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CHAPTER 1

Introduction

The analysis of RNA secondary structure has become more and more important through-
out the last decades after it was recognised that RNA does not only serve as a passive
messenger (MRNA), but also as a functional compound of the cell. Furthermore, it was
elucidated that mainly the structure rather than the sequence determines the function
of such non-protein-coding RNA. This means that two RNA molecules which have low
sequence similarity but high structure similarity are likely to have a similar function.

The prediction of RNA secondary structure is based on parameters that have been
measured in vitro. This results in rather static parameters, that do not incorporate the
dynamic change of environment occurring in living organisms. Nevertheless, the use
of these parameters, that are summarised in the energy model, gave valuable results,
especially for short sequences. Several refinements throughout the years improved the
predictions, but still the calculated optimal structure is not guaranteed to correspond to
the native one. In this case, and due to the fact that the native structure is feasible under
the energy model, it is common practice to additionally calculate suboptimal structures
and incorporate these in the study. The set of all suboptimal structures is referred to
as the structure space, which actually holds the information needed to answer questions
such as: Is the optimal structure also the native one? Are there more than one structure
an RNA molecule can adopt? How well-defined is the optimal structure?

Major problems in the analysis of the structure space are its size and its shape. The
number of suboptimal structures is exponential in the sequence length, which means that
for sequences of moderate length the size quickly exceeds several billion. Besides the
size, the appearance of the structure space complicates its study. The structure space
can be imagined as a rough landscape with valleys, holding local optimal structures, sep-
arated by mountains and saddles. This landscape is not smooth but cliffy and complex
(see Figure 1.1), which prevents the development of a practical and still intuitive visuali-
sation. In general, the intention of structure space analysis is not its visualisation, but its
complexity also hampers approaches to derive specific features hidden in the structure
space. Despite these problems, several tools exist that analyse the complete structure
space or at least a part of it to answer the aforementioned questions. Among these
are MFOLD which produces a subset of all possible structures according to a threshold of
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Figure 1.1: Badlands as an example for a rugged landscape. This picture should give
an impression on the complexity of the structure space of RNA, which is even more
complex.

structural similarity, SFOLD which samples the structures in a probabilistic fashion and
provides a method to identify alternating structures, RNAsubopt to produce all subopti-
mal structures within a given energy threshold, barriers to identify valleys, mountains
and saddles of the structure landscape, and others.

My contribution to this area of research is twofold: First, | present paRNAss (prediction
of alternating RNA secondary structures) which focuses on the detection of conforma-
tional switches and analyses the structure space based on pairwise comparisons. paRNAss
has been available since 1997 and | could improve its predictive power as well as its speed
which made possible a systematic evaluation. During this evaluation it turned out that
paRNAss can even be used to identify more than two competing structures and hence
get a deeper insight into the structure space. The second tool | introduce is RNAshapes
which facilitates different kinds of analyses. The algorithm makes use of abstract rep-
resentations of the secondary structure to compute only those that are morphologically
dissimilar, i.e. are composed of different structural elements. Structures being morpho-
logically similar are pooled in a class of structures and each class is represented by its
best member. The list of these representatives gives a general overview of what is there
in the structure space. In addition to this, | introduce an algorithm to compute proba-
bilities of the aforementioned classes of structures. This gives hints to properties such
as alternating secondary structures (two classes with similar probabilities) and structural
well-definedness (one class with very high probability).



CHAPTER 2

RNA - Biology, Chemistry and Theory

2.1 RNA and its Vital Functions

Early experiments in molecular biology revealed, that DNA (DeoxyriboNucleic Acid) is
the carrier of the genetic information whereas proteins are the catalytic active compounds
of the cell. For RNA (RiboNucleic Acid), the only function left was that as a passive
transport system of genetic information from DNA to the protein factories of the cell,
the ribosomes. This view of the concerted operation of DNA, RNA and proteins is known
as the “Central Dogma” of molecular biology and depicted in Figure 2.1(a). In 1982 the
discovery of a catalytic RNA with a complex chemical reactivity, as it was only known for
proteins until then, changed the view on RNA: The ribosomal RNA (rRNA) molecules of
the ciliate Tetrahymena are first synthesised as one large precursor which is subsequently
cleaved to the mature rRNAs. Surprisingly, these cleavage reactions also take place in
absence of any protein. Later it was shown that the intron sequence itself carries an
enzyme-like catalytic activity [1]. The last decades revealed more and more functions of
RNA molecules besides serving as a blueprint for proteinbiosynthesis. Today these non-
coding RNAs (ncRNAs, because they do not encode a protein) are known to possess
regulatory functions, like the recently discovered micro RNAs (miRNAs) [2], catalytic
functions, like the aforementioned self-splicing introns and like small nuclear (sn)RNAs
in the spliceosome. Additionally, they may serve as a scaffold, such as rRNAs do in
ribosomes and in Retroviruses RNA is actually the carrier of the genetic information.
All these facts led to the idea of an early “RNA World”, where RNAs were the central
molecules for information storage, catalysis and regulation. In the course of time RNA
lost its predominance, as DNA, a more stable storage possibility, and proteins, as catalysts
with higher versatility, emerged. This does not mean, that RNA lost all its functions,
but it was eclipsed by DNA and proteins.

In addition, according to the “Central Dogma” all diversity of the species must be due
to differences in the repertoire of genes. Contradictory to this, the genome sequenc-
ing projects revealed that the overall number of protein coding genes is much smaller
than expected and that the protein coding fraction of the genome is only about 5%.
Additionally, there seems to be no clear correspondence between the complexity of a
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DNA

O Replication Transcription
DNA

Transcription
v functional MRNA
RNA RNA
Trandation Trandlation
v - -
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(a) The "Central Dogma” (b) The "Modern Central Dogma”

Figure 2.1: The existing dogmas in molecular biology. RNA was originally proposed to
serve as a passive messenger only, but experiments revealed that RNA is also part of the
functional and regulatory compounds of the cell.

species and the number of genes in its genome. Fruit flies have fewer coding genes than
roundworms, and rice plants have more than humans. This put forth the question, if the
remaining 95% of the DNA are just “junk” or if there is vital information in it. Analyses
showed that parts of this non-genic DNA are well conserved across different species and
that loss of these regions leads to specific phenotypes, such as cartilage hair hypoplasia
(CHH) [3]. Altogether, this results in a “Modern Central Dogma”, where RNA is also
part of the functional and regulatory cell compounds, like shown in Figure 2.1(b).

2.2 Chemical Structure of RNA

RNA is a polymer of the nucleotides Adenylate (A), Guanylate (G), Cytidylate (C) and
Uridylate (U) which are connected via phosphodiester bonds between the 5’-phosphate-
and the 3'-OH-group of the sugar-phosphate part of adjacent nucleotides, see Figure
2.2. This is similar to the chemical structure of DNA where the 2’-OH of the sugar is
deoxygenated to 2’-H and the nucleotide Uridylate is replaced by Thymidylate (T).
DNA is known to occur solely double stranded, where A—=T and G—C pair by form-
ing two resp. three hydrogen bonds and thereby leading to the characteristic double
helical structure of DNA. In contrast to this, RNA mainly occurs single stranded. The
nucleotides of an RNA molecule as well have the possibility to form hydrogen bonds.
This time they are not formed between two strands but between nucleotides of the same
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Figure 2.2: The bases and the sugar-phosphate backbone of RNA and DNA.

strand. This forces an RNA molecule to fold back onto itself, forming a characteristic
structure which is unique for each RNA. Hence, RNAs do not only vary in sequence, like
DNA, but also in structure, which opens up another dimension of flexibility. In general,
RNA has four structural levels, resembling different levels of information encoding:

Primary structure: The plain sequence of nucleotides, which is in the case of mRNA
sufficient to determine the sequence of the encoded protein.

Secondary structure: Formation of hydrogen bonds between A-U, G—C and G-U leads
to formation of helical (paired) and intervening singlestranded (unpaired) regions.
This definition is restricted to nested base pairs (no pseudoknots), meaning that

each two base pairs (i,/) and (k, /) of a valid secondary structure have to satisfy
the following constraint:

i<k<I<j |l i<j<k<l || k<i<i<j |l k<i<j<lI (2.1)

For small regulatory motifs, the formation of the secondary structure might be

sufficient for their correct function, but in most cases a certain tertiary structure
is needed.

Tertiary structure: This is the spatial arrangement of all elements of the RNA in three
dimensions. Like for proteins, this is the active structure of RNAs that act without
co-factors, e.g. ribozymes like the self-splicing intron of Tetrahymena.
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-

(a) Hairpin loop (b) Stacked pair (c) Bulge loop left

>

(d) Bulge loop right (e) Internal loop (f) Multiple loop

Figure 2.3: Elements of RNA secondary structure. All elements have a closing base pair
and zero (hairpin loop), one (stacked pair, bulge loop, internal loop) or more (multiple
loop) internal base pairs.

Quaternary structure: Agglomerate of RNAs, proteins and chemical co-factors, like
small nuclear ribonucleoproteins (snRNPs) which consist of snRNAs and several
proteins.

Elements of the primary structure are the nucleotides A, C, G, U and sometimes
modified bases, such as pseudouridine or methylated bases.The secondary structure of
each RNA molecule can be decomposed into a series of six distinct elements, namely
stacked pair, hairpin loop, bulge loop left, bulge loop right, internal loop and multiple loop
as shown in Figure 2.3. Tertiary and quaternary structure cannot be divided into unique
elements as they are based on various chemical interactions of parts of the secondary
resp. tertiary structure.

2.3 The Structure Space of RNA

The tertiary structure of an RNA, which is the biological active one, is very hard to
determine, both in vitro and in silico. As the building blocks of the tertiary structure are
given by the secondary structure and the latter is much easier to access, one commonly
uses the secondary structure as an approximation of the tertiary structure. In vivo, the
secondary structure is influenced by its environment (ion concentrations, hydrophobicity).
These biophysical parameters differ between individual cells or cellular compartments, and
hence the secondary structure may differ, too. These influences are generally assumed
to be rather small compared to the thermodynamic forces involved in base pairing and
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base pair stacking. For this reason the term structure space from now on refers to the
thermodynamic secondary structure space, being defined as follows:

The structure space of a given RNA sequence is described by a thermodynamic model,
given by experimentally determined energy parameters [4]. Base pairing and base pair
stacking are structure stabilising factors associated with negative energy contributions
depending on the nucleotides involved. Single-stranded parts (loops) have destabilising
effects associated with positive energy contributions, mainly depending on the length of
the single-stranded parts. Based on these energy contributions, a free energy value for
each structure is calculated. The structure attaining minimal free energy is called mfe-
structure. Since the energy parameters are determined in vitro under conditions which
are near but not identical to in vivo conditions and biophysical influences are neglected, it
is not guaranteed that the predicted mfe-structure corresponds to the native structure.
As a consequence to this and due to the possibility of several important conformations,
one is also interested in energetically near-optimal structures.

Two structures are considered as neighbours if they differ by just opening or closing
one base pair. Neighbouring structures achieve a similar energy value. This leads to
the presence of many similar structures when looking at near optimal structures. The
structures one is really interested in are the local energy minima, having lowest free energy
with respect to all their neighbours. Since the size of the structure space is exponential
in the length of the sequence [5], it is very likely that a large number of such local
energy minima are present in the structure space. Thinking of the structure space as a
landscape, suggests the notion of a valley for a local minimum and all its neighbouring
structures that can be reached by opening (or closing) base pairs and thereby always
increasing the free energy. All structures that belong to one valley are called a family of
structures. A structure having two neighbours from different valleys, corresponds to a
saddle point in the landscape.

The shape of the structure space gives hints at structural properties of the RNA
molecule. The existence of one valley being much “deeper” than all other valleys, implies
structural well-definedness. Two equally deep valleys could show up for a conformational
switch or, if the native structure is determined by a specific folding pathway, trapping
the structure in a local minimum.

These definitions suggest a rather ordered appearance of the structure space. This
holds true only for the near-optimal part of the structure space. Generally the structure
space is very large (exponential in the sequence length, e.g. 25,986,090,120,790 struc-
tures for a sequence of length 30 nt) and complex. The complexity arises from the fact
that each structure has at least (when considering only opening of base pairs) as many
neighbours as its number of base pairs. To give an example: A structure with 20 base
pairs has 20 direct neighbours with 19 base pairs. Each of them has 19 neighbours with
18 base pairs and so on. Bear in mind that neighbours to the second degree can be
reached on two different ways, those of third degree on six ways and those of n;, degree
on n! ways.
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2.4 Analysing the Structure Space — Current Methods

The prediction of functional properties of an RNA is the central goal in analysing the
structure space. Due to the size and especially the complexity there is, until today, no
general approach for analysing the structure space. However, some methods have been
developed to scrutinise specific features. The following section gives an overview of
current methods. More detailed descriptions of the algorithms will follow in Chapter 3.

2.4.1 Alternative Secondary Structures

The mfe-structure is, especially for long sequences, unlikely to be equal to the native
in vivo structure. Hence, it is common practice to include suboptimal solutions in the
process of structure elucidation. The first approach to compute also suboptimal solutions
was implemented in MFOLD [6]. Due to the implementation, this approach is not capable
of producing all suboptimal structures, but only those being dissimilar to other structures
to some degree. The heuristic filters that are used for this lead to a biased sample which
holds only structures that are more dissimilar than a certain threshold. Additionally,
structures that are composed solely of base pairs that are also part of “better” structures
never show up. The advantage of this approach is that the user has to handle only a
small number of structures, but the danger of missing the one he is looking for remains.

An algorithm producing precisely all suboptimal structures was presented in [7] and is
implemented in the tool RNAsubopt of the Vienna RNA package [8]. The problem arising
is that the output gets very large (exponential size of the structure space). Analysis
of such large numbers of structures is very costly, especially in the case of pairwise
comparisons, as the number of comparisons grows quadratic with the size of the sample.
Restricting to structures that are near-optimal is a reasonable approach, but poses the
problem of defining near-optimality.

A (reasonable) reduction of the number of suboptimal structures is implemented in the
tool SFOLD by Ding and Lawrence [9]. It uses a statistical sampling procedure to compute
a subset of all suboptimal solutions. The authors state that each structure occurs in the
sample according to its probability, given that the sample size is large enough. As the
sampling is based on random variables each run of the program produces a different set
of structures. Furthermore, the same structure can be sampled multiple times, especially
the mfe-structure as it is the most probable one.

2.4.2 Structural Well-Definedness

In case of an RNA functioning through a certain structure, this structure has to be
well-defined, meaning that there are no dissimilar structures of similar energy. The idea
behind is, that functional (by means of structure) RNAs can be detected based on a
measure for structural well-definedness.

The approaches to infer structural definition share the common idea of comparing the
optimal structure to suboptimal structures based on two different aspects. One is the
difference in energy and the other is structural dissimilarity. The method by Wuchty et al.
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[7] uses the so called “base pair distance” to measure structural dissimilarity, whereas the
approach by Kitagawa et al. [10] makes use of the so called “tree representation distance”.
Both groups could show the applicability of their approaches to certain problems or classes
of RNAs (tRNAs and snRNAs respectively), but did not show the applicability in general,
i.e. to classify unknown sequences as functional by means of structure.

2.4.3 Alternating Secondary Structures

The property of an RNA to be present in either one of two alternate conformations both
having a different function is known as conformational switching. Ding and Lawrence [9]
propose a method to elucidate such conformational switching based on their statistical
sampling procedure for RNA secondary structure. The idea is that the existence of two
alternating conformations is resembled in a two-valley shape of the structure space. For
this reason, the drawn structure sample should hold two families of structures represent-
ing the two valleys.

Another approach is paRNAss [11], which is based on the pairwise comparison of
suboptimal structures. It uses an estimate for the energy barrier and a distance measure
to infer structural dissimilarity. This data is subsequently used for a clustering step
which is the basis for the prediction of consensus structures. These consensus structures
should resemble the two conformations of the switch and get verified by comparing each
consensus structure to all sampled structures. If all of these have a high energy barrier
to one consensus while having a low to the other, the consensus structures as well as
the property of conformational switching is predicted. This method is the starting point
for my work and is described in Chapter 4.

2.4.4 Analysing the Folding Pathway

The folding of RNA is a kinetic process, which starts with the formation of a first
(random) base pair, the so called nucleation point. The addition and removal of base
pairs leads to formation of intermediate structures that may correspond to local minima.
In this case the RNA might get trapped in this state because it cannot overcome the
surrounding (energy) barriers within reasonable time and, hence, is not able to achieve
its energetic optimum. The state the RNA gets trapped in has to be a valid secondary
structure and therefore it has to be present in the set of suboptimal structures. Analysis
of the structure space can therefore be used to elucidate such kinetic traps of the folding
pathway. Approaches addressing this problem are described in Section 3.4.2.

2.4.5 Local Minima

The appearance of the structure landscape is predominantly determined by the local
minima and the saddle points separating them. Thus, to roughly describe the structure
space it is sufficient to know these. The tool barriers [12] addresses this idea. It is
designed to analyse the complete or part of the structure space, which is given as an
energy sorted list of structures generated by RNAsubopt. From this barriers constructs
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the barrier tree as a representation of the energy landscape. This barrier tree holds
information on local minima, the saddle points connecting them and their differences in
energy.



CHAPTER 3

Computational Tools and Methods

3.1 Representations of RNA Secondary Structure

During the (still ongoing) research on RNA secondary structure different descriptions
resp. representations have emerged, all having their specific advantages and disadvan-
tages. Two dimensional representations are intuitive to the human eye, whereas they are
impractical as computer input. The opposite holds for one-dimensional or string repre-
sentations. In the following paragraphs | will give an overview of existing representations,
which does not claim to be complete, as a large number of variations or very specialised
representations exist.

3.1.1 Two-Dimensional Visualisation

Tree/Forest Representation The secondary structure of RNA is inherently tree-like,
so it is straightforward to use a tree representation. In fact, the secondary structure
is represented as a forest, as each element (stem, unpaired base) of the external loop,
such as the two unpaired 'A’s in Figure 3.1(a), are trees themselves. Such a tree is build
of P(air)-nodes for base pairs and leafs holding the individual bases, as shown in Figure
3.1(a). Note, that the left- and rightmost children of a P-node are actually forming the
base pair. This representation is intuitive only to a small degree, but apart from serving
as a visualisation it also resembles a data structure used by algorithms dealing with RNA
secondary structure.

Squiggle Plot The so called squiggle plot is probably the most widely used represen-
tation, as it is also the most intuitive for the human reader. It gives a good impression
about the two dimensional arrangement of the elements of the secondary structure (see
Figure 3.1(b)). Several variations of the squiggle plot exist, which mainly differ in the
information displayed and the treatment of bulge and asymmetric internal loops. Com-
mon to all is, that adjacent bases are connected by a line and bases forming a base pair
are also connected by some element, e.g. line, rhomb or dot.
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(a) Tree/Forest representation (b) Squiggle plot

AGCAAGGCACAGCCCAGGAUUCCGCA

AGCAAGGCACAGCCCAGGAUUCCGCA
V0900 NNVYO99O V0009 VOVOD9OVYVIODY

30 ‘A'GCA'AGGCACAGCCCAGGA LU CCGCA

(c) Mountain Plot (d) Dot plot

Figure 3.1: Two dimensional representations for RNA secondary structure.
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(a) Base pair list [(2,25),(3,24),(6,14),(7,13),(8,12),(17,23),(18,22)]
(b) "Vienna" string G CCG D)) L (D)D)
(c) HIT structure (U) ((U2) ((U3)P3) (U2) ((U3)P2)P2)

(d) Coarse grained structure ((H)(H)M) or ((((H)S)((H)S)M)S)
(e) Weighted coarse grained (((((H3)S3)((H2)S3)M2)S4)E2)
(f) Abstract Shape C[101]

Figure 3.2: Exact and approximate string representations for RNA secondary structure.

Mountain Plot In order to display the structural constraints over the sequence, the
mountain plot (Figure 3.1(c)) has been developed in [13]. Each position in the sequence
that is the positional smaller partner of a base pair adds a positive contribution whereas
a positional greater partner contributes negatively. This contribution may be either +1
or +E, where E is the free energy contribution for this base pair.

Dot Plot The previous representations where capable of depicting one structure at the
time. A way to show all, or at least the most probable, structures a sequence can form is
realised in the dot plot produced by RNAfold from the Vienna RNA package and shown
in Figure 3.1(d). In general, it is a matrix that holds for each pair of bases the probability
to form a base pair. This probability is depicted by a square, whose area corresponds to
the actual probability. The resulting plot is split into an upper-right triangle holding all
information and a lower-left triangle showing only those base pairs that are part of the
most probable structure.

3.1.2 String Representation

The diverse two-dimensional representations focus on the ease-of-use for the human
reader, while being inappropriate for further computational analysis. This lead to the
creation of more computer-friendly notations of secondary structure, either in an exact
or an approximate fashion.

Exact Representations

Base pair list: The base pair list holds for each base pair the indexes of the two partic-
ipating bases, as shown in Figure 3.2.

“Vienna” string: The so called “Vienna"” string or “Dot-Bracket” notation, represents
the secondary structure as a sequence of dots and opening or closing brackets.
The dots represent unpaired bases and pairs of brackets represent base pairs, see
Figure 3.2.

HIT structure: This representation is based on 'U’ for unpaired bases and 'P’ for
paired bases. The numbers following give the size of the individual elements, e.g.
((U3)P3) is a hairpin consisting of 3 base pairs and 3 unpaired bases in the hairpin
loop. An example is depicted in Figure 3.2.
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Approximate Representations In [14] several approximate representations for RNA
secondary structure have been proposed:

Coarse grained structure: The coarse grained structure notation abstracts from the
individual sizes of the structural elements. Hairpins, interior loops, bulges, multi-
loops, stacks and external bases are represented by (H), (1), (B), (M), (S), and
(E), respectively. For the example it results in the representation shown in Figure
3.2.

Weighted coarse grained: This representation is derived from the coarse grained by
adding specific weights (e.g. size) to each element, and shown in Figure 3.2.

In Chapter 5, | describe the implementation of a new method for RNA secondary
structure prediction. It is based on the notion of abstract shapes or shapes for short.
Shapes are classes of structures which share structural features, such as the nesting of
hairpins. Each shape is described by a representative structure and a specific notation,
the shapes notation.

Shapes notation: With the shapes notation it is possible to abstract from structural
details and to get an overall impression of the RNA structure. In general, unpaired
regions are represented by ' " and paired regions by pairs of '[' and ']'. The
level of abstraction can be chosen at wish: It is possible to exclude any type of
structural element as well as single strands from being represented. The most
abstract version displays only hairpins and multiloops without regarding unpaired
bases, as it is exemplified in Figure 3.2. A detailed description is given in Section
5.2.

3.2 Comparison of RNA Secondary Structures

Often, it is of interest to determine the relation of two or more RNA secondary structures.
To infer this relation it is useful to know how similar or dissimilar the structures are. For
this reason several measures of dissimilarity, i.e. distance measures have been developed,
each having its specific advantages and disadvantages. Here | describe the ones that are
used throughout the following chapters.

3.2.1 Base Pair Distance

The base pair distance of two structures is defined as the number of base pairs that are
unique to one of the structures. For two structures s;, s with base pairs x € s; and
y € s, the following applies:

dbp(sl,sz)ZZ{l' X ¢ s +Z{1’ v (3.1)

xEst O, X € S Ve O, yes

This distance measure is provided with RNAdistance from the Vienna RNA package.
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3.2.2 Morphological Distance

The morphological distance d,,, is a slightly modified version of Equation 3.6. Here
structures are represented as sets of base pairs. (i,j) € s means that residues i/ and j
form a base pair in s. For two structures s;, s, the following applies:

dyp (51, 52)

duo (51, S2) = max
wo (51, %2) {d,(,,D(sg,sl) , Where

(3.2)
lip — by

d (s51,%)= >, min maxq =
U — 12| -

(i1.j1)€sy (2:2)€82

dyo 1S strictly positive and symmetric, but does not satisfy the triangle inequality. Al-
though it is not a metric in the mathematical sense, it behaves quite reasonably as a
distance measure.

3.2.3 Tree Alignment Distance

The tree alignment distance dr,, is based on the extended RNA forest representa-
tion introduced by Héchsmann et al. [15] and depicted in Figure 3.1(a). The nodes
of trees representing RNA structures are either P(air)- or B(ase)-nodes. The following
edit operations are applicable: base replacement, base deletion, pair replacement and
pair deletion, scored by cost contributions b,, by, p,, ps respectively. Given a distance
function §, with §(B, B) = b,,6(B, —) = by, 6(P, P) = p,,6(P, —) = ps and a structure
alignment A represented as a forest, the distance score of the alignment is defined as
A(A)= > 4(v). This leads to the tree alignment distance

v node in A
dro(s1, 52) = min{A(A(s1, $))} (3.3)

where A(s1, sp) varies over all structure alignments of s; and s,. This distance measure
is incorporated in the tool RNAforester. Note that d;4, although based on a tree edit
model, is different from the “tree edit distance” [16].

3.2.4 Energy Barrier Distance

Remembering the landscape representation of the secondary structure space, two valleys
are separated by a mountain or saddle. A structure morphing from one valley to the
other has to overcome this obstacle, meaning it has to gain free energy to climb up the
mountain. Once the peak is reached the way down to the bottom of the other valley can
be performed without effort. The energy needed for the ascent resembles the activation
energy needed for the transition reaction between the two structures and is called energy
barrier. An example is given in Figure 3.3.

The energy barrier distance dg was first introduced by Rehmsmeier [17]. It is designed
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reaction path

Figure 3.3: Example path from structure S1 to structure S6. The energy barrier between
structures S1 and S6 is Ae4, whereas between S6 and S1 it is |Aey| + |Acq].

to capture the minimal amount of energy necessary for the molecule to shift between
two structures. A transition path from s; to s, is given by a sequence of intermediate
structures. Let e(s) denote the free energy of s.

dis(51, 52)

/ , where
dEB(S2' Sl)

3.4
dl,(s1,s) = min{e(p) | p is transition path from s; to s,} , where (3:4)

e(p) = max{e(s) — e(s1) | s is intermediate structure in p}

As the number of possible paths is excessively large, the implementation uses a greedy
heuristic to approximate dg: A list is build which holds for each base pair that has to
be closed, shortly close, the base pairs that have to be opened, shortly opens. The close
with the least number of opens is chosen, its opens are performed and deleted from
the open list of the remaining closes. Then the close is performed and eliminated from
the list. This procedure is repeated until no close is left. Finally, possible opens not
connected to a close are performed. The energy barrier distance satisfies the axioms of
a metric. It is always non-negative, as the starting structure of a path is also in the set
of intermediate structures.

In this implementation the heuristic allows to introduce or to leave behind lonely base
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pairs. This is not favourable, as lonely base pairs mostly have positive energy contri-
butions. The result is that lonely base pairs lead to higher free energies without good
reason. Furthermore, the heuristic does not take care of neighbouring closes or opens,
meaning that the formation of a five base pair stem might be performed as follows: First
base pair 1 is closed, next nr.3, then 5, 2, 4, revealing an intermediate structure with
two internal loops and, therefore, high free energy.

To cope with these drawbacks | refined the heuristic to allow only canonical structures
and to also take care of sequential closes or opens. In more detail this means, that two
closes and their opens are combined if they are neighbours and no other neighbour of
the first close is already closed. In the case of opens it is checked whether the current
open is followed by an open which has no neighbouring open to come. If this is the case
these two opens are performed together.

3.2.5 Pseudoknot Measure

A pseudoknot is a structural element which is commonly regarded as part of the tertiary
structure. The basic property of a pseudoknot is that its base pairs are not nested
properly, but cross each other (i.e. they do not satisfy Equation 2.1). Standard RNA
folding algorithms are not capable of predicting pseudoknots. Therefore, when comparing
two different structures of one RNA sequence, they might represent the two possible un-
knotted projections of a pseudoknot structure, meaning that the union of the base pairs
of these structures is one structure comprising a pseudoknot. To get an idea how likely
two structures can combine in a pseudoknot, the pseudoknot measure (pkMeasure) is
calculated as follows:
Let s; U s, denote the union of two structures (i.e. base pair sets). Define

pkMeasure(sy, s;) =

(

—1 ,if s;Usyis a valid structure

without a pseudoknot,
0 , if 51 U s, contains a pseudoknot (3.5)
k , Where k is the number of bases with

conflicting pairings in s, U S,.

\

The larger pkMeasure, the less likely it is that the two conformations actually can
combine in a pseudoknot.

3.3 Cluster Analysis

The goal of cluster analysis is to divide a collection of objects into subsets or clusters,
such that those objects within each cluster are more closely related to one another than
objects assigned to different clusters. Central to cluster analysis is the notion of distance
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(see Section 3.2) between the individual objects being clustered. There are two major
methods of clustering — hierarchical clustering and k-means clustering.

Hierarchical clustering can further be subdivided into agglomerative methods, which
proceed by series of fusions of the objects into groups, and divisive methods, which sep-
arate the objects successively into smaller subsets. A widely used hierarchical clustering
method is the one of Ward [18]. He proposed a clustering method, where at each step
in the analysis the union of every possible cluster pair is considered and scored using the
error sum-of-squares criterion. The union getting the lowest error sum-of-squares is then
performed. These steps are repeated until no more pairing is possible. A representation
of the fusions performed in the successive steps is given by a dendrogram. As this method
always ends up with one cluster of all objects, it is actually the dendrogram which points
to the best number of clusters and their contained objects.

3.4 Analysis of RNA Secondary Structure

Today, there are generally two types of approaches to study RNA secondary structures.
First, the single sequence approaches which predict the secondary structure based on
experimentally determined energy parameters. Second, comparative approaches that
try to improve their results by using functionally related sequences. This means that a
researcher who found a new functional RNA in one species has to search for its functional
homolog in other species to be able to infer the common structural features of these.
In my opinion, the real task is to improve the analysis of single sequences as this would
allow for reliable predictions for single unknown sequences. This improvement could (or
should) of course be based on results from comparative studies. In the following sections
| depict the most relevant single sequence approaches of RNA structure analysis. For
comprehensibility reasons and as | do not make use of comparative approaches, | will not
present these.

3.4.1 Structure Prediction based on Dynamic Programming

Dynamic programming (short DP) algorithms are central to computational sequence
analysis. Well known examples are the Needleman-Wunsch algorithm [19] for global
sequence alignment, the Smith-Waterman algorithm [20] for local sequence alignment
and the Nussinov folding algorithm for RNA secondary structure prediction [21]. As all
proper DP algorithms, these algorithms are guaranteed to find the optimal solution for
their underlying scoring scheme, meaning the pairwise sequence alignment with maximal
score and the secondary structure with maximal number of base pairs, respectively. This
expresses that the results of the algorithms are depending very much on their scoring
schemes. The base pair scoring of the Nussinov algorithm is too simplistic to give
accurate structure prediction, since the driving force in structure formation is the loss
of free energy. This loss of free energy depends on the individual bases that form base
pairs as well as on the stacking of base pairs. Regions of unpaired bases implicate in
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most cases a gain in free energy and destabilize the structure. The individual energy
parameters are determined experimentally and get refined from time to time [4, 22].
Altogether they are called the nearest neighbour energy model* and form the scoring
scheme for RNA structure prediction based on free energy minimisation.

A DP algorithm for RNA folding works in two stages. The first part, called the fill algo-
rithm, calculates minimum folding energies for all subwords of the sequence. It starts with
all pentanucleotides® and extends to larger subwords using the specified recurrences. To
prevent exponential explosion, intermediate results are stored in tables and can therefore
be reused in subsequent calculations. The second algorithm, called backtracing, com-
putes the structure attaining minimum free energy by searching systematically through
the matrices of precomputed energies. The task for this algorithm is to rebuild the path
(the sequence of structural elements) that lead to the matrix element with minimum free
energy. An elaborate refinement of this backtracing can be used to additionally derive
suboptimal solutions.

Besides the “energy model”, the results of the structure prediction, especially for the
suboptimal solutions, also depend on the types of structures that are considered by the
algorithm. Three types are known from literature:

Feasible structures: These are all structures that are viable with regard to the energy
model.

Canonical structures: Isolated base pairs, meaning base pairs with no adjacent base
pairs, are generally regarded as biologically less meaningful and can therefore be
neglected without loosing biological relevance.

Saturated structures: A structure is called saturated if all its helices cannot be extended
any further by legal base pairs.

The above distinction of types of structures has minor influence on the minimum free
energy structure but major influence on the suboptimal solutions. For RNA sequences
S, the number of suboptimal structures (or size of the search space) grows exponential
with the length N of s € S [5]. For feasible structures the approximation of the growth
is 2.8N, for canonicals 1.8" and for saturated 1.6"Y. The effect is also shown in table
3.1.

MFOLD

The first DP algorithm based on the nearest neighbour energy model was introduced by
Zuker and Stiegler [24]. It is a traditional DP algorithm, meaning that it is dissected
into a fill and a backtracing stage. This first version was capable of calculating the mfe-
structure only. An improved version, also computing suboptimal solutions was introduced
in [6]. The most recent version of the algorithm [25, 4] is implemented in the MFOLD

1This naming is due to the stacking energies depending on the neighbouring base pairs.
2A hairpin, being the smallest structural element, can be formed by at least five nucleotides (two for the
closing base pair and a minimum of three for the unpaired region).
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Table 3.1: Comparison of the structure space sizes for feasible, canonical and saturated
structures. (a) Spliced Leader RNA from L. collosoma. (b) T. thermophila Group 1
Ribozyme Domain. (c) N. crassa 5S rRNA. Taken from Evers and Giegerich [23]

RNA \ n saturated canonicals feasibles

% mfe: 10% | 20% | all [[ 10% | 20% | all [| 10% | 20% | all
(a) |56 4] 19 2 %100 9] 46 |25%107 9| 49| 6%10%?
(b) |69 6| 22]1.15%10°8 10 168 | 2x10° 10 | 196 | 2.2 10
(c) |40 1 5 1857 1 5 4 222 1 6| 5.5%107

package [26]. The recurrences used in this algorithm reflect the decomposition of the
secondary structure into its elementary parts, namely hairpin loop, stacked pair, left
bulge, right bulge, internal loop, multiloop and external loop. In fact, the algorithm
distinguishes between loops containing 1, 2 or more than 2 base pairs. A hairpin loop
is a 1-loop because of its closing base pair. 2-loops are stacked pair, left bulge, right
bulge and internal loop all possessing a base pair additional to their closing one. A k-loop
(k > 2) is referred to as a multiloop with k stems (one stem containing the closing base
pair and k—1 stems branching out). The 1- and 2-loops find their exact analogon in their
reccurences. The reccurence for a k-loop case is not explicit, as it always decomposes the
loop into a series of bifurcations regardless of the exact number of structural elements in
the multiloop. In the case of a 4-loop (such as in tRNAs, Figure 3.4(a)) this means, that
the (same) multiloop can be decomposed in two ways: 1. stem Il plus (stem Il plus stem
IV), as shown in Figure 3.4(b), 2. (stem Il plus stem Ill) plus stem IV, as shown Figure
3.4(c). When calculating the mfe-structure only, this ambiguity has no disadvantages,
since the minimum is still the minimum. The negative effect of this ambiguity comes
into play when also suboptimal structures are computed, resulting in repeated output of
exactly the same structure. In the case of an tRNA, the algorithm would compute the
cloverleaf structure twice.

An extension to suboptimal folding and a first solution to the problem of repeated
structures was introduced in [6]. The basic idea came with attempts to extend the
algorithm to fold circular RNA. Each base pair (i,j) divides the secondary structure
into an “included fragment” with energy E(/,j) and an “excluded fragment” with energy
E(j, 7). The sum of these folding energies is the minimum free energy E,;, of a structure
containing the base pair (/,j). The minimum of E(i,j) + E(J, i) over all possible base
pairs is the minimum free energy of the circular RNA [27]. In order to get multiple
foldings for a circular RNA within P% of the mfe, it is sufficient to identify those base
pairs (i, ) for which E(i,j)+E(j, i) > (1—P/100)*E i, and subsequently derive the best
structure containing that base pair. To generalise this procedure to linear RNA, the linear
molecule is handled as if it were circular. In addition, loops containing the origin must
be treated as special cases. For example, a hairpin loop containing the origin becomes
two single-stranded regions at the 5'- and 3'-end of the RNA. With these methods it is
possible to derive multiple foldings for one RNA molecule, but the problem of redundant
output remains. For example, each base pair of the mfe-structure generates the mfe-
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Figure 3.4: Decomposition of a multiloop of degree 4, such asin tRNAs. (a) Sketch of a
multiloop of degree 4. The Zuker-Stiegler procedure yields two possible decompositions
((b) and (c)), whereas the Wuchty procedure yields solely the decomposition shown in

(©).
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structure. In order to eliminate this redundancy, the following distance measure dz ke,
was introduced:

i — o

s (3.6)
|Jl —Jz\ .

dzuker(S1,5) = max min max
(i1.1)€s51 (i2,/2) €S2

In words, for each base pair in sy, find the base pair in s, such that the positional difference
is minimal. The positional difference of two base pairs (i, ) and (k, /) is the maximum of
the values of |i— k| and |j—/|. Finally, the actual distance dz e, is the value for the base
pair in s; with maximal positional difference. Based on dz, ke, the algorithm generates
structures so that the distances of all pairs are greater than a preassigned threshold.

Both methods used to compute multiple non-redundant foldings of an RNA are based
on heuristics and hence cannot yield the set of all possible secondary structures. The
necessity for these heuristics mainly arises from the ambiguity of the algorithm. Thus
it seems promising to eliminate this ambiguity, in order to come up with an algorithm
capable of computing all possible secondary structures in a non-redundant way, as it is
described in the following section.

RNAsubopt

The first solution coping with the ambiguity problem of the Zuker-Stiegler algorithm was
published by Wuchty et al. [7]. It is, as well as MFOLD, based on the nearest neighbour
energy model and implemented in the tool RNAsubopt which is part of the Vienna RNA
package [8]. The essential difference to the beforementioned approach is the unique de-
composition of multiloops. The Zuker-Stiegler procedure decomposes a multiloop using
a series of bifurcations where each element can be a bifurcation itself. The Wuchty pro-
cedure treats multiloops in a different way, allowing for the first element of a bifurcation
only stems and no further bifurcation. For the example from above this would result in
a bifurcation into a stem and a subsequent bifurcation of two stems (see Figure 3.4(c)),
being the only possible and therefore unique decomposition.

This unique decomposition of multiloops allows the systematic and non-redundant
generation of suboptimal structures. The backtracing of suboptimal solutions is per-
formed in the way that partial structures are refined by exactly reversing the optimisation
procedure used to generate structures from smaller substructures. The exact procedure
for the suboptimal backtrack is described in [7].

Probabilistic RNA secondary structure prediction — The partition function

In equilibrium, the individual molecules of an RNA population of the same species do not
occur all with the same structure. Most of them are in a state close to the mfe, but some
are in different states, or in other words attain alternative secondary structures. The set
of these states is often referred to as the ensemble of structures in equilibrium. Of main
interest for this ensemble is, which of its states are the ones being occupied most of
the time and by most of the individual molecules, or in other words the probabilities of
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the states and the state which has the highest probability. McCaskill [28] introduced the
use of the partition function to address this problem. In general, the partition function
provides a measure of the total number of states weighted by their individual energy at
a particular temperature. For an RNA sequence and the set S of all possible structures
for this sequence it is defined as follows:

Q=) ew (3.7)

where E; is the energy of structure j, R the universal gas constant (0.00198717 kcal/K)
and T the temperature in Kelvin. In words, this is the sum of Boltzmann weighted
energies of all structures. The probability P of a certain secondary structure s is defined
as:

—Es
€ RT

Q

where E; is the energy of structure s in kcal/mol. A general feature of this approach
is that for long sequences the probability of an individual structure gets very small.
For the leader of HIV-2 genome (546 nt) the probability for the mfe-structure in the
ensemble is 8.6408x1071°. The computation of the partition function is based on similar
recurrences like those for free energy minimisation. Since the partition function is a sum
over all possible structures, it is essential for its correct calculation that the recurrences
are unambiguous. An implementation is available in RNAfold from the Vienna RNA
package. With this implementation one has to bear in mind, that for each outgoing stem
in the external or a multiple loop, a dangling energy contribution is added regardless of
whether the neighbouring bases are actually paired or unpaired. The authors state that
this can be seen as an approximation to coaxial stacking, whose energy contribution is in
general higher than the summed dangling energies. In addition to the partition function
and the probability of an individual structure, the algorithm is capable of computing the
probability of base pairing for each feasible base pair.

P(s) = (3.8)

SFOLD

The partition function cannot only be used to calculate the probability of individual struc-
tures or base pairs. Ding and Lawrence [9] introduced a statistical sampling algorithm
which is implemented in the tool SFOLD. In each step of the recursive backtracing pro-
cedure, base pairs and the structural element they belong to are sampled according to
their probability, obtained from the partition function calculation in the forward step of
the algorithm. Features of the sampling procedure are, that each run is likely to produce
a different sample and that the same structure can be sampled multiple times, where
the mfe-structure is the most frequent structure, as it has the highest probability. Note,
that the mfe-structure is not guaranteed to be present in the sample, especially for long
sequences. The major problem, in my point of view, is that the algorithm splits the struc-
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ture sample into 10 clusters based on energy values. For this purpose the free energy
range covering all structures in the sample is divided into ten equally spaced intervals.
For each free energy interval, the structure with the lowest free energy is selected as the
representative. A consequence could be that the representative structure is from another
family than all other sampled structures in the interval.

Algebraic Dynamic Programming

The previous sections contained information about individual tools for RNA structure
analysis. In this section | do not describe a tool, but a method for the rational design of
tools that use dynamic programming. The central idea is to describe the structure space
of RNA in an abstract way and to use this as the basis for its analysis. A program that
was developed with this method is RNAshapes, which will be presented in Chapter 5.

The main part of developing a DP algorithm is the design of recurrences that express
relations between tables holding intermediate results. These recurrences are difficult to
explain, hard to implement, susceptible to subscript errors and almost impossible to de-
bug: slight errors give rise to suboptimal solutions, which are very laborious to detect.
Additionally, no general guidance in the development of DP algorithms is available. Clas-
sical DP algorithms perform two tasks in an interleaved fashion: First they construct the
search space, or in other words, the set of all possible answers. Second they evaluate
these answers and make choices according to some optimality criterion, e.g. minimum
free energy. This interleaving is essential to prevent combinatorial explosion, but the
result is that all information on the problem, which is addressed with this algorithm, is
also hidden in its recurrences. In the case of RNA folding such hidden information are
the description of the folding space, the objective function (e.g. minimisation) and the
scoring.

Algebraic Dynamic Programming (ADP) is a method for algorithm development, de-
signed to alleviate this situation, and provides a framework to design, tune and test DP
algorithms on an abstract level. ADP enables the separate description of the search
space and the evaluation, shifting the fusioning task from the programmer to the frame-
work. In the following | will give a very brief overview of the essential parts of an ADP
algorithm, details about ADP can be found in [29, 30, 31, 32].

In ADP the search space is described by a grammar, which can be seen as the device
that derives all candidate solutions that are to be evaluated. The evaluation and the
choice are incorporated in an evaluation algebra, represented as a set of formulas. The
following simplistic example will give the reader an impression on how a grammar and
an evaluation algebra can be designed: Think of the early approaches to RNA folding by
Nussinov. The building blocks of RNA are hairpin loops, stacked base pairs, left bulges,
right bulges, internal loops and splits for simplicity. A hairpin loop consists of a closing
base pair and unpaired bases in between, a stacked base pair of a base pair and some
structural element in between the bases of the base pair. Left bulges, right bulges and
internal loops have a closing base pair and unpaired bases on either the left, the right, or
both sides. A split is an element that concatenates two structural elements. The ADP
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framework provides a notation using ||| ("or’) to separate alternative rules, <<< ("apply
to") to denote the application of some operator to its arguments which are separated
by ~~~ ('next to’) and finally ... (‘choose’) reflecting the application of the choice
function. Here is the resulting grammar:

folding_grammar = axiom structure where

structure = hairpin <<< base "7~ region ~~" base ||
st_pair <<< base ~7" structure ~~~ base ||
1_bulge <<< base "7~ region ~~" structure 7" base ||
r_bulge <<< base "7~ structure 77 region "~~~ base ||
in_loop <<< base ~~~ region ~~~ structure ~~~ region ~~~ base |||
split <<< structure T structure [11
unpair <<< base i structure [1]
nil <<< empty ... f_choice

Note, that the split production in this example gives rise to the same ambiguity as in
the Zuker-Stiegler algorithm. The next step is to design an evaluation algebra that holds
for each operator of the grammar a function how to score it and the choice function
reflecting the optimality criterion. In order to stay simple, the scoring is based on base
pairs and the choice function will be maximum to compute the structure with maximum
base pairs. The resulting evaluation algebra is:

hairpin basel region base2 = 1

st_pair basel structure base2 = 1 + structure

1_bulge basel region structure base2 = 1 + structure

r_bulge basel structure region base2 = 1 + structure

in_loop basel region structure region base2 = 1 + structure

split structurel structure?2 = structurel + structure2
unpair base structure = structure

nil = 0

f_choice = maximum

The above combination of grammar and evaluation algebra computes the structure
with the maximum number of base pairs in a recursive way. This means that it would
compute the same partial structure each time it is used and does not make use of
precomputed and stored solutions. Tabulation can be added by simply assigning the
keyword tabulated to each element that should be tabulated. A further drawback
is, that neither the grammar nor the algebra checks for correct base pairing (A-U,C-
G,G-U). For this purpose the ADP framework provides the with operator which is used
to apply predicates. In order to ensure that the two bases in the hairpin, st_pair,
1_bulge, r_bulge and in_loop productions can actually form a base pair it is sufficient
to apply the predicate with basepairing where appropriate. Adding tabulation and
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base pair checking results in the following grammar:

folding_grammar = axiom structure where
structure = tabulated(

(hairpin <<< base "™~ region ~~" base ||
st_pair <<< base "7~ structure ~~"~ base ||
1_bulge <<< base ~~~ region "~ structure ~~~ base ||
r_bulge <<< base ~~~ structure ~~~ region ~~~ base ||
in_loop <<< base 777 region "7 structure 77 region 77 base

) ’with’ basepairing |||
split <<« structure e structure [11
unpair <<< base e structure [1]
nil <<< empty ) ... f_choice

basepairing i j = basepair seq!i seq!j

basepair ’a’ ’u’ = TRUE
basepair ’u’ ’a’ = TRUE
basepair ’c’ ’g’ = TRUE
basepair ’g’ ’c’ = TRUE
basepair ’u’ ’g’ = TRUE
basepair ’g’ ’u’ = TRUE
basepair _ _ = FALSE
This example expresses the ease-of-use once being familiar with the ADP notation. It
is straightforward to implement RNA folding based on free energy minimisation, using the
nearest neighbour energy model. The corresponding grammar and evaluation algebras
for free energy minimisation, pretty printing of structures as “Vienna"-strings, counting

structures and more are given in Appendix B.

3.4.2 Other Approaches to RNA Secondary Structure Prediction

The DP approaches described above have in common that they will always find the
overall optimal solution, i.e. the mfe-structure, which is (very) often not the native in vivo
structure. A reason for this might be, that during structure formation intermediate states
appear which are energetically stable enough to prevent their melting. In other words, the
native structure is determined by a specific folding pathway which captures the molecule
in a local minimum [33]. These kinetic effects do not only lead to structures different
from the mfe, but also play an important role for ribozyme activity and conformational
switching.

The algorithms for simulating RNA folding pathways usually consider the folding as a
stepwise addition or removal of stems, starting from the most favourable, or “nucleation
points”. In the simplest case, the most stable stem from those compatible with previously
formed stems is added at each step of the procedure, such as presented by Nussinov and
Pieczenik [34], Martinez [35], Abrahams et al. [36]. The main disadvantage of these
algorithms is, that they do not consider deletion of stems when other pairings become
more favourable. In the following | describe more elaborate approaches to kinetic folding.
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STAR

Gultyaev et al. [37] proposed a genetic algorithm (GA) for secondary structure prediction
as part of the STAR package. GAs solve optimisation problems by simulating the process
of natural evolution. In short, after generating an initial population of solutions, a GA
produces some new solutions by randomly changing (GA-Mutation) the previous ones and
combining certain features of different parental solutions (GA-Crossover). Subsequently,
a new population is generated based on selection according to a “fitness” criterion. ltera-
tion of this procedure eventually yields a solution with a high level of fitness. In the case
of RNA secondary structure, the GA-Mutations are addition and removal of stems and
GA-Crossover is recombination between structures, resulting in a structure that contains
some stems from one structure and other stems from another structure. The “fitness”
of an individual structure is calculated as the difference between its energy and that of
the best structure, divided by the number of stems that are present only in one of these
solutions. In addition to folding entire RNA molecules, the authors present a procedure
for the simulation of folding during RNA synthesis. This is achieved by restricting the
folding at every GA iteration to a growing part at the 5" end.

GArna

The program GArna by Titov et al. [38] is rather similar to the previous approach. It
makes use of the same genetic operations. The major difference is the fitness function.
The probability of eliminating structure / from the population is calculated according to
the following equation:

M * eAETé

N .
> ent
i=1

where E; is its free energy. Parameters M and AE have the following meaning: M is the
expected number of structures eliminated in one generation, AE is the effective energetic
resolution, that is, the difference in energy that makes the fitness of two structures differ
e-fold.

Pi . (3.9)

Kinefold

Another approach allowing for both addition and disruption of stems was proposed by
Isambert and Siggia [39]. It is based on a kinetic Monte Carlo algorithm, where each step
involves making or breaking a stem. The transition rates for these events are computed
based on entropic and free energy terms. This is done for each new structure along the
folding path. The actual transition is selected at random with a probability proportional
to its rate. lteration of this procedure is performed until the system appears stationary.
This approach as well as the approach by Gultyaev et al. is capable of predicting certain
kinds of pseudoknots, e.g. those of the H-type.
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Kinfold

An approach going into more structural detail is kinfold by Flamm et al. [40], as it
considers opening and closing of base pairs as the elementary transitions. This means
that all suboptimal structures can be reached and, hence, the complete structure space
is considered. kinfold simulates a stochastic process based on a so called “move set”
which defines the elementary transitions a secondary structure can perform when in
solution. This “move set” contains opening and closing of an individual base pair, as well
as the so called “shift move” which allows the changing of one partner in a base pair.
The kinfold approach models RNA folding as a Markov process where each transition
(from structure S; to S;) occurs dependent on a transition rate k;;. This rate is defined

56,5
as k,'j = e2rT , Where 5G,',j = Es’. — Esj [41]

3.4.3 Structure Space Analysis

In this section | want to give detailed information on existing approaches for studying
the structure space of RNA. Among these are tools to deduce conformational switching,
structural well-definedness and other properties.

Structural well-definedness: Approach by Wuchty et al.

Based on the algorithm for complete suboptimal folding Wuchty et al. [7] describe three
indicators to capture the definition of the mfe-structure: (a) mean gap energy, that
is, the average energy difference of structures in the vicinity of the global minimum;
(b) Boltzmann weighted mean base pair distance; and (c) topological diversity, that
is, the number of different coarse-grained structures around the ground state. These
were used to assess the influence of base modification on structural well-definedness in
tRNA sequences. Therefore natural tRNA sequences (with modifications) were compared
to modified and unmodified artificial sequences having the cloverleaf structure as their
optimum. Their study showed that the base pair distance is the best indicator for how well
the ground state is defined. Furthermore, it arose that base modification considerably
enhances the definition of the mfe-structure, as the unmodified sequences showed minor
determination of the ground state than modified sequences. Additionally, the position of
the modifications in the sequence was shown to influence structural definition, as ground
states of the natural tRNA sequences were better defined as those of the modified
artificial sequences.

The analyses relied on the comparison of different sets of sequences and it was able to
show that these sets show different behaviour for the chosen indicator. Unfortunately,
this indicator cannot be used for the classification of individual sequences, as the sets of
sequences could not be completely separated from each other, at least for the chosen
examples.
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Structural well-definedness: Approach by Kitagawa et al.

Another method to deduce structural well-definedness of the mfe-structure is proposed
in [10]. Central to this is the introduction of a new distance measure for secondary
structures, termed “tree representation distance” (TRD). The TRD uses a representation
of RNA secondary structure which codes the nesting of the structural elements by the
number of outgoing branches for each element, e.g. the structure shown in Figure 3.1(b)
is represented as “1200" (1 stem going out of the external loop, 2 stems branching out
of the multiloop and two times 0 for the two hairpin loops). The distance between
two structures in this representation is the sum of the differences at each position of the
optimal alignment, i.e. the alignment minimising this sum. The complete approach works
as follows: First, a set of suboptimal structures is calculated using MFOLD. Second, each
structure of this set is compared to the mfe-structure. Thereby, the energy difference
AE and the TRD is calculated and plotted in a TRD,AE coordinate system. In the
case of a well-defined structure the points in the plot mainly appear above the bisecting
line which is termed “uni-valley” profile. In the other case on or more additional valleys
appear, meaning that structures exist which have a low TRD and a high AE. An outcome
like this leads to the classification as a “multi-valley” profile. Based on this method it
was shown that the human snRNAs U2, U3, U5, U6 have a “uni-valley” and U1l has a
“multi-valley” profile, which is in correspondence to experimental data.

Prediction of Conformational Switching using SFOLD

The statistical sampling procedure implemented in SFOLD computes a subset of all sub-
optimal structures according to the equilibrium distribution. For a conformational switch
this means that structures from two valleys (corresponding to the alternative positions
of the switch) should be sampled. Ding and Lawrence [9] used the Spliced Leader of
Leptomonas collosoma [42] to exemplify the use of SFOLD for this purpose. In their
presentation they describe that they manually assigned 100 sampled structures to two
equivalence classes and that these classes are in terms of structure rather dissimilar.
The representative, i.e. energetic best, structures of these classes could be shown to
correspond to the experimentally deduced ones. In my point of view this simple example
is not sufficient to show the applicability of SFOLD to reveal conformational switching.
First of all, the near-optimal structure space (e.g. up to 3 kcal/mol above the mfe) gen-
erated with RNAsubopt holds only a small number of structures (~ 50) and is therefore
much easier to handle, while delivering the same results. Second, a manual assignment
to equivalence classes is hard to trust, especially when knowing the number of classes
you should get. The last point | want to mention is that this approach is only capable
of predicting the alternating conformations and not the property of serving as a confor-
mational switch, as this would at least require to check for an energy barrier separating
the two conformations.
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barriers

The tool barriers [12] analyses the complete or part of the folding space of an RNA to
find local minima and saddle points connecting these. As input it takes the energy sorted
list of suboptimal structures generated by RNAsubopt. During the calculation two lists of
valleys are needed, an active and an inactive one. The global minimum x; belongs to the
first active valley V4, while the list of inactive valleys is empty initially. Going through the
energy-sorted list of secondary structures in increasing order there are three possibilities
for each structure x, at step k:

e X, has one or more neighbours in exactly one of the active valleys V;. In this case
Xy belongs to V.

e X, has no neighbours in either the active or the inactive valleys that have been
found so far. Then X, is a local minimum and determines a new active valley V.

e X, has neighbours in more than one active valley, e.g. {Vi1; Via;...; Vig}. In that case
Xk IS a saddle point connecting these local minima. xi is added to the valley with
the lowest energy (Vi1). All structures from the valleys Viy;...; Vi are then copied
to Vi; while the status of the valleys Vjy; ...; Viq is changed from active to inactive.
As a result, a new structure having neighbours only in (the inactive) valley Vi, is
assigned to (the active) valley Vi;.

This algorithm can be imagined as flooding the structure landscape. Think of a simple
landscape with global minimum A and one local minimum B. The algorithm starts and
sees structures with neighbours only in A, which are added to V. As soon as the energy
of the local minimum B is reached a new active valley Vg is opened. The following
structures are assigned to either V, or Vg, until a structure is seen that has neighbours
in both. This is the saddle point connecting A and B and it is added to V/,, as this one
achieves lower energy. The two valleys are merged into the active valley V4, and valley
Vi gets inactive.

The program barriers does not only compute local minima and saddle points, but
also generates the so called “barrier tree” as a visualisation of the landscape. In the
barrier tree the local minima are leaves and saddle points are nodes connecting either
two local minima, a local minimum and a saddle point, or two saddle points. The length
of the edges corresponds to the energy difference between the connected elements.

Applying barriers to a conformational switch (Spliced Leader of L. collosoma), re-
veals a barrier tree showing two major valleys connected by a saddle point with very high
energy (see Figure 3.5), meaning that the minima of these valleys are separated by a
very large energy barrier, such as it is expected for a conformational switch.

The actual implementation requires to store all previously read conformations in mem-
ory which causes the use of barriers to be limited to (partial) landscapes of moderate
size, e.g. ~ 20 million structures. This is enough to analyse the structure space with
negative energy of the Spliced Leader, but is insufficient for longer sequences.
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CHAPTER 4

Prediction of Alternating RNA Secondary
Structures

The property of an RNA to change between two different conformations is known as
conformational switching. As this property is hidden in the structure space, it cannot
be detected based on the mfe-structure only. Therefore, it is necessary to take also
suboptimal structures into account. An approach to the elucidation of conformational
switches based on stochastic sampling of suboptimal structures was recently presented
by Ding and Lawrence [9] and is described in Section 3.4.1. For the recently discovered
riboswitches (described below) Bengert and Dandekar [43] present a program named
Riboswitch finder, which is intended to search for riboswitches in a given sequence. It
makes use of combined sequence and structure motifs for the B.subtilis-like riboswitches,
but does not check for alternating conformations. An algorithm for the design of multi-
stable RNA sequences by combinatorial optimisation was described in Flamm et al. [44].
More recently Barash [45] presented an approach which focuses on systems that initially
reside in a stable state. The algorithm uses a local procedure to predict which mutation,
given a stable wildtype structure as input, can be introduced in order to create the
optimal bi-stable RNA. In the following sections | will describe the paRNAss approach for
the prediction of alternating RNA secondary structures, of which the idea was developed
by Marc Rehmsmeier [17]. A first version of paRNAss was implemented by Dirk Haase
and presented in [11]. | used this version as a starting point, incorporated new algorithms
to improve its performance and evaluated the approach to show its applicability.

4.1 Conformational Switching in RNA

Conformational RNA switches have been proven or are suspected to be involved in several
important processes: regulation of gene expression in prokaryotes by attenuation [46],
translational regulation of E. coli ribosomal protein S15 [47], regulation of self-cleavage
activity of Hepatitis Delta Virus [48], translocation process in protein biosynthesis [49],
trans splicing in trypanosomes [42] and splicing of pre-mRNA by spliceosomes [50]. Re-
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cently, a new class of conformational switches, the so called riboswitches, has been
described [51, 52, 53]. Members of this class are characterised as mMRNAs that possess
an aptamer in the 5'-UTR. Aptamers are RNA elements which directly bind a molecule.
In case of riboswitches these aptamers bind a metabolite of the biosynthetic pathway in
which the protein, the mRNA encodes, is involved. The binding of the metabolite to the
aptamer induces a structural rearrangement which alters translational efficiency.

To give an idea about conformational switching | will explain the mechanism of the
Attenuator of the pheS-pheT-Operon of Escherichia coli in more detail: The operon
codes for two subunits of an enzyme of the phenylalanine-tRNA biosynthetic pathway.
The Attenuator is an element in the coding part of the mRNA of this operon and contains
five codons for phenylalanine, three of which are consecutive. The secondary structure
of the Attenuator comprises a stable hairpin at its 3'-end, which leads to termination of
translation. If the amount of tRNA-phe is high the ribosome reads fast over the three
adjacent phe-codons and translation gets terminated by the “terminator” hairpin (Figure
4.1(b)). In the case of phenylalanine starvation the ribosome is stalled at the phe-
codons allowing for a structural rearrangement which eliminates the terminator hairpin
and ,thereby, leads to the translation of the entire operon, enabling biosynthesis of
phenylalanine-tRNA (Figure 4.1(c)).

4.2 The paRNAss Approach

paRNAss is a computational approach to the prediction of conformational switching in
RNA which makes use of RNA secondary structure prediction and pairwise structure
comparison. It is based on the following hypotheses about the structure space of a
conformational switch which is depicted in Figure 4.2:

1. There must be a local minimum in the structure space close (in terms of energy)
to the overall energetic minimum. Their structures must be significantly different,
in order to represent two positions of the switch with different regulatory function.

2. The structures residing in these minima must be clearly separated by an energy bar-
rier to ensure that each conformation is stable and switching can only be triggered
by external events.

3. The structure space must not provide another local minimum close to the overall
energetic minimum, as we assume that the RNA automatically finds the alternative
position once the change is triggered.

The folding space can contain tens or hundreds of local minima. Only by checking all
three conditions one achieves reliable predictions. The application of the first and second
condition filters out RNAs whose energy landscape provides only one valley, whereas the
third condition rejects those with three or more.
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(a) Transcription of leader. (b) Termination at high level of phe-
tRNA.

1?10 ph IE\

(c) Readthrough if ribosome gets stalled.

Figure 4.1: Mechanism of attenuation. (a) Transcription of leader peptide. (b) High
level of phe-tRNA enables fast processing of phe-codons. Terminator hairpin persists and
translation stops. (c) Low level of phe-tRNA stalls ribosome at the three consecutive phe-
codons. This delay allows for a structural rearrangement which breaks up the terminator
hairpin and enables readthrough into coding region.
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Figure 4.2: Sketch of the structure space of a conformational switch. The structure
space holds two valleys that are separated by a mountain representing the energy barrier.

4.3 A Run Through a paRNAss Experiment

The paRNAss approach takes four parameters: Parameter P gives the energy range
in kcal/mol (default: 3). Parameter F gives the kind of structures, namely feasibles or
canonicals (probably refolded), that are to be considered by the folding program (default:
canonicals). The temperature in °C is given via Parameter T (default: 37). Parameter
N gives the maximal number of structures that should be analysed (default: 50).

A paRNAss experiment takes five steps (examples mentioned below refer to the Spliced
Leader of L. collosoma):

Step 1: Sampling the structure space Using an RNA folding program, a sample set
S = {s1,..,s,} from the folding space of the target RNA is drawn. In the case that the
number of structures under the given values for P, F and T exceeds N, N of them are
chosen equally distributed to form the sample set. If Hypotheses 1 and 3 are fulfilled,
this set should contain members of two families of structures. In the other case, this
set may contain one or more than two families, which leads to the classification as a
non-switch in the subsequent steps.

Step 2: Pairwise distance calculation For all s;,5; € S, their pairwise distance
ds(si,s;) is calculated. This is done for the energy barrier distance dg and at least
one other distance measure d, on the structure space, and the results are plotted in
a dg, d> coordinate system. In fact the plot holds two points for each comparison as
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actually the values of df, (see Eq. 3.4) are plotted, which provides additional informa-
tion. If both elements in a pair are from the same structure family, their distance should
be small. Conversely, if both are from different families, their distance should be large.
Thus, the plotted distance diagram should exhibit two clouds of points, one in the lower
left, one in the upper right (Figure 4.3(a)). If this is not the case the diagram could look
as shown in Figure 4.3(b).

Step 3: Clustering Using a standard clustering algorithm S is split into two disjoint
clusters C; and C»,, based on the pairwise distances under either dg; or do.

Step 4: Consensus structure calculation For each cluster C;, a consensus structure
¢ is derived by first taking all base pairs present in the majority of the members of C;,
and then reapplying the folding algorithm with these base pairs fixed. Figure 4.4 shows
the consensus structures c;, ¢, derived for the example.

Step 5: Consensus structure validation For all 5; € S the energy barrier distances
des (s, ¢1) and dgs(s;, ¢) are calculated and plotted as points in a ¢y, ¢, coordinate system.
Again, d, instead of dg is plotted. If Hypothesis 2 is fulfilled, the ¢; family of sample
structures will show up as a cloud of points near the y-axis, the ¢ family near the x-axis,
like shown in Figure 4.5. If not, either a significant number of points is near the bisecting
line or more than two separate clouds appear. To ensure that the consensus structures
do not represent the two possible un-knotted projections of a pseudoknot structure, the
pseudoknot measure (pkMeasure) for the consensus structures is calculated. For the
example this results in pkMeasure = 14.

If the outcome of steps 1 - 5 is as described above, | predict the possibility of con-
formational switching between structures ¢; and ¢,. Together, they are called predicted
alternating RNA conformations (parnac). This is as far as one can go in silico; the final
proof for the predicted conformational switching has to be achieved experimentally.

4.4 Recent Improvements of paRNAss

Due to insufficient algorithms, for the pairwise distance calculation and especially for
generating the structure sample, the results of the first version of paRNAss were not as
expected. The following improvements and the availability of more computational power
increased the reliability and speed of this strategy and made possible the evaluation
procedure described in Section 4.6.

4.4.1 Energy Model

The use of an up to date energy model [4, 54] is essential to obtain biologically rele-
vant foldings. paRNAss now takes advantage of the newest versions of RNAsubopt and
RNAfold (Vienna RNA package [8], Version 1.4).
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Figure 4.3: Distance plots for a switch and a non-switch. Each “star” corresponds to
a pair of structures. Plot (a) shows two well separated clouds of points, whereas the
points are widely spread in plot (b).
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(b) o

Figure 4.4: Predicted conformations for Spliced Leader of L. collosoma.
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Figure 4.5: The validation plot shows the distances of all sampled structures to the two
consensus structures ¢; and ¢. The pseudoknot measure is 14.
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4.4.2 Restricting the Search Space to Canonical Structures

Due to the calculation of pairwise distances, the operating time of paRNAss is quadratic in
the size of the sample set. To increase the performance it is therefore favourable to have
a smaller sample set. This is achieved by calculating only canonical structures, meaning
structures without isolated (unstacked) base pairs. Approximately, this restriction leads
to a reduction in the size of the search space from 2.8" to 1.8N, where N is the sequence
length. Furthermore this restriction does not only increase the performance but also the
distinctive power, as in some cases the occurrence of isolated base pairs in mainly unpaired
regions has a negative effect on the distance measures, which may imply uncertainties
in the interpretation of the distance plots.

4.4.3 Refolding the Structure Sample — Local Minima

The structures one is interested in are the local minima of the structure space. A local
minimum is a structure which has the lowest free energy with respect to its neighbouring
structures. Therefore, the set of local minima depends on the definition of neighbour-
hood, which is normally the difference in only one base pair. As mentioned before, com-
plete suboptimal folding produces a large number of structures and also a large number
of neighbouring structures one is usually not interested in. A brute force approach to
the elimination of these unwanted structures is as follows: For each suboptimal structure
produced by RNAsubopt use this as a constraint for constrained folding using RNAfold
-C. If the newly predicted structure is different from the original input, RNAfold found
possibilities to optimise the structure and therefore the original structure is deleted from
the structure sample.

4.4.4 An Improved Distance Measure based on RNA Secondary
Structure Alignment

Good performance of the distance measure is essential for the paRNAss approach. Many
of the commonly used methods are not free from artefacts. Recently, a promising
distance measure dr,, based on tree alignments has become available, implemented in
the tool RNAforester (see 3.2.3). While paRNAss still provides other distance measures,
| now prefer dry, .

4.5 Applications

Data-mining the literature delivered information on 23 known structural switches in RNA,
two of which are described as tertiary structural switches. For the remaining 21 se-
quences, | extracted the part containing the switch and analysed it to test paRNAss on
true positive and false negative predictions. The parameters were adapted to get best
possible results. For readability reasons | will give detailed information of the analyses
for six published switches in this section, the remaining can be found in Appendix A.
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4.5.1 Attenuator

Function The mode of action of the Attenuator is described in detail in Section 4.1.
Just as a quick reminder: The Attenuator is a regulatory element in the leader of the
pheS-pheT-operon of E.coli. It can switch between a translational active and an inactive
conformation depending on the concentration of phe-tRNA.

Parameters

e Energy range: 2.4kcal/mol
e Search space: canonicals

e Temperature: 37 °C

e Max. Structures: 50

Pairwise Distance Calculation The pairwise distance calculations based on d,, and
d- delivered the results shown in Figure 4.6. For both distance measures the distance
plots show three clouds of points, of which the two in the lower left part of the plot are
separated mainly by the energy barrier distance, while showing relatively low distances
for dup and drp. A look at the list of analysed suboptimal structures (data not shown)
reveals, that this is due to the existence of one structure showing slight variations in the
sense that it carries a hairpin comprising the same sequence but with different base pairs.
Due to these facts it is reasonable to regard the two clouds in the lower left as one. For
this reason the distance plots imply a conformational switch.

Consensus structures Clustering based on d,,, drn and dg and subsequent consensus
structure calculation resulted in the conformations shown in Figure 4.7, which are the
same for all distance measures. These conformations are in correspondence with the
experimental results, as only ¢; carries the terminator hairpin at its 3'-end. Additionally,
c1 has a lower free energy (-21.2 kcal/mol) than ¢, (-20.93 kcal/mol) which expresses
that the attenuator is normally in the termination conformation and has to switch into
the readthrough conformation. In order to further validate the consensus structures the
usual validation process of paRNAss was performed.

Consensus structure validation The validation plot in Figure 4.8 shows three clouds,
which normally leads to classification as a non-switch. As already mentioned above, one
structure in the sample shows slight differences which has a reasonable impact on dg,
and it is again this structure which causes the two points near the bisecting line. With
this extra knowledge at hand it is sensible to classify the result of the analysis as positive,
meaning that the switching property of the Attenuator was successfully detected with
the help of paRNAss. The calculation of pkMeasure resulted in 23 which supports the
correct prediction. A fact that is also expressed by this analysis is, that minor structural
differences may lead to uncertainties in the interpretation of the distance and validation
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(@) ¢ (b) ¢

Figure 4.7: Consensus structures for Attenuator based on d,,, drp and dgs.

plots. In such cases it is a good idea to take a look at the sampled structures to get an
idea what raises the problem.

4.5.2 Spliced Leader

Function The Spliced Leader was the first known conformational switch, which was
also the reason for me to choose it as an example in the description of the paRNAss
approach. Here, | want to give a more detailed description and analysis of this RNA:
In general pre-mRNA splicing is a process by which introns are excised and the exons
are then ligated to form the mature transcript. This process is called cis splicing. In
Trypanosomes and Nematodes also a trans splicing mechanism is known, which involves
the transfer of a 5’ exon from a short Spliced Leader transcript onto a preexisting mRNA
[65, 56, 57]. This addition serves to separate polycistronic transcripts into individual
mRNAs [58]. The actual functions of the alternate conformations of the Spliced Leader
are yet to be revealed.

Parameters

e Energy range: 2.9kcal/mol
e Search space: canonicals
e Temperature: 37 °C

e Max. Structures: 50
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Validation of clustering results of attenuator
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Figure 4.8: Validation plot for pheS-pheT-Attenuator.

Pairwise Distance Calculation Computation and plotting of the pairwise distances
for dyp, drp and dg; gave the distance plots shown in Figure 4.9. The plots show two
clouds of points that are reasonably separated, especially in the plot for d,,. The poor
performance of d;,, in this case may be due to the fact that all structures in the sample
comprise only one but not the same hairpin. One part of the structure sample has a
hairpin comprising nearly the complete sequence, while in the other part the hairpin is
smaller and shifted towards the 3'-end.

Consensus structures Despite the poor performance of d;., | used it as well as d,,
and dg for the clustering and consensus calculation step of paRNAss. Figure 4.10 depicts
the predicted consensus structures (¢; and ¢,). They show good correspondence to the
experimentally verified structures (S; and S,, see Figure 4.11). The only difference is
the missing small hairpin at the 5'-end of ¢,. The reason for this is, that this hairpin is
unstable in terms of energy, i.e. it has positive energy of ~ 2 kcal/mol, which prevents
its prediction when reapplying the folding algorithm. Although this is enough evidence
to substantiate that paRNAss succeeded for the Spliced Leader, a validation is still of
interest. Since the functions of the alternating conformations are unknown, there remain
some doubts on the switching nature of this RNA.

Consensus structure validation Since the analyses for the different distance measures
all delivered the same results, the validation has to be performed just once. The out-
come is shown in the validation plot in Figure 4.12 and confirms the prediction as a
conformational switch. The pkMeasure of the consensus structures is 14.
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(b) o

Figure 4.10: Consensus structures for Spliced Leader based on d, drpp and dgs.

(b) S2

Figure 4.11: Experimentally verified structures (S; and S») for Spliced Leader.



Prediction of Alternating RNA Secondary Structures 47

Validation of clustering results of spliced leader

14 |>§K Iy | | | | A

12_%*%%5% ﬁé* x

°

=

=

[}

o

=3

N 10%— X -

[}

pust

2 s- :

>

=

7 6 — -

o

-

8 4- -

e

©

g 2

= - X
K K

m X

L Ol_ | | | | |%%%|%| -

0 2 4 6 8 10 12 14 16
EB distance to structure 1 [kcal/mol]

(@) dwo

Figure 4.12: Validation plot for Spliced Leader.

4.5.3 Tetrahymena group | intron

Function The maturation of pre-RNA involves the excision of introns. In general the
excision of introns is performed by small nuclear ribonucleoproteins (snRNPs), such as
in MRNA splicing. In the case of pre-rRNA the splicing occurs in the absence of any
proteins and could be shown to be performed by the introns themselves. The best charac-
terised member of these self-splicing group | introns is that of Tetrahymena thermophila.
Recognition of the 5’ splice site requires base pairing between nucleotides at the end of
the 5" exon and the internal guide sequence (IGS) of the intron. The P1 splice site helix
docks into a cleft in the catalytic core of the intron. In pre-rRNAs, containing natural
26S rRNA exon sequences, splice site recognition is inhibited by an alternative hairpin,
called P(-1), that is conserved in the mature 26S rRNA. The 3’ side of P(-1) involves
the same nucleotides of the 5’ exon that also base pair with the IGS. As a result, P(-1)
directly competes with formation of the P1 splice site helix. This leads to two alternative
pre-rRNA conformations: an inactive form that contains P(-1), and an active form that
includes P1 and is competent to self-splice [59].

Parameters

e Energy range: 1.6kcal/mol
e Search space: canonicals
e Temperature: 37 °C

e Max. Structures: 50
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Pairwise Distance Calculation In case of the Tetrahymena group | intron, paRNAss
produced the distance plots displayed in Figure 4.13. Both plots show two clusters of
points which are well separated, as it is expected for such an RNA.

Consensus structures The clustering step was performed for all three distance mea-
sures. The subsequent calculation of the consensus structures lead in all three cases to
the same two conformations shown in Figure 4.14. The differences between structures
¢; and ¢, are mainly at the 3'-end, where either one or three hairpins are present. This
resembles the existence of either the P1 (active) or the P(-1) (inactive) hairpin. The
correct assignment of the P1 and the P(-1) hairpins to the consensus structures is rather
subtle, as | could not find a structure model which also gives the sequence positions of
these hairpins. For this reason it is essential to perform the validation step.

Consensus structure validation Pairwise comparison of ¢; and ¢ to all structures in
the sample resulted in a validation plot (see Figure 4.15) holding two reasonably separated
clouds of points. Combination into a pseudoknot is unlikely as pkMeasure equals 34.
Together with the distance plots this validation approves the switching property of the
tetrahymena group | intron.

4.5.4 HIV-1 leader

Function The full-length HIV-1 RNA serves both as messenger RNA (mRNA) and
as the viral genome. The untranslated leader of this RNA carries several regulatory
elements. Their regulatory functions can be roughly subdivided into two groups: reg-
ulation of gene expression (transcription, translation, etc.) and virion-associated func-
tions (dimerization, reverse transcription, etc.). Laborious experiments by Huthoff and
Berkhout [60] showed that this dual nature goes parallel with two alternating conforma-
tions, a branched structure (S,) and a more stable structure (S;) which mainly consists
of two adjacent helices.

Parameters

e Energy range: 3kcal/mol

e Search space: canonicals (refolded)
e Temperature: 37 °C

e Max. Structures: 100

Pairwise Distance Calculation Pairwise comparison of all structures in the sample
and generation of the distance plots shown in Figure 4.16 reveals the existence of two
structurally dissimilar families in the sample. They are well separated in terms of structure
(for dyp and dr.) as well as in terms of energy barrier.
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Figure 4.14: Consensus structures for tetrahymena group | intron.
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Figure 4.15: Validation plot for tetrahymena group | intron.
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Figure 4.16: Distance plots for HIV1 leader.
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(@) ¢ (b) &

Figure 4.17: Consensus structures for HIV1 leader based on d,.

Consensus structures The good results reflected in the distance plots should give
rise to well-defined and rather dissimilar consensus structures. As shown in Figure 4.17
consensus structure ¢; is basically composed of two adjacent helices, whereas ¢, shows a
more branched appearance. Comparison of the predicted with the experimentally deduced
structures (see Figure 4.18) shows that ¢; is nearly equal to S; and that ¢, shows good
correspondence to S,. The differences may arise from artefacts during the consensus
structure calculation, e.g. a base pair which is part of one of the native conformations did
not appear in the majority of the structures. But they may also lie within experimental
artefacts, as experimental data always leaves scope for interpretation by the experimenter.
In order to approve the viability of the structures predicted by paRNAss | applied the usual
validation procedure.

Consensus structure validation The validation of the consensus structures for the
leader of HIV-1 resulted in the plot depicted in Figure 4.19. It clearly shows two well-
separated clusters, meaning that if a structure of the sample has a high dg to ¢ it has
a low dg to ¢, and vice versa. Calculation of pkMeasure yields 71. Together with the
outcome of the previous steps the validation approves the potential of the HIV-1 leader
to serve as a conformational switch. Furthermore, the parnac is in good correspondence
to the experimentally derived structures, notwithstanding the fact that these might be
slightly incorrect and the parnac correct.
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Figure 4.18: Experimentally deduced structures (S51,5,) for HIV-1 leader.
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4.5.5 E. coli thiM leader

Function The 5-UTR of E. coli thiM, which encodes for a protein of the thiamine
biosynthetic pathway, holds a member of the class of metabolite sensing riboswitches.
Winkler et al. [51] showed that thiM translational fusion constructs exhibit thiamine-
dependent suppression, whereas transcriptional fusions do not. A structure-probing pro-
cess revealed that thiM leader RNA undergoes structure modulation upon binding of
specific ligands, such as thiamine and thiamine pyrophosphate (TPP). The authors pro-
pose a mechanism where TPP-binding to the RNA leads to the sequestration of the
SD sequence, which is required to be unpaired for efficient translation in prokaryotes.
Upon thiamine starvation the RNA gets freed and a structural rearrangement leads to
a conformation in which the SD sequence is unpaired. This enables ribosome entry and
translation of the protein which is required for thiamine biosynthesis.

Parameters

e Energy range: 2.5kcal/mol

Search space: canonicals (refolded)

Temperature: 37 °C
Max. Structures: 100

Pairwise Distance Calculation The analysis based on pairwise distance calculation
does not deliver the preferred result of two separated clouds in the distance plots (see
Figure 4.20). Nevertheless, there are two major clusters which show reasonable separa-
tion, especially based on d,,,, and the points in-between might be due to artefacts of the
distance measures. A prove for this could be achieved if the validation of the consensus
structures delivers a positive result.

Consensus structures As the analysis of d,,, delivered better results | used this for
the subsequent steps. Clustering and consensus structure calculation yielded the two
conformations shown in Figure 4.21. From these only ¢; is in correspondence to one
of the published conformations. A more detailed analysis of the published experiments
showed that these results could also be explained with the conformations predicted by
paRNAss. Furthermore, the energy difference of the original conformations is in the
range of 10 to 15 kcal/mol, whereas the newly predicted structures differ approx. 2
kcal/mol in free energy. Mr. Breaker, the corresponding author of the publication on the
characterisation of thiM leader, agrees that their predicted conformations are just models
and that the results reported here could as well be correct (personal communication).

Consensus structure validation [n order to get further evidence for the plausibility of
the parnac the validation step was performed. Calculation of pkMeasure resulted in
55. The validation plot in Figure 4.22 shows that it is appropriate to presume that the
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Figure 4.21: Consensus structures for thiM leader based on d,;.

parnac represent the two positions of the thiM leader riboswitch. Despite the fact that
the analysis was only successful using d,, | think it is adequate to call this a successful
analysis. At least it was able to reveal an alternative set of conformations that could
resemble the alternating structures of this switch.

4.5.6 S-box leader of B. subtilis metE

Function In addition to riboswitches regulating vitamin biosynthesis, Epshtein et al.
[53] showed that riboswitches are also involved in control of amino acid biosynthesis,
especially methionine. At least 11 transcription units in B. subtilis, that are mostly
involved in cysteine and methionine synthesis, possess a leader element that includes an
intrinsic transcription terminator, competing anti-terminator, and a conserved element
(S-box) that functions as an anti-antiterminator. S-adenosyl-methionine directly binds
S-box RNA to stabilise its anti-antitermination structure, thus causing termination of
the leader transcript.

Parameters

e Energy range: 5kcal/mol
e Search space: canonicals (refolded)
e Temperature: 37 °C

e Max. Structures: 50
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Validation of clustering results of thiM leader
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Figure 4.22: Validation plot for thiM leader.

Pairwise Distance Calculation The distance plots in Figure 4.23 show the best sepa-
ration | ever encountered using paRNAss. The structure sample seems to hold structures
of two families that are clearly separated by a large energy barrier and are structurally
very dissimilar.

Consensus structures The clustering and consensus structure calculation step based
on either d,,, d-p Or dg each delivered the same consensus structures which are given
in Figure 4.24. They show significant structural dissimilarity as it is expected from the
distances obtained by d,, and d;,,. The problem is that the terminator hairpin at the
3’-end is present in both predicted consensus structures, so that these conformations
do not resemble the active and inactive positions of the switch. Nevertheless, such
striking results imply a switching capability between these conformations so | continued
the paRNAss analysis.

Consensus structure validation Up to now the analysis clearly proposes a conforma-
tional switch and this is also strongly supported by the results of the validation shown in
Figure 4.25. The validation plot as well as a pkMeasure of 32 confirm the plausibility
of the parnac. As both conformations carry the terminator hairpin, the parnac does
not correspond to the published model. A closer look at the published conformations
states two problems: (1) The two proposed conformations differ to about 10 kcal/mol
in energy, which could of course be the energy that SAM delivers upon binding, but
(2) SAM binding leads to formation of the energetic better conformation which would
thereby gain even more energy. This would enlarge the energy difference of the confor-
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Figure 4.23: Distance plots for metE leader.
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Figure 4.24: Consensus structures for metE leader.
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Figure 4.25: Validation plot for metE leader.
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Figure 4.26: Distance plot based on tree alignment and energy barrier distance for
human U2 snRNA, showing three separate clouds of points.

mations additionally. | cannot disprove that the published structures are correct, but |
can say that paRNAss revealed a conformational switch for this RNA. In my opinion the
parnac shows the local structural rearrangement in the S-Box which occurs upon binding
of S-adenosyl-methionine (SAM).

4.5.7 Human small nuclear RNAs

In general the focus of paRNAss is on the prediction of structural RNA switching. Other
approaches exist to reveal more general properties of the energy landscape of an RNA.
Kitagawa et al. [10] studied the conformational landscape of human snRNAs with the
method described in Section 2.4.2. | reviewed their analyses of the human spliceosomal
snRNAs using the new version of paRNAss. The parameters were P = 5 kcal/mol,
F = canonicals(refolded), T = 37°C and N = 50. The experiments on Ul, U4,
U5 and U6 snRNA delivered comparable results, whereas for U2 snRNA the distance
plot (dgs,drp) shows three separate clouds of points, as displayed in Figure 4.26. Since
each point in the distance plot corresponds to a pair of structures, the appearance of
three distinct clouds must be due to three, four or even more families of structures
in the sample set. A look at the structures in the sample set revealed three families.
Consensus structures of these three families are shown in Figure 4.27. This result is in
clear contrast to the result reported by Kitagawa et al., as they propose a “uni-valley”
shape of the folding space and therefore only one prominent structure. Possible reasons
for this discrepancy may lie with the use of MFOLD, producing a heuristic subset of all
feasible structures, and the coarse grained “tree representation distance”.
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(a) a1, E =—69.1 kcal/mol (b) ¢, E =—68.0 kcal/mol

(c) 3, E=—67.3 kcal/mol

Figure 4.27: Consensus structures of the three structure families present in the sample
set of the folding space of human U2 snRNA.
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4.6 Evaluation of the paRNAss approach

The analyses of Section 4.5 and those presented in Appendix A are very promising, but
to be sure about the reliability of paRNAss | performed an evaluation procedure based
on these examples and additionally included sequences from coding and non-coding re-
gions as well as random sequences. This resulted in the following design: In addition
to the published structural RNA switches, a set of 1500 sequences, composed of ran-
domised and native sequences from different sources, was analysed with paRNAss. For
the randomisation, the percentage of bases of the source sequence mentioned below was
changed randomly, allowing an overall deviation in GC content of 5% compared to the
source sequence. For each randomisation percentage 30 sequences were produced. As
the randomisation should resemble mutational events, and was not performed to test
free energy distributions, | did not have to preserve the dinucleotide distribution [61]. In
order to get an idea about the impact of prior knowledge on the results, | performed a
so called blindtest.

Experiment 1: True positives and false negatives The analyses for this set are shown
in detail in Section 4.5 and Appendix A. A summary of the results is shown in Table 4.1.
For 16 sequences | successfully revealed a switch by using paRNAss. In one case (E.
coli hok mRNA) the validation results were negative, which may be due to the fact
that this switch is triggered by sequence truncation. Altogether, using paRNAss | was
able to predict 17 out of 21 switches. The switches | failed to recognise, were either
bearing pseudoknots (AMV in one structure, E. coli o operon mRNA in both) or long
distance interactions (LDI), see Table 4.1. The used RNA folding programs are not
able to calculate the secondary structure with pseudoknots. Nevertheless, | succeeded
in two cases (E. coli S15 mRNA and HDV ribozyme), as the pseudoknot conformation
shows sufficient dissimilarity even when approximating the pseudoknot by an un-knotted
structure. Long distance interactions are difficult to handle with paRNAss, because
the large contribution of the switching part to the overall distance gets shadowed by
numerous small contributions of non-switching parts, thus preventing the outcome of
two distinct families in Step 1 of the paRNAss approach.

Experiment 2: Switch degradation To get an idea of the stability of switches under
mutations (selection pressure), the sequences of the pheS-pheT-operon attenuator from
E. coli and the Spliced Leader from Leptomonas collosoma were randomised 1%, 3%,
4%, 5%, 10%, 15%, 20%, 25%, 30% and 35%. Table 4.2 summarises the outcome
of the measurements for the randomised switch sequences. Even the introduction of
1 change (less than 2% rand.) in the sequences is capable of destroying the property
of being a switch. Furthermore, the results clearly show that increasing randomisation
leads to decreasing amount of predicted switches, as well as rare positive predictions for
higher randomisation rates.
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Table 4.1: Experiment 1: Summary of the results for known switches. (nt = nucleotides,
LDI = long distance interaction involved, pk = pseudoknot present in at least one struc-
ture, mMRNA = messenger RNA, uRNA = untranslated RNA)

| Sequence | nt | type |pk|LDI| prediction |
Attenuator 73 mRNA - - +
Spliced Leader 56 uRNA - - +
E. coli DsrA [62] 87 uRNA - - +
E. coli S15 74 mRNA | + - +
5'-UTR of E.coli btuB mRNA | 203 | uRNA - - +
5-UTR of MS2 RNA genome | 73 uRNA - - +
Tetrahymena group | intron 108 | ribozyme | - - +
HDV ribozyme 154 | ribozyme | + - +
T4 td gene intron 164 | uRNA - + +
HIV-1 leader 281 uRNA - + +
HIV-2 leader 390 | uRNA - + -
3'-UTR of AMV RNA 145 | uRNA + - -
E. coli o operon 140 | mRNA | + - -
E. coli hok 143 | mRNA - + +/-
E. coli thiM leader 165 uRNA + - +
B. subtilis metE leader 247 uRNA - + +
B. subtilis ribD leader 305 | uRNA - - +
B. subtilis ypaA leader 344 | uRNA - + -
E. coli lysC leader 197 | uRNA - + +
S. cerevisiae ITS2 236 uRNA - - +
B. subtilis ptsGHI leader 94 uRNA - - +

Experiment 3: Arbitrary natural sequences, random sequences, human 3’'-UTRs A
set of native and randomised mRNA sequences was analysed in comparison to sequences
from human 3'-UTRs. As well as random sequences, mRNAs, especially the coding
regions, are assumed to rarely possess regulatory function, whereas 3'-UTRs are proven
to be important regulatory regions. Since switches are regulatory elements, they are
supposed to occur more often in such regulatory regions. | restricted the length of the
analysed sequences to 80 nucleotides, due to the facts that numerous known switches
are in this length range and that the used approach performs well, meaning that the
produced plots are easily interpretable in the positive as well as in the negative case.
The set of “arbitrary” natural sequences was build of 110 sequences, corresponding
to parts (80 nt) of 26 E. coli mRNAs. Therefore each mRNA was cut into pieces of
length 80 and 4-6 of these were chosen (equally distributed over the whole sequence).
Exon 2 of the Caenorhabditis elegans cAMP-dependent protein kinase catalytic subunit
C gene (M37114) and bases 1596 to 1675 of the Drosophila melanogaster egghead
gene (NM _080313) mRNA were randomised to form the test set of random sequences.
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Table 4.2: Experiment 2: Switch degradation. Number of positive predictions in the
set of 30 sequences for each randomisation step. For the Spliced Leader the number of
changes for 3% and 4% randomisation both round to two mutations, so this corresponds
to one experiment.

| % Randomisation 0] 1]|3]4]5]|10]15[20]25]|30]35]
Attenuator (73 nt) 30[2 o111 ]1]o]1]o]oO
Spliced Leader (56 nt) [[30[18] 10 [5] 0|20 |0 ][ 1]0

Table 4.3: Experiment 3: Results for arbitrary sequences, random sequences and human
3'-UTRs. (sequence length = 80 nt)

| Source | Nr. of sequences | pred. parnac | % positives |
E. coli mRNAs 110 1 0.9
Random sequences 420 6 1.4
Human 3'-UTRs 400 14 3.5

For the set of human 3'-UTRs, the first 80 bases of the first 400 entries in the human
3'-UTR section of the UTRdb (version of 2003/02/12, [63]) were extracted.

The results of the analyses under the above mentioned conditions using paRNAss are
summarised in Table 4.3. One parnac was predicted in the set of 110 parts of E. coli
mRNAs. This means that a parnac is predicted with a frequency of 0.9%. For the set
of random sequences derived from natural sequences, there were six parnac predictions
in 420 sequences, leading to a parnac frequency of 1.4 %. The analysis of the 400 parts
of human 3'-UTRs led to fourteen parnac predictions. This corresponds to a parnac
prediction rate of 3.5%.

Experiment 4: Blind test In the case of proven conformational switches | knew that |
had to get a positive prediction and tried different sets of parameters to get the desired
results. In order to get an idea about the impact of this prior knowledge | set up a blind
test together with Marc Rehmsmeier. For this purpose | gave each of the published switch
sequences to Marc, who shuffled each of them preserving the dinucleotide distribution
and mixed these shuffled with the original sequences. | received this set of sequences
numbered starting at zero, so that | was unable to identify the switch sequences by their
name. All of these sequences were analysed with paRNAss using different parameters.
The result of each analysis was simply the classification as switch or non-switch. The
list of these results was then compared to the list assigning each sequence its origin and
therefore the property of being a switch or a non-switch. The results were rather disap-
pointing as | only achieved 50% correct predictions (true positives and true negatives)
and a p-value of 0.57. This means that the combination paRNAss and me is only slightly
better than chance when predicting conformational switches in unknown sequences.
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Figure 4.28: Alternate structures for Attenuator.

4.7 Discussion

The applications in Section 4.5 and the results of the evaluation show that the strat-
egy used by paRNAss enables a researcher to reveal conformational switching in RNA.
Difficulties arise when pseudoknots or LDIs are involved in one or in both alternate con-
formations. Current available standard RNA folding programs are not able to calculate
the secondary structure with pseudoknots because of computational complexity. Some
algorithms exist, which are capable of computing specific types of pseudoknots [64, 65]
and could be used to fill the gap. In some cases, e.g. ypaA and ribD, the free energies
of the published conformations are 6 — 10 kcal/mol above the mfe. Since the number of
suboptimal structures for these sequences can only be calculated up to 4 kcal/mol due
to computational limitations, these conformations are inaccessible.

Degradation of a switch by mutational events is very fast. The introduction of one
nucleotide change is capable of destroying the property of being a switch, notwithstanding
the fact that its conformations may persist in the space of suboptimal structures [44].
This is in accordance with a comparable analysis by Schuster et al. [66], where it was
shown that there is some probability that even a single mutation substantially alters the
secondary structure. Furthermore, the authors state that sequences of length 100 with
Hamming distances greater than 3 (corresponding to 3% randomisation) are very unlikely
to have identical or closely related structures. In this experiment the switching property
gets almost completely lost for 1% (Attenuator), resp. 5% (Spliced Leader), being in
the same range as the before stated value. The reason for the immediate appearance
of this effect in the case of the Attenuator can be seen when taking a look at the two
alternate structures of the native sequence in Figure 4.28. Together, they span about
90% of the sequence, so each mutation is very likely to affect at least one structure.
Furthermore, the two structures share 80% of the bases, so both of them are affected
in most cases. To give an example: Changing the G-7 to a C and eliminating the base
pairs G-7 was involved in, alters the free energy values as follows: The free energy
of structure 1 increases from —21.20 kcal/mol to —21.03 kcal/mol, whereas structure
2 loses —7.1 kcal/mol, increasing the free energy from —20.93 kcal/mol to —13.83
kcal/mol. The corresponding structure is still in the folding space and it is still the
member with the lowest free energy in its family, but it now falls beyond the threshold of
3 kcal/mol. This seems to be a very drastic example, but shows one possible reason for
the observed volatility. Generally, | assume that several mechanisms are accountable for
these results: (1) One structure looses free energy and gets lost in the structure space
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Table 4.4: Accession numbers of the human 3’-UTRs with positive parnac predictions.

3HSA016018 3HSA020013 3HSA012599
3HSA014833 3HSA020034 3HSA012648
3HSA020049 3HSA012739 3HSA012760
3HSA028980 3HSA016147 3HSA012856
3HSA012868 3HSA012922

(see example above); (2) One of the two prominent structures gains energy, kicking the
other out of the threshold; (3) A new structure, which was buried in the suboptimals,
gets prominent, revealing a third local minimum. Another fact is, that the Attenuator
is a conformational switch as well as a coding RNA. For that reason selective pressure
is present in two different ways, and the evolutive possibilities to improve the switch are
restricted. In the case of the Spliced Leader, these mechanisms seem to intervene more
smoothly. Additionally, the structures contain larger 5" unpaired regions, which could
serve as buffers for mutational events. The few parnacs that are predicted for higher
randomisation rates imply a small possibility to obtain a conformational switch by chance.

Regarding the predictions for the set of mMRNAs and random sequences as false positive
predictions, implies an overall error rate of 1.3%. This must be seen as an upper bound,
as | cannot exclude the possibility that some are true (but unproven) positives. In the case
of the human 3'-UTRs the frequency of parnac predictions is 3.5%, which is substantially
(2.7-fold) higher. Since these regions often possess regulatory function, | assume that
these predictions are good candidates for structural RNA switches and that this should
encourage experimenters to check for correctness of these parnacs (see Table 4.4).

The dampening results of the blind test, where | was not much better than chance,
need a closer look. The hardest conclusion from this experiment might be, that the
predictions obtained with the help of paRNAss are not significant. This is too strong,
as it could be, that | was too restrictive and another person would have achieved better
results. Additionally, it could be that | did not try enough parameter combinations and
that spending more time on this would have improved the results. Other uncertainties
lie in the assignment of the shuffled sequences to be non-switches, since these might
possess the (unproven) ability to serve as a conformational switch, and in the small
sample size the test was based on. Major conclusions from this experiment are that the
parameters have a high impact on paRNAss, that the results of a paRNAss analysis have
to be investigated thoroughly and that this interpretation step is susceptible to errors.
Therefore, it might not be a good idea to use paRNAss for searching conformational
switches in large sequences, but it could serve as an early test when a researcher has
some evidence that an unknown sequence might be a conformational switch. A method
to search for RNA switches in genomic sequences using less parameters might be based
on the approach of abstract shapes, which | will present in the next chapter. paRNAss
could then be used to validate those predictions.

The paRNAss results for the human U2 snRNA (Section 4.5.7) document the use of
paRNAss to reveal more than two competing structures. The results differ from those of
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Kitagawa et al. [10] and are contradictory to the biological need for a certain structure
of the U2 snRNA. But, one has to bear in mind that the native structure of an RNA
might get stabilised by additional factors, like proteins and other RNAs. Additionally, the
three consensus structures show reasonable dissimilarity so that | am convinced that the
paRNAss results are closer to reality than the uni-valley profile proposed by Kitagawa et
al..

paRNAss is better suited for the prediction of conformational switching than the ap-
proach based on SFOLD (Section 3.4.1), as this one checks for morphological dissimilarity
only and does not take into account that the conformations should be separated by a
reasonable energy barrier.

The small number of proven conformational switches can, on the one side, be seen as
a drawback to my evaluation procedure, but, on the other side, | think that this expresses
the explicit need for a bioinformatics approach in this area of research. paRNAss is such
an approach and | am convinced that it will be helpful to reveal new conformational RNA
switches, and in turn gets improved based on these findings. Further improvements to
paRNAss can result from new distance measures, more reliable algorithms for structure
prediction and methods to make the interpretation of the results easier or even unnec-
essary by some kind of scoring. | tried to develop a score based on measures for the
quality of the clustering, but the results were not conclusive. At the same time Robert
Giegerich developed the idea of abstract shapes of RNA, which in my point of view has
a high impact on paRNAss. Therefore, | decided to work on this first and to postpone
the paRNAss scoring task to my future work.
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CHAPTER 5

Abstract Shapes of RNA

The structure space of an RNA is due to its complexity difficult to imagine and due to
its size hard to analyse entirely. Several approaches (see Sections 2.4 and 3.4.3) exist
to accomplish this problem. A new approach based on structural abstraction will be
introduced in the next section. It enables the user to get a holistic view of the structure
space and to extract the “big players”, either based on energy or on probability obtained
from the partition function. Furthermore, | show applications that point at the possibility
to infer structural well-definedness and alternative secondary structures. This work was
done in cooperation with Robert Giegerich, who had the initial idea and defined what
abstract shapes are. My part was the implementation, testing and evaluation of the
method.

5.1 Drawbacks of Current Approaches to RNA
Secondary Structure Prediction

In the previous chapter | presented the paRNAss approach for the prediction of confor-
mational switching in RNA. It is based on the analyses of the structure space of an RNA
and performs pairwise comparisons of suboptimal structures to elucidate the potential
of serving as a conformational switch. Hence, the computational effort of this step of
the paRNAss approach is quadratic in the number of structures that have to be analysed.
The problem that emerges is, that the number of suboptimal structures grows exponen-
tial with increasing sequence length, even when restricting to a moderate energy range.
Therefore, the paRNAss approach incorporates a sampling step, which chooses a given
number of suboptimal structures equally distributed over the set of suboptimal solutions.
This sampling is not free from artefacts, as it might miss entire families. Hence, it is
favourable to reduce the number of structures per family to ensure that a member of
each family is sampled, or no sampling is needed at all.

Another disadvantage of current RNA folding algorithms is that the computed mfe-
structure may differ from the native one. For example, for some tRNAs the computed
mfe-structure is not the expected “cloverleaf” but a single long hairpin. Looking at subop-
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timal structures for these tRNAs reveals the cloverleaf further down in the energy sorted
list of suboptimal solutions. For tRNAs this does not state a problem, but for structure
elucidation of RNAs with unknown structure it is very laborious to search through the
list of possibly 100,000 suboptimal structures to find the one being in correspondence
with prior knowledge or experimental data.

Taking a closer look at the list of suboptimal structures reveals a general feature: The
structure space contains a large number of similar structures, differing only in a few base
pairs or the position of bulges and internal loops. In most cases the researcher focuses
on dissimilar structures and is not interested in those of high similarity.

Dissimilarity can be inferred using distance measures, like the ones described in Section
3.2. This always results in a biased sample due to the distance threshold chosen. One
could further define dissimilarity as the difference in structural elements that form a
structure. Such coarse graining was already mentioned in Section 3.1.2. The basic idea
is to switch from the representation of individual base pairs and unpaired bases to the
representation of structural elements, such as hairpin loops, bulge loops, internal loops
and multiloops. This does not only infer dissimilarity of structures, but also allows for
the partitioning of the folding space into different classes of structures, sharing the same
structural elements, i.e. having the same shape.

5.2 Defining Abstract Shapes

Classes of structures can be defined in many ways, but a few requirements seem appro-
priate to catch the intuition of a “shape”™ When we feel (either intuitively or in some
formal sense) that two structures are similar, they should either have the same shape, or
their shapes should be similar in the same sense. Within each abstract shape, a concrete
structure is designated as its representative, such that looking at all the representatives
gives a meaningful overview of what is there in the folding space. Furthermore, each ab-
stract shape should also have an explicit representation, that is not a concrete structure
and independent of primary sequence.

The domain of sequences is closed under juxtaposition — concatenating sequences s
and t, we obtain the sequence st. The same holds for structures — if x and y are
hairpins, and we paste the 3’ end of x to the 5" end of y, we obtain a structure which is
simply an external loop with two adjacent hairpin structures. In addition to juxtaposition,
structures are formed by recursive embedding. For example, implanting three adjacent
hairpins into the loop of a fourth, we obtain a cloverleaf structure. Being formed by
juxtaposition and embedding, structures are inherently tree-like. Although they can be
represented in many ways — such as strings, squiggle plots, or base pair lists — a tree
representation is the one that can be used for all purposes without introducing artefacts
or losing explicit information.

In data type theory, this is called an initial data type: There is a simple mapping from
the initial data type to any other representation, while an inverse mapping may be more
complicated or may not even exist.



Abstract Shapes of RNA 71

Shapes should be homomorphic images of structures, which means that when struc-
ture x is embedded in structure y, then the shape of x is also embedded in the shape of
y. For this reason, the principles of juxtaposition and embedding must apply to the shape
domain as well. Before going into technical detail, we arrive at the following definitions:

Definition 5.2.1 Let S be the tree-like domain of structures, and P a tree-like domain
of shapes. A shape abstraction is a mapping w from S to P that preserves juxtaposition
and embedding.

Two structures x and y have the same shape when 7(x) = w(y). Two sequences s
and t have a common shape if they have structures xs; and x; such that m(xs) = w(x;).
To compare the shapes of two structures, they need not have the same primary sequence,
nor even sequence similarity or same sequence length. Turning now to the folding space
F(s) of a given RNA sequence s, we define the desired classes as inverse images of 7:

Definition 5.2.2 For a given RNA sequence s, its (concrete) folding space F(s) is
the set of all legal structures according to the rules of base pairing. Its (abstract)
shape space is P(s) = {m(x)|x € F(s)}. The class of p-shaped structures in F(s) is
{x|x € F(s), m(x) = p}

In other words, the shape class p is m~1(p) N F(s). As the inverse image of a func-
tion always induces an equivalence relation, unique representatives are defined as follows:

Definition 5.2.3 The representative structure p for shape class p is the element that
has minimal free energy among all structures in the class.

There is the rare case that two structures in a shape also have the same energy, in
which case the representative is the smallest one under a lexicographic ordering on trees.
The shape representative structures will be called shreps for short, to distinguish them
from an explicit representation of the shape as a whole, which we will introduce below.
The above definitions must be complemented by concrete data structures representing
RNA structures and shapes. The different structural components in RNA are single
stranded regions, hairpin loops, stacking regions, bulges on the 5" or on the 3’ side,
internal loops, and multiloops. Furthermore, we have lists of adjacent structures, such
as the components of the external loop. These structural components are denoted by
node labels SS, HL, SR, BL and BR, IL, ML, and AD respectively. Technically, label
E is needed to denote an empty list of adjacent components. Individual nucleotides A,
C, G, U, as well as strings thereof, represent themselves. Figure 5.1 shows a particular
structure in several notations, including the one defined here. Note that in the tree
notation, the primary sequence can be read from the leaves of the tree in left to right
(5" to 3') order. In the text and for computer input, trees will be written as formulas,
such as AD(SS(ACGUU), E) or AD(HL(C,UUU, G), E).
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CCCGUAGCUAGCGGUACGA

(a) Primary structure

G ).
(b) Vienna string
AD(SS("CC?),AD(SR(*C’,SR('G",SR('U”,IL(’A’, G HL(’C’, " UAGC’,"G") G*, U")'A%),’C")’G"), AD(SS(’A"),E)))

(c) ASClI-tree

AD 7A7 7G7 HL 7G? 7U7

TN I

CL E 'C "UAGC G
(d) Shape (e) Tree

Figure 5.1: Notations of RNA primary ((a)) and secondary structure ((b)—(e)).
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A first shape abstraction is to only care about open and closed structures, branching
and adjacency. These situations are represented by node labels OP, CL, FK (from “fork”),
AD, and E. (Re-using AD and E in the domain of shapes should not give rise to confusion;
they are just generic list constructors.)

The abstraction mapping m from structures to shapes is defined by the following
equations. We use variables a, b for nucleotides; /, /" for loop sequences; ¢ for a list of
adjacent components; and x for arbitrary structures.

m(SS(l)) = OP (5.1)
m(HL(a,l,b)) = CL (5.2)
m(SR(a, x, b)) = m(x) (5.3)

m(BL(a,l,x, b)) = m(x) (5.4)
m(BR(a,x,1,b)) = m(x) (5.5)
w(IL(a, 1, x,I'b)) = m(x) (5.6)
m(ML(a, c,b)) = FK(m(c)) (5.7)
m(AD(S5(1),c)) = m(c) (5.8)
m(AD(x,c)) = AD(w(x),m(c)) for x # SS(/) (5.9)
m(E) = E (5.10)

It is easy to see that this abstraction function retains hairpins and multiloops, but
abstracts from stack lengths, bulges, internal loops, and single-stranded regions (except
for the case of the completely unpaired structure). It completely abstracts from pri-
mary sequence. This abstraction might be too strong in some cases, especially with
short sequences that do not have much chance to show shape variation on this level
of abstraction. In such cases, weaker abstraction functions that retain more structural
detail can be defined in a similar way. The ones that are implemented in the program
RNAshapes are described in Section 5.3.

While all the computational analysis of shapes is based on these tree representations,
it is convenient for the human eye to introduce string representations for structures as
well as for shapes. A notation for shapes, using homomorphism vp is defined as follows,
where ..., means k dots, |/| is the length of string /, and € denotes the empty string.

vp(OP) = (5.11)
ve(CL) = [] (5.12)
vp(FK(c)) = [we(o)] (5.13)
vp(AD(x,c)) = vp(x)vp(c) (5.14)

UP(E) = £ (515)
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This is analogous to the familiar “Vienna” notation for structures, here defined as vg:

1/5(55(/)) = (
uS(HL(a, /, b)) = (...‘/|) (
vs(SR(a x,b)) = (vs(x)) (

vs(BL(a,l,x,b)) = (... vs(x)) (

vs(BR(a,x,1,b)) = (vs(x) ...y) (5.20)
vs(IL(a,1,x,I'' b)) = (eouyyy Vs(X) weuip)) (
vs(ML(a,c,b)) = (wvs(c)) (
vs(AD(x,¢c)) = wvs(x)vs(c) (
vs(E) = ¢ (

Note the simple recursive definitions, whereas a direct definition of the mapping from the

Vienna string vs(x) to the corresponding shape's notation vp(m(x)) requires a parsing
function. Such simplicity is the advantage of using a tree representation. Figure 5.3
shows some structures in Vienna notation, together with their shape notation under the
abstraction function .

Any sensible notation function must be injective, i.e. it must not map two distinct
objects to the same notation. This appears to be violated, as vs(/L(a,/,x,I', b)) =
vs(ML(a, AD(x, E), b) = (vs(x)). However, the recurrences that analyse the search
space have been designed to be unambiguous [67], and hence a candidate of the form
ML(a, AD(x, E), b), a non-branching multiloop, is never considered. With this in mind,
it is easy to show that both vs and vp are injective. Hence, the program RNAshapes can
keep the tree representations for itself, and faithfully communicate with its users via the
string representations of structures and shapes.

5.3 Abstraction Levels

In the analysis of RNA secondary structure different structural elements are in focus of
the researcher. In the case of conformational switching it might be the nesting pattern
of stems, whereas in the case of protein binding sites it might be the existence of a
bulge or internal loop. For this reason | developed five different types of shapes, each
abstracting from structural detail to a different degree. The most abstract type 5 is given
by the abstraction function shown in Equations 5.1-5.10 and abstracts from bulge and
internal loops as well as from singlestrands. More detail about singlestranded regions in
multiloops and the external loop is kept using type 4. Shape type 3 again abstracts from
all kinds of singlestrands but retains information on the nesting of bulge and internal
loops. Re-adding the representation of singlestrands in multiloops and the external loop
yields shapes of type 2. The most detailed shape type abstracts only from the lengths
of stacking and singlestranded regions and is referred to as type 1. An example for the
different abstractions is shown in Figure 5.2. The implementation is shown in Appendix
B.2.4.
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Sequence: gttaatgtagcttaataacaagatggataattgtatcccataaaca
Structure: CCCC. CConnn )).D)))  CCCCCooo)))) ) et
Shape type 1: [_[_1_] -

Shape type 2: [[1]1 []_

Shape type 3: [[]1]

Shape type 4: [1 []_

Shape type 5: []

Figure 5.2: Example showing the different abstraction levels.

5.4 Folding Based on Shapes

5.4.1 Algorithm

The program RNAshapes was developed using the ADP framework (see Section 3.4.1).
Since we want to explore the whole or at least a large part of the folding space of RNA,
the program makes use of a grammar describing the folding space of RNA including dan-
gling bases and disallowing isolated base pairs. The evaluation is based on algebras like
the ones shown in Equations 5.1-5.10 and 5.16-5.24 for shapes and “Vienna" notation,
respectively. Analogous to these examples, an algebra for free energy calculation scores
the structural elements with their energy contribution obtained from the thermodynamic
energy parameters. The implementation makes use of a combination of these three al-
gebras in a triple-algebra of the form: (energy, shape, "Vienna” notation). The essential
part of the implementation is the objective function h which filters the list of (interme-
diate) solutions and keeps entries with lowest free energy for each distinct shape. It is
defined as follows:

h([s1,-..,sa]) = W([], (filter(e_range, [si,...,Sn]))), where
h([shy, ..., Shm], [S1,....Sa]) = W' (insert (si, [Shy, ..., Shm]), [S2, ..., Sm]|), wWhere
insert((Xe, Xs, Xv), [1) = [(Xe, Xs, Xy )]
insert((Xe, Xs, Xv), [(Ve, ¥s: Yo )1, s (Ve Y5, Yo ) ml)
[(Ve, Y51 )1, -] X = Vs & Xe > e
= [(Xe, X5, %), (Ve Yo V)2, -] X = Ys && Xe < Ve
[(Ve. Y5, )1, (insert((Xe, Xs, %), [(Ve, ¥s: Yoo Dl X # s

sk refers to an (intermediate) solution and shy to an (intermediate) “shape-optimal”
solution, where “shape-optimal” means that it attains the (so far) lowest free energy for
its shape. s, and shy are both of the triple-form (energy, shape, "Vienna” notation). The
function filter removes solutions that have higher free energy than the current minimal
solution plus the chosen energy range (e _range). The actual implementation of the
algebras mentioned in this section can be found in Appendix B.
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5.4.2 Applications

If not mentioned explicitly, the following applications are based on the most abstract
shape type 5, which gives the nesting of hairpin loops and multiloops.

Transfer RNA

Transfer RNAs (tRNAs) are one of the best analysed RNA families. Various experiments
have revealed the biological active structure of tRNAs which is known as the cloverleaf
structure. In contrast to this, out of 99 tRNA sequences from the Rfam database
[68], only 30 have a cloverleaf as their predicted mfe-structure (data not shown). The
biological explanation for this is, that tRNAs possess modified bases which may on the
one hand be no longer capable of forming base pairs, or on the other hand are able to
interact in a different way. This alters the free energy of the predicted conformation
such that it rises above the free energy of the cloverleaf (or vice versa), letting the latter
achieve the energetical optimum. For structure prediction, when the modifications are
unknown, current practice is to calculate suboptimal structures for a certain energy range
and to subsequently search (by eye or by a simple pattern matching algorithm) for the
cloverleaf structure in the list of suboptimals. For tRNAs this means that about 50—
300 structures have to be checked. To give an example | chose the Natronobacterium
pharaonis tRNA for alanine (gb: AB003409.1/96-167). The predicted mfe-structure
is one hairpin with two bulge and one internal loop, as depicted in Figure 5.3(b). The
cloverleaf structure, shown in Figure 5.3(d) appears at position 104 in the energy sorted
list of 199 suboptimals, produced by RNAsubopt. Using RNAshapes, gives three shapes in
an energy range of 5 kcal/mol above the mfe of which the rank 3 shrep is the cloverleaf
structure. The output of RNAshapes and the squiggle plots for the shreps are shown in
Figure 5.3.

Leader of HIV-1 genome

The leader of HIV-1 (see Section 4.5.4) is known to switch between two alternating
conformations, a branched structure (S;) and a more stable structure (S;) which mainly
consists of two adjacent helices. Structure prediction in an energy range of 3 kcal/mol
based on the approach of abstract shapes revealed three shreps which are shown in
Figures 5.4(a)—(c). Figure 5.4(a) shows the mfe-structure, which corresponds to the
aforementioned structure S;. The third shrep (Figure 5.4(c)) shows good correspon-
dence to the conformation S,. Further analysis, with a relaxed energy threshold of 6
kcal/mol produced 19 shreps and revealed that shrep 12 (Figure 5.4(d)) is equal to S,.
Summarising this means that 19 shreps had to be checked until both correct conforma-
tions could be identified. Performing the same approach based on complete suboptimal
folding without considering lonely base pairs would have meant checking approximately
200, 000 structures.
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Shape GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA
[ CCCCCCCaECCCCCC. (e CCCCCCC 003020 000000000)) e e )))))))). -35.9 kcal/mol
(i e et CCCCCCCa o992 (et ))).))3)))). -32.2 kcal/mol
COO0I0IT CCCCCCe e CCCCennne 1)) CCCCCCCa MM .. et 3)3)).)3)))). -31.7 kcal/mol

(a) Output of RNAshapes

(b) 1st shrep (c) 2nd shrep (d) 3rd shrep

Figure 5.3: Predicted shreps for Natronobacterium pharaonis tRNA-ala in an energy
range of 5 kcal/mol above the mfe. This energy range holds 199 structures.

Human small nuclear RNA U2

Human small nuclear (sn)RNA U2 is an essential part of the spliceosome and forms five
stem-loops, of which four are present in the predicted energy-optimal structure (Figure
5.5(a)). The second shrep possesses all five stems and an additional central helix (Figure
5.5(b)). As shown in Figure 5.5, a third shape is present in the near-optimal structure
space which implies structural variability. The same three conformations have been
predicted based on the paRNAss approach (Section 4.5.7). Conversely, the structure of
U2 snRNA is supposed to be important for its correct function and, therefore, it should
have evolved to exclude equally stable but dissimilar conformations in which it could get
trapped and thereby inactivated. The spliceosome is a dynamic assembly of snRNAs
(U1,U2,U4,U5,U6) and numerous associated proteins [69]. Hence, a solution to the
above contradiction could be, that the active conformation of U2 snRNA gets stabilised
by these RNAs and proteins.

5.5 The Shape Space

5.5.1 Size

For any RNA sequence s, the number of suboptimal structures grows exponential with
the sequence length N [5] as well as with the considered energy range above the mfe.
Referring to Section 5.4.2, this means that for a sequence of moderate length, such
as the leader of HIV-1 (281 nt), and a reasonable energy threshold of 6 kcal/mol the
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(a) 1st  shrep: —108.3  kcal/mol, (b) 2nd  shrep: —107.9  kcal/mol,
(COConan, Sy Orcoconoini

(c) 3rd  shrep: —106.8  kcal/mol, (d) 12th  shrep: —102.8  kcal/mol,
(O OICO0IC0 1110111 OOCCCOC000130101, 82

Figure 5.4: Subset of the 19 predicted shreps for HIV1-leader in an energy range of 6
kcal/mol above the mfe.
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(a) 1st  shrep: —69.12  kcal/mol, (b) 2nd  shrep: —68.02 kcal/mol,
MENANEN anocoania

(c) 3rd  shrep: —67.32  kcal/mol,
MENRRANRNRRNN

Figure 5.5: Predicted shreps for human U2 snRNA in an energy range of 3kcal/mol
above the mfe.
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number of suboptimal structures exceeds 200, 000 even when restricting to structures
without isolated base pairs. In contrast to this, the number of shreps is 19, and thus
stays significantly smaller. In order to reveal more general properties about the growth
behaviour of the folding space F(s) and the shape space P(s), sequences from the Rfam
data base [68] were analysed with lengths ranging from 20-300 nt in an energy range of 5
kcal/mol using shape type 5. Additionally, sequences of length &~ 100 nt for energy ranges
from 0—10 kcal /mol were examined to reveal the influence of the energy range. As a last
experiment, | estimated the base of the exponential expression relating the number of
structures (without isolated base pairs) and shapes (type 5), respectively, to the sequence
length N (size(F(s)) = crxa", size(P(s)) = cpxb"). For this purpose | computed the
number of all possible structures and shapes for random sequences of various lengths.
| chose 30 sequences for each length; for the shape analysis at length 120 only one
data point was calculated due to computational constraints. Figures 5.6(a) and (b)
illustrate the slower (but still exponential) growth of P(s) compared to F(s) with growing
sequence length in an energy range of 5 kcal/mol above the mfe. For a growing energy
range but fixed sequence length, P(s) grows slower (but still exponential) than F(s), too
(data not shown). The ratio of shapes to structures is decreasing (asymptotically) with
growing sequence length as well as with growing energy range (see Figures 5.6(c) and
(d)). This also expresses the differences in growth rates between P(s) and F(s) for either
sequence length or energy range. Figure 5.6(e) shows the overall number of structures
and shapes for random sequences of increasing length. Their approximation by functions
exponential in sequence length N gives estimates for size(F(s)) and size(P(s)). The
analyses resulted in size(F(s)) ~ 0.04 x 1.4N and size(P(s)) ~ 0.21 x 1.1V,

5.5.2 Morphology

The structure space of RNA is described by the notion of neighbourhood. It is common
practice to use the opening and closing of base pairs as the neighbourhood relation,
meaning that neighbouring structures differ in exactly one base pair. As aforementioned,
this can be used to classify structures as local (or global) minima, members of a valley,
or saddle points in the energy landscape. The neighbourhood relations of the shape
space are addition and removal of the structural elements that are considered by the
actual shape type. For this reason, the shape abstraction somehow compresses the
structure landscape in terms of replacing a valley of (many) structures with a valley of
(not so many) shapes. Note that many, even non-neighbouring structure-valleys might
get combined in one shape-valley. The shapes of two neighbouring structures are either
the same, belong to the same shape valley or belong to neighbouring shape valleys. There
is no possibility that their shapes belong to non-neighbouring shape valleys, whereas non-
neighbouring structures may have neighbouring shapes.
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5.6 Probabilities of Shapes

5.6.1 Computation

In Section 3.4.1, it is shown how the partition function can be used to calculate the
probability of an individual structure. As already mentioned, the mfe-structure always
has the highest probability. The probabilities of individual structures decrease with longer
sequences, as the total and near-optimal number of structures increases. Furthermore,
a scientist might not be interested in the probability of one specific structure, but in
the probability of a class of similar structures, such as those having the same shape.
This suggests to implement the calculation of the partition function and embed it in the
approach of abstract shapes. Generally spoken, the probability of shape p is the sum of
the probabilities of all structures j € p.

P(p) = >_PU) (5.25)

Jj€p

A naive algorithm based on this equation would calculate the probability of each individ-
ual structure and sum these. Hence, this algorithm would suffer from the exponential
explosion we want to circumvent with the approach of abstract shapes. A closer look at
Equation 3.7 shows: The partition function is the sum of the Boltzmann weighted free
energies of all structures of the structure space F(s). The free energy of an individual
structure j is the sum of the energy contributions E(x) of all structural elements x € J.
Thus, Equation 3.7 can be re-written as:

_XZE:jE(X)
Q = Y e r (5.26)
JEF(s)
= Y J[e* (5.27)
JEF(s) x€j

where R is the universal gas constant (0.00198717 kcal/K) and T the temperature in
Kelvin. This equation shows how the partition function is computed recursively as the
sum of the products of the Boltzmann weighted energy contributions of the structural
elements over all structures.

Implemented in ADP this yields an algebra which multiplies the Boltzmann weighted
energy contributions of the structural elements and uses summation as the objective
function. The goal is to compute shapes together with their probabilities. The probability
of shape p is its contribution Q, to the partition function divided by the full partition
function Q.

Q»
Q

How can we compute Q,7 The answer is to combine the shape notation algebra with
the partition function algebra in such a way that, each time intermediate solutions have

P(p) = (5.28)
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cceeececeececec. e CCCCCCadNINN NI oo )23
(a) Shrep for shape 1: [1, —35.9kcal/mol, P = 0.6430508
CCCeeec. . (GG CCCCCCC MMM NININUC ... )32
(b) Shrep for shape 2: [[1[1], —32.2kcal/mol, P = 0.0094475
CCCCC . (e nt I CCCCCCCaININND .. e )M

(c) Shrep for shape 3: [[1[1[1], —31.7kcal/mol, P = 0.34262794

Figure 5.7: Shreps of the three most probable shapes of the N. pharaonis tRNA-ala
together with the probabilities of the shapes (sorted by increasing energy).

the same shape, their Boltzmann weighted energies are added up. This combination is
achieved using the so called product algebra [70], which is a general method to combine
two algebras. The resulting algebra computes all feasible shapes together with their
respective contributions to the partition function. The probability of an individual shape,
which is calculated according to Equation 5.28, is the sum of the probabilities of all
structures that are members of the same shape, exactly like stated in the beginning of
this section. Note that this approach analyses the structure space and not the shape
space, because the probabilities of shapes are computed from those of structures and
structures are not present in the shape space. The implementation of the partition
function and the product algebra is given in Appendix B.

5.6.2 Applications
Transfer RNA

Applying the shape probability approach to the tRNA example from Section 5.4.2 gives
the results shown in Figure 5.7. The shape holding the mfe-structure is also the most

probable one (shape 1), but approx. % of the structures of the ensemble reside in the

cloverleaf shape (shape 3). This is ml31ch more than for the second shape which holds
an energetically better shrep. In terms of the structure space this means that three
valleys are present in the near-optimal energy range, one for each shape. The valley
holding structures of the first shape is the deepest (minimum free energy) and also the
broadest (most structures reside in this shape). The valley with structures from the
second shape is the second deepest but it is very narrow. The structures of the third

shape are represented by a not so deep but rather broad valley.

Attenuator

The Attenuator, already described in Section 4.5.1, is known to switch from a transla-
tional inactive to a translational active conformation under specific conditions. These
two conformations correspond to two valleys in the structure landscape that are sepa-
rated by a mountain (energy barrier). For shape analysis this means that two shapes
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(c) Shrep for shape 3: [[1[11, —19.33kcal/mol, P = 0.99506193

Figure 5.8: Shreps of the three most probable shapes of the Attenuator together with
the probabilities of the shapes (sorted by increasing energy).

with reasonable probability should be present. The corresponding experiment delivers
the results summarised in Figure 5.8. The first striking result of this analysis is, that the
shape holding the mfe-structure is not the most probable one. In fact, a shape with a
best energy which is ~ 2kcal/mol above the mfe has the highest probability. Shape 1
and 3 seem to be rather similar with respect to their shreps, so their probabilities can
be added. This means that the shape with two hairpins, which may be embedded in a
multiloop, has a probability of 0.998 and the shape with one hairpin has a probability
of 0.002. In other words the Attenuator occurs to 99.8% in shape 1 or 3 and to 0.2%
in shape 2. Shape 1/3 corresponds to the “off” position of the switch and the high
probability resembles that this is its native position. The “on” position (shape 2) is very
unlikely which might express that the attenuator is a tight regulator. The difference in
the probability can also give an impression on the effort needed to trigger the switch.

dsrA

In case of dsrA, the most abstract shape is not applicable as both alternate conformations
of this conformational switch would belong to the shape [1[][]. An analysis using the
less abstract shape type 3 had the outcome shown in Figure 5.9. The shreps imply that
it is reasonable to combine shapes 1 and 4 and shapes 2 and 3. Based on this, shape
1/4 has a probability of 0.49 and shape 2/3 of 0.42, which is in good correspondence to
the switching nature of this RNA.

Precursor of microRNA lin-4

microRNAs (miRNAs) are small (~22nt) regulatory RNAs that are processed from larger
precursors, for which the secondary structure is assumed to play an important role. A
common feature of all known precursors is, that they form a hairpin whose energy is
significantly lower than for random sequences of the same dinucleotide distribution [71].
This is a hint to a well-defined secondary structure, which implies that the corresponding
shape should have a very high probability. An analysis revealed, that for the precursor
of C. elegans lin-4 [72] the shape [] has a probability of 0.9999995, which means that
only 1 in 20,000 molecules has a different shape or that each molecule is 99.99995%
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Figure 5.9: Shreps of the four most probable shapes of dsrA, together with the shape
probabilities (sorted by decreasing probability).
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Figure 5.10: Shreps of the four most probable shapes of the C. elegans lin-4 precursor,
together with the shape probabilities (sorted by decreasing probability).

of its lifetime in the single hairpin shape. For the output a probability cut-off of 107°
was used, which might be the reason that no further shapes appear. Another fact that
has to be considered is that the shape abstraction might have been too strong. For this
reason, | performed an analysis with a shape retaining more structural detail (type 3),
giving the results shown in Figure 5.10. All shreps are very similar so it is reasonable to
combine them in the single hairpin shape. Their summed up probability is 0.99999871
which is besides from rounding inaccuracies the same as the probability of the single
hairpin shape.

5.7 Discussion

In this chapter | presented the concept of abstract shapes and their efficient computation.
With this method the number of near-optimal solutions in RNA secondary structure
prediction is reduced from several hundreds or thousands to only a few, which enables
the researcher to get an overview of the structure space. Furthermore, this reduction
makes comparative studies much faster and easier. For example, the identification of a
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regulatory element in co-regulated RNAs can be done by multiple structure alignment of
suboptimal structures. If only two such sequences are analysed, the number of necessary
pairwise comparisons grows already quadratic with the number of suboptimal solutions.
Thus, the computational burden can be reduced with the computation of abstract shapes
in a quadratic way, too.

The introduction of the partition function approach to calculate the probabilities of
shapes gives further insights into the structure space of RNA. First, the examples show
that the shape holding the mfe-structure is not automatically the most probable one.
Second, in the case of competing structures the probabilities express the frequency of
each shape in the ensemble. Additionally, when searching the common shape of two
sequences a promising approach would be to search for the one with the highest combined
probability.

The remarkable result for the lin-4 precursor of C. elegans, together with the facts
that all known miRNA precursors have a hairpin as their mfe-structure and that they are
rather small (~ 100 nt), leads to the idea of using RNAshapes to search whole genomes
for hairpins of this size having a very high probability. These should be good candidates
for new miRNA precursors and hence also for new miRNAs.

A general problem in structure analysis is to choose a reasonable cut-off for suboptimal
structures. Uncertainties in the energy parameters imply that structures whose energy
is P% above the mfe have to be considered, whereas structural variability by molecular
kinetics is bound by a certain energy range, e.g. 5 kcal/mol. With the probabilities
of shapes it is now possible to choose a probability cut-off. This, though based on
energy parameters, is independent of the actual mfe value and, due to the summation
over all structures belonging to a shape, more robust against slight errors in the energy
parameters. The actual value of this cut-off seems to be reasonable at about 10~* as
this would mean that only 1 in 10,000 molecules would attain this shape. Normally, only
up to a few thousand copies of an RNA are present in the cell. In a kinetic point of view,
a cut-off at 10=* means that a relevant shape has to be present for at least 0.36 seconds
if the RNA is stable for one hour.

The complexity of the algorithms is, as for the known folding algorithms using DP,
O(n®) in time and O(n?) in space. The algorithm for the computation of shape proba-
bilities uses 5 tables and 3 lists (5n% + 3n), whereas the algorithm to compute shapes
and shreps in a certain energy range makes use of 3 tables and 1 list (3n> + 1n). The
reason for the larger memory requirements of the algorithm for shape probabilities lies in
the use of the unambiguous grammar. This one has extra productions, some of which
have to be tabulated to ensure that the computation finishes in reasonable time.

Due to computational limitations, which partly result from the Haskell implementation,
the algorithm for calculating abstract shapes is currently limited to sequences of length
up to 350 nt and the algorithm for calculating shape probabilities to sequences of length
up to 150 nt. For a reasonable number of functional RNAs this is sufficient, but it
is of course desirable to be able to analyse longer sequences as well. Currently, | am
working together with Peter Steffen to improve the performance by making use of his
ADP compiler, which directly produces fast C-Code. Some extensions to the standard
compiler are necessary to satisfy the specific needs of shape analysis.



CHAPTER 6

Summary and Outlook

In this thesis | have presented two tools for the analysis of the secondary structure space
of RNA. The paRNAss approach is intended to reveal conformational switching in RNA
and the evaluation showed that it is useful for this purpose. Furthermore, due to the
improvements | introduced, it can be used to discover more general properties, such as
the presence of three alternative and dissimilar structures. A major problem remaining is,
that a user has to interpret the results, which is the crucial step for correct predictions.
But, without paRNAss the detection of conformational switching would be much harder.
A favourable improvement would be to switch from user to automated interpretation and
even better to some kind of scoring. First attempts to score conformational switches were
not conclusive. In some cases they delivered reasonable results, so that | am convinced
that it is possible to design such a scoring.

Especially in the case of long sequences the results are often difficult to interpret.
The main reason for this is that long sequences can form more dissimilar structures even
when restricting to local minima (by refolding). A solution could be to define some
measure for local dissimilarity, which to my knowledge was not tried before. Another
helpful fact would be to know the relevance of each structure and to use this as a weight
during the analysis. Two structures with large distance but low relevance could then
be neglected and would not disturb the distance plots. But how should relevance be
measured? Perhaps the approach of abstract shapes leads to an answer in the near
future.

The idea of abstract shapes is implemented in the program RNAshapes. Its aim is to
give a representative overview of the complete or the near-optimal structure space and to
simplify subsequent analyses by reasonably reducing the number of objects. The benefits
of RNAshapes are the low number of shapes and shreps the user is confronted with in
the output, the possibility to adjust the abstraction level to fit to the problem, and the
modular implementation which allows the easy introduction of up-coming enhancements,
such as further types of shapes. Especially the implementation of the partition function
approach for the computation of probabilities of shapes is a major improvement in RNA
secondary structure analysis. As beforementioned, the longer the sequence the more
dissimilar structures and also shapes are present, even in the near-optimal structure/shape
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space. By looking at the shape probabilities, the researcher is able to decide which of the
shapes are relevant and which not. Additionally, the number of shapes with reasonable
probability hints at properties such as structural well-definedness, kinetic traps in the
folding pathway, or alternating conformations. All this might make the approach of
abstract shapes one of the standard tools in RNA structure analysis.

Another domain where RNAshapes could be helpful is in the classification of unknown
sequences. Based on its shapes a sequence could be assigned to known families of RNAs,
such as those collected in Rfam. This could be used as a prefiltering step to decrease the
number of families under consideration and to speed up the classification process. One
can even think of calculating a mean probability for the common shape of each family
and to use this in combination with the shape probabilities of the new sequence to score
the hits. The mean probability of the common shape or some other statistical measure
could also serve as a measure for the structural diversity in this family.

Incorporation of the approach of abstract shapes into paRNAss should also be done
in near future. This could improve the speed and the predictive power of paRNAss and
would also allow to define one probability cut-off for all RNAs, which would reduce the
number of parameters and make predictions more reliable. It is of course not trivial to
choose a reasonable cut-off value. Therefore, a thorough investigation of the approach
of shape probabilities is necessary, which is currently in progress. One can also think of
using a modified version of RNAshapes to search whole genomes for sequences having two
shapes with similar probability and to validate these with paRNAss to discover unknown
conformational switches. Furthermore, searching for sequences having one shape with
very high probability and, hence, a well-defined structure, might reveal new members of
functional non-coding RNA. In order to achieve this, the performance of RNAshapes has
to be improved, which is carried out at the moment.

Both tools are available on the Bielefeld University Bioinformatics Server (BiBiServ,
http://bibiserv.techfak.uni-bielefeld.de/{parnass,rnashapes}). The program RNAshapes,
as well as its source code, is also available for download for various platforms.
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APPENDIX A

paRNAss Analyses

A.1 E. coli DsrA

Function DsrA is an 87-nucleotide regulatory RNA that acts in trans with two different
mRNAs, hns and rpoS. DsrA has opposite effects on these transcriptional regulators.
DsrA interacts with the hns mRNA start and stop codon regions to form a coaxial stack
and thereby leads to degradation of hns mRNA. In contrast, DsrA base pairs in a discrete
fashion with rpoS mRNA translational operator and enables translation. Thus, different
conformations of DsrA lead to opposite regulatory effects on target RNAs.

Parameters
e Energy range: 3kcal/mol

Search space: feasibles

Temperature: 37 °C
e Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of dsra paRNAss - Tree Distance Plot of dsra
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Figure A.1: Distance plots for dsrA.
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Consensus structures
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Figure A.4: Consensus structures for dsrA based on dg.
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Consensus structure validation

Validation of clustering results of dsra Validation of clustering results of dsra
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Figure A.5: Validation plots for dsrA.
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A.2 E. coli S15

Function

The ribosomal protein S15 controls its own translation by binding to a re-

gion of the mRNA overlapping the ribosome binding site. That region of the mRNA
can fold into two mutually exclusive conformations that are in dynamic equilibrium: a
structure with two hairpins and a pseudoknot [47]. S15 protein binds to the pseudoknot
conformation and allows ribosome binding, but it traps the ribosome on its loading site,

preventing the formation of the active ternary 30S/mRNA /initiator-tRNA complex.

Parameters

Energy range: 3kcal/mol
Search space: canonicals
Temperature: 37 °C

Max. Structures: 100

Distance plots

MD distance

paRNAss - Morphological Distance Plot of s15
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Figure A.6: Distance plots for s15.
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Consensus structures
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Figure A.7: Consensus structures for s15 based on d,.
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Figure A.8: Consensus structures for s15 based on dry.
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Figure A.9: Consensus structures for s15 based on dgs.
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Consensus structure validation

Validation of clustering results of s15 Validation of clustering results of s15
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Figure A.10: Validation plots for s15.
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A.3 E.coli btuB leader

Function The btuB gene encodes the outer membrane cobalamin transporter in Es-
cherichia coli. Its expression is strongly reduced on growth with cobalamins, which is
primarily due to changes in translation. Vitamin By, regulates expression of this gene by
binding either directly or via a protein to the target site on the mRNA. Binding of vitamin
Bis leads to the formation of a hairpin in the leader of the mRNA that sequesters the
ribosomal binding site. The release of vitamin By, causes a structural transition in the
RNA, which opens up the Shine-Dalgarno (SD) sequence for ribosomes. Once enough
vitamin By, is produced , it reoccupies its binding site, refolding the SD enclosing hairpin
[73]. This was the first example for the class of so called riboswitches, which directly
bind to metabolites.

Parameters

e Energy range: 2kcal/mol

e Search space: canonicals (refolded)
e Temperature: 37 °C

e Max. Structures: 129

Distance plots

paRNAss - Morphological Distance Plot of btuB leader paRNAss - Tree Distance Plot of btuB leader
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Figure A.11: Distance plots for btuB leader.
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Consensus structures
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Figure A.14: Consensus structures for btuB leader based on dg.
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Consensus structure validation

EB distance to structure 2 [kcal/mol]

25

20

15

10

Validation of clustering results of btuB leader

r 1 1 1
- * X%

* ¥
L ¢
[ ] F
- 56K

*

L ] ] ]
0 5 10 15

EB distance to structure 1 [kcal/mol]

(a) dwp, PkMeasure = 23

EB distance to structure 2 [kcal/mol]

1
20

35

30

25

20

15

10

| | a 35 - | |

30 - *

i &
20 - -

*

%
¥

15 -
10 -

5_

* Ok &

* B !
25 30

EB distance to structure 2 [kcal/mol]

oL | |

¥
J
35 0 5

Validation of clustering results of btuB leader

r | | | | | |
- * XK
i, ¢

% K
i X
" A

*
*® K #

L [ [ | I % ok |
0 5 10 15 20 25 30

EB distance to structure 1 [kcal/mol]

() des, pkMeasure =23

* ¥

10
EB distance to structure 1 [kcal/mol]

(b) drap, PkMeasure = 23

3
J
3

Validation of clustering results of btuB leader

| | | | hl
® % L )
| I % owk [ J
15 20 25 30 35

5

Figure A.15: Validation plots for btuB leader.



108 paRNAss Analyses

A4 5-UTR of MS2 RNA genome

The genomic RNA of bacteriophage MS2 codes for four genes. The regulation of trans-
lation of these four different genes is controlled at the level of RNA folding and unfolding,
where the first gene is regulated independent from the others. In the mfe-structure of
the leader, the Shine-Dalgarno (SD) sequence is base paired and inaccessible to ribo-
somes. During transcription, a metastable hairpin is formed first, sequestering part of
the SD-containing hairpin. This keeps the SD sequence accessible for ribosomes. After
some time this metastable structure is disrupted in favour of the translationally silent
mfe-structure [74].

Parameters

e Energy range: 6kcal/mol
e Search space: canonicals
e Temperature: 37 °C

e Max. Structures: 100

Distance plots

paRNAss - Morphological Distance Plot of ms2 5’-UTR paRNAss - Tree Distance Plot of ms2 5'-UTR
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Figure A.16: Distance plots for ms2 5'-UTR.
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Consensus structures
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Figure A.19: Consensus structures for ms2 5'-UTR based on dgs.
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Consensus structure validation
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Figure A.20: Validation plots for ms2 5'-UTR.
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A.5 HDV ribozyme

Function Hepatitis delta virus (HDV) is a small single-stranded RNA satellite of hep-
atitis B virus. During the rolling-circle replication of the genome multimers are formed,
which need to be cleaved into monomers. This cleavage is performed by the RNA itself,
more precisely by the HDV ribozyme.

Parameters

Energy range: 3kcal/mol

Search space: canonicals (refolded)

Temperature: 37 °C
Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of HDV ribozyme paRNAss - Tree Distance Plot of HDV ribozyme
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Figure A.21: Distance plots for HDV ribozyme.
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Consensus structures

Figure A.24: Consensus structures for HDV ribozyme based on dg.
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Consensus structure validation

Validation of clustering results of HDV ribozyme Validation of clustering results of HDV ribozyme
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Figure A.25: Validation plots for HDV ribozyme.
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A.6 T4 td gene intron

Function Another member of the family of group | introns is the T4 thymidylate syn-
thase (td) gene intron. In this system the ribosome or several RNA chaperones function
as a trans-acting factor by disrupting a splicing preventing interaction between the exon
and intron. Now the intron can refold into its active conformation, thus leading to an
efficient splicing reaction [75].

Parameters

Energy range: 3kcal/mol

Search space: canonicals (refolded)

Temperature: 37 °C
Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of T4 td gene intron paRNAss - Tree Distance Plot of T4 td gene intron
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Figure A.26: Distance plots for T4 td gene intron.
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Consensus structures

(@) a (b) e

Figure A.27: Consensus structures for T4 td gene intron based on d.
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Figure A.29: Consensus structures for T4 td gene intron based on dgs.
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Consensus structure validation

Validation of clustering results of T4 td gene intron
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Figure A.30: Validation plots for T4 td gene intron.
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A.7 HIV-2 leader

Function Similar to the previously described HIV-1 leader, also the HIV-2 leader is
capable of attaining two different conformations, which reflect different functions. One
conformation enables translation of the viral genes, whereas the other is needed for
dimerization of the viral genome and subsequent packaging [76].

Parameters

Energy range: 2kcal/mol

Search space: canonicals (refolded)

Temperature: 37 °C
Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of HIV2 leader paRNAss - Tree Alignment Distance Plot of HIV2 leader
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Figure A.31: Distance plots for HIV2 leader.
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Consensus structures

(@) a (b) &

Figure A.32: Consensus structures for HIV2 leader based on d.
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Figure A.33: Consensus structures for HIV2 leader based on dr4.
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Figure A.34: Consensus structures for HIV2 leader based on dg.
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Consensus structure validation
Validation of clustering results of HIV2 leader Validation of clustering results of HIV2 leader
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A.8 3’-UTR of alfalfa mosaic virus (AMV) RNA

3'-UTRs of alfamo-virus RNAs fold into a series of stem-loop structures to which the
coat protein binds with high affinity. This binding plays a role in initiation of infection and
has been thought to substitute for a tRNA-like structure that is found at the 3’ termini
of related plant viruses. Olsthoorn et al. [77] propose the existence of an alternative
conformation of the 3’ ends of alfamo-virus RNAs, including a pseudoknot, and that
these two conformations could enable the virus to switch from translation to replication,
like mentioned before for the HIV-1 and HIV-2 leaders.

Parameters

e Energy range: 3kcal/mol

e Search space: canonicals (refolded)
e Temperature: 37 °C

e Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of AMV 3'-UTR paRNAss - Tree Distance Plot of AMV 3-UTR
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Figure A.36: Distance plots for AMV 3'-UTR.
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Consensus structures
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Figure A.39: Consensus structures for AMV 3'-UTR based on dg.
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Consensus structure validation

Validation of clustering results of AMV 3’-UTR Validation of clustering results of AMV 3'-UTR
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Figure A.40: Validation plots for AMV 3'-UTR.
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A.9 E. coli o operon

Function Ribosomal protein S4 represses synthesis of the four ribosomal proteins (in-
cluding itself) in the Escherichia coli o operon by binding to a pseudoknot structure that
spans the ribosome binding site. One feature of the repression mechanism is, that the
MRNA switches between conformations that are “active” or “inactive” in translation, with
S4 as an allosteric effector of the inactive form. Such bound S4 is capable of holding
the 30S ribosomal subunit in an unproductive complex on the mRNA [78].

Parameters

e Energy range: 4kcal/mol

Search space: canonicals (refolded)

Temperature: 37 °C
e Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of alpha operon mRNA paRNAss - Tree Distance Plot of alpha operon mRNA
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Figure A.41: Distance plots for a operon mRNA.
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Consensus structures

(@) a (b) &

Figure A.42: Consensus structures for o operon mRNA based on dyp.
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Figure A.43: Consensus structures for a operon mRNA based on dr,.
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Figure A.44: Consensus structures for a operon mRNA based on dg.
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Consensus structure validation

Validation of clustering results of alpha operon mRNA
16 r | | | | | | |

= - ®»* o =
T 3
£ x g
~ 12- ” . TN
g 10- s o X - e
2 * R % 2
o (]
S 8- woxo X - 3
@ X * 7]
o g% * o K K _ 2
© X ]
2 4- B - o
& % &
%] (%]
5 2- - 5
m m
w oL I % | [ | | | | J L
0 2 4 6 8 10 12 14 16

EB distance to structure 1 [kcal/mol]

(a) dwp, PkMeasure =3

Validation of clustering results of alpha operon mRNA
16 |

1 x|l o | 1 hl
14 - o L
* K * K
12 - = EE** * % ¥ o -
*
10 - * * 3‘% X* * K -
8 _>< * ¥ Rk ¥ Ky ¥ Koy *¥ _
6 - * -
4 - o _
2 - -
oL 1 1 1 I x 1 X aJ
0 2 4 6 8 10 12 14 16

EB distance to structure 1 [kcal/mol]

(b) drap, PkMeasure = 10

Validation of clustering results of alpha operon mRNA

16 |

14 -
*
12 -

EB distance to structure 2 [kcal/mol]

oL | | l
4 6

I x
8

[ 1 |
* -
R
®oow -
* R -
- ¥
o _
I I X J
10 12 14 16

EB distance to structure 1 [kcal/mol]

() des, pkMeasure = 10

Figure A.45: Validation plots for o operon mRNA.
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A.10 E. coli hok

Function The R1 plasmid is maintained in the E. coli cell by expressing a toxin, which
kills the cell if the plasmid is lost. The expression of the host killing toxin (Hok) must be
controlled in all stages of the lifecycle of the hok mRNA. This is achieved in part by the
antisense RNA suppression of killing (Sok), which is transcribed from the same plasmid
R1. The antisense Sok RNA is labile, so that the pool is quickly depleted when the
plasmid is lost, which leads to the killing of plasmid-free cells. This also implies that the
hok mRNA must be considerably more stable than the Sok RNA. Furthermore, it should
not be target of the Sok RNA in plasmid-containing cells to permit the formation of a
pool of the hok mRNA, which is large enough to kill plasmid-free cells. And, last but not
least, it should not be translationally active in plasmid-containing cells to avoid premature
killing of cells and degradation by duplex formation with Sok RNA. This is achieved by
forming a stable and highly structured mRNA, which is translationally inactive. This
inactive hok mRNA then gets slowly activated by a 3'-end processing, which causes a
structural rearrangement. This leads to the formation of the translation activator hairpin
(tac) at the 5'-end. This partially opens the ribosomal entry site and, simultaneously,
the target site for the antisense Sok RNA. In plasmid-containing cells, the Sok RNA
binds to the active messenger forming a duplex, which gets degraded by RNase Ill, while
in plasmid-free cells, the toxic Hok protein gets expressed [79].

Parameters
e Energy range: 2kcal/mol
e Search space: canonicals
e Temperature: 37 °C
e Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of hok paRNAss - Tree Distance Plot of hok
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Figure A.46: Distance plots for hok.
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Consensus structures

(@) a (b) e

Figure A.47: Consensus structures for hok based on d,.
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Figure A.48: Consensus structures for hok based on dr..
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Figure A.49: Consensus structures for hok based on dgs.
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Consensus structure validation

Validation of clustering results of hok Validation of clustering results of hok
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Figure A.50: Validation plots for hok.



paRNAss Analyses 129

A.11 B. subtilis ribD leader

Function mRNAs of prokaryotic genes required for the biosynthesis of riboflavin and
flavin mononucleotide (FMN) share a highly conserved but distinct RNA domain, termed
the RFN element. FMN is required for down-regulation of the ribD operon of Bacillus
subtilis, which encodes several FMN biosynthetic enzymes. Winkler et al. [52] showed
that FMN directly binds to the RFN element of the ribD leader and causes transcription
termination.

Parameters

e Energy range: 3kcal/mol

e Search space: canonicals (refolded)
e Temperature: 37 °C

e Max. Structures: 100

Distance plots

paRNAss - Morphological Distance Plot of ribD leader paRNAss - Tree Distance Plot of ribD leader
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Figure A.51: Distance plots for ribD leader.
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Consensus structures
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Figure A.54: Consensus structures for ribD leader based on dg.
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Consensus structure validation
Validation of clustering results of ribD leader Validation of clustering results of ribD leader
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Figure A.55: Validation plots for ribD leader.
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A.12 B. subtilis ypaA leader

Function

In the same analysis as in the previous section the authors also showed that

the mRNA of B. subtilis ypaA (a putative riboflavin transport protein) carries an RFN
element. Binding of flavinmononucleotide to the RFN-containing leader of ypaA mRNA
leads to down-regulation. This time the mechanism is not transcriptional termination as
for the ribD leader but sequestration of the ribosome-binding site.

Parameters

Energy range: 3kcal/mol

Search space: canonicals (refolded)
Temperature: 37 °C

Max. Structures: 50

Distance plots
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Figure A.56: Distance plots for ypaA leader.
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Consensus structures
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Figure A.59: Consensus structures for ypaA leader based on dg.
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Consensus structure validation
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Figure A.60: Validation plots for ypaA leader.
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A.13 E. coli lysC leader

Function Rodionov et al. [80] propose another regulatory RNA element involved in
amino acid biosynthetic pathways. They identified a lysine-specific RNA element, named
the LYS element, in the regulatory regions of bacterial genes involved in biosynthesis
and transport of lysine. The authors propose that lysine regulates expression in Gram-
positive bacteria by premature termination of transcription in the leader. Additionally,
they propose that for Gram-negative (E. coli) bacteria, binding of lysine to the LYS
element leads to sequestration of the ribosome binding site by a hairpin structure which
represses initiation of translation.

Parameters

e Energy range: 3kcal/mol
e Search space: canonicals (refolded)
e Temperature: 37 °C

e Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of lysC leader paRNAss - Tree Distance Plot of lysC leader
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Figure A.61: Distance plots for lysC leader.
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Consensus structures

(@) a (b)

(@) a (b) @

(@) a (b)

Figure A.64: Consensus structures for lysC leader based on dg.
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Consensus structure validation
Validation of clustering results of lysC leader Validation of clustering results of lysC leader
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Figure A.65: Validation plots for lysC leader.
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A.14 Internal transcribed spacer of pre-rRNAs in yeast

Function Maturation of the large subunit rRNAs requires a series of cleavages that
result in removal of the internal transcribed spacer (ITS2), which separates mature 5.8S
and 25/28S rRNAs. Formation of higher order secondary structure is a prerequisite for
accurate and efficient pre-rRNA processing. Two alternative secondary structure models
exist for Saccharomyeces cerevisiae |TS2, namely the “hairpin model” and the “ring model".
Cote et al. [81] examined the significance of both models in efficient processing and
propose a dynamic conformational model for the role of ITS2: ITS2 initially folds into
the “ring” structure. This may promote the association of proteins that further stabilise
the structure and initiate formation of the preprocessing complex. Once successfully
assembled, the preprocessing complex may induce a conformational transition resulting
in formation of the “hairpin” structure. This structure could be shown to be a prerequisite
for maturation of both 5.8S and 25S rRNAs.

Parameters

e Energy range: 3kcal/mol

Search space: canonicals (refolded)

Temperature: 37 °C
Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of yeast ITS2 paRNAss - Tree Distance Plot of yeast ITS2
3500 r | | | | | | a 2000 r | | | | | | a
. 1800 - HodlNR S ¢
3000 - b St 33 - WM OO XX
1600 - -
2500 - SO« - 1400 - -
8 3
§ 2000 - X X O, ux - g 1200 - o y _
2 @ 1000 - xR g -
© - - ° K Hx
g 1800 o 800 - e -
= [= P i
1000 - ik x « - 600 - R T J— -
)5% * x 400 - SR I % _
500 - R -

¥ O 200 - Wy X -
0 bcommmbemmmie  HERK | ! g

0 tocummmiliid ¢ I I I 4
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
EB distance [kcal/mol] EB distance [kcal/mol]
(@) duo (b) drawo

Figure A.66: Distance plots for yeast ITS2.
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Consensus structures

(@) a (b)

(@) a (b)

(@) a (b)

Figure A.69: Consensus structures for yeast ITS2 based on dg.
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Consensus structure validation

Validation of clustering results of yeast ITS2 Validation of clustering results of yeast ITS2
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Figure A.70: Validation plots for yeast ITS2.
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A.15 Leader of ptsGHI operon in B. subtilis

Function The ptsGHI operon in B. subtilis encodes for the genes involved in glucose
transport by the phosphotransferase system. Schilling et al. [82] showed that expression
of this operon is controlled at the level of transcript elongation by a protein-dependent
riboswitch. In the absence of glucose a transcriptional terminator prevents elongation
into the structural genes. In the presence of glucose, the GIcT protein is activated and
binds and stabilises an alternative structure that overlaps the terminator and prevents
termination.

Parameters

e Energy range: 2kcal/mol

e Search space: feasibles (refolded)
e Temperature: 37 °C

e Max. Structures: 50

Distance plots

paRNAss - Morphological Distance Plot of ptsGHI leader paRNAss - Tree Distance Plot of ptsGHI leader
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Figure A.71: Distance plots for leader of ptsGHI.
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Consensus structures

(@) a (b)

(@) a (b)

Figure A.74: Consensus structures for leader of ptsGHI based on dgs.
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Consensus structure validation
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APPENDIX B

Grammars and Algebras for RNA Folding

B.1 Grammars for Prediction of Canonical RNA
Structures

The following grammar, termed canonicals, describes the folding space of RNA with
dangling bases and is restricted to canonical structures, i.e. structures without isolated
base pairs.

canonicals takes alg inp_tr = axiom struct where

ml ,mldr,mldlr,mldl,addss,ssadd,cons,ul,combine,h,h_i,

>
>
> (sadd,cadd,nil,edl,edr,edlr,drem,is,sr,hl,sp,bl,br,il,
>
> h_1,h_s) = alg baseArray takes

>  struct = listed (

> sadd <<< base -77 struct |||

> cadd <<< edangle "~~~ struct |||

> nil <<< empty ... h_s)

> edangle = edl <<< base -"7 initstem [

> edr <<< initstem “7- base |||

> edlr <<< base -"" initstem ~7- base |||

> drem <<< initstem ... h1
> initstem = is <<< closed

> closed = tabulated (

> stack ||| hairpin ||| leftB ||| rightB |||
> iloop ||| multiloop ... h)

> multiloop = (mldl <<< base -"" base "7- base "7!! ml_components

> ~~_ base ~~- base [1]
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> mldr <<< base -7 base 7! ml_components

> ~~- base ~~- base ~~- base 11
> mldlr <<< base -7 base "7- base "7!! ml_components

> ~~- base “7- base "7- base [11
> ml <<< base -7 base 77! ml_components

> ~~- base “7- base )

> ‘with¢ stackpairing ... h

> ml_components = combine <<< block "7~ comps ... h

> comps = tabulated (

> cons <<< block “~~ comps |||

> block L1

> addss <<< block “~~ region ... h)

>  block = tabulated (

> ul <K< edangle 11

> ssadd <<< region "7~ edangle ... h)

>  stack = (sr <<< base -7 closed "7- base) ‘with‘ basepairing

>  hairpin = (hl <<< base -7 base "7! (region ‘with‘ minloopsize 3)
> ~7- base "7- base)

> ‘with¢ stackpairing

>  leftB = (sp <<< base -77 base "7! (bl <<< region ~~7 initstem)
> 7~ base “7- base)

> ‘with‘ stackpairing ... h

> rightB = (sp <<< base -7" base “7! (br <<< initstem ~~~ region)

> ~7- base "7- base)

> ‘with¢ stackpairing ... h

> iloop = (sp <<< base -7 base 7!

> (i1 <<< (region ‘with‘¢ (maxsize 30))

> """ closed "77

> (region ‘with‘ (maxsize 30)))

> ~~- base “7- base)

> ‘with‘ stackpairing ... h

The canonicals grammar is unambiguous in the sense that a dangling base is treated
as a structural element. This means that a stem with a dangling base is a different
structure than the same stem with the base not dangling. Furthermore, one base in
between two stems can either dangle to the left or the right stem (or it does not dangle
at all), which means that these are again different structures. A major problem is that
each stem with an adjacent base on each side can be interpreted in four ways: no
dangling bases, dangle left and no dangle right, no dangle left and dangle right, dangle



Grammars and Algebras for RNA Folding 147

left and dangle right. It is debatable if this treatment of dangling bases is correct, since
traditionally base pairs are the fundamental building blocks of RNA secondary structure.

For this reason, | developed a grammar which handles dangling bases in a unique way.
To achieve this the following general rules were transfered to the above grammar: (I)
A singlestranded region has to be followed by a structural element with a dangling base
on the left; (II) A structural element with a dangling base on the right is followed by a
singlestrand or a structural element with a dangling base on the left; (IlIl) A structural
element with no dangling base on the right has to be followed by an element with no
dangling base on the left; (IV) One unpaired base in between two structural elements
or in between the closing base pair of a multiloop and a structural element (inside the
multiloop) is handled explicitly, to be able to decide (in the evaluation algebra) to which
stem the base should dangle. In the following transformed grammar each production a
rule applies to is annotated with the corresponding number (I - 1V):

canonicals_unique_dangles takes alg inp_tr = axiom struct where

ml ,mldr,mladr,mldlr,mladlr,mldladr,mladldr,mldl,mladl,addss,

>

>

> (sadd,cadd,ambd,nil,edl,edr,edlr,drem,is,sr,hl,sp,bl,br,il,

>

> ssadd,cons,ul,combine,acomb,h,h_i,h_1,h_s) = alg baseArray takes

struct = helixtypel |||
helixtype2 ... h

> helixtypel = listed(
> (1v) ambd <<< edanglel ~~- base "~ noleft_dangle |||
> (v ambd <<< nodangle ~~- base "~~~ noleft_dangle |||
> (I11) cadd <<< edanglel ~~~
> (noleft_dangle ||| (nil <<< empty)) [11
> (II1) cadd <<< nodangle ~77
> (noleft_dangle ||| (nil <<< empty)) [
> (ID cadd <<< edangler ~~~
> (left_dangle ||| helixtype2) [1]
> (11 cadd <<< edanglelr ~~~
> (left_dangle ||| helixtype2) [1]
> nil <<< empty ... h)
> helixtype2 =
> (D sadd <<< base -~7 helixtype2 |l
> (D sadd <<< base -7~ left_dangle ... h
> left_dangle = listed (
> (v ambd <<< edanglel ~~- base "~~~ noleft_dangle |||
> (I11) cadd <<< edanglel =~~~
> (noleft_dangle ||| (nil <<< empty)) [11
> (I11) cadd <<< edanglelr "~~~
> (left_dangle ||| helixtype2) [1]
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> nil <<< empty ... h)
> noleft_dangle = listed (

> (I) cadd <<< edangler ~~~

> (left_dangle ||| helixtype2) [1]

> (I11) cadd <<< nodangle ~~~

> (noleft_dangle ||| (nil <<< empty)) [ 1]

> (IVv) ambd <<< nodangle ~7- base "7~ noleft_dangle ... h)
> edanglel = edl <<< base -77 initstem ... h_1

> edangler = edr <K< initstem "7- base ... h_1

> edanglelr = edlr <<< base -77 initstem “7- base ... h_1

> nodangle = drem <<< initstem ... h_1

> initstem = is <<< closed

> closed = tabulated (

> stack ||| hairpin ||| multiloop ||| leftB |||

> rightB ||| iloop ... h)

> multiloop = (mldl <<< base -"" base "7- base "7!! ml_compsl

> ~~_ base ~7- base [ 1]
> (Iv) mladl <<< base -"~ base ~7- base “7!! ml_comps2

> “~- base "7- base [11
> mldr <<< base -7 base 77! ml_comps3

> ~~- base "7- base "7- base [1]
> (IV) mladr <<< base -7~ base ~7! ml_comps2

> ~7- base "7- base "7- base [1]
> mldlr <<< base -7 base "7- base "7!! ml_comps4

> ~~_ base “7- base ~7- base [ 1]
> (IV) mladlr <<< base -7 base "7- base "7!! ml_comps2

> ~~- base “7- base "“7- base 1]
> (IV) mldladr<<< base -~~ base ~7- base “~!! ml_compsli

> ~~- base "7- base "7- base [1]
> (IVv) mladldr<<< base -~ base ~7- base "7!! ml_comps3

> ~7- base "7- base "7- base [1]
> ml <<< base -7 base 77! ml_comps?2

> ~~- base ~7- base )
> ‘with‘ stackpairing ... h

> ml_compsl = tabulated (

> (III) combine <<< block_dl ~~~ no_dl_no_ss_end [1]

> (I1) combine <<< block_dlr "7~ dl_or_ss_left_no_ss_end |||

> (Iv) acomb  <<< block_dl ~7- base "7~ no_dl no_ss_end ... h_i)
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> ml_comps2 = tabulated (

> (III) combine <<< (ul <<< nodangle) ~~~ no_dl_no_ss_end [

> (ID) combine <<< (ul <<< edangler) ~~~ dl_or_ss_left_no_ss_end |||

> (xv acomb <<< (ul <<< nodangle) ~7- base ~~~ no_dl_no_ss_end

> . h_i)

> ml_comps3 =

> (ID) combine <<< (ul <<< edangler) "~~~ dl_or_ss_left_ss_end |||

> (ITI) combine <<< (ul <<< nodangle) ~~~ no_dl_ss_end [11

> (Iv) acomb  <<< (ul <<< nodangle) ~~- base "~~~ no_dl_ss_end

> . h i

> ml_comps4 =

> (ITI) combine <<< block_dl ~~~ mno_dl_ss_end 11

> (ID) combine <<< block_dlr ~~~ dl_or_ss_left_ss_end |||

> (IV) acomb  <<< block_dl "7- base "77 no_dl_ss_end ... h_i
block_dl =

> (I ssadd <<< region "7~ edanglel |||

> ul <<< edanglel ... h_ i

> block_dlr
> (D ssadd <<< region "7~ edanglelr |||
> ul <<< edanglelr ... hi

> mno_dl_no_ss_end =
> ul <<< nodangle |||

> ml_comps?2

> dl_or_ss_left_no_ss_end =

> ml_compsl ||

> block_dl

> mno_dl_ss_end = tabulated (

> ul <<< edangler 11

> ml_comps3 11

> (11 addss <<< (ul <<< edangler) "~ region ... h_i)
> dl_or_ss_left_ss_end = tabulated (

> (ID) addss <<< block_dlr ~~~ region |||

> ml_comps4 [

> block_dlr ... h_i)

> stack = (sr <<< base -7 closed "7- base) ‘with‘ basepairing
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> hairpin = (hl <<< base -7 base 7! (region ‘with‘ minloopsize 3)
> ~~- base - base)

> ‘with¢ stackpairing

> leftB = (sp <<< base -7 base "7! (bl <<< region ~~~ initstem)
> ~7- base “7- base)

> ‘with¢ stackpairing

> rightB = (sp <<< base -7 base 7! (br <<< initstem ~77 region)

> ~~- base "7- base)

> ‘with¢ stackpairing

> iloop = (sp <<< base -7~ base 7!

> (11 <<< (region ‘with‘ (maxsize 30))

> """ closed 77

> (region ‘with‘ (maxsize 30)))

> - base “7- base)

> ‘with¢ stackpairing

This grammar is especially needed for the calculation of the partition function. The
reason for this is, that, using the canonicals grammar, structures with several stems
get overrepresented, due to the possibility of multiple combinations of dangling bases.
For four stems this means, that the same structure (in “Vienna” notation) can be derived
in 4* = 64 ways, whereas a single stem can only be derived in 4! = 4 ways. This results
in a higher value for the partition function which lowers the probability of each individual
structure. As the probability of a shape is the sum of the probabilities of its structures,
this would lead to incorrect higher probabilities for shapes with more stems. In terms of
a landscape this means that each valley in the landscape gets broadened by a factor of
(nr. of stems)*.
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B.2 Evaluation Algebras

The grammars from above are complemented by algebras which evaluate the candidates
derived by the grammar. The choice function h_1 has a special function as it filters
out elements having non-negative energy or a Boltzmann weighted energy smaller 1.0.
It is used in the above grammars in the productions for edangle (canonicals gram-
mar) and edanglel, edangler, edanglelr, nodangle (canonicals_unique_dangles
grammar). The idea behind is that a substructure in the external or a multiple loop should
not have positive energy, as in this case it would not form. In the following | will give
algebras for structure enumeration, structure counting, minimum free energy calculation,
pretty printing in “Vienna” notation, pretty printing in shapes notation, shape analysis,
partition function calculation and the product algebra to combine algebras. They are all
given with the additional functions for the canonicals_unique_dangles grammar but
also apply to the canonicals grammar.

B.2.1 Structure Enumeration

enum :: Array Int Ebase -> a ->
Canonical_Algebra Int (Int,Int) Closed Closed
enum seq _ = (sadd,cadd,ambd,nil,edl,edr,edlr,drem,is,sr,hl,sp,bl,br,il,

ml,mldr,mladr,mldlr,mladlr,mldladr,mladldr,mld]l,mladl,addss,
ssadd,cons,ul,combine,acomb,h,h_i,h_1,h_s)
where

sadd b = Sadd (s b)

cadd = Cadd

ambd ¢ b a = Ambd ¢ (s b) a

nil _ = Nil

edl b Edl (s b)

edr ¢ b = Edr ¢ (s b)

edlr 1b ¢ rb = Edlr (s 1b) c (s rb)

drem = Drem

is = Is

sr 1b ¢ rb = Sr (s 1b) ¢ (s rb)

hl 11b 1b 1 rb rrb = H1 (s 11b) (s 1b) 1 (s rb) (s rrb)

sp 1l1lb 1b ¢ rb rrb = Sp (s 11b) (s 1b) c¢ (s rb) (s rrb)

bl ¢ bulge Bl c bulge

br bulge c Br bulge c

il regl c reg2 I1 regl c reg2

ml 11b 1b multi rb rrb = M1 (s 11b) (s 1b) multi (s rb) (s rrb)
mldr 11b 1b multi dr rb rrb

= Mldr (s 11b) (s 1b) multi (s dr) (s rb) (s rrb)
mladr 11b 1b multi dr rb rrb
= Mladr (s 11b)(s 1b) multi (s dr) (s rb) (s rrb)

mldlr 11b 1b dl multi dr rb rrb
= Mldlr (s 11b)(s 1b)(s dl) multi (s dr) (s rb) (s rrb)

V VVVVVVVVVVVVVVVVVVV VYV VYV VVYVYV
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> mladlr 11b 1b dl multi dr rb rrb

> = Mladlr (s 11b)(s 1b) (s d1) multi (s dr)(s rb)(s rrb)
> mldladr 11b 1b dl multi dr rb rrb

> = Mladlr (s 11b)(s 1b) (s d1) multi (s dr) (s rb)(s rrb)
> mladldr 11b 1b dl multi dr rb rrb

> = Mladlr (s 11b)(s 1b) (s dl1) multi (s dr) (s rb)(s rrb)
> mldl 11b 1b dl1 multi rb rrb

> = M1dl (s 11b)(s 1b)(s d1) multi (s rb) (s rrb)
> mladl 11b 1b dl multi rb rrb

> = Mladl (s 11b)(s 1b)(s dl) multi (s rb) (s rrb)
> addss = Addss

> ssadd = Ssadd

> cons = Cons

> ul = U1

> combine = Combine

> acomb cl b c2 = Acomb c1 (s b) c2

> h =id

> h i =id

> h_1 =1id

> h_s = id

> s i = seqli

B.2.2 Pretty Printing - “Vienna” Notation

The prettyprint-algebra takes as arguments (left, right) the symbols representing
dangling bases on the 5'- and 3'-side, respectively. In the “Vienna” notation there is no
explicit representation of dangling bases, so that the “Vienna” notation is achieved with
prettyprint ’.° 7.7,

> prettyprint :: Char -> Char -> a -> b ->

> Canonical_Algebra i (Int,Int) String String

> prettyprint left right _ _ =

> (sadd,cadd,ambd,nil,edl,edr,edlr,drem,is,sr,hl,sp,bl,br,il,

> ml ,mldr,mladr,mldlr,mladlr,mldladr,mladldr,mldl,mladl,

> addss,ssadd,cons,ul,combine,acomb,h,h_i,h_1,h_s) where

> sadd s = 7.%:8

> cadd sl s2 sl++s2
>
>
>
>
>
>
>
>

ambd s1 b 82 = s1++(’.7:82)
nil =[]

edl _ s = left:s

edr s _ = s++right: []

edlr s _ = left:s++right:[]
drem = id

is = id

sTr g _ =2 :s++")"
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hl1 _ _ (hi,h2) _ _ = °C:7(C:dots (h2-h1)++"))"
Sp - _ s _ _=2020C:sH"))"
bl (11,12) s dots (12-11)++s
br s (r1,r2) s++dots (r2-r1)

il (11,12) s (r1,r2) = dots (12-11)++s++dots (r2-ri)

ml _ _ S _ _ =202 CisH+"))"

mldr _ _s _ _ _ =020 :st+tleft:"))"

mladr _ _ s _ _ _ =020 :s++left:"))"

mldlr _ _ _ s _ _ _ =202 :right:s++left:"))"
mladlr _ _ _ s _ _ _ =20 :right:s++left:"))"
mldladr _ _ _ s _ _ _ =0 :?(C:right:s++left:"))"
mladldr _ _ _ s _ _ = 22 :right:s++left:"))"
mldl _ _ _s _ _ =20:>C:right:s++"))"

mladl _ _ _ s _ _ =20 :right:s++"))"

addss s (r1,r2)
ssadd (11,12) s

s++dots (r2-ril)
dots (12-11)++s

cons sl s2 = gl++s2
ul s = s
combine sl1 s2 = sl ++ 82

acomb s1 b s2 sl ++ 7.7 : 82

h =1id
h_i = id
h_1 = id
h_s = id

vV VVV VYV VVV VYV VVVV VYV VYV VYV VVVYV

dots i1 = replicate i ’.’
‘‘Vienna’’ notation algebra:

> vienna = prettyprint .’ ’.°

B.2.3 Minimum Free Energy Calculation

To be able to assign the correct dangling energies, some functions, such as ambd (ambigu-
ous dangle), need to know the indices of the closed substructure at the 5'-end of the
subword, rather than the indices of the subword itself. For this reason, all functions that
append singlestrands and the function cadd communicate the former in their results.
Furthermore, the corresponding functions for multiloops need to know the indices of the
5'-end and the 3’-end closed substructure to decide whether a base dangles to the closing
stem of the multiloop or the stem at the 5'- and 3'-end, respectively.

> mfe :: Array Int Ebase -> Float ->
> Canonical_Algebra Int (Int,Int) (Float,Int,Int)
> (Float, (Int,Int), (Int,Int))
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V VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYVVYV

mfe array takes = (sadd,cadd,ambd array,nil,edl array,edr array,edlr array,
drem,is array,sr array,hl array,sp array,bl array,
br array,il array,ml array,mldr array,mladr array,
mldlr array,mladlr array,mldladr array,mladldr array,
mldl array,mladl array,addss,ssadd,cons,ul,combine,
acomb array,h,h_i,h_1,h_s) where
sadd 1b (e,_,rb) = (e,lb,rb)
cadd (el,1bl,rbl) (e2,1b2,rb2) = (el + e2,1bl,rbl)
ambd inp (el,1bl,rbl) db (e2,1b2,rb2)
=(elt+e2+(min (dr_energy inp (1lbl,rbl)) (dl_energy inp (1b2,rb2))),1bl,rbl)
nil _ = (0,n,n)
edl inp dl1 (e,lb,rb)
= (e + dl_energy inp (1b,rb),1lb,rb)
edr inp (e,1b,rb) dr
= (e + dr_energy inp (1b,rb),lb,rb)
edlr inp d1 (e,lb,rb) dr
= (e + dl_energy inp (1b,rb) + dr_energy inp (1b,rb),1b,rb)
drem = id
is inp (e,1b,rb) = (e + termaupenalty (inp!1lb) (inp!rb),1lb,rb)
sr inp 1b (e,_,_) rb = (e + sr_energy inp (1b,rb),lb,rb)
hl inp 11b 1b loop rb rrb
= (hl_energy inp (1b,rb) + sr_energy inp (11b,rrb),1lb,rrb)
sp inp 11b 1b (e,_,_) rb rrb = (e + sr_energy inp (1llb,rrb), 1lb,rrb)
bl inp (1,r) (e,lend,rend)
= (e + bl_energy inp 1 (1,r) (rend+1),1,rend)
br inp (e,lend,rend) (1,r)
= (e + br_energy inp (lend-1) (1,r) (r+1),lend,r)
il inp (11,12) (e,l,r) (r1,r2)
= (e + il_energy inp (11,12) (ri1,r2), 11, r2)
ml inp 11b 1b (e,_,_) rb rrb
= (380+e+sr_energy inp (11b,rrb)+termaupenalty (inp!1lb) (inp!rb),11lb,rrb)
mldr inp 11b 1b (e,_,_) dr rb rrb
= (380 + e + dri_energy inp (1b,rb) + sr_energy inp (11lb,rrb)
+ termaupenalty (inp!lb) (inp!rb),1lb,rrb)
mladr inp 11b 1b (e,_,(k,1)) dr rb rrb
= (380 + e + dangle_e + sr_energy inp (1lb,rrb)
+ termaupenalty (inp!lb) (inp!rb),1lb,rrb)
where dangle_e = min (dri_energy inp (1b,rb)) (dr_energy inp (k,1))
mldlr inp 11b 1b d1 (e,_,_) dr rb rrb
= (380 + e + dli_energy inp (1b,rb) + dri_energy inp (1b,rb)
+ sr_energy inp (1lb,rrb) + termaupenalty (inp!lb) (inp!rb),1lb,rrb)
mladlr inp 11b 1b dl1 (e, (i,j),(k,1)) dr rb rrb
= (380 + e + dangle_e + sr_energy inp (11b,rrb)
+ termaupenalty (inp!lb) (inp!rb),11b,rrb)
where dangle_e = (min (dli_energy inp (1b,rb)) (dl_energy inp (i,j)))
+ (min (dri_energy inp (1b,rb)) (dr_energy inp (k,1)))
mldladr inp 11b 1b 41 (e, (i,j),(k,1)) dr rb rrb
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= (380 + e + dangle_e + sr_energy inp (1llb,rrb)
+ termaupenalty (inp!lb) (inp!rb),1lb,rrb)
where dangle_e = dli_energy inp (1b,rb)
+ min (dri_energy inp (1b,rb)) (dr_energy inp (k,1))
mladldr inp 11b 1b d1 (e, (i,j),(k,1)) dr rb rrb
= (380 + e + dangle_e + sr_energy inp (1llb,rrb)
+ termaupenalty (inp!1lb) (inp!rb),1llb,rrb)
where dangle_e = (min (dli_energy inp (lb,rb)) (dl_energy inp (i,j)))
+ dri_energy inp (1b,rb)
mldl inp 11b 1b 41 (e,_,_) rb rrb
= (880 + e + dli_energy inp (lb,rb) + sr_energy inp (11lb,rrb)
+ termaupenalty (inp!lb) (inp!rb), 1lb,rrb)
mladl inp 11b 1b d1 (e,(i,j),_) rb rrb
= (380 + e + dangle_e + sr_energy inp (1llb,rrb)
+ termaupenalty (inp!1lb) (inp!rb), 11lb,rrb)
where dangle_e = min (dli_energy inp (lb,rb)) (dl_energy inp (i,j))
addss (e, (1bl,rbl),(1b2,rb2)) (i,j)
= (e + ss_energy (i,j),(1bl,rbl), (1b2,rb2))
ssadd (i,j) (e,lb,rb) = (40 + e + ss_energy (i,j),(1b,rb),(1b,rb))
cons (el,1bl,rbl) (e2,1b2,rb2) = (el + e2,1bl,rbl)
ul (e,lb,rb) = (40 + e,(1b,rb),(1b,rb))
combine (el,(1bl,rbl),_) (e2,_,(1b2,rb2)) = (el + e2,(1bl,rbl),(1b2,rb2))
acomb inp (el, (lba,rba),(1bl,rbl)) b (e2, (1b2,rb2), (1bb,rbb))
= (el + e2
+ (min (dr_energy inp (1bl,rbl)) (dl_emergy inp (1b2,rb2))),
(1ba,rba), (1bb,rbb))

vV VVVVVVV VYV VYV VVVVVVYVVYVYVYVYVVYV

> h [1=1]

> h xs = [minimum xs]

> h_i=nh

> h1[]1=10

> h_1 xs = if (minE_xs < 0.0) then [(minE_xs,i,j)] else []
> where (minE_xs,i,j) = minimum xs

> h_.s=h

> (_,n) = bounds array

B.2.4 Shapes Notation

The general shape algebra takes 6 arguments: edangle_op, edangle_cl, loop_ss,
loop_op, loop_cl and ss. edangle_op and edangle_cl give the opening and closing
character in the case that only the nesting of hairpins and multiloops is considered.
Accordingly, loop_op and loop_cl give the characters when all loop types should get
represented. loop_ss and ss represent the singlestranded regions of loops and of the
external and multi loop, respectively. In the case of abstracting from certain elements,
e.g. all singlestrands, the corresponding arguments are assigned the empty string.
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> shape :: String -> String -> String -> String -> String -> String ->
> Array Int Ebase -> Float ->

> Canonical_Algebra Int (Int,Int) String String

> shape edangle_op edangle_cl loop_ss loop_op loop_cl ss array takes =
> (sadd,cadd,ambd,nil,edl,edr,edlr,drem,is,sr,hl,sp,bl,br,il,
> ml,mldr,mladr,mldlr,mladlr,mldladr,mladldr,mldl,mladl,addss,
> ssadd,cons,ul,combine,acomb,h,h_i,h_1,h_s) where

> sadd _ s = if (ss == "" && s == "") then "_" else app ss s
> cadd sl s2 = if (ss == "" && s2 =="_") then sl else app sl s2
> ambd sl b s2 = app (app sl ss) s2

> nil _ ="

> edl _ s = ssttedangle_opt+st+tedangle_cl

> edr s _ = edangle_opt+s+tedangle_cl++ss

> edlr _ s _ = ssttedangle_opt+st++edangle_cl++ss

> drem s = edangle_opt++s++edangle_cl

> is = id

> sr _ s _ =s

> hl _ _ _ _ _ = loop_op++loop_ss++loop_cl

> sp__8__=s

> bl _ s = loop_opt+loop_ss++s++loop_cl

> br s _ = loop_opttst++loop_ss++loop_cl

> il _ s _ = loop_opt++loop_ss++s++loop_ss++loop_cl

> ml _ _ s _ _ = loop_op++s++loop_cl

> mldr _ _ s _ _ _ = loop_op++ (app s ss) ++loop_cl

> mladr _ _ s _ _ _ = loop_op++ (app s ss) ++loop_cl

> mldlr _ _ _ s _ _ _ = loop_op++ (app ss (app s ss)) ++loop_cl
> mladlr _ _ _ s _ _ _ = loop_op++ (app ss (app s ss)) ++loop_cl
> mldladr _ _ s _ _ _ = loop_opt++ (app ss (app s ss)) ++loop_cl
> mladldr _ _ _ s _ _ _ = loop_op++ (app ss (app s ss)) ++loop_cl
> mldl _ _ _ s _ _ = loop_opt+ (app ss s) ++loop_cl

> mladl _ _ _ s _ _ = loop_opt+ (app ss s) ++loop_cl

> addss s _ = app s ss

> ssadd _ s = app ss s

> cons sl s2 = app sl s2

> ul s =8

> combine sl s2= app sl s2

> acomb sl b s2= app (app sl ss) s2

> h = nub

> hi=h

> h1l=h

> h_s=h

app fuses adjacent ’_’s to one ’_’ when concatenating strings

> app :: String -> String -> String
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app [l ys = ys

app UL

app (x:[1) (y:[1) = x:y:[1

app (x:[1) (y:ys) = app (app (x:[1) (y:[1)) ys
app (x:xs) ys = x : app XS ys

V V V V V

The different abstraction levels are defined by different assignments for the arguments
of the shape algebra. The definitions for the five shape types | implemented so far are
as follows:

> shapel = shape "" " "_w nw[n wjnow_n
> shape2 = shape "" " "0 ow[n onyn 0w
> shape3 = shape "" "n nv wfn 0w oun
> shape4 = shape "[" "]®w mn nnonnow w
> shapeb = shape "[" "]" "n neonnonn

B.2.5 Shape Analysis

As stated in the outline of the implementation of RNAshapes (see Section 5.4.1), the
algebra makes use of a combination of the minimum free energy, shape and Vienna
notation algebras. To achieve this the shapes algebra obtains the functions from
those algebras, except the choice function which is implemented explicitly to facilitate
the filtering of equal shapes. The shape algebra is given as an argument to enable the
use of the different abstraction levels.

> shapes :: (Array Int Ebase -> Float ->

> Canonical_Algebra Int (Int,Int) String String) ->

> Array Int Ebase -> Float ->

> Canonical_Algebra Int (Int,Int) ((Float,Int,Int),String,String)

> ((Float, (Int,Int), (Int,Int)),String,String)

> shapes algl array takes =

> (sadd,cadd,ambd,nil,edl,edr,edlr,drem,is,sr,hl,sp,bl,br,il,

> ml,mldr,mladr,mldlr,mladlr,mldladr,mladldr,mld]l,mladl,addss,ssadd,
> cons,ul,combine,acomb,h,h_i,h_1,h_s) where

> (saddl,caddl,ambdl,nill,edll,edrl,edlrl,dreml,isl,sr1,hl1l,spl,bll,brl,ill,
> mll,mldrl,mladrl,mldlrl,mladlrl,mldladrl,mladldrl,mldll,mladll,addss1,

> ssaddl,consl,ull,combinel,acombl,hl,h_il,h_11,h_s1) = mfe array takes

> (sadd2,cadd2,ambd2,nil2,ed12,edr2,edlr2,drem2,is2,sr2,h12,sp2,b12,br2,i12,
> ml2,mldr2,mladr2,mldlr2,mladlr2,mldladr2,mladldr2,mldl2,mladl2,addss2,

> ssadd2,cons2,ul2,combine2,acomb2,h2,h_i2,h_12,h_s2) = algl array takes

> (sadd3,cadd3,ambd3,nil3,ed13,edr3,ed1lr3,drem3,is3,sr3,h13,sp3,b13,br3,1i13,
> ml3,mldr3,mladr3,mldlr3,mladlr3, mldladr3,mladldr3,mldl3,mladl3,addss3,

> ssadd3, cons3,ul3,combine3,acomb3,h3,h_i3,h_13,h_s3) = vienna array takes

sadd b (al,a2,a3) = (saddl b al, sadd2 b a2, sadd3 b a3)
cadd (c1,c2,c3) (al,a2,al3) = (caddl cl1 al, cadd2 c2 a2, cadd3 c3 a3)
> ambd (cl1,c2,c3) b (al,a2,a3) = (ambdl cl b ail,

vV Vv
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ambd2 c2 b a2,
ambd3 c3 b a3)
nil a = (nill a, nil2 a, nil3 a)
edl b (c1,c2,c3) = (edll b c1, edl2 b c2, edl3 b c3)
edr (c1,c2,c3) b = (edrl cl1 b, edr2 c2 b, edr3 c3 b)
edlr b (c1,c2,c3) b’ = (edlrl b cl1 b’, edlr2 b c2 b’, edlr3 b c3 b?)
drem (c1,c2,c3) = (dreml cl1, drem2 c2, drem3 c3)
is (c1,c2,c3) = (isl cl, is2 c2, is3 c3)
sr b (c1,c2,c3) b> = (sr1 b cl b’, sr2 b c2 b’, sr3 b c3 b?)
hl bl b2 u b2’ b1’ = (hll bl b2 u b2’ bl’,
hl2 bl b2 u b2’ bl’,
h1l3 b1 b2 u b2’ bi?)
sp bl b2 (c1,¢2,c3) b2’ bl’ = (spl bl b2 cl b2’ bl’,
sp2 bl b2 c2 b2’ bl’,
sp3 bl b2 c3 b2’ bl?)
bl u (c1,c2,c3) = (bll u cl1, bl2 u c2, bl3 u c3)
br (c1,c2,c3) u = (brl cl u, br2 c2 u, br3 c3 u)
il r1 (c1,c2,c3) r2 = (i1l1 r1 cl1 r2 ,il2 rl1 c2 r2, il3 rl1 c3 r2)
ml bl b2 (m1,m2,m3) b2’ b1’ = (mll bl b2 ml b2’ bil’,
ml2 bl b2 m2 b2’ bl’,
ml3 bl b2 m3 b2’ bl’)
mldr bl b2 (m1,m2,m3) d b2’ b1’ = (mldrl bl b2 m1 4 b2’ bl’,
mldr2 bl b2 m2 4 b2’ bl’,
mldr3 bl b2 m3 d b2’ bl?)

mladr bl b2 (m1,m2,m3) d b2’ bl’ = (mladrl bl b2 m1 d b2’ bl’,
mladr2 bl b2 m2 d b2’ bl’,
mladr3 bl b2 m3 d b2’ bl’)
mldlr bl b2 d (m1,m2,m3) 4’ b2’ b1’ = (mldlrl bl b2 d m1 4’ b2’ bl’,
mldlr2 bl b2 d m2 4’ b2’ bl’,
mldlr3 bl b2 d m3 d’ b2’ bl’)

mladlr bl b2 d (m1,m2,m3) 4’ b2’ b1’ = (mladlrl bl b2 d m1 4’ b2’ bl?’,
mladlr2 bl b2 d m2 d’ b2’ bl’,
mladlr3 bl b2 d m3 4’ b2’ bl?’)
(mldladrl bl b2 d m1 d’ b2’ bl’,
mldladr2 bl b2 d m2 4’ b2’ bl’,
mldladr3 bl b2 d m3 d’ b2’ bl’)
(mladldrl bl b2 d m1 d’ b2’ bl’,
d
d

mldladr bl b2 d (m1,m2,m3) d’ b2’ bil’

mladldr bl b2 4 (m1,m2,m3) 4’ b2’ bil’
mladldr2 bl b2 m2 d’ b2’ bl’,
mladldr3 bl b2 d m3 d’ b2’ bl?)
mldl bl b2 d (m1,m2,m3) b2’ b1’ = (mldll bl b2 d ml b2’ bi’,
mldl2 bl b2 d m2 b2’ bl’,
mldl3 bl b2 d m3 b2’ bl’)
mladl bl b2 d (ml1,m2,m3) b2’ bl’ = (mladll bl b2 d ml b2’ bl’,
mladl2 bl b2 d m2 b2’ bl’,
mladl3 bl b2 d m3 b2’ bl’)
addss (c1,c2,c3) u = (addssl cl1 u, addss2 c2 u, addss3 c3 u)
ssadd u (c1,c2,c3) (ssaddl u c1, ssadd2 u c2, ssadd3 u c3)

V VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV\VYV
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cons (c1,c2,c3) (c_1,c_2,c_3) = (consl cl c_1, cons2 c2 c_2, cons3 c3 c_3)
ul (c1,c2,c3) = (ull c1, ul2 c2, ul3 c3)
combine (c1,c2,c3) (c_1,c_2,c_3) (combinel c1 c_1,

combine2 c2 c_2,
combine3 c3 c_3)
(acombl c1 b c_1,
acomb2 c2 b c_2,
acomb3 c3 b c_3)

acomb (c1,c2,c3) b (c_1,c_2,c_3)

V V V V V V V V

h []

h xs

(]

extract_shapes [] res_list

where
res_list = filter_erange (lowest+takes) xs
filter_erange _ []1 = []
filter_erange limit (((x1,a,b),x2,x3):xs)
| x1 <= limit = ((x1,a,b),x2,x3):(filter_erange limit xs)
| otherwise = filter_erange limit xs
extract_shapes shs [] = shs
extract_shapes shs (x:xs)= extract_shapes (add_shape x shs) xs
add_shape x [] = [x]
add_shape ((x1,a,b),x2,x3) (((sl,c,d),s2,s3):shs)
| x2 == s2 && x1 < s1 = ((x1,a,b),x2,x3):shs
| x2 == 82 && x1 >= s1 = ((sl,c,d),s2,s3) :shs
| otherwise = ((sl,c,d),s2,s3): add_shape ((x1,a,b),x2,x3) shs
((lowest,_,_),_,_) = minimum xs

vV VV V V V V V V VYV YV YVYV\VYV

h_1 []
h_1 xs
where

(]

extract_shapes [] res_list

res_list = filter_erange (lowest+takes) xs
filter_erange _ [1 = []
filter_erange limit (((x1,a,b),x2,x3):xs)
| x1 < 0.0 && x1 <= limit
= ((x1,a,b),x2,x3): (filter_erange limit xs)
| otherwise = filter_erange limit xs
extract_shapes shs [] = shs
extract_shapes shs (x:xs)= extract_shapes (add_shape x shs) xs
add_shape x [] = [x]
add_shape ((x1,a,b),x2,x3) (((sl,c,d),s2,s3):shs)
| x2 == s2 && x1 < s1 = ((x1,a,b),x2,x3):shs
| x2 == s2 && x1 >= s1 = ((sl1,c,d),s2,s3):shs
| otherwise = ((sl,c,d),s2,s3): add_shape ((x1,a,b),x2,x3) shs
((lowest,_,_),_,_) = minimum xs

V VV V V V V V V V V VYV VVVYV

hi=nh
h s =nh

vV Vv
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\2

vV V V V V

shapesi
shapes?2
shapes3
shapes4
shapesb

shapes
shapes
shapes
shapes
shapes

B.2.6 Structure

nil
edl

edl

is
sr
hl
sp
bl
br
il
ml

ul

V VVVV VVVVVVVVVVVVVVVVVVVVVVVYVYVVYVVYVYVYV

h x

count

r

drem

a

count _

sadd _
cadd a b
ambd a

b
edr a _

(_,n) = bounds array

shapel
shape?2
shape3
shape4
shapeb

Counting

: a -> b -> Canonical_Algebra i (Int,Int) Integer Integer

_ = (sadd,cadd,ambd,nil,edl,edr,edlr,drem,is,sr,hl,sp,bl,br,il,
ml,mldr,mladr,mldlr,mladlr,mldladr,mladldr,mldl,mladl,addss,
ssadd,cons,ul,combine,acomb,h,h_i,h_1,h_s) where

b

1

b
axb

b = a*b

mldr
mladr _
mldlr _ _ _
mladlr _ _ _
mldladr _ _ _
mladldr _ _ _
mldl _ _ _
mladl

addss a _
ssadd _ b
cons ab=ax*xb

a

S

a

combine a b
acomb a _

h [1 =[]

1l
)

=b

axb

b = a*b

[sum xs]
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> h_i=h
> h_1=h
> h_s=nh

B.2.7 Partition Function Calculation

vV Vv

V ANV VVVVVVVVVVVVVVVVVVVVVVVVVYVVVYVVYVYVYV

r_gas = 0.00198717 -- [kcal/mol] <-- 1.98717 [cal/mol]
temperature = 310.15 -- [X]
mk_pf x = exp ((-x/100) / (r_gas * temperature))

p_func :: Array Int Ebase -> Float -> -- closed answer

Canonical_Algebra Int (Int,Int) (Float,Int,Int)
(Float, (Int,Int), (Int,Int))

p_func array takes = (sadd,cadd,ambd array,nil,edl array,edr array,

edlr array,drem,is array,sr array,hl array,sp array,
bl array,br array,il array,ml array,mldr array,
mladr array,mldlr array,mladlr array,mldladr array,
mladldr array,mldl array,mladl array,addss,ssadd,
cons,ul,combine,acomb array,h,h_i,h_1,h_s) where

sadd b (q,1b,rb) = (q,1lb,rb)

cadd (q1,1b1,rbl) (g2,1b2,rb2) = (ql * g2, 1bl,rbi)
ambd inp (q1,1b1,rb1) b (q2,1b2,rb2)
=(ql * g2
* mk_pf(min (dr_energy inp (1bl,rbl)) (dl_energy inp (1b2,rb2))),1bl,rbl)
nil _ = (1.0,n,n)
edl inp d1 (q,lb,rb) = (q * mk_pf (dl_energy inp (lb,rb)),1lb,rb)

edr

inp (q,1b,rb) dr = (q * mk_pf (dr_energy inp (1b,rb)),1lb,rb)

edlr inp d1 (q,lb,rb) dr

(q * mk_pf (dl_energy inp (1b,rb) + dr_energy inp (lb,rb)),1b,rb)

drem = id

is
ST
hl

Sp

bl

br

il

ml

inp (q,1b,rb) (q * mk_pf (termaupenalty (inp!lb) (inp!rb)),1lb,rb)
inp 1b (q,_,_) rb = (q * mk_pf (sr_energy inp (1lb,rb)),lb,rb)
inp 11b 1b loop rb rrb
(mk_pf (hl_energy inp (lb,rb) + sr_energy inp (1lb,rrb)),1llb,rrb)
inp 11b 1b (q,_,_) rb rrb
(q * mk_pf (sr_emnergy inp (11b,rrb)), 1lb,rrb)
inp (1,r) (q,lend,rend)
(q * mk_pf (bl_energy inp 1 (1,r) (rend+1)),1l,rend)
inp (q,lend,rend) (1,r)
(q * mk_pf (br_energy inp (lend-1) (1,r) (r+1)),lend,r)
inp (11,12) (q,1,r) (r1,r2)
(q * mk_pf (il_emnergy inp (11,12) (r1,r2)), 11, r2)
inp 11b 1b (q,_,_) rb rrb
(q * mk_pf (380 + sr_energy inp (1lb,rrb)
+ termaupenalty (inp!lb) (inp!rb)),1lb,rrb)

mldr inp 11b 1b (q,_,_) dr rb rrb
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= (q * mk_pf (380 + dri_energy inp (1b,rb) + sr_energy inp (11b,rrb)
+ termaupenalty (inp!lb) (inp!rb)),1lb,rrb)
mladr inp 11b 1b (q,_,(k,1)) dr rb rrb
= (q * mk_pf(380 + dangle_e + sr_energy inp (11lb,rrb)
+ termaupenalty (inp!lb) (inp!rb)),1lb,rrb)
where dangle_e = min (dri_energy inp (1b,rb)) (dr_energy inp (k,1))
mldlr inp 11b 1b 41 (q,_,_) dr rb rrb
= (q * mk_pf (380 + dli_energy inp (1lb,rb) + dri_energy inp (1b,rb)
+ sr_energy inp (1llb,rrb) + termaupenalty (inp!lb) (inp!rb)),1lb,rrb)
mladlr inp 11b 1b d1 (q,(i,j),(k,1)) dr rb rrb
= (q * mk_pf (380 + dangle_e + sr_energy inp (1lb,rrb)
+ termaupenalty (inp!lb) (inp!rb)),1lb,rrb)
where dangle_e = (min (dli_energy inp (1b,rb)) (dl_energy inp (i,j)))
+ (min (dri_energy inp (1b,rb)) (dr_energy inp (k,1)))
mldladr inp 11b 1b d1 (q,(i,j),(k,1)) dr rb rrb
= (q * mk_pf (380 + dangle_e + sr_energy inp (1lb,rrb)
+ termaupenalty (inp!lb) (inp!rb)),1llb,rrb)
where dangle_e = dli_energy inp (1lb,rb)
+ min (dri_energy inp (1b,rb)) (dr_energy inp (k,1))
mladldr inp 11b 1b d1 (q,(i,j),(k,1)) dr rb rrb
= (q * mk_pf (380 + dangle_e + sr_energy inp (1lb,rrb)
+ termaupenalty (inp!lb) (inp!rb)),1lb,rrb)
where dangle_e = (min (dli_energy inp (1b,rb)) (dl_emnergy inp (i,j)))
+ dri_energy inp (1b,rb)
mldl inp 11b 1b d1 (q,_,_) rb rrb
= (q * mk_pf (380 + dli_energy inp (1b,rb) + sr_energy inp (llb,rrb)
+ termaupenalty (inp!lb) (inp!rb)), 11lb,rrb)
mladl inp 11b 1b d1 (q,(i,j),_) rb rrb
= (q * (380 + e + dangle_e + sr_energy inp (1lb,rrb)
+ termaupenalty (inp!lb) (inp!rb)), 1lb,rrb)
where dangle_e = min (dli_energy inp (1b,rb)) (dl_energy inp (i,j))
addss (q, (1b1,rbl),(1b2,rb2)) (i,]j)
= (q * mk_pf(ss_energy (i,j)),(1bl,rbl),(1b2,rb2))
ssadd (i,j) (q,lb,rb) = (q * mk_pf(40 + ss_energy (i,j)),(1lb,rb),(1lb,rb))
cons (q1,1bl,rbl) (g2,1b2,rb2) = (q1 * g2,1bl,rbl)
ul (q,1b,rb) = (q * mk_pf(40),(1lb,rb), (1b,rb))
combine (q1,(1bl,rb1),_ ) (g2,_,(1b2,rb2)) = (q1 * g2,(1bl,rbl), (1b2,rb2))
acomb inp (q1,(1ba,rba),(1bl,rb1)) b (g2, (1b2,rb2), (1bb,rbb))
= (q1 * g2
* mk_pf (min (dr_energy inp (1bl,rb1)) (dl_energy inp (1b2,rb2))),
(1ba,rba), (1bb,rbb))

h[1 =11
h xs = [foldll (sum_triples) xs]

where sum_triples (x1,_, ) (x2,1,r) = (x1+x2,1,r)
h 1 [1=11

h_1 xs = [(y,a,b) | (y,a,b) <- [foldll (sum_triples) xs], y >= 1.0]
where sum_triples (x1,_,_) (x2,1,r) = (x1+x2,1,r)

VVVVVVVVVVVVVVAVYVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV\VYV
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> h_s =h
> h_i =h
> (_,n) = bounds array

B.2.8 Product Algebra

infix ***

(algl ***x alg2) basearray takes =
(sadd,cadd,ambd,nil,edl,edr,edlr,drem,is,sr,hl,sp,bl,br,il,
ml,mldr,mladr,mldlr,mladlr,mldladr,mladldr,mldl,mladl,addss,ssadd,
cons,ul,combine,acomb,h,h_i,h_1,h_s) where

(saddl,caddl,ambdl,nill,ed1ll,edrl,edlrl,dreml,isl,srl1,hll,spl,bll,brl,il1,
mll,mldrl,mladrl,mldlrl,mladlrl,mldladrl,mladldrl,mldll,mladll,addss1,
ssaddl,consl,ull,combinel,acombl,hl,h_i1,h_11,h_s1)= algl basearray takes
(sadd2,cadd?2,ambd2,nil2,ed12,edr2,ed1lr2,drem?2,is2,sr2,h12,sp2,b1l2,br2,i12,
ml2,mldr2,mladr2,mldlr2,mladlr2,mldladr2,mladldr2,mldl2,mladl2,addss2,
ssadd2,cons2,ul2,combine2,acomb2,h2,h_i2,h_12,h_s2)= alg2 basearray takes

V VV V V V V V V V.V

sadd b (al,a2) = (saddl b al, sadd2 b a2)
cadd (c1,c2) (al,a2) = (caddl c1 al, cadd2 c2 a2)
ambd (c1,c2) b (al,a2) = (ambdl c1 b al, ambd2 c2 b a2)
nil a = (nill a, nil2 a)
edl b (c1,c2) = (edll b c1, edl2 b c2)
edr (c1,c2) b = (edrl cl b, edr2 c2 b)
edlr b (c1,c2) b’ = (edlrl b c1 b’, edlr2 b c2 b?)
drem (c1,c2) = (dreml cl, drem2 c2)
is (c1,c2) = (isl ci1, is2 c2)
st b (c1,c2) b> = (srl b cl b’, sr2 b c2 b?)
hl b1 b2 u b2’ b1’ = (hll bl b2 u b2’ bl’, hl2 bl b2 u b2’ bl?’)
sp bl b2 (c1,c2) b2’ bl’> = (spl bl b2 cl b2’ bl’,sp2 bl b2 c2 b2’ bl’)
bl u (c1,c2) = (bll u cl1, bl2 u c2)
br (c1,c2) u = (brl cl1 u, br2 c2 u)
il r1 (c1,c2) r2 = (i1l1 r1 c1 r2 ,il2 r1 c2 r2)
ml bl b2 (m1,m2) b2’ bl’ = (mll bl b2 ml1 b2’ b1’, ml2 bl b2 m2 b2’ bl?’)
mldr bl b2 (m1,m2) d b2’ b1’ = (mldrl bl b2 m1 d b2’ bl’,
mldr2 bl b2 m2 d b2’ bl?)
mladr bl b2 (m1,m2) d b2’ b1’ = (mladrl bl b2 m1 4 b2’ bl’,
mladr2 bl b2 m2 d b2’ bil?’)
mldlr bl b2 d (m1,m2) d_ b2’ b1’ = (mldlrl bl b2 d m1 d_ b2’ bil’,
mldlr2 bl b2 d m2 d_ b2’ b1?)
mladlr bl b2 d (m1,m2) d_ b2’ bl’ = (mladlrl bl b2 d m1 d_ b2’ bl’,
mladlr2 bl b2 d m2 d_ b2’ bi1?)
(mldladrl bl b2 d m1 d_ b2’ bl’,
mldladr?2 bl b2 d m2 d_ b2’ b1’)
(mladldrl bl b2 d m1 d_ b2’ bl’,
mladldr2 bl b2 d m2 d_ b2’ bl?)

mldladr bl b2 d (m1,m2) d_ b2’ bl’

mladldr bl b2 d (ml1,m2) d_ b2’ bl’

V VVVVVVVVVVVVVVVVV VYV VYV VYV VVYVYV
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> mldl bl b2 d (m1,m2) b2’ b1’ = (mldll bl b2 d m1 b2’ bl’,

> mldl2 bl b2 d m2 b2’ bl’)

> mladl bl b2 d (m1,m2) b2’ b1’ = (mladll bl b2 d m1 b2’ bl’,

> mladl2 bl b2 d m2 b2’ b1l?)

> addss (cl1,c2) u = (addssl c1 u, addss2 c2 u)

> ssadd u (c1,c2) = (ssaddl u cl, ssadd2 u c2)

> cons (c1,c2) (c_1,c_2) = (consl cl c_1, cons2 c2 c_2)

> ul (c1,c2) = (ull c1, ul2 c2)

> combine (c1,c2) (c_1,c_2) = (combinel cl c_1, combine2 c2 c_2)

> acomb (c1,c2) b (c_1,c_2) = (acombl c1 b c_1, acomb2 c2 b c_2)

> hxs = [(x1,x2)| x1 <-nub $ hl [yl | (y1,y2) <- xs],

> X2 <- h2 [ y2 | (y1,y2) <- xs, yl == x1]]
> h_ixs = [(x1,x2)] x1 <- nub $ h_i1l [ y1 | (y1,y2) <- xs],

> x2 <- h_i2 [ y2 | (y1,y2) <- xs, y1 == x1]]
> h1xs = [(x1,x2)| x1 <- nub $ h_ 11 [ y1 | (y1,y2) <- xs],

> x2 <- h 12 [ y2 | (y1,y2) <- xs, y1 == x1]]
> h_s xs = [(x1,x2)| x1 <- nub $ h_s1 [ y1 | (y1,y2) <- xs],

> X2 <- h_s2 [ y2 | (y1,y2) <- xs, yl == x1]]



APPENDIX C

Usage of RNAshapes

The program RNAshapes has the following syntax:

RNAshapes -t [shape_type] -e [energy_range] -s [sequence]
shape_type: 1 - 5 (least - most abstract, default 5),
pl - p5 (probabilities of shapes)
energy_range: The energy range that is to be analysed in kcal/mol (default 1).
This parameter has no effect when calculating probabilities.
sequence: The raw sequence (if not given reads from stdin)

Examples:

> RNAshapes -t 5 -e 5 -s gttaatgtagcttaataacaagatggataattgtatcccataaaca
gttaatgtagcttaataacaagatggataattgtatcccataaaca

-4.5 CCCC. e IDEDDDD I CCCQERIDDD DD I (10l

-3.62  ((CCCCoooon CCCCC 20300220000 [

0.0

> RNAshapes -t pb -s gttaatgtagcttaataacaagatggataattgtatcccataaaca
gttaatgtagcttaataacaagatggataattgtatcccataaaca

-4.5 CCC. CCnnn )DEDDDD NN (CCCC o) et 0.7720283 011

-83.62  ((CCCCoa C(CCCC.. 2232003200 .0)) . 0.22614306 N

0.0 1.5578709e-4



