor input. Some regions of the plot demonstrate the problem of the data recording, i.e
in the left hand only two fingers are recorded properly in this trial. One of the fingers in
the left hand exhibits a higher level of noise, i.e. in the region of "no contact", there is a
high level of signal. Third row: summed up data per hand (blue and yellow).

dimensionality from five dimensions to one dimension for each hand. The top two rows of
Figure 5.3 show the raw sensor recordings of the left and the right hands ytl and ytr. The
third row of Figure 5.3 shows the summed values of the individual finger sensors for the left
and the right hand.

In a threshold model, the main parameter γ (see Section 4.2.3) defines the value of
the threshold for recognizing contact. For ideal non-noisy data the parameter γ could be
set to zero. In our experiments it is chosen empirically to cut off the sensor noise. The
further parameter po is a constant probability of a data sample yk to be an outlier w.r.t to
the model (see Equation 4.24). Larger values of po make the model less sensitive towards
outliers (the values below or above the threshold for “on” and “off” models respectively). In
our experiments we used po = 0.3 for ml and mr models and po = 0.7 for mL and mR.

The following subsections are dedicated to experiments investigating the temporal and
structural accuracy, and robustness of the described segmentation approach w.r.t. different
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values of the prior segmentation length λ, subsampling rate s, and the threshold value γ.
The tactile label collection from manual annotation (see Section 3.3.1) is employed as the
ground truth. This labelling corresponds to the four mixture model states presented in the
above Table 5.3.

5.3.2.1 Threshold Parameter γ

The threshold parameter γ controls the separation of data into “above” and “below” the
threshold, corresponding to “contact” vs. “no contact” regions. Due to the unknown level
of noise in the data we estimate the value of this parameter experimentally. In this para-
graph we investigate the influence of the threshold parameter γ ∈ {10, 20, 30, 40, 50} on the
generated segmentation, while the remaining parameters stay constant with λ = 10−4 and
s = 30.

Table 5.4: Overview of the segmentation of the tactile modality for different values of the
threshold parameter γ.

γ µt µg µr µm
10 0.15 0.88 0.95 0.07
20 0.14 0.86 0.96 0.02
30 0.14 0.87 0.97 0.01
40 0.14 0.87 0.97 0.01
50 0.14 0.87 0.97 0.01

The results of the experiment are summarized in Table 5.4. For γ = 10, Table 5.4 shows
a slightly larger granularity µg corresponding to a smaller segment overlap ratio µr, and a
larger missing segments index µm = 0.07. We believe that the influence of noise leads to a
small increase of the number of generated segments that, however, lie slightly outside of the
search ranges and therefore can not be detected. For γ > 10 there is hardly any change in
the values of the segmentation indices, implying that an increase of γ within the test range
has no significant effect on the generated segmentation, neither structural nor temporal.
However, for a further growing value of γ, the number of segments will gradually decrease.
For a sufficiently large γ, for which all data lies beneath the threshold, no change points
will be generated.

5.3.2.2 Subsampling Rate s

The subsampling rate s determines the accuracy with which high frequency structures are be
represented. Here we examine the effect of this parameter on the quality of the segmentation
with threshold models. We conduct an evaluation for s ∈ {10, 30, 50, 70} with remaining
parameters constant: λ = 10−4, γ = 15. We expect that fewer segments are generated for
growing values of the subsampling rate1.

Table 5.5 presents the summary of the experimental results, corroborating the expected
effect: subsampling rate s is inversely correlated with the granularity of segmentation µg. In

1Subsampling rate s = 10 yields a time series frequency of approximately 20 Hz.
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Table 5.5: Overview of the segmentation of the tactile modality for different subsampling
rates.

s µt µg µr µm
10 0.13 0.90 0.94 0.05
30 0.13 0.87 0.95 0.07
50 0.13 0.87 0.95 0.06
70 0.12 0.78 0.97 0.41

Figure 5.4: Example of a trial segmentation based on tactile modality with threshold
models; A combination of parameters s = 30 and λ = 10−4 yields segmentation structure
corresponding to ground truth.

Figure 5.5: Example of a trial segmentation based on tactile modality with threshold
models; A combination of parameters s = 70 and λ = 10−4 yields undersegmentation.

contrast to the previous experiment, the increase of granularity is accompanied by decrease
of the missing segments index µm. This indicates that for falling s the newly generated
segments lie within the search ranges of the corresponding ground truth change points and
can be detected.

Figures 5.4 and 5.5 illustrate two trial segmentations. Figure 5.4 shows an example
of a generated segmentation corresponding to the ground truth segment structure (s =
30). Figure 5.5 shows an example with s = 70, corresponding to sample frequency of
approximately 3 Hz. For this rate, the “off”-samples become outliers of the “on”-model.
Therefore, the first two blue segments, showed in Figure 5.4, are merged to one in Figure 5.5.
Within the test range, the missing segments rate increases from µm = 0.05 to µm = 0.41,
indicated a strong influence on the segmentation.
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Table 5.6: Overview of segmentation indices for the tactile modality for different values of
λ.

λ µt µg µr µm
10−9 0.12 0.77 0.96 0.42
10−8 0.13 0.75 0.95 0.4
10−7 0.13 0.88 0.95 0.11
10−6 0.13 0.87 0.95 0.07
10−5 0.13 0.87 0.95 0.06
10−4 0.13 0.87 0.94 0.06
10−3 0.13 0.88 0.94 0.06
10−2 0.13 0.88 0.95 0.06
10−1 0.13 0.94 0.93 0.05

5.3.2.3 Prior Length Parameter λ

The parameter λ influences the a-priori probability distribution of the segment length: the
smaller the value of λ the larger and fewer are the generated segments. In this experiment
we investigate the influence of λ on the segmentation of tactile data. We have conducted
an evaluation for λ ∈ {10−9, . . . , 10−1}, while other parameters remained constant: s = 30,
γ = 15.

Table 5.6 presents the experimental results and demonstrates the anticipated effect of
growing value of λ on the segmentation: a strong increase of the granularity µg coupled with
a decrease of the missing segments rate µm. Larger values of λ cause generation of smaller
segments corresponding to a rise of segmentation granularity µg and at the same time a
decrease of µm, similar to the previous experiment. For too small values of the parameter,
e.g. λ < 10−8, the ratio of missing segments rises to about 40% and the granularity falls to
µg = 0.77 making the results comparable to the results for s = 70 in the previous subsection.
Within the test range, λ does not have a strong influence on µt or µr. This implies that
in the case a change point has been generated for different values of λ, the change of the
parameter’s value has no significant effect on the position of the change point.

5.3.2.4 Tactile modality: Summary

The proposed method for tactile segmentation generated a robust segmentation into four
different types of object contact state for both hands.

Table 5.7: Influence of parameters on the segmentation indices for segmentation based on
the tactile modality.

Parameter Direction of Change µt µg µr µm
Threshold γ ↑ No significant effect ↓ ↑ ↓
Subsampling rate s ↑ No significant effect ↓ ↑ ↑
Prior distribution λ ↓ No significant effect ↓ ↑ ↑
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Table 5.7 sums up the results of the experiments demonstrating the influence of the three
parameters λ, s and γ. Parameters λ and s have both, quantitatively and qualitatively
comparable effect on the segmentation: larger λ and smaller s cause larger segmentation
granularity and smaller missing segments index. There is hardly an influence on temporal
precision for the generated segments.

For very small values of λ ≤ 10−9 and large values of s ≥ 70 the values of all indices are
approximately equal and show a drastic increase of missing segments ratio and a considerable
fall of segmentation granularity. Sufficiently large values of γ > 10 result in segmentation
that is robust against noise. Due to application of Fearnhead’s method, incorporating a
model of the segment length, the segmentation has demonstrated robustness against noise
even for small values of γ, otherwise leading to severe oversegmentation.

5.3.3 Audio Modality

In our experiments, the audio modality is recorded by a contact microphone and captures
object-centered acoustic noise caused by an interaction. The attachment of a microphone
enables to capture sounds generated by the object during manipulation (see Section 3.2.2)
and filter almost all environmental noise. During a manipulation, i.e “pushing”, “shak-
ing”, “pouring” or “stirring”, the structure of the raw audio signal has an approximately
homogeneous oscillatory structure. Our approach builds upon the assumption that within
an interaction such homogeneous areas in the audio signal correspond to action primi-
tives. In the next two paragraphs we show two modeling approaches, implementing the
above-mentioned change detection with an autoregressive and a constant model (previously
described in Sections 4.2.1.1 and 4.2.2 respectively).

Due to the sensitivity of the contact microphone, not only audio-related action primi-
tives, e.g. “shaking”, “pouring” or “putting down”, but also tactile-related action primitives,
e.g. “grasping” or “screwing” can be detected in the audio signal. Therefore for evaluation of
segmentation we use the combination of audio and tactile label collections generated from
the manual annotation (see Appendix B).

5.3.3.1 Autoregressive Model

Autoregressive processes have proven to be well suited for modeling of audio signals due
to their stationary and oscillatory structure. Preprocessing consists of several empirically
established steps (see Figure 5.6) that aim at improving of audio signal segmentation with
AR models. The first row of the figure shows an example of the raw audio signal after
subsampling. The second row illustrates the effect of a preprocessing step during which
a predefined percentage c of the highest values of the signal are cut out. This step aims
at homogenizing the signal by getting rid of high signal peaks that may correspond to
random acoustic noise produced by the object apart from the interaction, e.g. cracking of
the plastic bottle. The next preprocessing step that takes the “pseudo” square-root of the
resulting signal, is calculated as follows:

y
′

i =

{√
yi, if yi ≥ 0

−
√
|yi|, if yi < 0

(5.14)

The output is illustrated in the third row of the same figure. Preliminary experiments
(not included in this work) have showed that these preprocessing steps improve segmenta-
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Figure 5.6: Audio preprocessing for AR modeling. First row: raw audio signal; second row:
clamped audio signal, c = 5; third row: square root of the clamped audio signal.

Figure 5.7: An example of an audio signal segmentation with AR models of order 1,2 and
3. The parameters are set to s = 5, λ = 10−5 and r = 12. The generated segmentation cor-
responds among others to action primitives such as "grasp", "shake", "put down", "screw"
and "pour".

tion with AR-models. The amplitude of the audio signal influences the value of segment
marginal likelihoods estimated within Fearnhead’s algorithm. For this reason in the third
preprocessing step the signal is scaled to a range defined by the parameter ρ.

In the following we report on the experiments investigating the unimodal segmentation
with a mixture of AR models of order 1, 2 and 32, whereby the theoretical background of
the AR modeling have been previously discussed in Sections 4.2.1.1. Figure 5.7 shows an
example of the resulting segmentation. The figure shows a decomposition of interaction into
segments corresponding to action primitives, such as “grasp”, “shake”, “put down”, “screw”,
“pour” and “unscrew”.

A detailed description of the experiments demonstrating the influence of the global
parameters s and λ, similar to the previous section, can be found in Appendix C.1.1. In
this paragraph we solely present the main results summed up in Table 5.8.

Table 5.8 shows that within the test range the parameters λ and s are, similar to the
previous section, inversely related. Both, an increase of λ and a decrease of s, increase the
granularity of the segmentation µg and decrease the missing segments ratio µm. Hence, with
both parameters, the structural accuracy of the segmentation can be improved. However, in
contrast to the decrease of λ, an increase of the subsampling rate has an additional negative

2As a basis for our implementation we have used the code available online [25]
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Table 5.8: Overview of the parameter influence for audio segmentation with a mixture of
AR models.

Parameter Direction of Change µt µg µr µm
Subsampling rate s ↑ ↑ ↓ ↓ ↑
Prior distribution λ ↓ No significant effect ↓ ↓ ↑

effect on the temporal error. We believe that this is due to the information loss connected
with the subsampling.

Our experiments have showed that the parameters have a very strong influence on the
AR-based modeling (the detailed descriptions can be found in Appendix C.1.1), leaving
only a small range in which the generated segmentation is close to optimal. An alternative
modeling approach is discussed in the next paragraph.

5.3.3.2 Constant Model

In this paragraph we present the application of constant models (see Section 4.2.2) for seg-
mentation of the audio signal. We assume that such models capitalize on the previously
stated property that action primitives correspond to regions of the interaction in which the
audio signal has an approximately homogeneous oscillatory structure and constant ampli-
tude. To make such regions detectable for the constant model, we calculate signal variance
with a sliding window. In the resulting time series the regions of the constant amplitude
yield approximately constant output that we use as an input to Fearnhead’s segmentation.

In contrast to applying a mixture of three AR models to approximately raw audio signal
(see Subsection 5.3.3.1), we aspire to improve the segmentation of the audio signal based
on the above preprocessing. We assume that detecting constant regions in a feature time
series smoothed by a sliding window, is less sensitive to change of parameters, such as the
subsampling rate s, than the AR models, where too large subsampling may easily eliminate
the segmentation-relevant structures (see Appendix C.1.1).

Figure 5.8 illustrates the preprocessing: the first row shows audio signal after subsam-
pling, the second row illustrates the variance computed in a sliding window of width w = 20.
The value of the parameter w is a trade-off: increasing of the window width results in a
smoothing effect, causing less precise segmentation; decreasing of the window width results
in a time series similar to the original oscillating structure and unsuitable for fitting with a
constant model.

A detailed description of the experiments investigating the influence of the global pa-
rameters s and λ on the generated segmentation can be found in Appendix C.1.2. The
evaluation of the segmentation has been conducted analogously to Subsection 5.3.3.1. In
this paragraph we solely show the main results summed up in Table 5.9.

Table 5.9 shows that within the test range the parameters λ and s have an analogous
effect on the generated segmentation as described in all previous experiments in this section.
However, the model has showed to be more robust towards changes of parameters λ and s,
and the temporal structure of the generated segmentation turns out to be more precise in
comparison with the AR model (for further details see Appendix C.1).
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Figure 5.8: Audio preprocessing for constant models. First row: raw signal after subsam-
pling; Second row: variance calculated within a sliding window of width w = 20.

Table 5.9: Overview of the parameter influence for audio segmentation with constant mod-
els.

Parameter Direction of Change µt µg µr µm
Subsampling rate s ↑ ↑ ↓ No sign. effect ↑
Prior distribution λ ↓ No sign. effect ↓ No sign. effect ↑

5.3.3.3 Audio Modality: Summary

The segmentation of the signal captured with the contact microphone has been evaluated
with respect to a set of action primitives, consisting of “grasp”, “shake”, “put down”, “screw”,
“unscrew”, “hold” and “pour”.

For both models, the AR and the constant, an increase of λ and a decrease of s increase
the granularity of the segmentation µg and decrease the missing segments ratio µm. An
increase of the subsampling rate has an additional negative effect on the temporal error and
on the overlap ratio indices. On the other hand, higher values of s reduce the computation
time.

For the same values of λ and s, e.g. λ = 10−6 and s = 10, segmentation with AR models
produces larger temporal error, almost two times smaller segmentation granularity, and
approx. 20% larger undetection rate in comparison to constant modeling. The experiments
have showed that the parameters have a stronger influence on the segmentation with AR-
models in comparison to the constant model, which is more robust. The disadvantage of
the constant modeling is the need for an extra preprocessing step, the variance calculation.
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Figure 5.9: Preprocessing of joint-angles. First row: raw signal of all joint-angles (right
hand) after subsampling; second row: smoothed signal; third row: temporal derivative of
the signal; fourth row: absolute value of the signal; fifth row: summed up signal used as an
input to Fearnhead’s algorithm.

5.3.4 Joint-angles Modality

The joint-angles modality directly correlates with the hand posture. Joint-angles data is
recorded by two Immersion CyberGloves and consists of joint-angles of the fingers and the
palm for both hands (see Section 3.2.5). We assume that most action primitives involving
finger movement, are characterized by an approximately constant overall level of the finger
activity, a central concept for our approach to the hand posture segmentation. As an
example, consider such primitives as grasping or releasing an object, screwing or unscrewing
a lid. Hence, in our approach to segmentation of the joint-angles, we are looking for constant
regions in the overall level of the finger activity (see a detailed description below).

Based on this concept, our preprocessing approach consists in reducing the 24-
dimensional joint-angle trajectories of each hand to a scalar time series defined to represent
the overall level of finger activity. We calculate it by summing up the absolute values of
time derivatives over all dimensions of the hand posture time series yjl and yjr. Therefore,
the preprocessing consists of the following steps (see Figure 5.9):

1. the raw joint-angles data is subsampled; the subsampling rate is controlled by the
parameter s;

2. each dimension of the input data is smoothed with Gauss smoothing. This preparatory
step aims at improving of the quality of discrete derivative;

3. time derivative for each input dimension is calculated. Third row of the plot shows
regions of high levels of finger-specific activity corresponding to grasping and releasing
the object. The level of finger activity in the other regions is approximately zero;

4. the absolute values of all joint velocities are accumulated, the resulting trajectory is
whitened for normalization.
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Figure 5.10: An example of a trial segmentation based on preprocessed bimanual joint-angle
time series for subsampling rate s = 10, λ = 10−15. The segmentation results in interac-
tion decomposition into segments corresponding to "idle", "release", "grasp", "screw" and
"unscrew".

In order to obtain a decomposition into different constant levels of the overall finger
activity, we model the preprocessed scalar trajectories of the left and the right hand3 with
constant models denoted bymjl andmjr respectively. Our approach to bimanual modeling,
similar to the tactile modality, assumes independence of both dimensions and uses a product
model as follows:

P (yt:s|mj) = P (yt:s|mjl) · P (yt:s|mjr) (5.15)

Figure 5.10 illustrates an example of segmentation carried out on a preprocessed biman-
ual joint-angles signal using a mixture of constant models. The resulting segmentation is
characterized by the regions of high and low overall finger activity for either of the hands.
High overall finger activity corresponds to action primitives such as “grasp” or “release” tak-
ing place before and after the action on object is conducted. The regions during the grasp
itself, i.e. during shaking or pouring, when hardly any finger dynamics can be observed, are
marked by idle.

For segmentation evaluation we have used the joint-angles label collection (see Appendix
B). A detailed description of the experiments investigating the influence of the global pa-
rameters s and λ on the generated segmentation can be found in Appendix C.2. The
segmentation of the joint-angles modality has been evaluated with respect to action prim-
itives, such as “grasp”, “release”, “screw”, “unscrew” and “idle”. In this paragraph we solely
present the qualitative influence of the parameters as showed in Table 5.10.

Table 5.10: Influence of the parameters on the segmentation of bimanual joint-angles data
with constant models.

Parameter Direction of Change µt µg µr µm
Subsampling rate s ↑ ↑ ↓ ↑ ↑
Prior distribution λ ↓ No significant effect ↓ ↑ ↑

The table illustrates the common effect of both parameters λ and s on the segmentation
granularity and µg and the missing segments index µm. The decrease of λ and the increase
of subsampling rate s both decrease the granularity µg, increasing the µr and the missing
segments index µm. Similar to the audio modality, an increase of the value of s has a
negative influence on the temporal error µt.

3In some experiments we use the cumulative trajectory of both hands to represent a cumulative finger
activity for both hands.
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Figure 5.11: Comparison of action-specific detection rates (1 − µi,m) for tactile (green),
audio (red), and joint-angles (blue) modalities.

5.3.5 Comparison of Unimodal Segmentations

Based on the results of the previous three sections, here we present a comparison of unimodal
segmentations for all three modalities: tactile, audio and joint-angles. The main purpose
is to illustrate and discuss the semantic differences and similarities between the unimodal
approaches.

We have employed threshold models for the tactile modality, and simple constant mod-
els for both, the audio and the joint-angles modalities4. The evaluation is based on the
semantic label collection generated by manual annotation, containing a superset of all ac-
tion primitives (see Appendix B). The measure of segmentation quality is based on the
action-specific detection rate (1−µi,m). For the calculation of µi,m we have segmented ten
trials of one human demonstrator recorded in a constrained scenario with a constant set
of parameters, λ = 10−5, s = 8. Figure 5.11 illustrates the results of the evaluation for
unimodal segmentations. Primarily, the figure demonstrates the crucial role of the audio
modality for detection of pouring, shaking and holding. Joint-angles modality is essential
for detecting action primitives related solely to the dynamics of the hand, i.e. closing or
opening of the hand during grasping and releasing of the object. Corresponding to this, the
joint-angles modality along with the tactile modality detects the beginning and the end of
an “object contact” region, i.e. lifting, screwing or unscrewing. Due to the fact that the
joint-angles dynamics is weak in some trials, the tactile modality is more robust in detection
of lifting or unscrewing.

Altogether, this experiment demonstrates that each modality is particularly suitable for
segmentation of a specific subset of action primitives within an interaction episode. This
fact is one of the main reasons for a multimodal approach to segmentation aspiring to
integrate segmentations generated by unimodal approaches.

5.4 Bimodal Segmentation: Hierarchical Approach

Section 5.3 showed that unimodal segmentation approaches tend to be highly suitable only
for different subsets of action primitives. In this section we proceed to the first multimodal

4During the preprocessing of the joint-angles modality, all existing dimensions have been summed up
yielding a scalar time series for both hands.
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Figure 5.12: An example trial segmentation with two-stage hierarchical method, based on
the tactile and the audio modalities. Step 1 (first row): tactile segmentation in "object
contact" vs. "no object contact" regions. Step 2 (second row): subsegmentation step based
on audio modality.

decomposition approach, the hierarchical segmentation. In order to integrate the unimodal
segmentations, the hierarchical segmentation performs a series of sequential segmentation
steps, aiming to refine the semantic structure of the time series in each of them (see Sub-
section 4.3.2). The goal of the section is to investigate the integration of segmentations of
two semantically very different modalities: the audio and the tactile modalities.

5.4.1 Method and Model Overview

For this purpose, given the input time series y1:n, the segmentation is first performed on
the tactile modality y|t, followed by the subsegmentation step conducted on the audio
modality y|a (as described in the previous Subsections 5.3.2 and 5.3.3 respectively).

Figure 5.12 illustrates an example of both sequential segmentation steps. The first
segmentation step (Figure 5.12 - first row) performs a rough joint analysis of the tactile
signals of both hands. This step yields contact assignments identifying parts of the time
series that are directly associated with object contact or interaction (see Section 5.3.2). In
this step the interaction episode is divided into “no object contact” and “object contact”
regions for both hands. The assignment of product models inM = {mlr,mLR,mlR,mLr}
(see Section 5.3.2) to the segments can be exploited for filtering and postprocessing to
exclude joint-angles and tactile modalities (jl, tl for left hand; jr, tr for right hand) of
“inactive” hands from subsequent processing steps (e.g. clustering, see Section 6.4). For
example, the assignment of mlR to a segment yt:s leads to the corresponding data fragment
yt:s|jl,tl being excluded. When the model mlr is assigned, the segment in question can be
ignored entirely.

For the application of Fearnhead’s method in this stage, we set the value of the prior
parameter λα = 1/nα for a trial α of length nα. Although this choice conceptually cor-
responds to a single expected segment, it turned out to be suitable for small numbers of
segments as well. This has been confirmed by the experimental evaluation.

In the subordinate second segmentation step (Figure 5.12 - second row), all segments
produced and not discarded in the previous step are sub-segmented. Here the audio signal in
the sub-segments is assumed to be produced by autoregressive (AR) models of order 1, 2 or
3: Msub = {AR(1), AR(2), AR(3)} [27]. Thus, the sub-segmentation is formed by selecting
segments that exhibit homogeneous oscillatory properties within the audio modality (see
Section 5.3.3.1). In contrast to the procedure outlined in the previous paragraph, the value
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Table 5.11: Model overview for two-stage segmentation

Stage Mixture model components # Components Notation
1 product of threshold models 4 mlr, mLR, mlR, mLr

2 autoregressive models 3 AR(1), AR(2), AR(3)

of the segment length distribution parameter λsub is fixed and determined empirically.
The sequential application of segmentation and selection steps yields a set of segments

that are characterized by constant contact topology in respect to the tactile hand activity
as well as homogeneous characteristics of the audio signal. The overview of the models used
in both step is displayed in Table 5.11.

Next sections verify the proposed methods by evaluating the quality of segmentation
for different types of scenarios, ground truth, and for different human demonstrators. The
goal of the experiments is to investigate the generated segmentation with respect to a set
of action primitives combining the semantic structure of both, the tactile and the audio
modalities.

5.4.2 Segmentation of Constrained vs. Unconstrained Trials

In the first experiment we compare the segmentation of constrained vs. unconstrained trials.
As previously discussed, constrained trials are recorded with the help of audio cues that are
emitted to mark the beginning and/or the end of actions and, therefore, control the action
execution speed. Unconstrained trials are recorded with natural speed. After the discussion
in Subsection 3.5, we may assume that the main difference between the two trial types is
the average length of action primitives, estimated to be approximately two times higher in
a constrained scenario in comparison to an unconstrained scenario.

By comparing the generated segmentation for both types of trials, we mainly aim to
investigate the impact of the length of action primitives on the resulting segmentation In
order to make the segmentations of both trial types comparable, the same set of parameters
has been used in both cases. An outline of the parameters can be found in Table 5.12.

Figure 5.13 presents four histograms illustrating the quantitative results of the exper-
iment. The plots display action-specific segmentation indices µt,i, µg,i, µr,i and µm,i (see
Section 5.2) in the constrained and unconstrained scenario with the corresponding variances.
All four sub-figures show a great similarity in comparison of constrained vs. unconstrained
segmentation indices. The first histogram illustrates the temporal error µt,i (see Figure 5.13,
first row - left), ranging from ca. 0.1 to 0.25 seconds and shows a high accuracy of the gen-
erated segmentation w.r.t. the ground truth. The variation σt,i is negligibly small and does
not reach values higher than 0.02.

The segmentation granularity histogram in Figure 5.13 (first row - right) shows that the
index values are comparable in both cases, apart from grasp+lift1 and grasp+lift2, which
show an oversegmentation of c.a. 2.5. This can be explained by the structural difference in
both trial types: in the unconstrained case, the grasping is followed directly by shaking. In
the constrained case there is a pause following grasping, before shaking or pouring starts.
Thus, an additional segment is generated in these cases. Because both types of trials have
the same annotation structure, higher segmentation granularity index values are calculated
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Table 5.12: Parameter overview for constrained and unconstrained segmentations.

Parameter Value
tactile subsampling rate s 5
threshold γ 15
tactile λ 1/nα

audio subsampling rate s 20
audio range ρ 10
audio λ 10−4

number of constrained trials 40
number of unconstrained trials 40
number of HDs 3
ground truth type annotation
label collection cues
segmentation method hierarchical

for the constrained case. Note that both action primitives put down 1 and put down 2 have
a comparably high segmentation granularity value in both setups. This is due to the fact
that in the annotation put down marks only the beginning of the action primitive. Both
above-mentioned cases of oversegmentation can be seen on an example of Figure 5.12 in the
beginning of the section. For put down two change points corresponding to the structure
of the audio signal are generated; similarly, corresponding to the rise and fall of the audio
volume, two segments are generated after the beginning of grasping in both cases, while
only one segment border is present in the annotation.

The overlap ratio histogram Figure 5.13 (second row - left) shows that the values of the
overlap index are very close for the constrained and the unconstrained scenarios. Exceptions
are grasp+lift1 and grasp+lift2 already discussed in the previous paragraph. These actions
differ in both scenarios, due to an extra generated segment in the constrained scenario.
Following this, the overlap ratio in the constrained scenario is small, while in the uncon-
strained scenario it is large in the case of this action primitive. Strong oversegmentation
in the segmentation granularity diagram correlates with low overlap ratio in the segment
overlap ratio histogram. Put down exhibits small overlap in both scenarios. The reason is
the same as for the high oversegmentation: the ground truth annotation only marks the
starting point of this point-event, therefore the end of the search interval for put down ends
with the beginning of the next action, i.e. screw or unscrew.

Figure 5.13 (second row - right) compares the missing segment index in both scenarios.
The histogram shows how many segment borders present in ground truth are missing in the
generated segmentation. In case of hold1 and hold2 the ratio is 0.25 in the unconstrained
scenario, corresponding to 25 percent missing segment borders. We explain this by still
present audio signal after the actions shake and pour have been conducted and before the
object has been put down. Thus the data has not been recognized as audio pause and no
corresponding segment has been generated. In the case of the unconstrained scenario only
for pour 5% of segments corresponding to this action primitive have not been detected.

Altogether, the above experiments have demonstrated satisfactory results, showing that,



5.4. BIMODAL SEGMENTATION: HIERARCHICAL APPROACH 71

Figure 5.13: Comparison of segmentation results for constrained (red) and unconstrained
(green) scenarios; bars indicate averages built over all available constrained and uncon-
strained trials respectively recorded by three human demonstrators; error bars indicate the
corresponding variances. First row: action-specific temporal error µt,i (left) and action-
specific segmentation granularity µg,i (right); second row: action-specific overlap ratio µr,i
(left) and action-specific missing segments µm,i (right).

despite a large difference in length of the action primitives, hierarchical approach produced
comparable segmentation in both scenarios. This can be explained by a stronger influence
of the model likelihood vs. the prior determined by the parameter λ on the segmentation.
Temporal error in both scenarios is on a very low level of 0.1 to 0.25 seconds. We further
argue that the action primitives characterized by high oversegmentation and low overlap
ratio partially result from the incompleteness of the ground truth annotation, e.g. in the
cases of put down or grasp. The ratio of detected segments in both scenarios is similar,
apart from one type of action primitive, holding (µm ≈ 0.25) and pouring (µm ≈ 0.05)
in the unconstrained and the constrained scenarios respectively. The first result may be
explained by a slightly higher semantic granularity of the constrained scenario w.r.t. the
ground truth.
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5.4.3 Manual Annotation vs. Cue-based Ground Truth

The goal of this experiment is to compare the results of the segmentation evaluation based
on two types of ground truth: manual annotation vs. automated cue-based ground truth.
As previously mentioned, video-based manual annotation of the trials is time consuming,
while cue-based ground truth can be generated automatically. Due to this advantage, in
this experiment we want to examine, how well the cue-based ground truth performs, in
comparison to the traditional video-based annotation method.

For this purpose, we evaluate segmentation of the same set of trials with both, the
cue-based and the annotation ground truth. Due to the fact that a human demonstrator
aligns her or his action to the cues during the cue-triggered recording, we expect higher
levels of temporal error and higher levels of undetected segment borders for the cue-based
evaluation method vs. annotation. Table 5.13 presents an overview of the parameters and
the experimental data pool.

Table 5.13: Overview of experiment comparing segmentation evalution with hand-labeled
annotation vs. automatically acquired ground truth.

Parameter Value
tactile subsampling rate s 5
threshold γ 15
audio subsampling rate s 20
audio range ρ 10
prior distribution λ 10−4

number of HDs 3
number of trials 40
ground truth type 1 audio cues
ground truth type 2 label collection cues
scenario constrained
segmentation method hierarchical

Similar to the previous section, Figure 5.14 shows histograms comparing four action-
specific segmentation indices produced by the evaluation with both ground truth types.
The temporal error histogram (see Figure 5.14, first row - left) shows that in the automated
case the error ranging from 0.3 to 0.55 seconds is considerably bigger than in the annotation
case, ranging from 0.1 to 0.25 seconds. The difference of c.a. 0.3 seconds is attributed to
the timing error of the HDs when aligning their actions to the emitted audio cues. The
variance of the temporal error in the automated case is also larger than the one in the
annotated case. This is due to the fact that timing precision varies across HDs. Figure
5.14 (first row - right) shows a histogram comparing the segmentation granularity. In both
cases the action-specific segmentation granularity index is very similar. The same applies
to the overlap ratios (see Figure 5.14, second row - left). The missing segments histogram is
depicted in the second row on the right. Higher level of undetected change points is showed
for the automated case, implying that the generated segment borders and the corresponding
cues lie too far apart and this distance is larger than the ε defining the search range. Hold1
has a particularly high level of undetected segments, which is probably caused by the fact
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Figure 5.14: Comparison of evaluation results produced from segmentation evaluation with
hand-labeled vs. automatically generated ground truth; Red bars represent evaluation
with automated ground truth and green bars - with annotation. First row: action-specific
temporal error µt,i (left), action-specific segmentation granularity µg,i (right); Second row:
action-specific overlap ratio µr,i (left), action-specific missing segments index µm,i (right).

that it is difficult to align the end of pouring to the finishing cue. Therefore the generated
change points lie too far away from the audio cue and are not detected within the small
ε-environment of the search range.

Altogether, despite the difference between the temporal error indices and, in some cases,
a higher undetection rate µm,i, we can recommend the usage of the cue-based ground
truth for the segmentation evaluation. As a side effect of the evaluation, we have received
an approximate estimation of the average alignment error for each action primitive (see
Figure 5.14 - first row). It ranges from 0.1 to 0.5 second.

5.4.4 Segmentation Evaluation for Three Human Demonstrators

The goal of this experiment is to compare the segmentation results produced for different
human demonstrators, and to examine whether the segmentation is invariant to different
HDs. For this purpose we have generated segmentations for trials captured by three HDs.
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Table 5.14 shows an overview of the experiment and the segmentation parameters.

Table 5.14: Overview of experiment comparing segmentation quality for three different HDs.

Parameter Value
tactile subsampling rate s 5
threshold γ 15
audio subsampling rate s 20
audio range ρ 10
prior distribution λ 10−4

number of HDs 3
number of constrained trials 40
ground truth type annotation
label collection cues
segmentation method hierarchical

Figure 5.15 shows histograms comparing the individual segmentation indices. All his-
tograms show comparable segmentation for the three human demonstrators. The first his-
togram (first row - left) shows similar action-specific temporal error levels. For the hd1 in
some cases the error is c.a 0.1 seconds less than for hd2 and hd3. No explanation could be
found for this result. The variance is negligibly small, apart from pour, where for hd2 it
reaches ≈ 0.03. The other action-specific temporal errors lie below 0.2 seconds. The second
histogram in the first row compares the segmentation granularity index for the three HDs.
This histogram, as well as the one illustrating the overlap ratio (second row left), show
comparable results for all three HDs. The fourth histogram depicts the missing segments
index. Only for pour the missing segment index is about 0.1 for HD2 and HD3.

Altogether, for all three tested human demonstrators, despite the interpersonal variance,
the generated segmentations yielded comparable structural and temporal quality.

5.5 Multimodal Segmentation: Parallel Approach

In this section we empirically investigate the second multimodal approach, the parallel
segmentation (described in Section 4.3.3). The goal of the experiments is to integrate
segmentation for all three recorded modalities. Before the main experimental part, in the
following subsection we first outline the employed models and parameters, and demonstrate
the resulting segmentation on several examples.

5.5.1 Method and Model Overview

As previously discussed, the starting point for the multimodal approach is a choice of
semantics and a corresponding simple model for each modality. Based on the results of the
previous unimodal studies (see Section 5.3), we have chosen to employ two kinds of simple
models, constant and threshold, for the modeling of the following four channels: tactile -
left hand, tactile - right hand, audio and joint-angles. An outline of unimodal assignments
can be found in Table 5.15.
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Figure 5.15: Comparison of segmentation quality for different HDs: hd1 (red), hd2 (green)
and hd3 (blue). First row: action-specific temporal error µt,i (left), action-specific segmen-
tation granularity µg,i (right); second row: action-specific overlap ratio µr,i (left), action-
specific missing segments index µm,i (right). Averages are built over all trials available for
the corresponding HD.

Table 5.15: Overview of the model asignments.

Sensor channel Model Notation
tactile sum - left hand threshold ml, mL

tactile sum - right hand threshold mr, mR

audio constant ma

overall activity for both hands constant mj
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In order to realize multimodal integration, the four channel-specific models are incor-
porated in a product model. This can be viewed as an extension of the bimanual tactile
product model (see Section 4.3.1) with an audio and a joint-angle component. Accord-
ing to the modality-modal assignment in the table above, each product model consists of
two threshold and two constant models to accommodate the tactile (left and right hand),
the audio, and the joint-angles modalities. All possible assignment combinations yield the
following four product models:

Notation Components
mlr ml, mr, ma, mj

mLR mL, mR, ma, mj

mLr mL, mr, ma, mj

mlR ml, mR, ma, mj

To control the influence of each modality on the joint likelihood, and to influence the
value of likelihood itself (in comparison to the prior), we employ a weighted product model,
in which the sum of the weights is not equal to 1. The likelihood of e.g. mlR is calculated
as follows:

P (yt:s | mlR) = P (yt:s | ml)
wt · P (yt:s | mR)wt · P (yt:s | mj)

wj · P (yt:s | ma)wa .

Here the weight vector is denoted by (wt, wa, wj) with tactile (wt), audio (wa), and joint-
angles (wj).

Finally, as an input to Fearnhead’s algorithm servers a mixture of the above four product
models:

P (yt:s) = 1/4P (yt:s|mlr) + 1/4P (yt:s|mlR) + 1/4P (yt:s|mLr) + 1/4P (yt:s|mLR), (5.16)

Examples in Figure 5.16 illustrate the impact of the weight vector (wt, wa, wj) on the
segmentation. The figure shows segmentations for the following weight combinations:

(wt, wa, wj) ∈ {0, 0.5}3\{(0, 0, 0)}.

In the case a weight is set to zero, the likelihood of this modality does not affect the product
model likelihood. In the following enumeration we describe each weight combination (see
the corresponding rows of Figure 5.16):

1. (wt, wa, wj) = (0.5, 0, 0) (first row): segmentation based only on tactile modality
resulting in “object contact” and “no object contact” regions (blue and yellow regions
respectively).

2. (wt, wa, wj) = (0, 0.5, 0) (second row): segmentation based only on audio channel se-
lects regions of homogeneous amplitude. The generated segments of high amplitude
are colored in blue: grasping, shaking, putting down, screwing, pouring, and unscrew-
ing. Yellow regions correspond in this figure to low amplitude: holding and idle.

3. (wt, wa, wj) = (0, 0, 0.5) (third row): segmentation based on joint-angle modality. The
sub-figure shows the regions of high and low overall hand activity. Regions of high
level of hand activity (correspond to yellow color) are typically generated before and
after an object manipulation, i.e. grasping and releasing an object.
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(wt, wa, wj) = (0.5, 0, 0)

(wt, wa, wj) = (0, 0.5, 0)

(wt, wa, wj) = (0, 0, 0.5)

(wt, wa, wj) = (0.5, 0, 0.5)

(wt, wa, wj) = (0, 0.5, 0.5)

(wt, wa, wj) = (0.5, 0.5, 0)

(wt, wa, wj) = (0.5, 0.5, 0.5)

Figure 5.16: An example segmentation for different weight combinations; λ = 10−5, s = 15.
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4. (wt, wa, wj) = (0.5, 0, 0.5) (fourth row): segmentation of tactile and joint-angles
modality. The differences between the fourth and the third row are very subtle.
The impact of the tactile modality can be seen in the next to last blue region: its left
border has slightly moved to the right, where it better (compared to row 3) fits the
beginning of “no object contact” region.

5. (wt, wa, wj) = (0, 0.5, 0.5) (fifth row): segmentation based on a combination of joint-
angles and audio modality. In this sub-figure, the change points combine the set
generated by audio and the set generated by joint-angles.

6. (wt, wa, wj) = (0.5, 0.5, 0) (sixth row): segmentation based on audio and tactile modal-
ities. This example shows a combination of audio and tactile change points.

7. (wt, wa, wj) = (0.5, 0.5, 0.5) (seventh row): in this example the segmentation resulting
for (wt, wa, wj) = (0.5, 0.5, 0.5) is coincidentally equal to the one resulting for the
combination (wt, wa, wj) = (0, 0.5, 0.5).

The segmentations presented in Figure 5.16 show that the weight combinations in
this example form equivalence classes. One class is {(0, 0, 0.5), (0.5, 0, 0.5)}, another is
{(0.5, 0.5, 0.5), (0, 0.5, 0.5)}.

The following subsections contain empirical studies investigating the multimodal seg-
mentation generated by the parallel approach. Subsections 5.5.2 and 5.5.3 are dedicated
to examining the influence of the granularity parameter λ and modality weighting vector
(wt, wa, wj) on the multimodal segmentation. Subsection 5.5.4 compares the segmentation
generated for constrained and unconstrained trials for a fixed set of parameters.

5.5.2 Parameter Influence: Granularity and Modality Weighting

In this experiment we conduct a systematic study of the influence of two main parame-
ters: prior on segment lengths λ (short: granularity), and the modality weighting vector
(wt, wa, wj). Our goal is to discuss the influence of the parameters on the resulting segmen-
tation, and to determine a range for which an application of the parallel approach results
in a semantic segmentation, integrating all three unimodal segmentations.

For this purpose we conduct a grid search for parameters wi, i ∈ {a, j, t} with wi ∈
{1/10, 2/10, . . . , 1} and λ ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−8} based on ten trials. The
value of the subsampling rate parameter s remains fixed with s = 7. Note that in contrast
to the hierarchical approach, within the parallel approach one value of λ has to be applied
to all modalities at once. The following table shows an overview of the experiment:

Parameter Value
wi {1/10, 2/10, . . . , 1}
λ {10−2, 10−3, 10−4, 10−5, 10−6, 10−8}
ground truth type annotation
label collection semantic
number of trials 10
number of HDs 1
scenario unconstrained
segmentation approach parallel
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Figure 5.17: Dependency between segmentation granularity index µg and temporal error
µt for different combinations of weight parameters (wt, wa, wj) and λ; averages µt and µg
are built over 10 constrained trials and over all actions. Color encodes the values of the
weight parameters: (wt, wa, wj) corresponds to (R,G,B) (left); strength of red and blue
color encode the value of the parameter λ (right).

Figures 5.17 - 5.21 present selected experimental results. Each figure contains two sub-
figures with a different color coding of the same data. The left sub-figure presents the
following color coding of the weight combination:

• red channel: tactile weight wt (more red corresponds to higher weight wt)

• green channel: audio weight wa (more green corresponds to higher weight of wa)

• blue channel: joint-angles weight wj (more blue corresponds to higher weight of wj).

The sub-figure on the right color-codes parameter λ, whose value is used to interpolate
between red and blue. Larger values of λ correspond to a stronger blue component, smaller
values of λ correspond to a stronger red component. Individual figures are discussed in
detail in the following paragraphs.

Figure 5.17 presents the dependency between the temporal error index µt and the seg-
mentation granularity index µg for different values of λ and different weight combinations.
The left sub-figure shows that oversegmentation (µg > 1) corresponds to larger values of
all weight components identifiable through a lighter point color. The figure shows that a
high ratio of red and blue (tactile and joint-angles) yields segmentation granularity close
to 1. Green color (largely audio) corresponds to undersegmentation with µg ≈ 0.5. On
both ends of the point cloud there is a saturation effect: temporal error µt stays on the
constant level of approx. 0.1 seconds and does not fall further; segmentation granularity
µg does not fall beneath the level of approx. 0.3 for the tested weight combinations. The
right side of Figure 5.17 shows the same dependency between the segmentation indices with
color encoding of λ. The figure shows that larger values of λ correspond to large values of
segmentation granularity and small temporal error.

Figure 5.18 illustrates the dependency between temporal error µt and the overlap ratio
µr. There is a clear positive correlation between the overlap ratio and the temporal error
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Figure 5.18: Dependency between temporal error µt and overlap ratio µr for different
combinations of weight parameters (wt, wa, wj) and λ; averages µt and µg are built over 10
constrained trials and over all actions. Color encodes the values of the weight parameters
(wt, wa, wj) (left); strength of red and blue color encodes the value of the parameter λ
(right).

Figure 5.19: Dependency between segmentation granularity µg and the missing segments
index µm for different combinations of weight parameters (wt, wa, wj) and λ. Averages µg
and µm are built over 10 constrained trials and over all actions. Color encodes the values of
the weight parameters (wt, wa, wj) (left); strength of red and blue color encodes the value
of the parameter λ (right).

within the left half of the plot corresponding to temporal error µt < 0.2. For further increase
of the temporal error there is no clear correlation with the overlap ratio. The color clusters
in the left sub-figure are similar to the ones in the previous figure: a high ratio of blue
(joint-angles) corresponds to the lower overlap and lower temporal error. Green (audio)
and brown (mixture of all three) correspond to the highest level of the overlap ratio. The
right sub-figure shows that both, small temporal error and small overlap ratio correspond
to a larger values of the parameter λ.
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Figure 5.20: Dependency between missing segments rate µm and the overlap ratio µr.
Averages µm and µr are built over 10 constrained trials and over all actions. Color encodes
the values of the weight parameters (wt, wa, wj) (left); strength of red and blue color encodes
the value of the parameter λ (right).

Figure 5.19 shows the dependency between segmentation granularity index µg and miss-
ing segments index µm. We can approximately isolate the red-blue, the green-blue and
the mixed clusters in the left part of the figure. We explain the existence of such clus-
ters by the type of action primitives containing in the trial. By considering one modality,
i.e. audio, only the modality-specific action primitives (i.e. pouring) get detected, inde-
pendently of how large the weight of this component is or the corresponding value of λ.
The clusters stretch from µg ≈ 0.4 to µg ≈ 1.6. The red-blue cluster corresponds to the
highest rate of missing segments. This implies that considering either the tactile modality
(red) or the joint-angle modality (blue) yields a high level of missing segments ratio of
approx. 0.4 to 0.6 corresponding to an segmentation granularity index between 0.6 and 1.
The second cluster is dominated by green and brown, corresponding to a strong influence
of audio and tactile modalities within the weight combination and a small contribution of
the joint-angles modality (blue). This cluster corresponds to a smaller level of µm from
approx. 0.1 to slightly below 0.4. The part of the cluster where green prevails corresponds
to the smallest segmentation granularity µg ≈ 0.4. This means that with a large influence
of audio and a comparatively small influence of other modalities we achieve segmentation
where at least 30% of the segment borders are missing. The third cluster is a mixed-color
cluster containing combinations, where all three weights have positive values. The further
on the right the points lie, the lighter are the corresponding point colors, implying that the
contribution of each modality is increasing. The right part of Figure 5.19 illustrates that
the color changes from red to blue corresponding to increase of the value of λ from left to
right. The sub-figures demonstrate that both, higher values of weights as well as larger λ
increase the granularity of segmentation.

Figure 5.20 shows the dependency between the missing segments index µm and overlap
ratio µr. The structure of the dependency as well as the coloring of the clusters is similar
to the previous figure. The combination of the highest overlap ratio with the lowest missing
segments index is reached within a mixed-color cluster. The right sub-figure shows that
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Figure 5.21: Dependency between overlap ratio µr and the segmentation granularity µg.
Averages µr and µg are built over 10 constrained trials and over all actions. Color encodes
the values of the weight parameters (wt, wa, wj) (left); strength of red and blue color encodes
the value of the parameter λ (right).

larger values of λ correspond to small overlap ratio.
Finally, Figure 5.21 shows the negative dependency between µr and µg. From left

to right, with growing value of segmentation granularity and with falling overlap ratio the
points in the point cloud become lighter, meaning that the values of weights for all modalities
are high in the corresponding combinations. Similar to previous figures, green (segmentation
based on audio) corresponds to undersegmentation and high overlap ratio, while blue and
red (tactile and joint modality) correspond to higher values of oversegmentation and lower
overlap ratio. In the right sub-figure we see that larger values of λ correspond to large
values of µg and small values of µr.

Figure 5.22 illustrates the range of influence of parameter λ on the segmentation on
the example of three values: λ ∈ {10−4, 10−6, 10−8}. As previously showed, larger values
of λ correspond to larger segmentation granularity and smaller overlap ratio. The figure
illustrates that the point clouds corresponding to different values of λ form two-dimensional
clusters. Altogether, for increasing λ the figures illustrate the following:

λ ↑ ⇔ µg ↑, µt ↓, µr ↓, µm ↓ . (5.17)

The left sub-figures in the upper row shows that a good rate of granularity index close
to one can be primarily achieved by large values of λ. At the same time large values of λ
correspond to smaller overlap ratio, illustrated in the right figure of the upper row. Both
sub-figures in the bottom row show that independent of the weight combination, for small
value of λ = 10−8 it is not possible to reach a value close to zero for the missing segments
index.

Altogether, the above experiments have provided us with a basis for the choice of values
for the central parameters (wt, wa, wj) and the prior length parameter λ. Firstly, it has
been showed that in comparison with other modalities, the joint-angles modality tends
to stronger oversegmentation. To avoid oversegmentation λ should be set to a value not
larger than 10−3, and the corresponding weight wj to a value ≤ 0.5. Secondly, a high
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Figure 5.22: Dependency between segmentation indices for different values of λ. Color
encodes three different values of λ: 10−4 (red), 10−6 (green), and 10−8 (blue). The depen-
dency between temporal error µt and µg (first row - left); dependency between temporal
error µt and the overlap ratio µg (first row - right); dependency between segmentation
granularity µg and missing segments µm (second row - left); dependency between missing
segments µm and overlap ratio µr (second row - right).

missing segments index is associated with segmentation based on single modalities. An
appropriate granularity close to one, along with a low missing segments index close to zero
have been achieved by considering all three modalities. In this case, in order not to yield
oversegmentation, the sum of weights wa+wj+wt should not exceed 1.5. At the same time,
the value of the parameter λ should be chosen from the range [10−3, 10−7]. Thirdly, we
assume that the temporal error ranging from 0.1 to 0.3 seconds is negligible and therefore,
does not need to be considered during the choice of the parameter values.

5.5.3 Parameter Influence: Constrained vs. Unconstrained Scenario

Similar to the previous subsection, in this subsection we compare segmentation results for
constrained vs. unconstrained scenarios. In comparison with the constrained trials, the
unconstrained trials are characterized by approximately two times smaller length of action
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primitives on average, as well as a smaller structural granularity. Hence, the goal of this
experiment is to investigate how these two properties influence the resulting segmentation.
We believe that due to the greater length and semantic granularity, for a given weight vector
(wt, wa, wj) and a fixed value of λ, the segmentations generated for constrained trials will
exhibit a higher granularity and a lower overlap ratio, in comparison to the unconstrained
trials. An overview of the experiment is presented in the following table:

Parameter Value
wi {1/10, 2/10, . . . , 1}
λ {10−2, 10−3, 10−4, 10−5, 10−6, 10−8}
ground truth type annotation
label collection semantic
number of unconstrained trials 10
number of constrained trials 10
number of HDs 1
scenario constrained and unconstrained
segmentation approach parallel

Figure 5.23 illustrates the segmentation results based on the segmentation indices. Pri-
marily, all four sub-figures show that the correlation between the segmentation indices in
both scenarios have a similar structure. However, the point clouds of both scenarios differ
by a two-dimensional offset. The left sub-figure in the first row illustrates that for the
same value of µt, the constrained trials have a higher segmentation granularity. The right
sub-figure in the first row shows that the overlap ratio in the constrained case is smaller
compared with the unconstrained scenario for a fixed value of µt. The left sub-figure in the
second row shows that for a constant level of missing segments ratio µm, the level of seg-
mentation granularity is higher in the constrained case. The right sub-figure in the second
row shows that for a constant level of missing segments, the overlap ratio µr is smaller in
the constrained scenario.

Altogether, a comparison of constrained and unconstrained segmentations has showed
larger granularity and smaller overlap ratio for the constrained trials, in line with our as-
sumption. These results mainly suggest that in the parallel approach, the value of the
parameter λ has to be adjusted to the execution speed. Based on an action-specific com-
parison, the next subsection describes these results in more detail.

5.5.4 Segmentation of Constrained vs. Unconstrained Trials

Based on trials recorded by three human demonstrators, this section illustrates an action-
specific comparison of constrained vs. unconstrained segmentations for a fixed set of pa-
rameters: weight vector (wt, wa, wj) = (0.5, 0.3, 0.2) and λ = 10−3. Table 5.16 gives an
overview of the experiment.

Figure 5.24 presents four histograms, each of them comparing one of the four segmen-
tation indices in constrained and unconstrained scenario. Higher segmentation granularity
in the constrained scenario, and a higher temporal error in the unconstrained scenario
demonstrated in the previous section can be clearly observed in these action-specific plots.

The first sub-figure in Figure 5.24 shows the action-specific temporal error, that ranges
in both cases between 0.05 and 0.3 seconds. The level of error in the constrained scenario
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Figure 5.23: Comparison of segmentation for constrained (red) vs. unconstrained scenario
(green). First row: dependency between µt and µg (left); dependency between µt and µr
(right); Second row: dependency between µg and µm (left); dependency between µm and µr
(right). The averages are build over all available trial in the constrained and unconstrained
scenario, respectively.

is at most 0.2 seconds lower than in the unconstrained scenario. The right sub-figure in the
first row shows action-specific segmentation granularity, whose value in the unconstrained
case is slightly smaller than in the constrained case. This implies that more segments could
be detected in the constrained case, which is possibly due to almost a double length of
the constrained trials in comparison to the unconstrained trials. Oversegmentation of ≈ 2
in cases of lift is due to the differing trial structure in the constrained vs. unconstrained
case. Corresponding to this, the values of overlap ratio µr,i for lift are smaller in the
constrained case. The other values are similar for both scenarios. The bottom right sub-
figure compares the missing segments index µm,i, whose results are similar apart from put
down1 and put down2. In the unconstrained scenario, putting down has a high undetection
rate in comparison to the constrained scenario. Especially high undetection rate of put
down1 can be explained by the fact that it is conducted directly after pouring and is
therefore likely to be fused with this segment on the basis of persisting audio signal. The
other primitives exhibit the rate of missing segments index close to zero.
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Table 5.16: Overview of the experiment: constrained and unconstrained segmentation for
fixed parameters.

Parameter Value
(wt, wa, wj) (0.5, 0.3, 0.2)
λ 10−3

s 7
ground truth type annotation
label collection semantic
number of unconstrained trials 40
number of constrained trials 40
number of HDs 3
scenarios constrained and unconstrained
segmentation approach parallel

Altogether, the segmentation generated for both, constrained and unconstrained trials is
largely comparable. The difference can be observed in the segmentation granularity, where
the constrained scenario generally exhibits higher action-specific values. We argue that this
is mainly due to lower execution speed of the constrained trials, characterized by a higher
number of action primitives, i.e. pauses, that are missing between such action primitives as
“grasp” and “shake”, or “grasp” and “pour” in faster executed unconstrained trials. Apart
from one type of action primitive, put down, the low undetection rate indicates satisfactory
segmentation results for both scenarios.

5.6 Comparison of Parallel and Hierarchical Segmentation

In this section we compare the segmentation quality generated by both proposed multi-
modal approaches: the parallel and the hierarchical. The goal of the experiment is to
examine which approach generates segmentation closer to the ground truth. The data pool
of the experiment consists of constrained and unconstrained trials recorded by three hu-
man demonstrators. Segmentation has been carried out based on the audio and the tactile
modalities. Table 5.17 presents an overview of the experiment and the applied parameters.

Figure 5.25 illustrates the results of the comparison based on the action-specific values
of the segmentation indices µt,i, µg,i, µr,i, and µm,i. All four sub-figures demonstrate a
very large similarity of results in both cases. In the case of one type of action-primitive,
lifting, the hierarchical approach produces higher segmentation granularity in comparison
to the parallel approach. The hierarchical approach processes the audio modality individ-
ually in the second segmentation step. Therefore, we believe that an additional segment
is generated based on the low level of noise accompanying grasping of the non-rigid test
object. We presume that in the parallel approach this audio artifact is dominated by the
homogeneity of the tactile modality, therefore no segment is generated. Corresponding to
the oversegmentation of lifting is the small overlap ratio (bottom row, left). The overlap
ratio of the other action primitives is very close to one. Missing segments index (bottom
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Figure 5.24: Comparison of action-specific segmentation of trials in constrained (red) and
unconstrained (green) scenarios. The weight vector is (wt, wa, wj) = (0.5, 0.3, 0.2). First
row: action-specific temporal error µt,i (left), action-specific segmentation granularity ratio
µg,i (right); Second row: action-specific overlap ratio µr,i (left), action-specific missing
segments ratio µm,i (right); Averages are build over all available trials in the corresponding
scenario.

row, right) shows satisfactory results, apart from put down 1 with <13% undetection rate.
Altogether, this experiment shows comparable results for segmentation generated by both
methods based on bimodal data.

5.7 Summary

This chapter has presented a systematic study and a comparison of the unimodal, bimodal
and multimodal methods for interaction decomposition. The employed data pool consisted
of multiple trials representing multimodal interaction recorded by four human demonstra-
tors interacting with one object. Based on two types of ground truth, four proposed quality
measures have been employed to assess structural and temporal accuracy of the segmenta-
tion.

With the goal to explore the modality-specific segmentation semantics based on the
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Table 5.17: Overview of the experiment: comparison of two multimodal approaches.

Parameter Value
segmentation approach parallel (p), hierarchical (h)
simple models employed in hierarchical approach threshold, AR(1), AR(2), AR(3)
simple models employed in parallel approach threshold, constant
(wt, wa, wj) (0.5, 0.4, 0)
λp 10−6

sp 8
λh 10−6

saudio 5
stactile 20
ground truth type annotation
label collection semantic
number of unconstrained trials 40
number of constrained trials 40
number of HDs 3

assigned models, and the influence of the two global parameters s and λ, we have started
our study with a series of unimodal segmentation experiments. A robust finding from
all unimodal decomposition experiments was a modality-specific semantic sensitivity to
detect segment boundaries with regard to the type of the action primitive. Furthermore,
an intermodal comparison of the three modalities has demonstrated that such sensitivity
for detecting a particular subset of the complete semantic segmentation resulted in three,
to a large extent complementary segmentations.

To exploit the above-mentioned complementary semantic roles, we proceeded to study
the bimodal segmentation based on the hierarchical approach. The hierarchical approach,
tested with tactile and audio modalities, has yielded a segmentation corresponding to ten
action primitives, successfully integrating two very different modalities, and demonstrating
robustness w.r.t to three different human demonstrators. Characteristic for this method is
the prior knowledge, defining the execution order of modality-specific segmentation steps.
Due to substantial differences of the raw data such modality-specific sequential segmen-
tation is highly advantageous. In addition to an optional filter step, the method allows
a modality-specific choice of the global parameters s and λ, which is not possible in the
parallel approach.

In the final part of our study, we have explored the decomposition based on all three
modalities with the parallel segmentation approach. This method yielded a robust seg-
mentation corresponding to fourteen action primitives, successfully integrating all three
modality-specific segmentations. Essential for the parallel approach is the weight vector
that determines the influence of different modalities within the joint modality-integrating
approach. The empirical evaluations have demonstrated that the suitable weight values,
influencing the semantic sensitivities of the corresponding modalities, fully compensate for
not choosing modality-specific priors (cf. hierarchical approach).

In all empirical evaluations, both approaches yielded segmentations characterized by
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Figure 5.25: Comparison of segmentation quality for both approaches: hierarchical (red)
and parallel (green). Top row: action-specific temporal error µt,i (left); action-specific
segmentation granularity µg,i. Bottom row: action-specific overlap ratio index µr,i (left);
action-specific missing segments ratio µm,i (right).

a high temporal precision (temporal error ranges from 0.05 to 0.3 second) accompanied
by a low undetection rate of less than 5% for thirteen action primitives. In a bimodal
comparison of both decomposition approaches, the parallel approach has yielded a slightly
better segmentation w.r.t. the detection rate. We believe that the reason for this is the
weight vector that has increased the sensitivity of the audio modality to inhomogeneity in
the data, yielding a better detection rate.

Evaluation conducted with manual annotation vs. cue-based ground truth has showed,
despite a high temporal error, promising results of the cue-based method. However, in future
experiments it would be favorable to reduce the temporal error resulting from the imprecise
alignment of the HDs. Based on the proposed multimodal segmentation methods, the next
chapter deals with the question of high-level modeling and identification of the generated
action primitives.





Chapter 6

Towards High-Level Modeling

According to our original assumption, representation and identification of action primitives
can serve as a building block for higher-level modeling and recognition of actions and activ-
ities in interactive scenarios, such as cooperation and assistance (see Chapter 2). Methods
presented in Chapters 4 and 5 have been employed to decompose interaction on the lowest
level into action primitives by detecting change within multimodal time series. However, in
general this segmentation approach does not provide a semantic description of the gener-
ated segments. Therefore, this chapter proposes an approach to multimodal representation
and classification of action primitives. To this end, we consider the segmentation method
presented in the previous sections as a building block of the higher-level modeling and
recognition approach.

In order to identify action primitives, segments that contain semantically equivalent
data have to be grouped, and models of these groups have to be formed. Our approach of
this challenge is motivated by the results of empirical studies, suggesting that the config-
urational information of the spatiotemporal dynamic form of actions is used by people to
group those [38]. Hence, we address both above-mentioned tasks by embedding the con-
cept of ordered means models (OMMs) [36] in a clustering approach. These models have
demonstrated to be especially well-suited for incomplete sequential data.

The rest of the chapter is structured as follows:

• Sections 6.1 and 6.2 present the theoretical background of the OMMs and the corre-
sponding clustering approach.

• Section 6.3 presents the evaluation method used to asses the quality of clustering
based on the available ground truth.

• Section 6.4 describes the data pool and the clustering experiments, whereby the focus
is on the role of multiple modalities in identification of action primitives.

• Section 6.5 summarizes the high-level modeling, before Chapter 7 gives the conclusions
for the complete thesis.

91
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6.1 Ordered Means Models

OMMs are generative state space models with a hidden state, left-to-right topology, and
Gaussian emission densities. The model has been developed by U. Grossekathoefer and
T. Lingner [36] and successfully used to model multivariate and multimodal sequential
data [88, 33, 35, 34].

In case of the generated action primitives, robust modeling in terms of incomplete data
and variable execution speed is required. Even though approaches such as hidden Markov
models (HMMs) reach excellent results for complete data, they might not be the optimal
choice for scenarios with time series with missing beginnings or endings (see [34]). In
particular, HMMs’ implicit modeling of segments length distributions in terms of transition
probabilities could lead to an inadequate representation for missing data, or execution with
different speed. Here, as a major difference in the overall model design, OMMs do not
incorporate any transition probabilities. Instead, all paths, i.e. all valid sequences of model
states, are equally likely. In the following paragraphs we describe the structure of an OMM
in detail.

6.1.1 Means Vector and Emission Densities

The central component of the model [36] is an ordered sequence of K model states. The
sequence is represented by vectors, corresponding to the expected values of emission densi-
ties:

Ω = (µ1, . . . , µK),

where for 1 ≤ k ≤ K, µk ∈ Rd and d is the dimensionality of the time series. Each state is
characterized by an emission distribution modeled by a Gaussian probability distribution
bk(·):

bk(ot) = N (ot;µk, σ),

where the standard deviation parameter σ is identical for all states and is thus a global
hyperparameter. The sequence of observations emitted by the model is denoted as follows:

O = (o1, . . . ,oT ), oi ∈ Rd.

6.1.2 Path Probabilities and Production Likelihood

A path through a model is defined as a valid sequence of states w.r.t. model topology.
Unlike HMMs, the main assumption of OMMs is that each path through the model is
equally likely. Theoretically OMMs require the definition of an explicit length distribution
either by domain knowledge or by estimation from the observed lengths in the training data.
This, however, may not be possible due to missing knowledge or non-representative lengths
of the observations. To avoid the definition and estimation of the length, the authors assume
a flat distribution in terms of an improper prior according to equally probable lengths [34].

For a given length T , a path probability for a sequence qT = q1, . . . , qT is defined as
follows:

p(qT |Ω) =

{
1
MT

P (T ), if q1 ≤ q2 . . . ≤ qT ,
0 else
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where MT is the number of valid paths for the time series of length T through a K-state
model:

MT = |{qT : q1 ≤ q2 ≤ . . . ≤ qT }| =
(
K + T − 1

T

)
.

The likelihood to observe a sequence O, given path qT and model Ω under the assumption
of independent observations is:

p(O|qT ,Ω) =

T∏
t=1

p(ot|qt,Ω) =

T∏
t=1

bqt(ot).

The likelihood of the observed sequence O and a path qT for a given model Ω is:

p(O,qT |Ω) = p(O|qT ,Ω) · P (qT |Ω).

The overall production likelihood for a time series of length T is:

p(O|Ω) =
∑
qT

p(O,qT |Ω).

For efficient computation of production likelihoods Grossekathöfer et al. [33] use a
dynamic programming solution similar to the forward-backward algorithm used for HMMs,
but omitting transition probabilities.

In order to estimate Ω = (µ1, . . . , µK) from a set of observation sequencesO = {O1, . . . , ON}
the authors maximize the following log-likelihood [36]:

L =

N∑
i=1

log p(Oi|Ω) (6.1)

with respect to the mean vectors µk. To solve this optimization problem for an fixed value
of K, an iterative expectation maximization algorithm is employed [34, 33].

6.1.3 State Duration Probabilities

State duration probabilities in an OMM distinguish this model from a HMM. In contrast to
the geometric state duration distribution of a standard HMM, the state duration probability
in an OMM depends on the sequence length. For a sequence of length T and the number
of model states K and it is defined as follows [33]:

P (t) =

(
T+K−2−t

K−2

)(
T+K−1
K−1

) , (6.2)

where t denotes the number of time steps the model remains in any given state.

6.2 Clustering with OMMs

In our approach OMMs are integrated into a EM-based clustering procedure for identifi-
cation of action primitives. The output of the proposed segmentation method is a set of
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Grasp 2   Shake 2          Put down 2 Unscrew 2      Grasp 1        Pour 1                   Put down 1    Screw 2 

Figure 6.1: Assignment of labels (designated by random colors) to segments according
to the best matching model in a small subset of trials. In each row, the segmentation,
label assignments, audio signal (top half ) and tactile information (bottom half ) is showed.
Corresponding segments in adjacent trials do not line up because of the randomized timing.
K = 50, σ = 2.5, C = 11. Note that the trials in the figure are stretched to yield a common
predefined figure length.

multimodal data sequences {On}1≤n≤N that are unlabeled w.r.t. the trials and actions from
which they originate. The application of OMMs to partition such a dataset into C groups
in an unsupervised manner, can be considered a special case of the well-known k-means
clustering. OMMs Ω1, . . . ,ΩC are used as the associated prototypes of C clusters. A suit-
able distance function then is the negative log-likelihood that a sequence On is generated by
an OMM Ωj : d(On,Ωj) = − logP (On | Ωj). Given this, a C-OMMs clustering algorithm
partitions data sequences into C groups by minimizing the objective function [7]:

E = −
N∑
n=1

C∑
j=1

wn,j logP (On | Ωj).

subject to wn,j ∈ {0, 1} and ∀n :
∑C
j=1 wn,j = 1.

Fig. 6.1 qualitatively shows the result of applying the sketched clustering procedure
in the following way: in a training step, eleven OMMs are formed based on segmentations
obtained with the hierarchical segmentation method (see Section 4.3.2). Then, in a test step,
segmented action sequences that are not part of the training set are classified to the best-
matching OMM model. Identically colored segments are considered semantically equivalent.
Note that in all further plots, the trials are stretched to yield a common predefined figure
length.

6.3 Measures of Clustering Quality

Quality of clustering is evaluated with the help of two entropy-based measures homogeneity
and completeness (described in i.e. [79]). Entropy of a discrete random variable X with
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possible realizations {x1, . . . , xn} is defined as follows:

H(X) = −
n∑
i=1

p(xi) log p(xi), (6.3)

where p denotes a probability mass function of X. Uniform distribution yields the highest
value of entropy. The more skewed the distribution is, the smaller the entropy value gets.

Let pi, 1 ≤ i ≤ N , denote action primitives i.e. shaking or pouring and L = {1, . . . , C}
define the set of labels. The homogeneity of the cluster l ∈ L grows, the more action
primitives corresponding to one type pi are assigned to it. Let Pl denote the distribution
of action primitives in the cluster l. The highest homogeneity is achieved in the case, if the
probability mass of the corresponding label distribution is concentrated in a single action
primitive pi, resulting in Pl(pi) = 1 and Pl(pj) = 0 for j 6= i. This distribution has zero
entropy. In order to calculate homogeneity of the complete clustering, average entropy over
all clusters is calculated as follows:

Hl = −1/C

C∑
l=1

N∑
i=1

Pl(pi) logPl(pi). (6.4)

Therefore, the smaller the value of Hl, the more homogeneous the clustering. We refer to
Hl in the later sections as “label entropy”.

The second measure for evaluation of clustering consistency is completeness. For an
action primitive type pi, i ∈ N , the completeness measure improves the less different labels
l ∈ L have been assigned to it. Let Pi(l) denote the relative frequency of label l being
assigned to the observations of the action primitive pi. The highest completeness is achieved,
when only one label is assigned to all corresponding points yielding Pi(l) = 1 and Pi(m) = 0
for allm ∈ L, m 6= l. This corresponds to zero entropy for this type of action primitive. The
completeness measure for all action primitives is calculated by averaging over all primitives
pi, 1 ≤ i ≤ N :

Hc = −1/N

N∑
i=1

C∑
l=1

Pi(l) logPi(l). (6.5)

The smaller the value of Hc, the better the value of completeness. In the following sections
we refer to Hc as “cue entropy”. The overall value of entropy used for evaluation of clustering
quality is defined as the sum of the completeness value Hc and the homogeneity value Hl:

H = Hc +Hl. (6.6)
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6.4 Experimental Results

Chapter 5 has presented satisfactory results for multimodal interaction decomposition into
action primitives. This section is dedicated to experiments exploring multimodal representa-
tion and unsupervised learning of the generated action primitives by OMM-based clustering.
The main purpose of the experiments is to investigate the role of multiple modalities for
identification of action primitives in our approach.

The following subsections are organized as follows: Subsection 6.4.1 presents the data
pool. Subsection 6.4.2 describes the search for optimal clustering parameters: number of
model states K, number of clusters C and emission variance σ. Subsection 6.4.3 investigates
the impact of multiple modalities on the resulting clustering. Subsection 6.4.4 shows the
robustness of OMMs w.r.t. execution velocity of action primitives and analyzes the clus-
tering w.r.t. different human demonstrators. Because the aim of the following subsections
is an exploratory study of the clustering semantics, no corroboration of the findings with
statistical confidence measures will be provided.

6.4.1 Data Pool

The data pool consists of segments generated by a hierarchical method based on audio and
tactile modality (see Section 4.3.2). Segmentations generated for both, constrained and
unconstrained trials by all human demonstrators have been included, whereby on average
the length of segments in the unconstrained trials is half of the length of the segments in
the constrained scenario. The corresponding set of primitives consists of:

description 1 / 2 (uni-/bimanual)
grasp + lift 2
hold 2
shake 2
put down 2
pause idle
unscrew 2
pause idle
grasp + lift 1
pour 1
put down 1
pause idle
screw 2

For evaluation, the ground truth based on annotation (cue label collection, see Ap-
pendix B) has been employed. The overview of the data pool is presented in the following
table:
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segmentation method hierarchical
modalities audio, tactile, joint-angles
total number of HD 4
trial types constrained, unconstrained
total number of trials 100
total number of segments c.a. 1700
average length of constrained segment used in clustering 305
average length of unconstrained segment used in clustering 161
ground truth type cue-based, annotation-based
number of action primitives 11
label collection cues

For more detailed information regarding the number of trials per human demonstrator,
see Table 5.1.

Prior to performing k-OMM clustering, two preprocessing steps are applied to the output
of the segmentation step. Firstly, the time-domain audio signal is replaced by a coarse
characterization in the frequency domain. We apply a sliding-window version of the Discrete
Fourier Transform to the audio signal and extract ten coefficients of the lowest frequencies
from each result. The time series of these coefficients replaces the audio-signal. This
transformation is motivated by the fact that the oscillatory nature of the time-domain audio
signal is not compatible with the OMM emission models, which assume piecewise constant
data with fixed-variance Gaussian noise. Secondly, we assign constant values to modalities
associated with an “inactive” hand for the duration of the inactivity. This step is intended
to prevent the representation of patterns that are not related to object manipulation in
learned OMMs.

6.4.2 Parameter Estimation with Cross-validation

Prior to learning with OMM-clustering, it is necessary to find appropriate values for three
parameters: the number of clusters C, the number of model states K and the emission
variance σ. For this purpose we have investigated the clustering entropy within a three
dimensional grid of triples (C,K, σ). An overview of the experiment is presented in the
following table:

method 5-fold cross-validation
trial type constrained, unconstrained
number of trials 100
number of HDs 4
number of segments c.a. 1700
K {2, 5, 8, . . . , 50}
C {10, 15, . . . , 30}
σ {1, 1.5, . . . , 6}

In this experiment for each combination of parameters C, K and σ we calculate the
overall entropy H by averaging over the individual entropy values corresponding to the five
test sets of the randomly initialized five-fold cross-validation set. The data pool consists of
100 trials corresponding to c.a. 1700 segments.
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Figure 6.2: Dependency between the number of model states K, number of clusters C and
the entropy H for a constant value of σ = 5.0.

Figure 6.2 illustrates the relation between the parameters K ∈ {2, . . . , 50}, C ∈
{10, . . . , 30} and the entropy H for a constant value of σ = 5.0. The figure demonstrates a
clear dependency between the number of clusters and the entropy: H decreases from 2.6 to
2.4 with increasing number of clusters C. Parameter K has a relatively small effect on the
entropy. Good results are achieved for large C and K ∈ {25, . . . , 45}.

Figure 6.3 shows the relation between the number of clusters C ∈ {10, . . . , 30}, state
emission variance σ ∈ {1, . . . , 6} and entropy H for a constant value of K = 50. Again,
the number of clusters has a dominating effect on the entropy: the entropy decreases for
increasing values of C.

Finally, Figure 6.4 shows the dependency between the number of model states K, σ and
entropy H for a constant value of C = 30. The figure shows that for a growing K the value
of H improves for small values of K up to 20. Further increase of K does not have any
influence on the entropy. Increasing the value of σ improves consistency of clustering for
small values of K < 20. For larger values of K, increasing σ does not effect the entropy.

The positive effect of increasing C on the entropy can be explained by an improvement of
the label entropy Hl: the growing number of clusters improves the clustering homogeneity
until each observation is assigned to its own cluster. Therefore, depending on the targeted
number of resulting clusters an appropriate value of C should be chosen. In our case we
choose C = 11. The experiments also illustrate a constant level of clustering entropy for a
large values of K > 20 and σ > 1. For small values of K large σ improves the entropy. This
implies that it is possible to compensate a possibly insufficient number of model states by
choosing a large state emission variance, covering altogether a larger range of values.
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Figure 6.3: Dependency between the number of clusters C, the state emission variance σ
and entropy H for a constant value of K = 50.

Figure 6.4: Dependency between K, σ and H for a constant value of C = 30.
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Table 6.1: Overview of entropy values for each combination of modalities.

modality combination H Hc Hl

tactile 1.97 0.96 1.01
audio 1.81 0.89 0.92
joints 1.90 0.84 1.06
tactile+audio 1.74 0.80 0.94
audio+joints 1.77 0.89 0.88
tactile+joints 2.26 1.09 1.17
audio+tactile+joints 1.91 0.96 0.95

6.4.3 Clustering for Different Modality Combinations

In this section we investigate the influence of different modality combinations on the rep-
resentation of action primitives with OMM-based clustering. The main purpose of this
experiment is to explore the main semantic characteristics, advantages and disadvantages
of clustering based on each modality combination. In our experiments we are looking for
modality-specific characteristics of the classification that would most probably be invariant
to the type of features used.

In the following text we present the results of clustering for all seven possible modality
combinations. For this experiment we use segmentations generated from 30 trials recorded
by one human demonstrator in a constrained scenario; the entropy is calculated w.r.t. the
labels generated by clustering of this set during training. A constant parameter set has
been used: K = 40, C = 11, σ = 2.5.

Figures 6.5-6.11 illustrate clusterings resulting for different modality combinations, Ta-
ble 6.1 presents an overview of the corresponding entropy values.

Figure 6.5 illustrates clustering based on 10-dimensional tactile data. The resulting
labeling clearly differentiates uni- and bimanual actions (e.g. shake and pour) as well as
different levels and patterns of force application. This example shows that after grasping an
object only very few labels are used, indicating an approximately constant level of applied
force characteristic for this human demonstrator. The cue entropy Hc of this clustering is
second lowest among all combinations.

Figure 6.6 depicts clustering based on audio modality represented by 10 Fourier coef-
ficients of the lowest frequencies extracted from the audio input. Compared to the tactile
modality, this clustering is characterized by good discriminative ability of different audio-
producing action primitives, like shaking, pouring or screwing. At the same time this
clustering can not differentiate between uni- and bimanual actions, that are characterized
by similar fourier spectrum. Both, bi- and unimanual action primitives (e.g. grasp2 followed
by a bimanual hold, and grasp1 followed by unimanual hold assigned to brown and magenta
colors resp.) correspond to the same label. Nevertheless both, label entropy Hl and cue
entropy Hc are lower for audio- than for tactile-based clustering. This is presumably due to
the fact that in some cases uni- and bimanual can be additionally differentiated by different
levels of accompanying noise.

Figure 6.7 shows clustering based on joint-angles modality. This labeling clearly illus-
trates four distinct regions, corresponding to individual joint-angle configurations for four
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different grasps starting with: grasp2, unscrew2, grasp1 and screw2. This ambiguity causes
the highest label entropy among all three modalities.

Figure 6.8 illustrates labeling resulting from combining tactile and joint-angles modali-
ties, yielding the highest entropy (see Table 6.1) which corresponds to the worst clustering.
Combination of both modalities increases both entropy values Hc and Hl in comparison
to clustering with individual modalities. As expected, uni- and bimanual actions can be
well discriminated in this combination. At the same time the examples demonstrate a
low labeling consistency for action primitives within the uni- or bimanual “object contact”
regions.

In contrast to the previous example, clustering with a combination of audio and the
joint-angles modalities indicates an improvement of label entropy Hl in comparison to both
unimodal clusterings, the audio- and the joint-based. (see Table 6.1). The cue entropy Hc

stays on the level of joint-based clustering. Figure 6.9 shows an example of label assignment
for this modality combination. Presumably due to prevailing influence of audio in this
combination, uni- and bimanual action primitives, i.e. grasping directly followed by holding
are assigned to the same cluster (magenta and red resp.).

Figure 6.10 demonstrates clustering based on audio and tactile modalities, yielding the
lowest overall entropy among all modality combinations. It is characterized by the lowest
value of cue entropy Hc and the second lowest label entropy Hl which is close to the label
entropy of the audio-based clustering.

The combination of three modalities used for clustering is illustrated in Figure 6.11.
This example shows a prevailing influence of joint-angles and tactile modalities over audio.
There is no confusion between the uni- and bimanual action primitives, however, e.g. an
audio-specific action primitive like shaking is assigned the same label as grasp2 in this
example.

Altogether, the overall entropy ranges from the value 1.74 (tactile+audio) to 2.26 (tac-
tile+joints). Audio-based clustering yields the best performance among individual modali-
ties. The clustering can be improved by adding either the joint-angles or the tactile modality
to audio to improve the uni- and bi-manual differentiation.

6.4.4 Clustering of Fast and Slow Action Primitives

Because of the execution speed variability between the human demonstrators, in the last
experiment we investigate the influence of the execution speed on the results of clustering.
To this end, we compare the test entropies of three human demonstrators in two speed
categories: fast and slow. In both cases the training is conducted with slow action primitives.

The fast and slow action primitives are generated for each HD from the corresponding
unconstrained and constrained trial segmentations respectively. The execution of the fast
action primitives is on average two times faster than of the slow action primitives. The
training set of this experiment consists of approx. 1000 slow action primitives generated
from trials of four human demonstrators. The test set, different from the training set,
consists for each human demonstrator of approx. 100 slow and 100 fast action primitives
respectively. Table 6.2 presents the test results for a constant parameter setK = 20, C = 10
and σ = 2, chosen based on the results of the cross-validation. The table shows only a slight
increase of entropy ranging from 0.13 to 0.34 for fast action primitives in comparison to the
slow for all HDs. The results in Table 6.2 also illustrate differences in clustering quality
among HDs. It amounts to 0.76 in the fast and 0.55 in the slow case. This can be explained
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Grasp 2   Shake 2          Put down 2 Unscrew 2      Grasp 1        Pour 1                   Put down 1    Screw 2 

Figure 6.5: An example of label assignment for clustering with tactile modality. Labels are
designated by random colors.

Grasp 2   Shake 2          Put down 2 Unscrew 2      Grasp 1        Pour 1                   Put down 1    Screw 2 

Figure 6.6: An example of label assignment for clustering with audio modality. Labels are
designated by random colors.

Grasp 2   Shake 2          Put down 2 Unscrew 2      Grasp 1        Pour 1                   Put down 1    Screw 2 

Figure 6.7: An example of label assignment for clustering with joint-angles modality. Labels
are designated by random colors.
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Grasp 2   Shake 2          Put down 2 Unscrew 2      Grasp 1        Pour 1                   Put down 1    Screw 2 

Figure 6.8: An example of label assignment for clustering with a combination of tactile
and joint-angles modalities. Labels are designated by random colors.

Grasp 2   Shake 2          Put down 2 Unscrew 2      Grasp 1        Pour 1                   Put down 1    Screw 2 

Figure 6.9: An example of label assignment for clustering with a combination of audio and
joint-angles modalities. Labels are designated by random colors.

Grasp 2   Shake 2          Put down 2 Unscrew 2      Grasp 1        Pour 1                   Put down 1    Screw 2 

Figure 6.10: An example of label assignment for clustering with a combination of tactile
and audio modalities. Labels are designated by random colors.
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Grasp 2   Shake 2          Put down 2 Unscrew 2      Grasp 1        Pour 1                   Put down 1    Screw 2 

Figure 6.11: An example of label assignment for clustering with all modalities: audio,
joint-angles, and tactile modalities. Labels are designated by random colors.

by the differences in the quality of the raw data for different HDs.

Table 6.2: Overview of entropy values resulting from evaluation of clustering for slow and
fast action primitives for three human demonstrators.

human demonstrator slow fast increase
hd1 1.49 1.62 0.13
hd2 2.04 2.38 0.34
hd3 1.69 1.90 0.21

Clustering experiments with combinations of slow test sets hd1 +hd3 and hd1 +hd2 +hd3

have showed an increase of the entropy in comparison to test sets encompassing only one
HD. An increase in cue entropy in each case (see Table 6.3) suggests that the clustering is
characterized by HD-specific action primitive clusters.

Table 6.3: Overview of entropy values resulting from evaluation of clustering for slow and
fast action primitives for three human demonstrators.

test set entropy Hc Hl

hd1 1.9 0.82 1.13
hd2 2.38 1.05 1.32
hd3 1.62 0.84 1.05
hd1 + hd3 2.38 1.14 1.23
hd1 + hd2 + hd3 2.64 1.18 1.45
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6.5 Summary

This chapter has explored an approach towards unsupervised identification of manual in-
teraction. Based on segments, generated with the help of the hierarchical segmentation,
higher-level modeling and classification of action primitives has been realized by an OMM-
based clustering. The main goal of the empirical evaluation was to investigate the influence
of multiple modalities on the semantic characteristics and the quality of the clustering. In
all experiments the evaluation of quality has been conducted with the help of standard
entropy-based measures, completeness and homogeneity.

The main part of the experiments has examined the clustering for all seven combina-
tions of the three modalities. The unimodal approaches have demonstrated the expected
modality-specific clustering characteristics. On the one hand, the unimodal audio-based
clustering performed well for action primitives accompanied by noise, but did not robustly
differentiate between uni- and bimanual action primitives. On the other hand, the formed
clusters in the unimodal joint-angles and tactile approach, reflected only the hand config-
uration and the grasp force respectively. The resulting clustering was characterized by an
excellent performance differentiating uni- und bimanual action primitives. As expected, the
approach did not perform well for action primitives characterized by e.g. a common grasp
configuration but different audio features.

The experiments have demonstrated that these results can be improved by clustering
multimodal data. The best performance has been achieved for the combinations of the
tactile or the joint-angles modality with the audio modality. The final conclusions, including
the topic of this chapter, will be presented in the next chapter.





Chapter 7

Conclusion and Outlook

In this thesis we have proposed and explored a framework for identification of semantic
chunks in a multimodal manual interaction episode. Based on Bayesian statistics, we have
first showed how the semantics of the manual interaction data can be modeled for a single
modality, and then demonstrated how this modeling can be extended to integrate multiple
modalities. We finally showed the suitability of the framework to decompose and encode
a representative sequence of actions on an object, and, furthermore, its modularity w.r.t.
multimodal and bimanual input.

Activity Theory (see Chapter 2), decomposing interaction on three semantic hierarchical
levels into action primitives, actions and activities, has served as a conceptual basis for our
approach. Seizing this concept, the initial idea of our approach is recognition through
decomposition. Building upon the decomposition, our approach towards recognition of
interaction yielded altogether a two-step framework.

In the first step (Chapters 4 and 5) we have proposed to decompose interaction into
action primitives and, aiming at scalability to a large number of scenarios, based our ap-
proach on detection of change. To this end, we have described how different types of simple
unimodal, bimodal and multimodal models can be employed to model the action primitives.
Then, by applying Bayesian change detection methods to the above semantic modeling, we
have proposed two approaches to carry out multimodal bimanual interaction decomposi-
tion. Finally, we have showed, how the above decomposition approach can be applied to
decompose a representative multimodal bimanual interaction episode.

In the second step (Chapter 6), we have explored an unsupervised learning approach
to encode multimodal action primitives. The underlying modeling is largely motivated by
the results of empirical studies suggesting that action concepts contain information about
the spatiotemporal dynamic form of actions, whose configurational information is used by
humans to group actions [38]. Guided by these results, we have investigated a higher-level
representation of action primitives based on state space models.

The following two sections are dedicated to the two steps of the approach, the decompo-
sition and the higher-level modeling. The last section presents final concluding comments.
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7.1 Decomposition of Interaction

Central for our decomposition approach has been the notion of homogeneity, characterizing
action primitives, and, therefore, the detection of change in the homogeneous interaction
flow, corresponding to the start of a new action primitive. However, typical change detec-
tion algorithms, employed for e.g. fault detection and designed to generate arbitrarily small
or large segments, are not suitable for decomposition into action primitives, that have a
substantial length. Hence, we have chosen a Bayesian change point detection method, in-
corporating, besides a model for estimation of homogeneity, a prior distribution on segment
lengths. Apart from requiring a suitable prior, this method involves only a minimal amount
of prior knowledge, which is an advantage in comparison to other state of the art methods.

In our work, we have proposed the first application of the Bayesian change point detec-
tion framework by Fearnhead [26] to multimodal interaction decomposition. A particular
advantage of this method in comparison to other change detection methods, is the model
uncertainty in each generated segment. This allows application of a wide range of simple
as well as joint models. In order to apply the framework, originally developed for scalar
time series, to multimodal and bimanual interaction data, our contribution consisted of two
main parts: a modeling approach, and an extension of the segmentation procedure to a
multimodal method.

A preliminary study of the modality-specific properties of the acquired data has demon-
strated the necessity of a modality-specific modeling approach. In order to integrate mul-
tiple modalities and, at the same time, to allow multiple model states, we have proposed
to employ a mixture of product models. Each product model, corresponding to a mixture
model component, combines models representing modality-specific properties, and is, there-
fore, able to represent multimodal action primitives. This approach, that has been showed
to achieve integration of multimodal and bimanual modeling for decomposition of manual
interaction, accounts for one of our main contributions.

Based on the above-mentioned modeling approach, we have proposed two extensions
of Fearnhead’s framework for multimodal data: hierarchical and parallel segmentation ap-
proaches. We have showed that the hierarchical approach, characterized by a sequential
execution of multiple segmentation steps, is particularly suitable for integrating strongly
differing modalities, for which different types of priors need to be applied. An application
of this method requires an additional prior knowledge defining the execution order of the
modality-specific segmentation steps, which may be considered a disadvantage.

To tackle the above problem, the parallel approach carries out a one-pass segmentation,
integrating all input modalities at once. To this end, multimodal integration in this method
is additionally controlled by a weight vector, defining the sensitivity of each modality to in-
homogeneity in the data. In contrast to the hierarchical segmentation, this method requires
the definition of one global prior for all considered modalities, which may not be easy to
find with a growing number of modalities.

A large part of this thesis dealt with empirical studies of the above decomposition ap-
proaches, and with the issues related to the evaluation of quality for the resulting segmen-
tations. Firstly, as an alternative to the traditional manual annotation, we have proposed
an automated cue-based ground truth (Chapter 3). We have demonstrated, how this kind
of ground truth can be employed for evaluation and labeling of the generated segments, and
discussed its disadvantages. Secondly, to compare the results of different approaches and
to estimate the temporal and structural correctness of the generated segmentations within
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our empirical studies, we have proposed and applied four segmentation quality measures.
W.r.t. the ground truth the proposed four measures indicate the temporal precision of the
generated segment borders, the missing segments ratio (the undetection rate), the ratio of
the segment length, and the granularity of the segmentation. The granularity index shows,
whether the interaction episode has been over- or undersegmented. The evaluations have
showed that these measures are sufficient for an approximative estimation of the segmenta-
tion quality.

With the aim to explore the semantics of different modalities, the first part of our empir-
ical study dealt with unimodal segmentations. A robust result of this study has showed that
each modality exhibits a specific semantics leading to a largely complementary set of change
points, in comparison to the other modalities. To investigate the semantic range and the
robustness of the multimodal decomposition, in our studies we have showed applications
of both multimodal approaches, the hierarchical and the parallel segmentation. Integra-
tion of all three modalities resulted in robust decomposition of an interaction episode into
fourteen action primitives. The empirical evaluations have indicated a very low temporal
error (below 0.3 seconds), and a low undetection rate of less than 5% for thirteen action
primitives.

7.2 Higher-level Modeling

Similar to the decomposition approach, the main goal of the higher-level modeling has
been to explore the semantic role of multiple modalities for recognition of action primitives.
Supported by the previous work that demonstrated particular suitability of OMMs for action
representation, to achieve the above goal we have conducted an OMM-based clustering of
the generated segments.

Based on clustering consistency measures, completeness and homogeneity, we have com-
pared clusterings generated for all seven combinations of the three modalities. The uni-
modal clustering study has showed that the audio modality, yielding the highest overall
consistency in comparison with the tactile and the joint-angles, is particularly well-suited.
Furthermore, we have demonstrated that audio has to be combined with another modality
(tactile or joint-angles) in order to distinguish uni- vs. bimanual action primitives. The
best results have been achieved for the combination of the audio and the tactile modalities.

With the goal to investigate the influence of the execution speed variability on the
clustering, we have discussed clusterings for two speed categories: the slow and the fast
(on average executed two times faster than slow action primitives). The experimental
results have demonstrated a slight decrease of consistency in the case when action primitives
from different speed categories, i.e. slow and fast, have been used for training and testing
respectively.

7.3 Final Comments

In this thesis we have contributed to the field of manual interaction recognition by proposing
a generic framework for decomposition of multimodal bimanual interaction, based on a
Bayesian offline change detection method developed by Fearnhead. Furthermore, we have
showed that our approach can serve as a building block for a higher-level modeling of
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interaction. Finally, empirical studies have showed the significance of different modalities
for both, the decomposition of interaction into action primitives, and their identification.

Following the above results, our attention is now directed towards two main issues.
Firstly, we would like to address the challenge of online decomposition, by extending the
presented offline decomposition approach to applications in online scenarios. Such an ex-
tension can be based on the procedure introduced by Fearnhead and Liu [28], and can be
helpful for assisting interaction with robots and virtual agents. Another challenge is an ex-
tension of our approach to identification of actions and activities. Further on, the Activity
Theory along with the overview provided by e.g. Bobick [13] (see Chapter 2) can serve as a
conceptual basis for this task. However, to improve the robustness of the trimodal approach
for a larger range of scenarios, including modeling of actions and activities, as well as to
provide us with the higher-level insights into the semantics of interaction, we plan to pursue
integration of further modalities in our approach, primarily the speech modality.



Appendix A

Instructions for Human Demonstrators

Here we present the instructions given to the human demonstrators, before a recording
session in an unconstrained and in a constrained scenario.

A.1 Action Execution: Unconstrained Scenario

The sequence is inspired by taking a bottle of juice, shaking it, opening it, pouring juice in
a glass, and closing the bottle. Please carry out the following actions:

• idle position: The execution starts with the idle position for both hands: the palms
are turned up, both hands are apart resting on the table;

• pick up and lift the bottle: grasp the bottle with both hands and lift it;

• shake the bottle (3 times);

• put down the bottle and release both hands;

• unscrew the lid: grasp the bottle with one hand and unscrew the lid of the bottle
with the other. Conduct one continuous turning movement without releasing the hand
in-between. Release both hands as soon as ready;

• pick up and lift: grasp the bottle with one hand and lift it;

• pour: tilt the bottle c.a. 100 degrees and bring it back to the original position;

• put down the bottle and release both hands;

• screw the lid: grasp the bottle with one hand, and screw the lid of the bottle with
the other hand. Conduct one continuous turning movement without releasing the
hand in-between. Release both hands as soon as ready.

• idle position.
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A.2 Action Execution with Cues: Constrained Scenario

The sequence is inspired by taking a bottle of juice, shaking it, opening it, pouring juice in a
glass, and closing the bottle. The beginnings and the ends of action execution are signaled
by start and end cues respectively. Each cue consists of four beep tones: three preparatory
and one main. Please align the execution of the following actions as precise as possible with
the beginning of the main cue:

• idle position: The execution starts with the idle position for both hands: the palms
are turned up, both hands are apart resting on the table;

• pick up and lift the bottle (start cue): grasp the bottle with both hands and lift it;

• hold the bottle;

• shake the bottle (start and end cue): shake the bottle as long as the end cue is given;

• hold;

• put down (start cue): release the hands from the bottle and bring them in idle
position;

• idle;

• unscrew the lid (start and end cue): grasp the bottle with one hand and unscrew the
lid of the bottle with the other. Conduct one continuous turning movement without
releasing the hand in-between. Release both hands on the end cue;

• idle;

• pick up and lift (start cue): grasp the bottle with one hand and lift it;

• pour (start and end cue): tilt the bottle c.a. 100 degrees and bring it back to the
original position on the end cue;

• hold;

• put down (start cue);

• idle;

• screw the lid (start and end cue): grasp the bottle with one hand and screw the lid
of the bottle with the other hand. Conduct one continuous turning movement without
releasing the hand in-between. Release both hands on the end cue;

• idle position.



Appendix B

Annotation Rules

Here we present a detailed description of the rules used for video- and audio-based annota-
tion of the acquired data. Five different annotation types will be described in the following
subsections: tactile, audio, joint-angles, semantic and cue.

B.1 Tactile Tier

The labeling of the tactile tier depends on the contact state of the hands. Dependent on
whether the human demonstrator is holding the object in one or both hands, one of the
following four labels is assigned:

• contact with both hands (LR),

• contact with left hand (Lr),

• contact with right hand (lR),

• no contact (lr).

The following table presents an overview of the tactile tier labeling:

tactile tier label description uni-/bimanual (1/2)
lr no contact with both hands 2
LR contact with both hands 2
lR contact with right hand 1
Lr contact with left hand 1
noise irrelevant data
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B.2 Audio Tier

The audio tier annotation contains one name for each type of an audio event. The regions
without audio are labeled by “off”. The following labels are given to the regions correspond-
ing to the different audio events:

• grasping of the object with one or two hands: grasp1 and grasp2s respectively,

• putting the object down with one or two hands: putdown1 and putdown2 respectively.

• object manipulations: shake, pour, pourup, pourdown.

The following table presents an overview of the audio tier labeling:

audio tier label description 1/2
grasp2s symmetric grasp with two hands 2
shake shaking 2
putdown2 put object down with both hands 2
grasp1 grasping with one hand 1
pour pouring (down and up, if done together in one go) 1
pourdown pouring (tilting the bottle down) 1
pourup recovering the orientation of the bottle after pouring 1
putdown1 put object down with one hand 1
off no audio accompanying the manipulation
noise irrelevant data

B.3 Joint-angles Tier

The joint-angles tier label collection contains different types of finger dynamics. Depen-
dent on whether actions are conducted symmetrically or asymmetrically with both hands
the movements are called “symmetric” or “asymmetric” (denoted by “s” and “as” resp.).
Here we differentiate between reaching and grasping, releasing, turning and pausing hand-
movements:

• grasping: close2s, close2as, close1

• releasing: open2s, open2as, open1

• screwing/unscrewing: turn2ccw, turn2cc

• pausing: hold2, hold1, idle

An overview of labeling of the hand posture tier is described in the following table:
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joint-angles tier label description 1/2
idle no dynamics 2
close2s symmetrical closing of the hands before grasping 2
hold2 hold the bottle 2
open2s symmetrical opening of both hands, releasing of the bottle 2
close2as asymmetrical closing of both hands before grasping 2
turn2ccw turn the lid of the bottle counter clockwise 2
turn2cw turn the lid of the bottle clockwise 2
open2as asymmetrical opening of both hands, releasing of the bottle 2
close1 closing of one hand before grasping 1
hold1 hold the bottle 1
open1 opening of one hand, releasing of the bottle 1
noise irrelevant data

B.4 Semantic Tier

The labeling of the semantic tier combines the joint, tactile and audio labeling. The follow-
ing table presents an overview of the semantic label collection:

semantic tier label description uni-/bimanual (1/2)
close2s s. joint-angles tier 2
grasp2s squeezing of the bottle during grasping 2
lift2 lift the bottle 2
shake shake the bottle 2
hold2s hold the bottle 2
putdown2 put the bottle down 2
open2s s. joint-angles tier 2
close2as s. joint-angles tier 2
turn2ccw s. joint-angles tier 2
turn2cw s. joint-angles tier 2
open2as s. joint-angles tier 2
close1 s. joint-angles tier 1
grasp1 squeezing of the bottle during grasping 1
lift1 lift the bottle 1
hold1 hold the bottle 1
pour tilt the bottle and bring it in the original pos. 1
putdown1 put the bottle down 1
open1 s. joint-angles tier 1
idle no of hand posture, no audio, no tactile
noise irrelevant data

B.5 Cues Tier

Cues tier is a label collection corresponding to the structure of audio cues. The following
table presents the overview of the cue label collection:
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cue tier label description uni-/bimanual (1/2)
idle idle position 2
grasp2 grasp with both hands 2
shake shake 2
hold2 hold with both hands 2
putdown2 put down with both hands 2
turn2ccw turn counter clock-wise 2
grasp1 grasp with one hand 1
pour pour 1
hold1 hold with one hand 1
putdown1 putdown with one hand 1
turn2cw turn clock-wise 2
noise irrelevant data



Appendix C

Unimodal Segmentation

Here we describe unimodal segmentation experiments, conducted in order to explore the
influence of global parameters, the prior segment length parameter λ and the subsampling
rate s. The following two subsections are dedicated to the audio and the joint-angles
modalities.

C.1 Audio Modality

The segmentations of audio modality has been conducted with two types of models: AR
and constant models (see Sections 5.3.3.1 and 5.3.3.2 respectively).

C.1.1 Autoregressive Model

In this subsection we describe the segmentation of audio signal based on a mixture of AR
models of order 1,2 and 3. Due to the sensitivity of the contact microphone, not only audio-
related action primitives, e.g. shaking, pouring or putting down, but also tactile-related
action primitives, e.g. grasping or screwing can be detected in the audio signal. Therefore
for evaluation of segmentation we use the combination of audio and tactile label collections
generated from manual annotation (see Appendix B). For calculation of averages µt, µg, µr
and µm we use segmentations generated for 20 trials recorded by one human demonstrator
in a constrained scenario. The values of the clamping parameter c = 5 and scale range
ρ = 12 remain constant in all experiments.

C.1.1.1 Subsampling Rate s

Representation of high frequency structures becomes less accurate due to growing sub-
sampling rate s. This experiment examines the effect of growing subsampling rate
s ∈ {5, 7, 10, 12, 20} on the segmentation quality. Parameter λ = 10−5 remained constant.
The subsampling rate s is applied after the default subsampling of 50 of the original raw
signal of frequency of 44100 Hz.
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The following table presents an overview of the experiment estimating the segmentation
quality of audio modality with AR models for different values of the subsampling rate s:

s µt µg µr µm
5 0.17 0.91 0.83 0.14
7 0.18 0.75 0.81 0.21
10 0.21 0.62 0.75 0.29
12 0.23 0.52 0.73 0.34
20 0.29 0.22 0.33 0.64

The table indicates that the increasing value of s influences all four segmentation indices:

s ↑ → µt ↑, µg ↓, µm ↑, µr ↓ . (C.1)

For a larger subsampling rate the temporal error grows from 0.17 to 0.29 seconds and the
segmentation granularity falls from 0.91 to 0.22. Therefore only a fifth of the ground truth
change points are generated. The very small rate of generated segments µg corresponds to
a large rate of missing segments with µm = 0.64 for s = 20. The higher rate of subsampling
eradicates some segmentation-relevant substructure, causing the signal of the complete trial
to become more homogeneous. Figures C.1-C.3 show examples of the generated segmen-
tation along with the ground truth segmentation for three different values: s = 5, 12, 20.
The figures demonstrate an example of decreasing segmentation granularity for increasing
values of s.

C.1.1.2 Prior Parameter λ

In this experiment the influence of the value of λ ∈ {10−4, . . . , 10−9} on segmentation with
AR models has been investigated. The other parameters stayed constant at s = 10, ρ = 12.
The following table presents an overview of the quality of segmentation of audio modality
with AR models for different values of parameter λ:

λ µt µg µr µm
10−4 0.21 0.72 0.86 0.19
10−5 0.23 0.61 0.87 0.22
10−6 0.22 0.55 0.85 0.24
10−7 0.22 0.59 0.84 0.28
10−8 0.22 0.59 0.84 0.30
10−9 0.23 0.51 0.83 0.34

Similar to the previous experiments, the table indicates a large impact of λ on µg and
on µm:

λ ↑ → µg ↑, µm ↓ . (C.2)

At the same time, for the detected segments there is only a negligible change of the overlap
ratio as well as the corresponding temporal error, implying that λ does not have an impact
on the position of the generated segments. Note, the influence of λ differs from the one
of the parameter s, which has demonstrated to have a strong effect on all segmentation
indices.
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Figure C.1: An example of an audio signal segmentation with AR models of order 1,2 and 3;
three subfigures show: generated segmentation (top), ground truth segmentation (middle)
and input signal (bottom). For s = 5 the resulting segmentation is close to the ground
truth structure.

Figure C.2: An example of an audio signal segmentation with AR models of order 1,2
and 3; three subfigures show: generated segmentation (top), ground truth segmentation
(middle) and input signal (bottom). Less segments are generated for s = 12 in comparison
to s = 5.

Figure C.3: An example of an audio signal segmentation with AR models of order 1,2 and 3;
three subfigures show: generated segmentation (top), ground truth segmentation (middle)
and input signal (bottom). For s = 20 the procedure selects only very rough structure
within the signal.
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Figure C.4: An example of segmentation of audio data with constant models; s = 16 and
λ = 10−7. First row: generated segmentation; second row - ground truth segmentation,
third row - the audio signal after preprocessing. Generated segmentation for this parameters
is close to the ground truth.

C.1.2 Constant Model

Following paragraphs are dedicated to segmentation experiments demonstrating the influ-
ence of the parameters λ and s on segmentation of audio with constant models. Parameter
w remains constant with w = 20. For building of averages µt, µg, µr and µm we have used 20
trails recorded by one human demonstrator in a constrained scenario. The ground truth is
based on tactile and audio labels of the manual annotation, like in the previously described
experiments with AR models.

C.1.2.1 Subsampling Rate s

This experiment examines the effect of growing subsampling rate, involving less accurate
representation of high frequency structure, on the structure of change points, generated by
segmentation of audio signal with constant models. For λ = 10−6 we have investigated the
segmentation for s ∈ {10, 12, 14, 16}. The following table presents the experimental results
of segmentation of audio signal with constant model for different rates of subsampling:

s µt µg µr µm
16 0.18 0.80 0.79 0.10
14 0.17 0.94 0.80 0.09
12 0.15 1.04 0.79 0.08
10 0.14 1.13 0.82 0.05

It indicates the following influence of the increasing value of s:

s ↑ → µt ↑, µg ↓, µm ↑ . (C.3)

For a constant value of λ smaller values of s correspond to a higher segmentation granularity
µg and a smaller missing segments index µm. An example trial segmentation whose structure
is close to ground truth is illustrated in Figure C.4.

C.1.2.2 Prior Parameter λ

As previously described, parameter λ is designed to influence the granularity of the gener-
ated segmentation. In this section we examine the influence of λ on the segmentation of
audio signal with constant models.
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Table C.1: Segmentation quality of the joint-angle modality with constant models for dif-
ferent values of s.

s µt µg µr µm
5 0.12 1.57 0.65 0.04
10 0.15 0.94 0.82 0.05
15 0.19 0.82 0.87 0.11
20 0.25 0.71 0.88 0.23

For a constant value of s = 10 the experimental results for λ ∈ {10−9, . . . , 10−6} are
presented in the following table:

λ µt µg µr µm
10−9 0.15 0.99 0.81 0.09
10−8 0.15 1.02 0.80 0.08
10−7 0.15 1.05 0.80 0.06
10−6 0.14 1.13 0.82 0.05

The table indicates:
λ ↑ → µg ↑, µm ↓ . (C.4)

Like in the previous experiment, the values of temporal error µt and µr remain approxi-
mately constant for varying values of λ. This implies that the positions of the generated
segments are invariant to the changes of λ. The granularity of segmentation µg increases
along with the increase of λ: for higher values of λ more segments are generated. Corre-
sponding to this, missing segments index µm decreases for larger values of λ.

C.2 Joint-angles Modality

We investigate the influence of global parameters λ and s on the segmentation of joint-
angles with constant models. We present the results of the evaluation µt, µg, µr and µm.
For calculation of averages 20 trials recorded by one human demonstrator in a constrained
scenario have been used. For ground truth we have used the joint-angles label collection
of the manual annotation, consisting of different types of grasping, releasing and screwing
(see Appendix B).

C.2.1 Subsampling Rate s

In this experiment we show on several examples the influence of the subsampling rate s
on the segmentation of joint-angles modality with constant models. The following table
demonstrates the experimental results for s ∈ {5, 10, 15, 20} and λ = 10−15:

For increasing s the dependencies are as follows:

s ↑ → µt ↑, µg ↓, µm ↑, µr ↑ . (C.5)

The strong influence of s on all segmentation indices is similar to the previous experiments.
The increase of s has a negative effect on the average temporal error µt: the value increases
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Figure C.5: Joint-angle segmentation for subsampling rate s = 5 results in oversegmenta-
tion; generated segmentation (first row); ground truth segmentation (second row).

Figure C.6: Joint-angle segmentation for subsampling rate s = 10 results in segmentation
structure that is close to ground truth; generated segmentation (first row); ground truth
segmentation (second row).

Figure C.7: Joint-angle segmentation for subsampling rate s = 20 results in too low segmen-
tation granularity; generated segmentation (first row); ground truth segmentation (second
row).

from 0.12 to 0.25 seconds; he decrease in segmentation granularity µg goes along with the
larger segments, thus resulting in a larger overlap ratio µr. With decreasing s the missing
segments index falls.

Figures C.5 - C.7 show examples of segmentation with three different subsampling rates:
s = 5, 10, 20. These examples illustrate the effect of the increasing sampling rate on the
segmentation granularity. Figure C.5 shows that for a small sampling rate s = 5 even shaking
(third yellow region) has been segmented based on the subtle dynamics of the joint-angle
modality. This segment disappears with larger subsampling rates. Figure C.5 demonstrates
strong oversegmentations, resulting from constant model fitting in the regions of steep rise
of the overall hand activity. Figure C.6 presents an example of a segmentation that matches
well with the annotation. The generated segmentation mainly corresponds to grasping and
releasing before and after an object contact. Figure C.7 shows that a further increase of
the sampling rate results in a further decrease of the number of generated segments and in
generation of insufficient number of segments.

C.2.2 Prior parameter λ

This experiment aims at examining of the influence of varying value of the parameter λ on
the generated segmentation. Parameter λ is designed to control the prior distribution on the
segment length, therefore smaller values of λ should result in increase of segmentation granu-
larity. The following table shows the dependency between the value of λ ∈ {10−15, . . . , 10−5}
and values of four segmentation indices. Subsampling rate is constant with s = 10:
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λ µt µg µr µm
10−15 0.15 0.94 0.82 0.05
10−13 0.15 1.01 0.80 0.05
10−11 0.14 1.08 0.78 0.05
10−9 0.15 1.41 0.82 0.03
10−7 0.14 1.40 0.72 0.04
10−5 0.12 1.76 0.64 0.04

The dependency is as follows:

λ ↑ → µg ↑, µr ↓ . (C.6)

For increasing values of λ along with the slight decrease of temporal error µt, the segmen-
tation granularity increases from 0.94 to 1.76, the generated segments become smaller, the
overlap index µr decreases.
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