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1. General Part 

 
1.1 Introduction 

The importance and practicability of amination reactions as a tool for obtaining target 

compounds is nowadays fully acknowledged by chemists in synthetic organic, medicinal, 

agricultural and natural product chemistry, as well by the pharmaceutical and agricultural 

industries. A rapid development of novel and more efficient amination methods has been 

recorded during the past decade, mostly regarding the electrophilic amination. This method 

provides a great improvement with respect to the classical methods such as those based on the 

attack of a nucleophilic nitrogen atom to an electrophilic carbon, which are hampered by the 

difficult access to the electrophilic precursors – particularly when multifunctional derivatives are 

taken into consideration – and by the frequently recurring difficult reaction conditions.1 Among 

the compounds most frequently synthesized by electrophilic amination, 

α-amino acids, α-amino ketones and allyl amines play a prominent part. Their stereoselective 

synthesis has been intensively studied, and became an especially challenging testing ground for 

methods in asymmetric synthesis.2 

 

1.2 Electrophilic Amination 

 

Carbon-nitrogen bonds are often formed by attack of a nucleophilic nitrogen atom to an 

electrophilic carbon bearing a leaving group via SN2 type reaction. The reverse process, the 

electrophilic amination, in which a carbon nucleophile is replacing a leaving group on 

electrophilic nitrogen, has received increasing attention (Scheme 1). 

 

CX

C

+ HNR1R2

+ YNR1R2

C NR1R2

-

 
Scheme 1: General methodology for the formation of carbon-nitrogen bonds. 

 

The introduction of an amino group into organometallic compounds constitutes an example for 

the “umpolung” methodology for the direct formation of C-N bonds. Thus, an alternative 

approach to amination that involves the reaction of an electrophilic alkyl halide with ammonia or 
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amines is the conversion of the halide into a nucleophilic species, namely the corresponding 

Grignard or organolithium reagent, and its subsequent reaction with the R1R2N-Y derivative 

(Scheme 2).3 

Rδ+−Brδ−

Rδ−   MgBr
δ+

Mg

HNR1R2

R1R2N-Y

RNR1R2 R1, R2 = alkyl, H

 
Scheme 2: “Umpolung” methodology for the direct formation of carbon-nitrogen bonds. 

 

The species R-Br and R-MgBr may be considered as suppliers of [Rδ+] and [Rδ-], respectively, 

where HNR1R2 and R1R2N-Y are [δ-NR1R2] and [δ+NR1R2] synthons. 

The electrophilic amination reaction enables the transfer of amino or substituted amino groups 

from various amination reagents into different nucleophiles. The most interesting feature of 

electrophilic amination reagents of the type R1R2N-Y is the attachment of a good leaving group Y 

to the R1R2N group. The leaving group Y is displaced by the nucleophile during the amination 

process. Electrophilic reagents of the above type usually contain halogens or oxygen functions as 

the leaving group. N-Haloamines 1, O-alkyl- 2, O-aryl- 3, O-acyl- 4, O-sulfonyl- 5 and 

O-phosphinylhydroxylamines 6, and hydroxylamine-O-sulfonic acid 7 are able to react directly 

with C nucleophiles (Figure 1). The reactions require nothing more than hydrolytic workup. 

Deprotonation of the amino group will occur competitively while electrophilic attack of the 

H2N+ group on the carbanion will be influenced by the leaving group ability of Y. 

 
NH2 X NH2 OR NH2 OAr NH2 OCOAr

NH2 OSO2Ar

1      2        3        4

NH2 OP(O)Ar2 NH2 OSO2OH

5    6      7
 

Figure 1: Examples of electrophilic amination reagents of the type R1R2N-Y. 

 

Reagents 8 – 14 can also function as amino cation equivalent (Figure 2). Azides 8 react with 

Grignard and organolithium reagents to form triazene salts which are converted to the respective 

amines by either reductive or hydrolytic workup. Oximes 9 react with Grignard and 

organolithium reagents to produce imines which are hydrolyzed to amines. Reaction of enolates 

with arenediazonium salts 10 or dialkyl azodicarboxylates 11 furnishes α-hydrazono or 

α-hydrazido compounds, respectively, which are hydrogenated to α-amino compounds. 
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R N3 R2C  NOR ArN2
+
X ROOCN  NCOOR

8            9                 10                       11

Cl

N

O

CH2 NO2

R O

N
Ar

O

OtBu

12          13      14

-

 
Figure 2: Examples of electrophilic amination reagents which function as amino cation 

sources. 

 

α-Chloronitroso compound 12 and its analogues are well known dieno- and enophiles4-7, which 

also form nitrone products with methyl- and phenylmagnesium halides or Me3Al.8-10 Their 

reactivity towards enolates has been mainly studied by Oppolzer et al.11-13 Aliphatic nitro 

compounds 13 were also used as nitrogen sources.14-22 N-Allylhydroxylamines result from 

1,2-addition of allyl Grignard reagents to nitro compounds after hydrolysis of the intermediate 

nitrones. Finally, other electrophilic amination reagents should be mentioned such as the 

N-protected oxaziridines 14, which transfer efficiently under mild conditions the N-protected 

fragment to N-nucleophiles but, however, give moderate yields with C-nucleophiles.23-28 

 

1.2.1 Electrophilic Amination using Chiral Amination Reagents 

 

Different examples of stereoselective electrophilic amination reactions, either in the presence of a 

chiral catalyst29-32 or starting from substrates bearing a chiral center, have been reported in the 

literature.1,33 In contrast, there are only few efficient methods for reagent-controlled 

stereoselective electrophilic amination.1-3,27,33 Due to the higher availability of achiral nucleophilic 

substrates compared with chiral ones, the remarkable advantage offered by a stereoselective 

amination reagent can be easily envisioned. The following chapters present the “state of the art” 

in the field of electrophilic amination using chiral amination reagents. 

 

1.2.1.1  Azides 
 

Azides proved to be proficient reagents in electrophilic amination, especially when enolates were 

used as substrates.33 Evans et al.34 developed an optimized method starting from substrates 

bearing a chiral center, which allows the introduction of the [NH2
+] synthon with high 
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stereoselectivity and high yields, and thus allows the stereoselective synthesis of a broad spectrum 

of amino acids. Following the optimized method developed by Evans, a range of enolates can be 

azidated in moderate to very good yields and diastereoselectivity: racemic α-hydroxyester 

enolates34, chiral cyclic imide enolates34, chiral lactone enolates35 and chiral auxiliary-based 

enolates.36 

In the asymmetric azidation the chirality is mainly induced by the chiral auxiliary bound to the 

substrate. However, a process in which the chiral information is brought by the azidating reagent 

is demanding. Recently, Pellacani et al.37 reported the synthesis of an optically active azidating 

reagent 15 and its use in electrophilic amination of alkenes and masked ketones. 

The carbamoyl azide 15 is prepared in 77% overall yield from Oppolzer’s sultam38-40 via reaction 

with triphosgene and sodium azide (Scheme 3). 

SO2

N
Y =

Y-H
triphosgene

Py

O

Y Cl

NaN3

O

Y N3

15

77%

*
* * *

 
Scheme 3: Synthesis of the optically active azidating reagent 15. 

 

The authors37 reported the thermal and photochemical behavior of 15 in the presence of simple 

alkenes as well as of masked ketones. Commercial prochiral alkenes 16 and 19 were tested to 

study the stereoselectivity of the addition of 15 (Scheme 4). 

 

15

hν, DCM, 7h
NH

O

Y

*

O N

Y

+ *

16         17 (45%, d.e. >90%)  18 (18%, d.e. >90%)

15

hν, DCM, 7h

NH Y

O

*
N

O

Y

N

Y

O

+ +

19          20 (25%, d.e. >90%)          21 (21%, d.e. >90%)         22 (15%, d.e. >90%)

*
* **

* *

*

*
*

 
Scheme 4:  Stereoselective electrophilic amination of some alkenes using the optically active 

azidating reagent 15. 
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Allylic amines 17 and 20, oxazolines 18 and 21 and the aziridine 22 may be obtained with good 

diastereoselectivity (d.e. >90%), as proved by 1H and 13C NMR spectroscopy. Starting from 19, 

optically active 22 is isolated as minor product. Reaction of 15 with enamine 23 provides α-amino 

ketone 24 in low yield and only 45% d.e., together with substituted imine 25 and the product of 

ring opening 26 (Scheme 5). 

15

DCM, RT

N

O

NH
Y

O

*

*

+ *

N

N Y

O

+

23            24 (5%, d.e. 45%)     25 (22%, d.e. > 95%)    26 (17%)

*

N

N

O

Y C

 
Scheme 5:  Stereoselective electrophilic amination of 1-cyclopent-1-en-1-ylpyrrolidine 23 

using the optically active azidating reagent 15. 

 

Furthermore, the amination of enol ethers 27 and 28 has been described. After 7 h of photolysis 

at room temperature starting from 27 and at 0oC starting from 28, an 80:20 mixture of 

diastereomers 29 and 30 is obtained in 61% and 53% yield, respectively (Scheme 6). 

 
OR

15

DCM, RT

O

NH Y

O
+

O

NH Y

O

* *

27 (R = SiMe3)                  29 (major)    30

28 (R = Me)
 

Scheme 6:  Stereoselective electrophilic amination of enol ethers using the optically active 

azidating reagent 15 

 

1.2.1.2  Azodicarboxylates and Azodicarboxamides 
 

Although the reaction of a carbon nucleophile with an azodicarboxylate to give a derivative of a 

hydrazine dicarboxylate was first reported in 1924,41 this reaction was used for the first time 

simultaneously by several groups in stereoselective C-N bond-forming reactions only in 1986.42-46 

Azodicarboxylates are efficient sources of positive nitrogen used in the preparation of 

α-hydrazino and α-amino acids starting from enolates. The most frequently used strategy involves 

a chiral auxiliary-based enolate and di-tert-butyl 31 (DTBAD) or dibenzyl 32 (DBAD) 
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azodicarboxylates as amination reagents (Figure 3). Both compounds 31 and 32 are commercially 

available. Very good yields and diastereoselectivities have been reported.1,2,33 

 

N
N

O

O

O

O

N
N

O

OBn

O

OBn

31         32

tBu

tBu

 
Figure 3: Azodicarboxylates used as electrophilic amination reagents 

 

The preparation of chiral dialkylazodicarboxylates and their use as electrophilic enolate amination 

reagents was first reported in 1995 by Vederas et al.47 A series of chiral dialkyl (menthyl 33, bornyl 

34, isobornyl 35) azodicarboxylates was prepared by conversion of the corresponding alcohols 

into chloroformates, condensation with hydrazine and oxidation with N-bromosuccinimide and 

pyridine. Compounds 33-35 are obtained in 35-50% yield (Scheme 7). 

 

R OH
COCl2

O Cl

O

R
N2H4 NH

NHROOC
COOR NBS, Py N

NROOC
COOR

33 34 35

R = R = R =

33-35

 
Scheme 7: Synthesis of chiral dialkylazodicarboxylates as reported by Vederas et al.47 

 

Ester enolates generated by treatment of the corresponding esters with 1 equivalent of LiHMDS 

at 

-78oC are aminated by the chiral dialkylazodicarboxylates 33-35 at -78oC (Scheme 8). 

The reaction displays moderate yields (13-87%) and little (if any) stereoselectivity (d.e. 33%, 33, 

R1 = Ph, X = OEt). The chromatographic separation of the diastereomers generally is difficult. 

The menthyl and bornyl carbamate moieties in products 37 proved to be very stable and difficult 

to remove, even with prolonged reflux in 6M HCl or concentrated HBr, and the corresponding 

α-hydrazino acids could not be obtained in reasonable yield. However, the isobornyl analogues 

are readily hydrolyzed.  
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1) LiHMDS

2) 33-35X

O

R
1

R COX

RO2CN
NHCO2R

R COX

RO2CN
NHCO2R

+

36             (S)-37      (R)-37

R1 = Ph, CH2COOEt, CH3, 
tBu

X = OEt, NMe2

1 1

 
Scheme 8: Stereoselective electrophilic amination of ester enolates with the chiral 

diazodicarboxylates 33-35. 

 

Enolates generated from tertiary amides preferentially assume the Z-configuration. Reaction of 

N,N-dimethylamides with 1 equivalent LDA at -78oC followed by addition of 1.5 equivalent of 

di(-)-isobornyl azodicarboxylate 35 gives in each case 1:1 ratio of diastereomers (S)-37 and 

(R)-37 (Scheme 8). 

Double diastereoselection was tested with chiral enolates: enantiomerically pure N-acyl-

oxazolidinone (S)-38 and its enantiomer (R)-38 were aminated at -78oC with 35 (Scheme 9). 

 

N
O

OO

1) LDA

2) 35

N
O

OO

N

RO2CHN

RO2C

2'

4
RO2C

2

OMe

O

N

RO2CHN

1) LiOH, H2O2

2) CH2N2

(S)-38       (S,S)-39          (S)-40

(R)-38      (R,R)-39          (R)-40

*

*

*

*

 
Scheme 9:  Double diastereoselection experiment using a chiral substrate and the chiral 

diazodicarboxylate 35 as electrophilic amination reagent. 

   

In both cases, only one diastereomer could be detected using 1H NMR spectroscopy. Removal of 

the oxazolidine auxiliary from compounds (S,S)-39 and (R,R)-39 by treatment with lithium 

hydroperoxide followed by acidification and treatment with diazomethane generates the 

corresponding methyl esters (S)-40 and (R)-40 which have opposite configuration at C(2). 

Amination of either compound (S)-38 or (R)-38 with dibenzylazodicarboxylate 32 gives a 9:1 

ratio of diastereomers with the same relative stereochemistry. In conclusion, the geometry of the 

Evans enolate completely controls the diastereoselection, and the effect of the isobornyl moieties 

is solely to increase steric bulk and enhance the diastereomeric ratio. 
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Brimble et al.48 performed a diastereoselective aza-ene reaction using chiral di-(+)-menthyl 

azodicarboxylate 33 as the nitrogen source. Compound 33 was found to react with various 

alkenes in the presence of the Lewis acid catalyst SnCl4, and the corresponding allylic aminated 

product was obtained in good yield (70-88%) and with up to 42% d.e. (Scheme 10). 

1
2 33, SnCl4

DCM NH
N

RO

O

OR

O

R

R

R
R

1

2

*
R1, R2 = Me, 80%, d.e. 42%
R1, R2 = Et, 70%, d.e. 33%
R1, R2 = -(CH2)2-, 81%, d.e. 0%
R1, R2 = -CH2-, 88%, d.e. 0%

41            42  
Scheme 10:  Diastereoselective aza-ene reaction of alkenes with chiral di-(+)-menthyl azo-

dicarboxylate 33. 

 

The problem with this approach was the removal of the chiral menthyl ester auxiliary, which was 

found to be rather difficult. 

The same research group reported49 a more successful attempt to perform stereoselective aza-ene 

reactions with alkenes. Chiral di-(-)-(1R,2S)-2-phenyl-1-cyclohexyl azodicarboxylate 43 can easily 

be synthesized starting from (-)-(1R,2S)-2-phenyl-1-cyclohexanol, and azo-ene reactions of 43 

with cyclohexene, cyclopentene, trans-3-hexene and trans-4-octene in the presence of SnCl4 were 

carried out (Scheme 11). 

1
2 43, SnCl4

DCM NH
N

RO

O

OR

O

R

R

R
R

1

2

*
R1, R2 = Me, 71%, d.e. 72%
R1, R2 = Et, 92%, d.e. 72%
R1, R2 = -(CH2)2-, 80%, d.e. >94%
R1, R2 = -CH2-, 77%, d.e. 72%

41            44

O N

O

N O

O

Ph
Ph

43

 
Scheme 11: Diastereoselective azo-ene reaction of alkenes with chiral di-(-)-(1R,2S)-2-phenyl-

1-cyclohexyl diazenedicarboxylate 43. 

 

The new amination reagent affords much higher levels of asymmetric induction in the Lewis acid 

mediated azo-ene reaction. Cleavage of the N-N bond of the ene adduct 45 of the cyclohexene 
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was effected using lithium in liquid ammonia affording the N-cyclohexenylcarbamate in moderate 

yield (Scheme 12). 

 

*

Li / NH3 NHO

O
Ph

61%

45                  46

*

NH
N

O

O

O

O Ph
Ph

 
Scheme 12: Cleavage of the hydrazine bond of the ene adduct 45. 

 

Brimble et al.50 also investigated the potential of 35 to act as a chiral azo-enophile in asymmetric 

ene reactions. The azo-enophile was treated with trans-hex-3-ene and cyclohexene in the presence 

of SnCl4 affording the ene adducts. However, no diastereoselectivity was observed. The authors 

described the synthesis of novel chiral hydrazinedicarboxylates and the unsuccessful attempts to 

transform them into chiral azo-enophiles bearing chiral auxiliaries like oxazolidinone, diacetone-

D-glucose or pantolactone. 

Macrocyclic azodicarboxylates containing a steroid skeleton were also synthesized using a similar 

synthetic route (Figure 4).51 

H

O

O

N

O

N

OO(CH2)n

3

7

47, n = 2
48, n = 3

 
Figure 4: Macrocyclic azodicarboxylates containing a steroid skeleton. 

 

Compound 47 was trapped by Diels-Alder reaction with cyclopentadiene, but no further 

amination studies involving 47 or 48 have been reported. 

Finally, a synthesis of a chiral azodicarboxamide containing a bridging binaphtyl moiety was 

described by Vederas et al.52, and electrophilic amination reactions of achiral ester enolates were 

performed. The chiral azodicarboxamide 51 is prepared by an intramolecular cyclization between 

the 
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bis-(N-methylamine) derivative of 2,2-dimethyl-1,1’-binaphtyl 49 and N,N’-bis(azido-carbonyl)-

hydrazine 50 followed by oxidation with NBS and pyridine in 15% overall yield (Scheme 13). 

 

1) NEt3, Cl2CHCHCl2
     ∆, 20 h

2) NBS, Py
NHMe

NHMe

NH
NH

N3

O

N3

O

+

N

N

N

N

Me

Me

O

O

49       50          51
 

Scheme 13: Synthesis of the chiral azodicarboxamide 51 containing a bridging binaphtyl 

moiety. 

 

Achiral oxazolidonones 52 can be aminated at -78oC using the standard procedure. Only one 

diastereomer can be detected for the products using 1H NMR spectroscopy, and X-ray 

crystallographic analysis of 53 (R = Me) shows that the new stereogenic center have the (S) 

absolute configuration (Scheme 14). Attempts to remove the binaphtyl moiety to produce 

optically pure free α-hydrazino acid remained unsuccessful. 

 

N

O

R

O

O
1) LDA, -78oC

2) 51
N

N

N

NH

Me

Me

O

O

N

O

R

O

O R = Me, 85%

R = Bn, 92%

52          53
 

Scheme 14:  Stereoselective electrophilic amination of achiral oxazolidonones with the chiral 

azodicarboxamide 51. 

 

1.2.1.3  α-Chloronitroso Compounds 
 

Nitroso compounds are probably the most reactive electrophiles for the ene reactions, as even 

nonactivated aliphatic nitroso compounds have been reported to undergo the ene reaction at 

room temperature.53 Some nitroso compounds which have been applied in ene reactions are 

depicted in 
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54-60 (Figure 5).6,7,54-59 The electrophile 59 is normally prepared in situ because of its extremely 

high reactivity, but the other nitroso compounds are reasonably stable. 

The reaction of nitroso compounds with alkenes can give a variety of products, depending on the 

nature of the alkene. If the alkene is a diene, a Diels-Alder reaction between the nitroso 

compound and the diene is normally observed.5,60-66 A competing reaction for nitroso compounds 

is the ene reaction. However, the products obtained by the two routes are very different. The 

Diels-Alder products are quite stable, whereas many ene products tend to undergo further in situ 

transformations. 

 
O

N
tBu

O

N Cl

O

N
Ph

O

N

F

F

F

F

F

O

N
CF3

O

N

O

CH3

54    55      56         57     58           59        60

O

N Br

 
Figure 5: Examples of nitroso compounds which function as electrophilic nitrogen sources. 

 

Among them are oxidation, decomposition, disproportionation, while other reactions of the 

intermediate hydroxylamine can give nitroxides, nitrones, azoxy compounds and amines. All 

types of products can be observed in a typical ene reaction with nitrosobenzene. The exact 

mechanism for the different transformations is unknown, but many of them involve radical 

reactions.58 The various transformations that a hydroxylamine may undergo might explain some 

of the problems encountered in this type of chemistry. It is worth noting that the ene products 

derived from nitroso compounds with electron-withdrawing substituents on the α-carbon are 

relatively stable. The main reason for this is that they most likely are not oxidized as easily to 

nitroxides as the ene products from nitrosobenzene.57-59,67 

Schenk et al.6 used the α-chloronitroso compound 55 for the reaction with cyclopentene 61 in 

order to solve the problem of the instability of the allyl amine product formed from the reaction 

with nitroso compounds. The product formed (62) rearranges to the stable nitrone hydrochloride 

salt 63, which is easily hydrolyzed to the hydroxylamine 64 (Scheme 15). 

The same principle has also been used by Kresze et al.7,56 for the diastereoselective ene reaction of 

sugar derivatives with various alkenes. The application of the two optically active nitroso sugar 

compounds 65 and 66 for the reaction with different alkenes gives, after removal of the sugar 

moiety, the optically active hydroxylamines in good yield (60-88%). In situ reduction may also be 

carried out as an alternative to the hydrolytic work-up. Stable allyl amines are isolated and 
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enantioselectivity (50-96% e.e.) has been determined using camphorsulfonamide or Mosher acid 

amide routes (Scheme 16). 

 

N

Cl

O

+
N

Cl

OH
N

+
OH
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-

H2O
NH

OH

55     61       62      63     64
 

Scheme 15: The ene reaction between cyclopentene 61 and the α-chloronitroso derivative 55. 

 

The major drawback is the long reaction time (days to weeks), which favors the decomposition of 

the α-chloronitroso reagents, but it provides a good stereoselective method for the synthesis of 

chiral allyl amines. 
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Scheme 16: Diastereoselective ene reaction of α-chloronitroso sugar derivatives with alkenes. 
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Based on preliminary studies11,12,68-70 concerning the enantioselective amination of chiral enolates 

using 1-chloro-1-nitroso cyclohexane 12, Oppolzer et al.13 introduced the chiral α-chloronitroso 

reagents 73 and 74 and reported the enantioselective amination of prochiral ketone enolates 

(Figure 6). 

S

N R

R

Cl

N O

O

O

73, R = iPr

74, R = Cy

 
Figure 6: Chiral α-chloronitroso camphor sulfonamide derivatives introduced by Oppolzer.13 

 

Deprotonation of propiophenone 75a (R = Ph) with lithium hexamethyldisilazanide, 

transmetallation of the lithium enolate with ZnCl2, and reaction of the zinc enolate 76 (R = Ph) 

with the nitroso reagent 74 gives exclusively the nitrone 77 (R = Ph). The configuration at α-C in 

78 (R = Ph) was assigned by conversion to (-)-norephedrine 80 (R = Ph). After hydrolysis of 

crude 77 (R = Ph), evaporation of the aqueous phase, erythro-selective reduction of the 

α-hydroxylamino ketone hydrochloride 78 with sodium borohydride in methanol to 79, followed 

by reductive cleavage of the N-O bond affords (-)-norephedrine 80 (R = Ph) in 68% overall yield 

(erythro/threo = 95:5, 96% e.e.). 

 

NaBH4, MeOH

or EtOH
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1) MN(SiMe2R
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2) ZnCl2R
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NH HCl
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S

R

OH

NHX

R
S

79 X = OH

80 X = H 78
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75         76

(a) R = Ph
(b) R = 2,5-(MeO)2C6H3

(c) R = tBu
(d) R = iPr
(e) R = Et

R1 = Me, Ph
M = Li, Na

.

 
Scheme 17: Stereoselective electrophilic amination of ketone enolates using the chiral 

α-chloronitroso reagent 74. 
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In the same article, Oppolzer et al.13 presented further examples for the preparation of diastereo- 

and enantiomerically pure β-aminols. 

Up-to-date, there is only one more report71 concerning the use of 74 as chiral amination reagent. 

The enolate derived from 1-(4-methoxy-phenyl)-4-phenyl-azetidin-2-one 81 reacts with 74 to 

afford nitrone 82 in a completely stereoselective fashion, but in moderate yield (Scheme 18). 

 

N

O

Ph

OMe

1) LDA, THF

2) 74

3) NH4Cl aq.

58% 

N
+

O
-

N

Ph

O

OMe

Cy2NSO2

81                    82
 

Scheme 18: Stereoselective electrophilic amination of the lithium enolate of azetidin-2-one 81 

using the chiral α-chloronitroso reagent 74. 

 

1.2.1.4  1,3,2-Oxazaphospholidine and 1,3,2-Oxazaphosphinane Derivatives 
 

In 1982 Boche and Schrott72 reported the first stereoselective C-N bond formation using the 

enantiomerically pure 1,3,2-oxazaphospholidine and 1,3,2-oxazaphosphinane derivatives 83 and 

84 (Figure 7). 
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N

O

O

CH3

Ph

CH3
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P

N

O

O

NMe2

Ph
H

CH3

2

1'

(2R, 4S, 5R)-83     (2R, 1'S)-84
 

Figure 7: Enantiomerically pure 1,3,2-oxazaphospholidine 83 and 1,3,2-oxazaphosphinane 84 

introduced by Boche and Schrott.72 

 

The derivative 83 is easily accessible from (-)-ephedrine 85, phosphorus oxychloride and 

N,N-dimethyl hydroxylamine (Scheme 19). A related route leads to 84. 
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Scheme 19: Synthesis of the enantiomerically pure 1,3,2-oxazaphospholidine 83. 

 

The enantioselective reactions of 83 with some benzylic carbanions 87 give amines 88. The yields 

of the amines are only moderate and the enantioselectivities are poor (Scheme 20).  

 

MPh

R

R1

2

83, THF
NMe2Ph

R

R1

2

R1 R2    M        Amine  86
       e.e.(%)  config. yield(%)
H Me    MgCl    30       S      63
H Me    MgCl    44       S      40
H CO2Et   Li          23        -      50
Me CO2Et   Li       21       -      56
H CN    Li        8        -      62   87           88

*

 
Scheme 20:  Enantioselective reactions of 1,3,2-oxazaphospholidine 83 with some benzylic 

carbanions. 

 

Similar observations have been made with 84 as the electrophilic amination reagent.33 In both 83 

and 84 the distance between the stereogenic centers and the electrophilic nitrogen atom is 

probably too large for an effective stereoselectivity to occur. Due to the high yields and 

stereoselectivities achieved in other electrophilic amination reactions, the method presented here 

is only of historical interest. 

 

1.2.1.5  Oxaziridines 
 

The unusual reactivity, undoubtedly related to the presence of a strained three-membered ring 

and a relatively weak N-O bond,73 makes oxaziridines highly useful as amination agents. Ring 

opening of the strained three-membered ring is the key to their ability to react as both aminating 

and oxygenating reagents with nucleophiles. The site of the nucleophilic attack at the oxaziridine 

ring is determined by the substitution pattern at the nitrogen. Schmitz et al.74 demonstrated in 

careful studies that N-unsubstituted oxaziridines can play an important role as electrophilic 

amination reagents. They are highly reactive toward N, S, O and C nucleophiles (Nu) and must 

be prepared and handled in inert solvents such as diethyl ether or toluene. The attack takes place 
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at the NH group of the three-membered ring with simultaneous formation of the Nu-N bond 

and rupture of the N-O bond. Hence, the synthesis of a wide range of compounds such as 

azines, hydrazines or diaziridines, becomes possible. The amination of C nucleophiles by 

spiro(cyclohexane-3'-oxaziridine) 89 has also been investigated for typical examples of C-H acidic 

compounds in which deprotonation is possible by treatment with aqueous alkali hydroxide. 

Surprisingly, the amination was accompanied by hydration of the nitrile group in all cases 

(Scheme 21). 

 

N

N
O

R

R1

2

O

NH

89

toluene, 2N NaOH N

O O

R

R
NH2

NH2

1

2

R1 = H, R2 = Me   94%
R1 = Me, R2 = Me   91%
R1, R2 = -(CH2)4-   71%
R1, R2 = -(CH2)5-   74%
R1, R2 = -CH2CH2OCH2CH2- 56%

90              91  
Scheme 21: Electrophilic amination of amide enolates 90 with oxaziridines 89. 

 

The attempts to synthesize oxaziridines allowing the direct transfer of a N-protected group to 

nucleophilic centers led to the synthesis of N-Moc and N-Boc oxaziridines. It has been 

mentioned74 that oxaziridines act as amination reagents only when the group attached to the 

nitrogen is small. When this group becomes larger the site of the attack is shifted from the 

nitrogen to the oxygen. 

In contrast to this concept, 92 and 93 are able to transfer the N-Moc and the N-Boc fragments 

under mild conditions to ketone, ester and amide lithium enolates.24 N-Boc protected α-amino 

ketones of moderate enantiomeric purity can be synthesized75 by 93-mediated electrophilic 

amination of an enantiopure α-silyl ketone 94, whereby the silyl group functions as the “traceless” 

directing group (Scheme 22). 

A limitation in the use of 93 in electrophilic amination stems, however, from the substantial 

amount of the enolate consumed by aldol condensation with 4-cyanobenzaldehyde, formed as 

by-product, which reduces the yields (19-37%) of the amino acids. 

Recently, Armstrong et al.76 reported the first example of the use of the chiral oxaziridine 99 in 

the electrophilic amination of enolates. They simply replaced the Boc moiety in 93 with one 

derived from a chiral alcohol, e.g. (-)-menthol. Oxidation of the imine 98 to 99 is performed 

using m-CPBA/nBuLi and proved to be highly diastereoselective with respect to facial attack on 

the imine carbon. The 1H NMR spectrum of 99 indicated a 9:1 mixture of trans and cis isomers 

99a and 99b, interrelated by inversion at the nitrogen atom with a barrier of ca. 16-17 kcal/mol. 
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Scheme 22:  Diastereoselective electrophilic amination of chiral ketone enolates with 

N-protected oxaziridines 93. 

 

The authors reported that no other diastereomers can be detected by 1H or 13C NMR (Scheme 

23). An X-ray crystal structure of 99a allowed assignment of configuration. 
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Scheme 23: Synthesis of the chiral oxaziridine 99. 

 

Amination of ketones, esters and amides 100 with 99 affords α-amino compounds 101 in 

moderate yields (49-62%) and low diastereoselectivities (5-21%) (Scheme 24). The authors76 
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suggested that the low degree of stereoselectivity in the amination process could be related to low 

facial selectivity in the approach of the oxaziridine 99 to the enolate. Importantly, it was 

established that the products are not undergoing epimerization under the reaction conditions by 

submitting diastereomerically pure samples to the basic reaction conditions. 
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R
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X
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R
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Scheme 24: Electrophilic amination of ketones, esters and amides with the chiral oxaziridine 

99. 

 

1.2.1.6  Nitro Derivatives 
 

The use of nitro compounds as nitrogen source for the formation of a C-N bond was first 

reported by Bartoli et al.14 The reaction between nitroalkanes, and 2-butenylmagnesium chloride 

provided a good approach to the synthesis of allylic nitrones. Since nitrones are highly valuable 

synthetic intermediates77,78 and useful spin trapping reagents,78-81 they enlarged the studies 

concerning the reaction between nitroalkanes, and organomagnesium and lithium reagents16,18,21,22 

and provided a relatively good method for the synthesis of nitrones (Scheme 25). 
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Scheme 25:  Nitrone synthesis by the reaction between nitro derivatives and organo-

magnesium reagents. 
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Treatment of an aliphatic nitro compound 102 with an equimolar amount of γ-methallyl or 

benzyl magnesium chloride 103 at low temperature (-70oC) in THF, followed by quenching with a 

proton source, gives conjugated and/or nonconjugated nitrones 105 and 106 in 58-81% yield. 

The method could easily be extended to the synthesis of hydroxylamines by hydrolysis of 

intermediate nitrones (Scheme 26). 
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Scheme 26: Synthesis of hydroxylamines by hydrolysis of intermediate nitrones 106 

 

Furthermore, the same group19 reported an enantioselective approach for the amination of allyl 

magnesium chlorides using the chiral nitro compound (S)-(2-benzyloxy)-1-nitropropane 109. 

Reaction of 109 with crotyl magnesium chloride 110 in THF at -70oC gives the nitrones 111 in 

86% yield as an equimolar mixture of (E) and (Z) stereoisomers, as well as the conjugated isomer 

112 in 10% yield. The nitrone 111 is easily separable from 112 by column chromatography, and 

reduction with NaBH4 in methanol affords the allyl substituted hydroxylamine 113 in 92% yield 

with the new chiral center of (R) configuration. No detectable amount of the (S) isomer has been 

found in this reaction (Scheme 27). 
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Scheme 27: Enantioselective synthesis of allyl amines by electrophilic amination of allyl 

organomagnesium reagents with chiral nitroalkane derivative 109 

 

Chiral nitroalkane 115 gives a mixture of nitrones which after reduction produces two 

diastereoisomeric hydroxylamines 116 and 117 in a 6:4 ratio. Some allyl Grignard reagents other 
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than 110 have been used for this reaction and the relative amounts of hydroxylamines obtained 

after reduction of the corresponding nitrone derivatives are shown in Scheme 28. 

 

OTBDMS

NO2
+

OTBDMS

N

OH

+

115                  116                 117

110

OTBDMS

N

OH

(6 : 4)

109 +
MgCl

OBn

N

OH OBn

N

OH

+ (92:8)

109 +

MgCl

OBn

N

OH

118         119      120

OBn

N

OH

+

121          122      123

(75:25)

 
Scheme 28:  Diastereoselective synthesis of allyl hydroxylamines by electrophilic amination of 

allyl organomagnesium reagents with chiral nitroalkane reagents 

 

More than ten years have passed since the report of Bartoli et al.19 and despite of promising and 

good results obtained, this is the only report which presents the availability of chiral nitro alkanes 

derivatives to be involved in electrophilic allylic amination. 
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2. Research Objective 

 

These are only few efficient methods for reagent-controlled stereoselective electrophilic 

amination compared to those based on chiral substrates or chiral catalysts. An effective 

stereoselective amination reagent allows greater method flexibility, due to the high availability of 

prochiral nucleophilic substrates. In the present work the synthesis and the reactivity of three 

types of enantiomerically pure electrophilic amination reagents towards carbon nucleophiles is 

presented, with the aim to provide a valuable method for the stereoselective synthesis of α-amino 

ketones and α-amino acids.  
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3. Results and Discussion 

 
3.1 Synthesis of the Enantiomerically Pure Amination Reagents 

 

An enantiomerically pure reagent used in electrophilic amination must have two characteristics. 

The stereocenter must be placed as closely as possible to the reaction center to ensure a good 

level of asymmetric induction due to a high enantiofacial differentiation. The nitrogen atom 

which is going to be transferred must be provided with a good leaving group. The chiral auxiliary 

should be easily removable and regenerable.  

 

3.1.1 Synthesis of the Enantiomerically Pure N,O-Disubstituted Hydroxylamines 

Derivatives 

 

Lithiated N,O-disubstituted hydroxylamine derivatives are nitrenoid species, which are 

susceptible to react with a C-nucleophile and to provide amines on hydrolysis.82 Up-to-date, there 

are no reports concerning the synthesis of such chiral nitrenoids and their use in electrophilic 

amination. A special attention was given to the design of this type of reagents, which must have 

an easily removable protecting group connected to the nitrogen atom and should be stable in the 

presence of strong bases and on acidic work-up. Therefore, chiral reagents with an N-allyl 

substructure appeared to be favourable. Removal of the allyl protecting group is commonly 

effected by transition metal catalyzed isomerization of the allyl amine to the corresponding 

enamine and subsequent hydrolysis. Complexes of palladium,83-87 rhodium88-90 and other 

transition metals (Ir, Ru, Cr, Mo, Fe, Ni, Pt, Co)89,91 have been used for such purpose.  

Two types of compounds, which fulfill the mentioned conditions, were selected: (1R,4S)-3-aza-2-

oxabicyclo[2.2.2]oct-5-ene hydrochloride 124 and O-substituted N-[10-(1R,5R)-pin-2-

enyl]hydroxylamines 125 (Figure 8). 
NH

O
R

R = Me, Bn, SiMe3, Ts

124      125

NH

O

H

H

.HCl

 
Figure 8:  Enantiomerically pure cyclic oxazine and N,O-disubstituted hydroxylamine 

derivatives as potential sources of electrophilic nitrogen in the amination reactions 

of carbanions. 
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3.1.1.1 Stereoselective Synthesis of (1R,4S)-3-Aza-2-oxabicyclo[2.2.2]oct-5-ene 

Hydrochloride 

 

The hetero-Diels-Alder cycloaddition92-95 of C-nitroso compounds with dienes is a reliable 

process for the formation of 3,6-dihydro-2H-1,2-oxazines, which can be further manipulated to 

give rise to a wide range of nitrogen containing organic compounds. In recent years there has 

been considerable activity directed towards the development of asymmetric variants of this 

cycloaddition, and most work has been carried out using acyl-nitroso compounds carrying a 

chiral auxiliary.96-101 However, the conditions needed for the removal of the chiral auxiliary are not 

always compatible with sensitive functionalities. In this context, the cycloaddition of dienes 126 

with α-chloronitroso compounds 127 is attractive, since in the presence of a nucleophilic solvent 

the initial cycloadduct 129 can undergo solvolysis to liberate the dihydrooxazine 130 directly 

(Scheme 29). 
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Scheme 29: Formation of chiral oxazines by stereoselective hetero-Diels-Alder cycloaddition. 

 

In some cases, depending upon the structure of 127, the carbonyl compound 131 also produced 

in this solvolysis can be recycled to the chloronitroso compound through chlorination of its 

oxime. 

Carbohydrates belong to the most prominent members of the chiral pool. Their low cost, 

abundance and ease with which they can be obtained in a pure state are among the most 

important features that make carbohydrates prime chiral pool candidates from a raw materials 

standpoint. Therefore, it is an attractive approach to use the 2,3:5,6-di-O-isopropylidene-1-C-
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nitroso-α-D-mannofuranosylchloride 65 as dienophile derived from readily available and sterically 

rigid carbohydrate D-(+)-mannose 132. 

The synthesis of 2,3:5,6-di-O-isopropylidene-1-C-nitroso-α-D-mannofuranosylchloride 65 can be 

carried out by a four-step process as shown in Scheme 30. 
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Scheme 30: Synthesis of the enantiomerically pure 2,3:5,6-di-O-isopropylidene-1-C-nitroso-

α-D-mannofuranosylchloride 65. 

 

The first step102,103 involves the protection of the starting sugar, D-(+)-mannose 132, by 

condensation with water free acetone in the presence of acid catalyst (0.019 equiv. p-TsOH) and 

furnishes the 2,3:5,6-di-O-isopropylidene-α-D-mannofuranose 133 in 67% yield. The cyclic acetal 

formation is favoured in the furanose form of 132, where the vicinal hydroxyl groups have a syn 

orientation. The equilibrium is shifted to the formation of 133 using excess of acetone, which 

actually is the solvent. The α-configuration of the anomeric carbon atom C(1) was confirmed by 
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comparison of the measured optical rotation [ ]27
Dα =+25.04 (c= 1.02 in acetone) with that 

reported in the literature [ ]20
Dα =+25 (c= 1.0 in acetone).104 Subsequent conversion of the 

isopropylidene acetal 133 into 2,3:5,6-di-O-isopropylidene-D-mannose-oxime 134 in 92% yield is 

achieved by reaction with hydroxylamine in EtOH:H2O = 1:1, via an addition-elimination 

mechanism. The 1H NMR spectrum shows a Z:E ratio of 79:21, which is in close agreement with 

the literature value of Z:E = 84:16.105 The assigment of the Z- isomer as the major isomer is 

supported by the expected deshielding of H-C(2), 5.25 ppm compared with 4.49 ppm for the (E) 

isomer (Figure 9). The Z-isomer is stabilized through hydrogen bonding between HO-N=C(1) 

and the O-atom on C(2) of the dioxolane ring. 
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Figure 9: Z and E-stereoisomers of 2,3:5,6-di-O-isopropylidene-D-mannose-oxime 134. 

 

Oxidation of the oxime 134 with sodium metaperiodate in the presence of sodium acetate gives 

N-hydroxy-2,3:5,6-di-O-isopropylidene-α-D-mannoimido-1,4-lactone 135 in 74% yield.106 The 

structure of imidolactone 135 is in accord with its elemental analysis and spectroscopic data. 

Especially diagnostic is the absence of a signal for the H-C(1) in the 1H NMR spectrum and the 

shift of C(1)=N-OH from 152.18 ppm in (Z)-134 to 156.98 ppm in the 13C NMR. It is 

noteworthy that only one diastereomer is formed, which is in agreement with the report of Beer 

et al.107 on the synthesis of hydroximinolactones. They synthesized imidolactone 135 starting from 

134 by the oxidation with MnO2, and isolated both (Z) and (E) isomers. On heating or standing 

in DCM solution, the lower-melting compound (E)-135 isomerized to (Z)-135. In the 1H NMR 

spectrum (chloroform-d1 as solvent), H-C(2) of 135 appeared at 5.15 ppm which is also in 

agreement with the value of 5.19 ppm reported by Beer et al.107 for the 

Z-isomer of 135. Concerning the reaction mechanism, it has been noted106 that oxidation of the 

oxime 134 proceeds from the tautomeric, ring closed hydroxylamine form 136 to give an 

intermediate 1-nitroso compound 137 which tautomerises to the hydroximinolactone 135 

(Scheme 31). 
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Scheme 31: Oxidation mechanism of 2,3:5,6-di-O-isopropylidene-D-mannose-oxime 134 to 

N-hydroxy-2,3:5,6-di-O-isopropylidene-α-D-mannoimido-1,4-lactone 135. 

 

Chlorination of 135 with tert-butyl hypochlorite in DCM at -10oC under protection from light 

gives enantiomerically pure 2,3:5,6-di-O-isopropylidene-1-C-nitroso-α-D-mannofuranosylchloride 

65 in quantitative yield and multigram scale.5 The compound 65 is obtained as blue crystals. It is 

stable for several days at room temperature and for unlimited time at -20oC. These characteristics 

offer an enhanced practical utility compared to α-chloronitroso alkanes, which are also good 

dienophiles, but volatile, unstable and toxic blue liquids.12 The chlorination agent, i.e. tBuOCl, is 

prepared from tert-butanol and an aqueous solution of sodium hypochlorite,108 and its 

concentration can easily be determined by iodometric titration. The IR spectrum of 65 shows a 

characteristic absorption for C-N at 1070 cm-1 and disappearance of the C=N absorption at 1691 

cm-1. Moreover, the characteristic absorption of the nitroso group is found at 1571 cm-1. The 
13C NMR spectrum shows the signal of the C(1) atom at 125.24 ppm, a shift which is in 

agreement with the disappearance of the exocyclic carbon-nitrogen double bond. The structure 

of 65 has been established by Felber et al.5 by X-ray diffraction analysis. It has been shown that 

the Cl substituent adopts a pseudoaxial and the nitroso group a pseudoequatorial position. The 

O-atom of the nitroso group adopts a synperiplanar orientation to the ring O-atom (Figure 10). 
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Figure 10: Conformation of the α-chloronitroso compound 65. 

 

The striking features of 65 are its high reactivity and high diastereoselectivity in the cycloaddition 

reactions. Compared to α-chloronitroso alkanes, i.e. 1-chloro-1-nitroso cyclohexane 12, the higher 
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reactivity of 65 towards dienes is due to the presence of the two highly electronegative 

substituents at C(1), i.e. Cl and O-alkyl.  

Treatment of the α-chloronitroso compound 65 with cyclohexa-1,3-diene 138 in Et2O-EtOH 

gives the (1R,4S)-3-aza-2-oxabicyclo[2.2.2]oct-5-ene hydrochloride 124. The intermediate 

cycloadduct 139 collapses, due to elimination of Cl-, to the iminium ion 140 which in the presence 

of a nucleophilic solvent (EtOH) affords the cyclic oxazine 124 as hydrochloride and 

2,3:5,6-di-O-isopropylidene-α-D-manno-1,4-lactone diethylorthoester  141 (Scheme 32). 
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Scheme 32:  Synthesis of (1R,4S)-3-aza-2-oxabicyclo[2.2.2]oct-5-ene hydrochloride 124 by the 

hetero-Diels-Alder reaction between cyclohexadiene 138 and 2,3:5,6-di-O-iso-

propylidene-1-C-nitroso-α-D-mannofuranosylchloride 65. 

 

The initial conditions investigated for the cycloadition of cyclohexa-1,3-diene 138 with the  

α-chloronitroso compound 65 are similar to those described in the literature for related 

reactions5,64,66,109-115 and involve CHCl3-EtOH or DCM-EtOH as solvents. No reaction is 

observed at low temperature (-70oC).5 Reaction at 0oC in DCM:EtOH = 3:1 affords a light blue 

turbid solution from which the product 124 is extracted with water and isolated by lyophilization 

as a light yellow solid in 68% yield. The 1H NMR spectra show partial decomposition of the 

cyclic oxazine. The procedure described by Vasella et al.64 has also been followed. It consists of 
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repetitive extractions of the product from the organic phase with 0.05 M HCl, which substantially 

diminished the yield of 124 to 56%. Finally, a new procedure has been used. It simply involves 

the use of Et2O as solvent. Hydrochloride 124 precipitates during the reaction and can be easily 

isolated in 92% yield. 1H NMR analysis shows pure 124. Other analytical data are also in 

agreement with those from literature.5 

3.1.1.2  Synthesis of O-Substituted N-[10-(1R,5R)-Pin-2-enyl]hydroxylamines 
 

For the design of the enantiomerically pure hydroxylamines 125 a sterically rigid chiral auxiliary 

connected to the nitrogen atom is considered to be appropriate, i.e. α-pinene. Connection of the 

α-pinene system with the nitrogen atom at position 10 ensures the presence of an allyl type chain 

on the nitrogen atom. The condition of proximity of the chiral auxiliary is also fulfilled. 

 
NH

O
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Figure 11: Target hydroxylamine derivative proposed as stereoselective amination reagent. 

 

(1R,5R)-(-)-Myrtenal 142 has been chosen as optically active starting material for the synthesis of 

hydroxylamines 125. Aldehyde 142 is commercially available in high optical purity on multigram 

scale. The synthesis of O-methyl and O-benzyl substituted hydroxylamines proceeds by 

condensation of O-methyl hydroxylamine 143 and O-benzyl hydroxylamine 144, respectively, with 

the aldehyde 142, followed by the reduction of the resulting O-alkyl oximes (Scheme 33). 
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Scheme 33: Synthesis of the enantiomerically pure hydroxylamines 147 and 148. 
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O-Methyl-(1R,5R)-(-)-myrtenal oxime 145 is obtained as a colorless oil, in 83% yield, after 

vacuum distillation. GC and 1H NMR analysis of the isolated 145 shows that only one 

stereoisomer results. The NOESY experiment does not clarify the orientation of the OCH3 

group. 
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Figure 12: Possible stereoisomers of O-methyl-(1R,5R)-(-)-myrtenal oxime 145. 

 

Karabatsos et al.116 presented an extensive 1H NMR based structural study on conformations and 

configurations of structurally similar oxime O-methyl ethers. They showed that the amount of 

E-isomer increases with increasing bulkiness of the C-substituent of the C=N bond, going from a 

E:Z ratio of 54:46 for Et-CH=N-OMe, to 74:26 for Cy-CH=N-OMe and 100:0 for 
tBu-CH=N-OMe. It can be therefore concluded that the stereoisomer resulted in the synthesis of 

145 has an E configuration. The absence of the Z-isomer is probably due to the repulsive 

interactions that occur between the O-methyl group and the pinene skeleton, which would force 

the C=C bond of the pinene system out of conjugation with the C=N bond. As expected, chiral 

HPLC analysis performed on a CHIRACEL OD column shows that the chirality remained 

unaffected. Determination of the optical activity showed (-)-145. 

O-Benzyl-(1R,5R)-(-)-myrtenal oxime 146 is obtained following the same procedure, with the 

difference that due to a higher boiling point (125 oC, 0.26 mbar) compared to 145 (53 oC, 

0.27 mbar), its purification proceeds by flash chromatography followed by Kugelrohr distillation. 

The oxime ether 146 results in 83% yield, as a colorless oil, and similarly to 145, as E-isomer and 

single enantiomer. 

Reduction of the oxime ethers 145 and 146 to the enantiomerically pure hydroxylamines 147 and 

148 is performed with NaBH3CN in absolute methanol, under acidic conditions (pH 3, 

HCl/MeOH). The reaction proceeds smoothly at room temperature and can easily be monitored 

by GC. Compounds 147 and 148 are isolated as colorless oils in 70% and 85%, respectively, and 

have been fully characterized. The IR spectrum of 147 shows the appearance of the NH 

absorption at 3249 cm-1 and disappearance of the C=N band at 1621 cm-1. Especially diagnostic 

are the absence of the singlet at 7.66 ppm corresponding to H-C(10) in the 1H NMR spectrum, 
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appearance of a signal corresponding to two protons H-C(10) at 3.39 ppm, and the shift of the 

signal of C(10) in 145 from 150.51 ppm to 57.42  ppm in the 13C NMR spectrum. Similarly, for 

the hydroxylamine 148 the IR spectrum shows the characteristic NH band at 3263 cm-1 and the 

shift of the signal C(10) in 146 from 150.44 ppm to 57.21 ppm in the 13C NMR spectrum. 

(-)-N-[10-(1R,5R)-pin-2-enyl]-O-trimethylsilyl hydroxylamine 151 and (-)-N-[10-(1R,5R)-pin-2-

enyl]-O-tosyl hydroxylamine 152 can be synthesized starting from (1R,5R)-(-)-myrtenal 142 via  

(1R,5R)-(-)-myrtenaloxime 149 and (-)-N-[10-(1R,5R)-pin-2-enyl]-hydroxylamine hydrochloride 

150 (Scheme 34). 
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Scheme 34: Synthesis of the enantiomerically pure hydroxylamines 151 and 152. 

 

The synthesis of (1R,5R)-(-)-myrtenaloxime 149 has been reported in the literature117 to proceed 

from the aldehyde 142, but no reaction details or yield are given. Generally, the synthesis of 

hydroxylamines of type 149 can be carried out in basic or acidic conditions. Following the  

general method described by Armesto et al.118 the synthesis of oxime 149 succeeds under basic 

conditions, i.e. hydroxylamine hydrochloride in a mixture of pyridine:ethanol = 1:20, and 

furnishes the product in 61%. An alternative procedure involves the use of hydroxylamine 

hydrochloride and sodium acetate in MeOH, and affords 149 in 93% yield. 

The reduction of aldoximes with NaBH3CN in absolute methanol is very pH-dependent. When 

the reaction is carried out at pH 4, the major product is the N,N-dialkylhydroxylamine,119,120 while 

at pH 3 the monoalkylhydroxylamine is the major product. Reduction of the oxime 149 with 

NaBH3CN at pH 2-3, work-up at pH 9 and further extraction of product from Et2O with 1M 

HCl, furnishes the hydroxylamine hydrochloride 150 as single product in 93% yield. The IR 

spectra of 150 show the disappearance of the C=N absorption band at 1619 cm-1 and the 

appearance of a broad characteristic NH2
+ band at 3060 cm-1. More relevant, analysis of 13C NMR 

spectrum shows the shift of the signal corresponding to C(10) from 151.39 ppm to 59.05 ppm, a 

value which emphasizes the reduction. 
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(-)-N-[10-(1R,5R)-Pin-2-enyl]-O-trimethylsilyl hydroxylamine 151 is obtained from compound 

150 using trimethylsilyl chloride as silylating agent and a suitable base according to a modified 

literature procedure121,122 (Table 1). 

 

Table 1: Influence of base and solvent on the synthesis of 

hydroxylamine 151. 

Entry Base Solvent Yield (%) of 151 
1 Imidazole n-Pentane 61 
2 Py n-Pentane 48 
3 Et3N n-Pentane 67 
4 Et3N Et2O 68 
5 Et3N n-Hexane 77 

 

Since hydroxylamine 150 proved to be unstable as free base, neutralization and silylation have to 

be done in a one-pot reaction and afford 151 as colorless oil. Table 1 shows that silylation is 

slightly dependent upon the base strength. The strongest base from this series – triethylamine – 

apparently favors silylation of hydroxylamine 150 to a higher extent. The use of pyridine as 

solvent makes the work-up very tedious and furnished 151 in a lower yield. Variation of the 

solvent influences the yield of silylation, most probably by affecting the solubility of 

hydroxylamine 150 - as free base - in that solvent. The 1H NMR spectrum of 151 shows the 

appearance of a singlet at 0.21 ppm corresponding to the protons of the trimethylsilyl group and 

a signal at -0.94 ppm in the 13C NMR spectrum corresponding to the C atoms of the same 

functional group. 

Using the same procedure, (-)-N-[10-(1R,5R)-pin-2-enyl]-O-tosyl hydroxylamine 152 results in 

85% yield as colorless crystals, after flash chromatography and recrystallization. The IR spectrum 

shows the characteristic sulfonyloxy absorption band at 1164 cm-1 and the appearance of the 

AA'BB' signals at 7.78 ppm (Ph-ortho) and 7.36 ppm (Ph-meta) in the 1H NMR spectrum confirms 

the tosylation of 150. 

 

3.1.2 Stereoselective Synthesis of the Enantiomerically Pure α-Chloronitroso 

Compounds 

 

For the present studies concerning the stereoselective amination of ester enolates and allyl 

organometallic reagents, the enantiomerically pure α-chloronitroso compounds 65 and 74 have 

also been chosen as [NH2
+] synthons. The synthesis of 2,3:5,6-di-O-isopropylidene-1-C-nitroso-

α-D-mannofuranosylchloride 65 is described in Chapter 3.1.1.1. (+)-N,N-Dicyclohexyl-2-chloro-
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2-nitrosocamphor-10-sulfonamide 74 is obtained following the procedure described by Oppolzer 

et al.13 (Scheme 35). 
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Scheme 35:  Synthesis of (+)-N,N-dicyclohexyl-2-chloro-2-nitrosocamphor-10-sulfonamide 74. 

 

Starting from (+)-camphor-10-sulfonylchloride 153, sulfonamide 154 is obtained in 82% yield. 

Analysis of the 13C NMR spectrum shows the appearance of the signals corresponding to the 

cyclohexyl groups at 57.66 ppm (N-C) and 32.95, 32.56, 26.47 and 25.20 ppm. Moreover, the 

characteristic absorption of the sulfonamide group appears at 1322 cm-1 in the IR spectrum. 

Reaction of 154 with hydroxylamine hydrochloride and sodium acetate in methanol 

affords (+)-N,N-dicyclohexyl-2-(hydroxyimino)-7,7-dimethyl-bicyclo[2.2.1]-heptyl-1-methanesul-

fonamide 155 in 96% yield. This method proved to be superior to the condensation under basic 

conditions (HO-NH2·HCl, KOH, EtOH, 61% yield) and to that reported in the literature,13 since 

it requirs no other workup than pouring the reaction mixture into ice water, filtration and 

washing the precipitate with distilled water. Spectroscopic data and elemental analysis confirm 

structure and purity of oxime 155. 

Chlorination of oximes is the most advantageous method for the synthesis of gem-chloronitroso 

compounds. It involves the treatment of the oxime with chlorine in Et2O123-125 or DCM,126-128 

NaOCl in dioxane-water129 or with tBuOCl in DCM.5,13,60 The method involving 

alkylhypochlorites has distinguishing features: gem-chloronitroso compounds are stable under the 

reaction conditions, a facile workup, the yields are nearly quantitative and high-purity products 

are obtained. Chlorination of 155 using tBuOCl (tBuOH solution) in DCM affords 

N,N-dicyclohexyl-2-chloro-2-nitrosocamphor-10-sulfonamide 74 in 85% yield as blue crystals. It 

has been observed that the concentration of tBuOCl solution plays an important role with respect 

to yield and product purity, most probably due to the interference of tBuOH. Using a 75% 
tBuOCl/ tBuOH solution a yield of 85% is observed, while with a 19.5% tBuOCl/ tBuOH 
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solution the yield dropps to 51%. Analysis of the IR spectrum of 74 shows the characteristic 

N=O absorption band at 1583 cm-1. The mass spectrum - electrospray ionization, positive ion 

mode - shows the peaks corresponding to the cation of 74 (Figure 13). 

 

Figure 13: Mass spectrum (ESI, positive io
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The ORTEP plot of 74 shows that the nitroso group N1=O1 is trans to the CMe2 bridge  

(C8-C7-C9) and the O1 atom adopts a syn-periplanar orientation to the Cl1 atom, as shown by 

the torsional angle Cl1-C2-N1-O1= -12.16o. The stereochemistry at C2 atom is R. The bulky 

N,N-dicyclohexyl-sulfonamide group selectively shields one face of the N=O group, as can be 

seen from the projection of the structure along the S-N axis (Figure 14b). X-Ray diffraction 

analysis shows 8% co-crystallisation of (+)-N,N-dicyclohexyl-2-oxychloro-2-nitroso-camphor-10-

sulfonamide. Its formation is most probably due to a radical process, initiated by the 

photodissociation of tert-butyl hypochlorite.130  

 

3.1.3 Stereoselective Synthesis of 1-Deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α- 

D-mannofuranose 

 

The remarkable synthetic importance of nitro compounds has ensured long-standing studies of 

their utilization in organic synthesis.131 The versatility of nitro compounds in organic synthesis is 

largely due to their availability and easy transformation into a variety of diverse functionalities. 

For the present studies concerning the stereoselective electrophilic amination of allyl 

organometallic substrates, the enantiomerically pure 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-

α-D-mannofuranose 156 has been chosen as a potential [NH2
+] synthon. 

Conversion of the carbonyl to the nitro group (retro Nef reaction) is an important method for 

the preparation of nitro compounds. Such a conversion is generally effected via oximes using 

strong oxidants such as CF3COOOH.132,133  Anhydrous peroxytrifluoroacetic acid is not easy to 

handle and undoubtedly not compatible with dioxolane systems like 134. Various convenient 

methods for the oxidation of sugar oximes which involve (CF3CO)2O/H2O2/CH3CN134, 

m-CPBA/O3/DCM135 or Py/Cr2O7/H2N-OH/H2O2/DCM136 have been developed. 

The preparation of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 

succeeds according to the procedure described by Vasella et al.137 (Scheme 36). 

The oxidation of 2,3:5,6-di-O-isopropylidene-D-mannose-oxime 134 with tert-butyl 

hydroperoxide, catalyzed by vanadyl(IV)-acetylacetonate, furnishes 1-deoxy-1-nitrosugar 156 in 

52% yield. The reaction mechanism is similar to that reported for the metal-catalyzed epoxidation 

of allylic alcohols.138 The IR spectrum of 156 shows a strong absorption band at 1567 cm-1 

corresponding to the NO2 functionality and the mass spectrum (electrospray ionisation, positive 

ion mode) shows a base peak at m/z 312 which has been assigned to [M + Na]+. Analysis of the 
1H NMR spectrum confirms the α-D-configuration at C(1). The signal of the anomeric proton 

appears as a singlet at 5.67 ppm, and the signal corresponding to H-C(2) appears as a doublet 
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Scheme 36:   Synthesis of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156. 

 

(3J2-3 = 5.6 Hz) at 5.03 ppm. The absence of a coupling between H-C(1) and H-C(2) supports the 

syn orientation of NO2 towards H-C(2). The signal corresponding to H-C(1) disappears when a 

catalytic amount of LiOCH3 is added to a solution of 156 in deuteriomethanol and H-C(2) is 

shifted to a higher field (5.54 ppm, doublet, 3J2-3 = 6.2 Hz) (Figure 15). 
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Figure 15: 1H NMR spectrum of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-manno-

furanose 156 (a) and of 156+catalytic amounts of LiOCH3/CD3OD (b). 

 

1-Deoxy-1-nitrosugar 156 is obtained as white crystals after column chromatography and no 

epimerization at C(1) has been observed upon standing for several months at 0oC.  
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3.2 Studies towards the Electrophilic Amination of Carbanions using 

Enantiomerically Pure Nitrenoids 

 
In 1964 Closs and Moss 139 proposed the use of the term carbenoid (as a noun) for the description 

of the “intermediates which exhibit reactions qualitatively similar to those of carbenes without 

necessarily being free divalent carbon species”. The term nitrenoid was coined by Koebrich in 

1967 140 when he studied the reaction of phenyllithium with nitrosobenzene 157 (Scheme 37). 

Ph N O
PhLi

Ph
N

OPh

Li

LiPh2N + OPhLi

157          158     159         160

PhLi

 
Scheme 37: Electrophilic amination of PhLi with in situ generated nitrenoid 158.140 

 

On protonation, diphenylamine and phenol are formed, which are due to the lithiated precursors 

159 and 160. Most likely, 159 and 160 result from the reaction of the nucleophile phenyllithium 

with the electrophilic 158, which thus should be called a nitrenoid.  

Compounds like 161 have been defined analogously140 and they have a long history in organic 

chemistry although their nitrenoid properties have been recognized only in recent years.141 

 

R
N

Y

M M = Li, Na, K, MgX, ZnX, etc.

Y = Hal, OR or other leaving groups

R = alkyl, aryl or other substituents

161

 
Figure 16: General structure of a nitrenoid as defined by Buck and Koebrich.140 

 

The amination of carbanions RLi (and of others) with O-methylhydroxylamine 162 is known as 

the Schewerdina-Kotscheschkow amination reaction (Scheme 38).142-146 

 

RLi   +   H2NOCH3 NH

OCH3

Li RLi

- LiOCH3

N

H
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Scheme 38: Electrophilic amination of carbanions with lithiated O-methylhydroxylamine 

162.142 

 

It has been suggested that deprotonation of 162 takes place first to give the nitrenoid 163, which 

then reacts with a second RLi to give the N-lithiated amine 164. Compound 164 is further 
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protonated to form the respective amine. To overcome the problem of using (at least) two 

equivalents of the organometallic reagent (e.g. RLi), it has been suggested to use an expendable 

RLi (i.e. MeLi) in the deprotonation step 162 → 163 and only then to employ the lithium reagent 

to be aminated (163 → 164).147-149 

The mechanism of the electrophilic amination of carbanions with lithiated O-alkylhydroxylamines 

was studied experimentally by Beak et al.82,150. There are two possible pathways (Scheme 39). The 

nitrenoid 163 could undergo an α-elimination of LiOCH3 to give the nitrene 165 which then adds 

RLi to produce 164 (pathway A in Scheme 39). In pathway B a nucleophilic substitution reaction 

takes place at the nitrenoid nitrogen atom of 163 to give 164 directly. The authors82,150 

demonstrated conclusively that it is pathway B which takes place. As in the case of the carbenoids 

in which the α-elimination to give carbenes occurs only under special conditions,141 the formation 

of nitrenes from nitrenoids is also not a very favorable reaction. This is an especially unlikely 

pathway considering the poor leaving group CH3O- at the nitrogen atom of 163. 

NH

OCH3

Li A

B

- LiOCH3

HN

RLi, - LiOCH3

NH

R

Li

163              164

165

RLi

 
Scheme 39: The mechanism of the electrophilic amination of carbanions with lithiated 

O-alkyl-hydroxylamines 163 as proposed by Beak et al.82,150 

 

Formally, the displacement process (SN2-like) of pathway B involves the reaction of two anionic 

species, an interaction that should be repulsive. However, organolithium species are generally 

aggregated, and a reasonable pathway involving associated species can be envisioned. In the 

simplest case, a dimer 166 in which the entering carbon is disposed on the side of nitrogen and 

the nitrogen oxygen bond is polarized, leading to the transition state 167, has been suggested 

(Scheme 40).82 

R

Li Li

NH

H3CO

R

NH

OCH3
δ-

δ-
δ+

Liδ+
Li

R

NH
Li

OCH3Li

166            167

-

-+

+
#

 
Scheme 40: Transition state suggested for the electrophilic amination of carbanions with 

lithiated O-alkylhydroxylamines 163, as proposed by Beak et al.82,150 
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This appears to be a case in which the proximity effect operating in a lithium complex provides 

access to a novel reaction pathway.151,152 In the amination method developed by 

Beak et al.82,150, it has been suggested that the N-O bond of lithium methoxyamide 163 is bridged 

by the lithium atom. Boche and Wagner153 revealed from quantum chemical calculations that the 

N-O bond of lithium methoxyamide 163 is longer (1.60093 Å) than the related bond in its non 

lithiated counterpart 162 (1.4374 Å). This would explain the relatively facile cleavage of the N-O 

bond in the electrophilic amination process. 

In the present studies concerning the electrophilic amination of carbanions with the 

enantiomerically pure 168 and with the lithiated N,O-disubstituted hydroxylamines 147, 148, 151 

and 152, the amination reaction of phenyl lithium (PhLi) was used as a model procedure, in order 

to examine the amination potential of these reagents. 

168 is generated by the reaction of oxazine hydrochloride 124 with one equivalent of methyl 

lithium in THF at -60oC, followed by the addition of a second equivalent of methyl lithium at 

-78oC. 

The reaction of 168 with PhLi at -78oC affords N-(2,4-cyclohexadien-1-yl)hydroxylamine 170 

instead of expected 4-anilino-2-cyclo-hexen-1-ol 169 (Scheme 41). 

i)  MeLi, THF, -60oC

ii) MeLi, THF, -78oC
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Scheme 41: Reaction between 168 and PhLi. 

 

N-(2,4-Cyclohexadien-1-yl)hydroxylamine 170 can be crystallized directly from the reaction 

mixture, but decomposes instantaneously when filtered off. However, the hydroxylamine 170 has 

been characterized by its 1H and 13C NMR and IR spectra and the optical activity has been 

determined, but no information of e.e. is available, due to the lability of the compound. No 

decomposition products are observed after stirring of 168 at -78oC for 1 h, quenching with D2O 
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and 1H NMR analysis. The same stability of 168 is observed when n-hexane is used as solvent or 

when 168 is generated from the oxazine 171. The reaction with PhLi in n-hexane also affords the 

hydroxylamine 170 as main product, together with unreacted oxazine 171. Formation of the 

hydroxylamine 170 can be explained by the occurrence of β-elimination of the proton H-C(7) 

under the influence of PhLi (Scheme 42). The anti-periplanar geometry of H-C(7)-C(1)-O 

favours the E2 elimination pathway. 
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Scheme 42: Proposed E2 elimination mechanism for the formation of hydroxylamine 170. 

 

Since the formation of the required dimer of type 166 between PhLi and the amination reagent 

168 showed to be unfavourable, the use of organocopper reagents, i.e. higher order 

cyanocuprates, came into attention. Higher order cyanocuprates are highly aggregated species, 

soft nucleophiles and have a lower basicity compared to organolithium reagents. It was assumed 

that using such an organocopper reagent as substrate, the amination reagent 168 will be driven 

into the formation of a complex which would reproduce the dimer 166. Therefore, Ph2Cu(CN)Li2 

175 was reacted with 168 at -78oC to room temperature in THF, but only unreacted oxazine 171 

was detected. 

 

The lithium amide 168 proved to be not effective as electrophilic amination reagent of even 

simple carbanions. The study concerning the stereoselective amination of carbanions using chiral 

nitrenoids was then continued using lithiated hydroxylamines 147, 148 and 151. 

 

The electrophilic amination of PhLi was carried out in a similar manner, by generating the chiral 

amination reagents using one equivalent of methyl lithium, in n-hexane at -78oC, followed by the 

addition of PhLi (Scheme 43). Aniline derivative 179 resulted in low to moderate yields (Table 2). 
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Scheme 43: Electrophilic amination of PhLi with nitrenoids generated from 147, 148 and 151. 

 

Table 2:  Electrophilic amination of PhLi with nitrenoids generated from 147, 148 and 151 

using MeLi. 

Entry Hydroxylamine Reaction 
temperature, oC

Reaction  time, 
h 

Yield of 179, % 

1 147 -78 8 - 
2 147 -40 4 36 
3 148 -40 5 27 
4 151 -40 3 56 

 

N-[10-(1R,5R)-Pin-2-enyl]-aniline 179 was fully characterized. The IR spectrum shows a medium 

intensity absorption band at 3421 cm-1 corresponding to the NH functionality. In the 
1H NMR spectrum the peaks corresponding to the phenyl group appear at 7.15 ppm (2H, 

multiplet) and 6.58–6.67 ppm (3H, multiplet), and in the 13C NMR spectrum the phenyl moiety 

can be identified by its characteristic signals at 148.47 (C-N), 129.11 (two Cmeta), 117.20 (two Cortho) 

and 112.91 ppm (Cpara).  

Myrtenal imine 181 is formed during the reaction, according to GC-MS analysis of the reaction 

mixture. Compound 181 has been identified by its MS (Electron Impact Ionisation method) 

pattern, which shows the molecular ion at m/z 149 and the subsequent fragmentation peaks. 

Attempts to isolate the imine 181 were unsuccessful, but acidic hydrolysis furnished (1R)-(-)-myr-

tenal 142.  

The occurrence of imine 181 and the relatively low yield of 179 suggested to perform a stability 

study of the lithiated compounds 176, 177, 178 and 180, generated prior to the amination step. 

Their stability is investigated by generating the chiral nitrenoid in THF or n-hexane, from the 

parent N,O-disubstituted hydroxylamine and methyl lithium at -78oC, followed by quenching 

with saturated aqueous NH4Cl, hydrolysis of the mixture with 1M HCl and subsequent GC 

analysis. In the mentioned cases (Table 3) formation of (1R,5R)-(-)-myrtenal 142, as product of 

imine 181 hydrolysis, has been observed (Scheme 44). 
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Scheme 44:  Elimination of ROLi from lithiated N,O-disubstituted hydroxylamines. 

 

 

Table 3:     Stability test of the lithiated N,O-disubstituted hydroxylamines 176-178 and 180. 

Entry Hydroxylamine Solvent Reaction 
time, h 

Ratio 
hydroxylamine : 142 a 

1 147 THF 1 100 : 0 
2 147 n-hexane 1 71 : 29 
3 148 THF 1 100 : 0 
4 148 n-hexane 1 51 : 49  
5 151 THF 1 85 : 15 
6 151 n-hexane 1 66 : 34 
7 152 THF 1 34 : 66 
8 152 n-hexane 1 86 : 13 

a) Determined by gas chromatography 

 

Deprotonation in the α position to nitrogen in N-protected allyl amines is a known procedure for 

the asymmetric carbon-carbon bond formation and has been studied by Beak et al.154,155 It occurs 

in unpolar solvents and in the presence of (-)-sparteine, and provides the allylic carbanion which 

reacts with carbon electrophiles either at the γ or α position. A similar behaviour can be 

envisioned for the lithiated N,O-disubstituted hydroxylamines 176-178 and 180. After 

deprotonation with methyl lithium, the elimination of the proton in the position α to the nitrogen 

atom might proceed either under the influence of a local methyl lithium excess or due to an 

intermolecular reaction between lithiated hydroxylamines. The newly formed, relatively stable 

allylic carbanion 182 undergoes the elimination of ROLi, to provide the N-lithiated imine 183 

(Scheme 45). 
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Scheme 45: Proposed mechanism for the formation of imine 181. 

 

It should be mentioned that formation of (1R,5R)-(-)-myrtenal 142 after hydrolysis suggests that a 

pathway in which 182 undergoes an intramolecular amination reaction to provide the imine 184 is 

less favourable (Scheme 46). 
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Scheme 46: Possible pathway for the intramolecular reaction of 173. 

 

As can be seen in Table 3, the amount of imine 181, respectively (1R,5R)-(-)-myrtenal 142, 

increases when the deprotonation of hydroxylamines is performed in an unpolar non-

coordinating solvent, i.e. n-hexane. This correlates with the decreased stability of the nitrenoids in 

this solvent. It is well known156 that in such solvents organolithium compounds are associated 

species, whereas in a polar coordinating solvent like THF formation of a monomer-solvent 

complex is preferred. It can be concluded that THF has a stabilizing effect on the intermediate 

182, reducing the tendency towards elimination of ROLi by coordination to the lithium cation 

bonded to the nitrogen atom. Since the formation of aggregated 176-178 and 180 is favoured in n-

hexane, the pathway in which α-deprotonation of lithiated N,O-disubstituted hydroxylamines 

occurs by an intermolecular reaction followed by the elimination of ROLi, may have a major 

contribution to the formation of 181. These conclusions are supported by the remarks of Beak et 

al.150, who found that reactivity of the nitrenoid 163 towards alkyl or aryllithium reagents increases 

when, instead of THF or Et2O, n-hexane was used as solvent, favouring the formation of the 
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dimer RLi·LiNH-OCH3 166. The results presented in Table 3 show that the proportion of imine 

181 depends also on the leaving group ability of the substituent connected to the nitrogen atom.  

Because of the very similar deprotonation conditions that lead to the formation of 176-178, 180, 

and 168, the stability of the lithium amide 168 can be explained by its incapacity of forming 

geometrically favorable aggregates which would allow an intermolecular second deprotonation, 

most probably due to sterical hindrance. 

These observations suggest that despite the relatively reduced tendency towards decomposition 

of N-lithiated hydroxylamines in THF, n-hexane is the proper solvent for electrophilic amination, 

because of the higher degree of aggregation. A procedure in which the nitrenoids are generated in 

situ using two equivalents of phenyl lithium, added at once to the hydroxylamines 147, 148 and 

151, was carried out. The results are presented in Table 4. 

 

Table 4: Electrophilic amination of PhLi with nitrenoids generated  

 from 147, 148 and 151 using PhLi. 

 

 

 

 

 

 

Very good results are obtained when phenyl lithium is transmetalated to the higher order 

cyanocuprate Ph2Cu(CN)Li2 175. Treatment of the hydroxylamines 147, 148 and 151 with one 

equivalent of 175, in THF (Scheme 47), afforded the amine 179 in good yields (Table 5). 

 

i)  Ph2Cu(CN)Li2 175, THF

ii) MeOH

NH
O

R

147, R = Me                     179
148, R = Bn 
151, R = SiMe3

NH
Ph

 
 

Scheme 47: Electrophilic amination of Ph2Cu(CN)Li2 175 with hydroxylamines 147, 148 and 

151. 

 

 

Entry Hydroxylamine Reaction 
temperature, 

oC 

Reaction  
time, h 

Yield of 
179, % 

1 147 -40 3 48 
2 148 -40 3.5 47 
3 151 -40 3 59 
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Table 5: Electrophilic amination of Ph2Cu(CN)Li2 175 with in situ generated nitrenoids  

 176-178 form hydroxylamines 147, 148 and 151. 

Entry Hydroxylamine Reaction 
temperature, oC

Reaction  time, 
h 

Yield of 179, % 

1 148 -40 to -20 4 72 
2 147 -50 to RT 5 70 
3 151 -50 to RT 3 94 

 

Electrophilic amination of the higher order cyanocuprate Ph2Cu(CN)Li2 175 with lithium 

tert-butyl-N-tosyloxycarbamate 185 has been reported by Greck et al.157 to proceed in 35% yield, 

whereas the Gilman cuprate Ph2CuLi 186 furnishes N-Boc-aniline 187 in 23% yield (Scheme 48). 

THF, -78oC, 1.5 h

N OTs

Li

Boc

185

Ph2Cu(CN)Li2

Ph-NHBoc

Ph2CuLi
THF, 0oC, 2 h

175

186

187

 
Scheme 48: Electrophilic amination of cuprates with lithium tert-butyl-N-tosyloxycarbamate 

185. 

 

The authors suggest an intermediate in which the nitrogen atom of the amination reagent is 

chelated on both Li and Cu (Figure 17) and the nucleophile R attacks on the nitrogen on the 

opposite site of the leaving group. This has been presumed to be a SN2 process. 

Li

CuR

Li

R

CuR R
N

Boc

OTs
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-

+

 
Figure 17: Intermediate suggested by Greck et al.157 for the electrophilic amination of lower 

order Gilman cuprates with lithium tert-butyl-N-tosyloxycarbamate 185. 

 

Ricci et al.121 reported a related electrophilic amination of higher order cuprates Ar2Cu(CN)Li2 

with O-trimethylsilyl hydroxylamines R-NH-OSiMe3 (R = Me, iPr, tBu) in 45-88% yield. In 

contrast to the report of Greck et al.157, O-trimethylsilyl hydroxylamines have not been lithiated 

before addition to the cuprate. 

The discovery of cyanocuprates and their application in organic synthesis resulted in a scientific 

controversy concerning the actual structure of these compounds.158 Initially, two models to 
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describe the structure of these cyanocuprates were put forward: a bisanionic species in which two 

organic groups and the cyanide were bound to the same copper atom (Figure 18A) and a 

Gilman cyanocuprate in which only the two organic groups were bound to copper (Figure 18B). 

The controversy was resolved in 1999159, in favor of proposal B. 

Cu

C

R R

N 2-

Li+2 Cu RR -
Li

+
LiCN

A      B  
Figure 18: Models describing the proposed structures of cyanocuprates.158 

 

The results reported by Greck et al.157 and Ricci et al.121, combined with those concerning the 

amination of Ph2Cu(CN)Li2 175 with one equivalent of hydroxylamines 147, 148 or 151, and the 

structure of cyanocuprates suggest that after deprotonation of hydroxylamines, an intermediate in 

which the nitrogen anion and the oxygen atom are both coordinated by copper and lithium may 

be involved (Scheme 49). Further elimination of R1OM (M = Li or Cu) and recombination of Ph 

and NR furnished the aniline derivative 179. 

The failure of oxazine 168 to react in a similar manner is most probably due to the impossibility 

of adopting an intermediate similar to that shown in Scheme 49, because of greater sterical 

hindrance. 
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Scheme 49:  Intermediate suggested for the electrophilic amination of higher order cuprates  

Ph2Cu(CN)Li2 175 with hydroxylamines 147, 148 or 151. 

 

(-)-N-[10-(1R,5R)-Pin-2-enyl]-O-tosyl hydroxylamine 152 gave substantially inferior results 

compared to 147, 148 or 151. 

tert-Butyl-N-(tosyloxy)carbamate 189 has been used as a model for the design and application of 

152. Greck et al.27,157 reported the synthesis, stability and use of 185 and of N-lithiated tert-butyl-N-

mesityloxycarbamate 191 as electrophilic amination reagents with good results. 
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Figure 19: Electrophilic amination reagents introduced by Greck et al.27,157 

 

It has been suggested that their superiority compared with other electrophilic amination reagents 

is due to the increased leaving group ability of the tosyl or mesityl moiety. Moreover, it has been 

found160 that the presence of the tert-butyloxycarbonyl group on the nitrogen atom has a 

stabilizing effect on the nitrenoids 185 and 191. The N-lithiated hydroxylamine 180 does not 

possess such a stabilizing group on nitrogen and under strongly basic conditions,161 the presence 

of a proton in the α position to nitrogen, combined with the higher leaving group ability of the 

tosyl moiety, greatly favours the elimination pathway and formation of 181 (Scheme 44). 

Further studies concerning the electrophilic amination of ketone and ester enolates with 

nitrenoids 176-178 were done in order to provide a valuable method for the stereoselective 

synthesis of α-amino ketones and α-amino acids. 

The lithium or copper enolates derived from propiophenone 75a, tert-butyl propionate 192 and 

ethyl phenylacetate 193 were used as substrates. N,N’-Dimethylpropylene urea (DMPU) was used 

as co-solvent. Nitrenoids 176-178 were generated before or in situ using methyl lithium or LDA. 

In all cases, with the exception of the reaction between the lithium ester enolate of 192 and 

nitrenoids 176 and 177, respectively, no formation of the product 194 was observed (Scheme 50).  
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Scheme 50:  Reaction strategy for the stereoselective electrophilic amination of enolates with 

nitrenoids 176-178. 
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Due to its high decomposition rate, the lithiated hydroxylamine 180 was found to be 

inappropriate to be further involved in these electrophilic amination studies. 

When the lithium enolate of the tert-butyl propionate 192 was generated using LDA in THF and 

DMPU as co-solvent, followed by the simple addition of the hydroxylamines 147 and 148, 

respectively, GC-MS analysis of the reaction mixture shows traces of a product which appears as 

four peaks (Figures 21 and 23) with the same MS pattern (Figures 22 and 24). The electrophilic 

amination reagents 176 (R = Me) and 177 (R = Bn) were generated in situ using excess of LDA. 

The use of DMPU as co-solvent ensures the selective formation of the Z-enolate of 192 and the 

formation of 196 as a mixture of two diastereomers was expected (Scheme 51). 

 

O

O

3.15 equiv. LDA, 

THF, DMPU

NH
O

R

O

O

NH

*

192

THF, -78oC to 0oC, 6 h

147, R = Me

148, R = Bn

195

OLi

O

196

tBu tBu
tBu

 
 

Scheme 51:  Electrophilic amination of lithium ester enolate 195 with the in-situ generated 

nitrenoids 176 or 177. 

 

 

Figure 21: GC analysis for the electrophilic aminatio

involving hydroxylamine 147 (GC metho
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Figure 22: EI mass spectrum of the product resulted from the reaction between the lithium 

ester enolate 195 and hydroxylamine 147 

 

 
 

Figure 23: The gas chromatography analysis for the electrophilic amination reaction of the 

lithium ester enolate 195 involving hydroxylamine 148 (GC method: GC-MS Pr. 2). 

 

 
 

Figure 24: CI mass spectrum of the product resulted from the reaction between the lithium 

ester enolate 195 and hydroxylamine 148 

 

The EI mass spectrum (Figure 22) shows the molecular ion at m/z 279 and the subsequent 

specific fragmentation peaks at m/z 222 (22%) [M-tBu]+., 206 (54%) [M-BuO]+., 150 (48%) 
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[M-tBuOC(O)CHCH3]+., 145 (12%) [tBuOC(O)CH(NH2)CH3]+. and 57 (100%) [tBu]+.. The CI 

mass spectrum (Figure 24) shows the base peak at m/z 280 [M+H]+ and the subsequent 

fragmentation peaks at m/z 250 (18%) [M+H-C2H6]+, 206 (23%) [M+H-tBuOH]+ and 150 (24%) 

[M- tBuOC(O)CHCH3]+. 

The observed four peaks with the same MS pattern from the chromatograms showed in Figures 

21 and 23 may correspond to the four possible diastereomers of the structure 197 (Figure 25), 

since the rearrangement of the pinene double bond can be expected to occur under the strongly 

basic conditions involved. As there are only traces of four compounds with identical molecular 

mass present in the GC-MS spectra, no clear decision can be made which of the six possible 

structures (196 and 197) are actually formed. The formation of the imine 181 is also observed as 

decomposition product of the nitrenoid 176. 

 

*tBu *tBu

O

O

NH

O

O

NH

E-isomer        Z-isomer
197  

Figure 25. Products formed in the electrophilic amination reaction of the lithium ester 

enolate 195 involving hydroxylamines 147 and 148, respectively.  

 

Generally enolates and especially lithium enolates are complex multimeric structures, in which the 

solvent and the base used for deprotonation are also involved.162 The aggregation can 

dramatically affect chemical reactivity.163,164 The maximum reactivity of an enolate-metal ion pair 

in solution is achieved in a medium in which the cation is strongly solvated. Polar aprotic 

solvents (HMPA, DMPU, NMP) are good cation solvators and are often used to minimize the 

degree of enolate aggregation. Concerning the present study, the use of DMPU as co-solvent 

slightly improves the reactivity of the lithium ester enolate 195 towards the nitrenoids 176 and 

177. Attempts to use other bases (NaHMDS), with or without co-solvent (DMPU), did not bring 

any enhancement of the enolate reactivity. Moreover, copper enolates were also involved in order 

to achieve an effective reagent-substrate complexation, but no amination has been observed. 

Seebach162 and Mohrig et al.165 suggested that in the process of a lithium enolate generation using 

lithium amides, i.e. LDA, there is a proton back-transfer from the liberated base, i.e. 
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diisopropylamine, to the enolate. Consequently, deuteration of such enolates proceeds only with 

30% yield. Additional employment of nBuLi to remove the NH proton gives upon quenching 

with D2O the completely deuterated product. This procedure has been also applied in the present 

study and preliminary generated nitrenoids 176 and 177 have been involved in the amination step. 

Despite of these “exchangeable proton” free conditions, no amination product has been 

detected. 

These observations lead to the following conclusions: 

 Formation of the dimer 166 (Scheme 40) seems to be the key step in the electrophilic 

amination reactions of carbanions using nitrenoids of type 176-178. Highly aggregated 

substrates in which the metal ion is not available for complexation with the nitrenoid show 

less or no reactivity. It should be mentioned that amination of chiral copper amide enolates, 

generated from the lithium enolate and CuCN in THF, proceeds in 51-77% yield166 using 

BocNLi-OTs 185. When lithium enolates are involved, only decomposition of the amination 

reagent 185 with the formation of its reduced product tert-butyl carbamate BocNH2 in 35% 

yield, is observed. Boche et al.161 reported that N-(p-nitrophenyl)-O-(methylsulfonyl)-

hydroxylamine 198 generates phenylnitrene 201 under basic conditions (Scheme 52). 
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Scheme 52:  Generation of the singlet phenylnitrene 201-s by α-elimination of the good 

leaving group CH3SO3
- from N-(p-nitrophenyl)-O-(methylsulfonyl)-hydroxylamine 

197 under basic condition, as reported by Boche et al.161 
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The formation of tert-butyl carbamate BocNH2 and the possibility of generating the nitrene 

BocN: from BocNLi-OTs 185, does not exclude the pathway in which the actual 

amination reagent is a nitrene and not a nitrenoid. Moreover, this conclusion is also 

supported by the papers of Beak et al.82,150 (Scheme 39), which are not excluding the 

occurrence of the nitrene pathway when a good leaving group is attached to nitrogen. 

 Enolates are ambident nucleophiles with the negative charge more accommodated to the 

oxygen atom.163,164 This study confirms that a complex of type 166 (Scheme 40) between the 

nitrenoids 176-178 and the enolate with the metal cation accommodated at the α-C, is less 

accessible. 

 In situ generation of nitrenoids 176-178 reduces the extent of their decomposition, which is 

more favoured in non-polar solvents, most probably due to the lack of complexation with the 

solvent. 
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3.3 Studies towards the Electrophilic Amination of Enolates and Allyl 

Organometallic Reagents using α-Chloronitroso Reagents 

 

As mentioned in chapter 1.2.1.3, Oppolzer et al.13 were the first who reported the stereoselective 

electrophilic amination of ketone enolates using the enantiomerically pure α-chloronitroso 

reagent 74. In the present study, the model reaction presented by Oppolzer et al.13 has been 

followed. The generation of propiophenone lithium enolate 205 using LiHMDS and its further 

reaction with the α-chloronitroso compound 74, furnishes 2-(hydroxylamino)-1-phenylpropan- 

1-one hydrochloride 208 in 30% yield. Transmetallation of the lithium enolate 205 with ZnBr2 in 

THF, followed by the reaction with 74 furnishes the compound 208 in isolated 16% yield 

(Scheme 53). Since the α-hydroxylamino ketones are prone to rapid epimerization13, the 

determination of the enantiomeric excess of 208 has not been attempted. 

 

i)  74, THF

-50oC to RT, 24 h
ii) H2O

i)  LiHMDS, THF, -78oC, 1 h

ii) ZnBr2, THF, -68oC to 0oC, 45 minPh
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Scheme 53:  Electrophilic amination of the propiophenone zinc enolate 206 with the 

enantiomerically pure α-chloronitroso reagent 74, following Oppolzer’s13 

procedure. 

 

The intermediate nitrone 207 is isolated in 18% yield and can be identified by its mass spectrum 

(Figure 26). A base peak ion is observed at m/z 565.2, assigned to [M+Na]+, accompanied by the 

peaks with m/z 543.2 [M+H]+ and 581.2 [M+K]+. The 13C NMR spectrum shows the peak 

corresponding to the carbon atom double connected to the nitrogen (C=N+) at 168.09 ppm and 

the peaks corresponding to C=O (193.72 ppm), phenyl (136.35, 133.57, 129.09, 128.08 ppm) and 

CH (70.54 ppm) of the propiophenone moiety can also be identified. The 1H NMR spectrum 

does not provide any useful information about the structure of 207 due to its hydrolysis. 

2-(Hydroxylamino)-1-phenylpropan-1-one hydrochloride 208 results after hydrolysis of the 
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nitrone 207 with 1M HCl/CHCl3. The IR spectrum of 207 shows the characteristic C=O (1700 

cm-1) and nitrone C=N+ (1598 cm-1)10 absorptions. 

 
 

Figure 26: Mass spectrum (ESI, positive ion mode) of the nitrone 207. 

 

Furthermore, the electrophilic amination of ester enolates with the α-chloronitroso reagent 74 

using the same procedure as described above was studied. Lithium ester enolates derived from 

γ-butyrolactone 209167, tert-butyl propionate 192 and ethyl phenylacetate 193, as well as their 

silylated derivatives and the products of transmetallation with ZnBr2 have been used as 

substrates. In all instances, only partial conversion of 74 to complex mixtures has been observed, 

in which no α-hydroxylamino esters 210 could be detected after hydrolysis (Scheme 54). 
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Scheme 54: Reaction strategy for the stereoselective electrophilic amination of ester enolates 

with (+)-N,N-dicyclohexyl-2-chloro-2-nitrosocamphor-10-sulfonamide 74. 
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Based on their results concerning the electrophilic amination of ketone enolates with 74, 

Oppolzer et al.13 reported that the observed C(α)-si-face topicity of C-N bond formation is 

consistent with a cyclic “chair” transition state A# (Figure 27).  
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Figure 27:  Postulated transition state of the electrophilic amination of ketone enolates 

with (+)-N,N-dicyclohexyl-2-chloro-2-nitrosocamphor-10-sulfonamide 74, as 

suggested by Oppolzer et al.13 

 

Postulated transition state A# accounts for the attack of the N=O group of 74 by the Z-enolate 

206, opposite to the bulky sulfonamide group and for a coordination of ZnII by the oxygen atom 

of the nitroso group trans to the N-C(2) bond. In the same paper, it has been reported that 

E-enolates derived from cyclic ketones such as α-tetralone, β-tetralone or cyclohexanone or from 

the propionate ester of 2,6-dimethylphenol reacted sluggishly with 74 and no amination products 

can be detected. It has been suggested that an analogous transition state B# (Figure 27) involving 

the E-enolates suffers repulsion between the C(3) of the bornane skeleton and the enolate C(α) 

substituent, which is responsible for the lack of reactivity. The same occurrence of an 

unfavorable transition state B# can explain the lack of reactivity of the ester enolates derived 

from 193 and 209. The lithium ester enolate derived from tert-butyl propionate 192 has been 

prepared using DMPU as co-solvent to ensure the formation of the Z-enolate,163 but it still 

displayed no reactivity, as well the corresponding zinc ester enolate. Regarding the lithium ester 

enolate of 192, the lack of reactivity can be attributed to the unavailability of the lithium atom to 

coordinate to the oxygen atom of the N=O group as in transition state A# (Figure 27), since it is 

already strongly coordinated by the co-solvent. Regarding the zinc ester enolate of 192, a slight 

influence of DMPU on the coordination ability of the zinc atom to the nitroso oxygen atom 

cannot be excluded. This co-solvent effect combined with the slightly stronger deactivating effect 

of the electron-withdrawing tBuO substituent compared to phenyl seems to have a major effect 

on the reactivity of the zinc ester enolate of 192. 
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2,3:5,6-Di-O-isopropylidene-1-C-nitroso-α-D-mannofuranosylchloride 65 as an alternative 

nitroso compound is very unstable under the above mentioned reaction conditions and complex 

mixtures result when 65 is used as potential amination agent. 

Since the procedure concerning the electrophilic amination of ketone enolates with the 

enantiomerically pure α-chloronitroso compound 74 proved to be inapplicable for the amination 

of ester enolates, the use of allylic substrates came into attention. Following mainly the same 

strategy as the one presented in Scheme 53, the electrophilic amination of allyl zinc bromides 

214-216 should provide allyl hydroxylamines 218, upon hydrolysis of the intermediate nitrones 

217 (Scheme 55). 
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Scheme 55:  Reaction strategy for the electrophilic amination study of allyl zinc bromides with 

α-chloronitroso reagents. 

 

Allyl hydroxylamines are valuable fundamental buildings blocks in organic chemistry, but they 

can be easily reduced to the more important allyl amines, which can be further transformed to a 

range of products by functionalisation, reduction or oxidation of the double bond. Especially, the 

mentioned double bond oxidation could provide a variety of optically active α-amino acids when 

prochiral allyl halogenides are used as starting materials. 

 

There are only few examples in the literature concerning the reaction between α-halogenonitroso 

compounds and organometallic reagents. It has been suggested that an 1,2-addition is the major 

process when 2-chloro-2-nitrosopropane 219 is treated with dimethyl zinc at 0oC, providing 

acetone and methylhydroxylamine 220 upon hydrolysis (Scheme 56).168 
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Scheme 56: Amination of dimethyl zinc with 2-chloro-2-nitrosopropane 219. 

 

In the present study, 1-chloro-1-nitrosocyclohexane 12 is used as a model system, due to its 

inexpensive synthesis and merely the same reactivity compared to 74.1 2-Butenyl 214, 

3,3-dimethylallyl 215 and 3-phenylallyl 216 zinc bromides are used as substrates that can be 

prepared from the corresponding bromides 211-213 by zinc insertion.169-171 

The reaction of α-chloronitroso cyclohexane 12 with 214–216 proceeds very fast at -78oC in THF 

and instead of the expected nitrones 217, oxime ethers 221–223 (Figure 28) are formed in almost 

quantitative yield (Table 6). 

 

221, R1=Me, R2=H

222, R1=Me, R2=Me

223, R1=Ph, R2=H

R1

R2
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Figure 28:  Allyl oxime ethers obtained from the reaction of 1-chloro-1-nitrosocyclohexane 

12 with the allyl organozinc compounds 214–216 in THF. 

 

As can be seen from Table 6, variation of the reaction temperature had no influence on the 

reaction regioselectivity. 

 

Table 6:  Reaction conditions and yield of allyl oxime ethers 221-223 resulting 

from the reaction of 1-chloro-1-nitrosocyclohexane 12 with the allyl 

organozinc compounds 214–216 in THF. 

Entry Reagent Reaction 
temperature, oC

Product Yield, % 

1 214 -78 221 96 
2 214               0 221 97 
3 214  22 221 95 
4 215 -78 222 82 
5 216 -78 223 84 
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Toluene has been chosen as solvent in order to trap potential radical species. The oxime ethers 

221-223 are formed, together with small amounts of allyl hydroxylamines 224 and 225 (Figure 

29), upon quenching with methanol and acidic hydrolysis of the reaction mixture (Table 7). 

Unlike the observed distribution of products when 214 or 215 are reacted with 12, only 

O-(1-phenylallyl)cyclohexanone oxime 223 is formed from 216 under the same conditions. 

 

NH2
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+

 
Figure 29: Allyl hydroxylamines resulting from the reaction of 1-chloro-1-nitroso-

cyclohexane 12 with the allyl organozinc compounds 214 and 215 in toluene. 

 

 

Table 7:  Reaction conditions and yields of allyl oxime ethers 221-223 and allyl 

hydroxylamines 224 and 225 resulting from the reaction of 

1-chloro-1-nitrosocyclohexane 12 with the allyl organozinc compounds 

214-216 in toluene. 

Entry Reagent Reaction 
temperature, oC

Product Yield, % Product Yield, %

1 214 -78 221 84 224 14 
2 214 0 221 82 224 8 
3 215 -78 221 72 225 2 
4 215 0 222 71 225 3 
5 216 -78 223 73 - - 
6 216 0 223 64 - - 

 

 

Resuming the results presented above, four types of compounds, depicted as A-D, may result in 

the reaction between 1-chloro-1-nitrosocyclohexane 12 and allyl organozinc compounds 214-216 

(Figure 30). This distribution depends upon solvent and the type of regioisomer (branched or 

linear) of the allyl organozinc compounds involved. 
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Figure 30. The distribution of the compounds which may result in the reaction between 

1-chloro-1-nitrosocyclohexane 12 and allyl organozinc compounds 214-216. 

 

Table 8 summarises the experimental results presented above.  

 

Table 8. The distribution of the compounds which result in the reaction between 

1-chloro-1-nitrosocyclohexane 12 and allyl organozinc compounds 214-216. 

Distribution of compounds Entry Allyl organozinc 
compound Solvent A B C D 

1 214 
(R1=Me, R2=H)  - - 221 - 

2 215 
(R1=Me, R2=Me) THF - - 222 - 

3 216 
(R1=Ph, R2=H)  - - 223 - 

4 214 
(R1=Me, R2=H)  224 a) - 221 - 

5 215 
(R1=Me, R2=Me) Toluene 225 a) - 222 - 

6 216 
(R1=Ph, R2=H)  - - 223 - 

a) The compounds 224 and 225 are the hydrolysis product of the nitrone A. 

 

Th. J. de Boer et al.8,10,172 carried out an intensive work concerning the reaction between 

α-chloronitroso compounds and some organometallic reagents. They showed that 

α-chloronitroso compounds react at 0oC with organomagnesium and organoaluminum reagents 

to form nitrones in low to moderate yields, via 1,2-addition, together with various other products 

which arise mainly through radical processes (SET), depending upon the structure of the nitroso 

compound and the nature of the organometallic reagent. The involvement of a SET process has 
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been proved using the sterically hindered 1-chloro-1-nitroso-2,2,6,6-tetramethylcyclohexane 226 

as substrate (Scheme 57). When 226 is involved, formation of nitrones 229 via 1,2-addition of the 

Grignard reagent to the nitroso group is completely hindered by the flanking methyl substituents. 

Steric requirements being less severe for an electron transfer, this becomes virtually the exclusive 

process with all Grignard reagents. Such an electron transfer leads to radicals R• and relatively 

stable 2,2,6,6-tetramethylcyclohexanone iminoxy radical 227. This radical pair is responsible for 

the formation of the final products. 2,2,6,6-Tetramethylcyclohexanone oxime 232 predominates 

and very low yields or traces of 228– 230 have been observed in the reaction mixture. 
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Scheme 57:  Distribution of products in the reaction of sterically hindered α-chloronitroso 

compound 226 with Grignard reagents, as reported by Th. J. de Boer et al.8,10,172 

 

In the present study, 1-chloro-1-nitroso-2,2,6,6-tetramethylcyclohexane 226 proved to be 

unreactive toward 2-butenyl zinc bromide 214, in THF and temperatures below 0oC. Stirring at 

room temperature for 12 hours provides the oxime ether 233 in 31% yield, together with 

unreacted 226 (Scheme 58). No formation of a linear adduct (type D, Figure 30) is observed. 
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Scheme 58:  Reaction of sterically hindered α-chloronitroso compound 226 with 2-butenyl 

zinc bromide 214 in THF. 

 

1-Chloro-1-nitroso-2,2,6,6-tetramethylcyclohexane 226 is easily prepared in 88% yield by 

chlorination of 2,2,6,6-tetramethylcyclohexanone oxime 232 with tBuOCl. For the synthesis of 

the oxime 232, an improved173 method uses 2,2,6,6-tetramethylcyclohexanone as starting material. 

No products supporting a radical process have been found when reactions are carried out in 

toluene. It can be concluded that these observations rule out the occurrence of a single electron 

transfer (SET) from the organozinc compound to the nitroso compound, when the reaction 

conditions presented in Table 5 or Table 6 are followed. 

The reported mechanism174-176 by which allylmetallic compounds react with enophiles, based on 

that for the non-metallic allylic compounds, shows that the principal products are those which 

result from the H-ene reaction, the M-ene reaction, and a [2+3] cycloaddition with shift of the 

metallic group. Davies et al.174,177 suggested that a charge transfer complex between the ene and 

the enophile might be involved. It has also been mentioned that a reasonable model can involve 

the prior formation of a complex 234 between the ene and the enophile A=B (Scheme 59). 

 

M

B

A A

B

M

+

-

A

B

M H

A

B

H M

A
B

M

H-ene

234

M-ene
 

Cycloadition

A

B
M +

-

 
Scheme 59:  Mechanism of the ene reaction between allylmetallic compounds and enophiles.176 

 

In the present study, electrophilic trapping experiments with MeI and benzophenone, in THF at 

-78oC and 0oC are carried out in order to test the possible occurrence of the polar intermediate 

234. A THF solution of 1-chloro-1-nitrosocyclohexane 12 and trapping reagent is pre-cooled to 
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the mentioned temperature and a stoichiometric amount of organozinc reagent 214 in THF is 

added dropwise to the reaction mixture. TLC and GC analysis of an aliquot shows no other 

products except the O-(1-methylallyl)cyclohexanone oxime 221 and the unreacted trapping 

reagent. Since no products derived from charged intermediates can be detected, the formation of 

the complex 234 or an 1,2-addition process (Scheme 56) are unlikely. The occurrence of a charge 

transfer complex between the ene (donor) and the nitroso group (acceptor) appears more 

reasonable.  

Allyl organozinc compounds of type 214–216 are σ-bond structures which can react at both α 

(less substituted, “linear form”) or γ (most substituted, “branched form”) positions of the allylic 

chain, when added to C=X electrophiles (aldehydes, ketones, imines).170 

The experimental results presented above support the occurrence of a [2+3] cycloaddition, either 

concerted or stepwise, followed by the rapid elimination of zinc halogenide and formation of the 

branched oxime ethers 221-223 (Scheme 60).174-176  
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Scheme 60:  The mechanism proposed for the reaction between the α-chloronitroso 

cyclohexane 12 and allyl organozinc compounds 214-216 in THF. 

 

The reaction presumably initially occurs by a six-centered transition state - facilitated by both 

Lewis acidity of zinc and basicity of oxygen - followed by an intramolecular rearrangement to the 

[2+3] cycloadduct 235. 

The absence of the linear oxime ethers 237 is probably due to the sterical hindrance which could 

occur in the intermediate 236 (Scheme 61). 
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Scheme 61:  Sterical hindrance can occur in the intermediate 236 required for the formation of 

the linear oxime ethers 237. 

 

Isolation of the hydroxylamines 224 and 225 upon acidic hydrolysis of the reaction mixture, 

when toluene is used as solvent, sustains the formation of nitrones 239 by an accompanying 

M-ene process (Scheme 62).  
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Scheme 62:  The mechanism proposed for the formation of allyl hydroxylamines 224 and 225 

in the reaction between the α-chloronitroso cyclohexane 12 and allyl organozinc 

compounds 214, 215 in toluene. 
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The unpolar solvent, i.e. toluene, partially favors a stronger Lewis acid-base interaction between 

zinc and oxygen, which allows the occurrence of the six-centered pericyclic transition state 

required for the M-ene process, instead of the [2+3] cycloaddition. 

Generally, ene reactions involve an electron-rich ene and an electron-poor enophile. The process 

is dominated by the interaction of the HOMO of the former with the LUMO of the latter.178 To 

understand why such a different pathway compared to ketone enolate 75a occurred when the 

allyl organozinc compounds 214-216 reacted with the α-chloronitroso reagent 12, computational 

methods have been used. Figure 31 shows the calculated HOMO (Density Functional method 

with the pBP/DN* basis set) of the zinc enolates of propiophenone 75a (a) and of 

tert-butylethyl ketone 75c (b). The calculated HOMO of 2-butenyl 214 and 3,3-dimethylallyl 215 

zinc bromides are shown in Figure 32 and Figure 33, respectively. 
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  75a Z-enolate (a)             75c Z-enolate (b) 

 

Figure 31: The calculated HOMO (Density Functional method with the pBP/DN* basis set) 

of the zinc enolates of propiophenone 75a (a) and tert-butylethyl ketone 75c (b) 
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Figure 32:  The calculated HOMO (Density Functional method with the pBP/DN* basis set) 

of the 2-butenylzinc bromide 214 E-Z isomers (a, b) and (1-methylprop- 

2-enyl)zinc bromide (214 “branched form“) (c) 

 

 

 

 

 

   215 “linear form“ (a)    215 “branched form“ (b) 

 

Figure 33: The calculated HOMO (Density Functional method with the pBP/DN* basis set) 

of 3,3-dimethylallyl zinc bromide 215 (a) and 1,1-dimethylallyl zinc bromide (215 

“branched form“) (b) 

. 
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Figure 34:  The calculated LUMO (Density Functional method with the pBP/DN* basis set) 

of 1-chloro-1-nitrosocyclohexane 12, upper (a) and lateral (b) view. 

 

In the case of enolates 75a and 75c the HOMO is delocalised over several sites, but the largest 

contribution to the HOMO clearly comes from the carbon which is in β-position towards 

oxygen.179 Therefore, the attack of the nitrogen electrophile and bond formation should occur at 

this carbon (Figure 35). 

In the case of allyl organozinc reagents 214 and 215, a symmetric distribution of the HOMO at 

the C=C double bond is observed, together with a significant contribution from the carbon atom 

directly connected to the zinc. The formation of [2+3] cycloadducts 235 (Scheme 60) is favoured 

by such a distribution of the HOMO, as depicted in Figure 36 for the case of 2-butenyl zinc 

chloride 214. 

Figure 35: Favourable overlap of the HOMO of propiophenone z

LUMO of 1-chloro-1-nitrosocyclohexane 12. 
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Figure 36: Favourable overlap of the HOMO of the E-isomer 2-butenylzinc bromide 214  

(a) and respectively (1-methylprop-2-enyl)zinc bromide (214 “branched form”) 

(b), with the LUMO of 1-chloro-1-nitrosocyclohexane 12, for the formation of 

the [2+3] cycloadduct. 

 

A favourable HOMO-LUMO interaction appears to be possible for both regioisomers of 

2-butenyl zinc bromide (linear and branched forms). Calculation of the transition state geometry 

(AM1 semiempirical method) for both situations (a) and (b) from Figure 34 shows that the 

transition state A# - from which 236 (R1=Me, R2=H) results - is less favorable due to the sterical 

hindrance which occurs between the chlorine atom and the methyl group of the allylic system 

(Figure 37). Obviously, the sterical hindrance is even more significant when 

3,3-dimethylallyl 215 and 3-phenylallyl 216 zinc bromides are involved.  
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A# 

 
      B# 

 

Figure 37:  Transition state geometries of the [2+3] cycloaddition of both 2-butenyl zinc 

bromide 214 regioisomers, simulated using AM1 semiempirical method. 

 

The calculated molecular orbital (MO) coefficients for the LUMO of 12 are listed in Table 9. The 

close values of the contributions to LUMO from N(2px) and O(2px), and N(2py) and O(2py), 

respectively, means a relatively symmetric distribution of the LUMO at the nitroso group. The 

graphical representation of the LUMO of 1-chloro-1-nitrosocyclohexane 12 is shown in Figure 

34. 

This suggests that an orbital interaction may also be possible between HOMO of 214 (“linear 

form”) and LUMO of 12 in which the nitroso group has a reverse orientation (Figure 38).  
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Table 9. MO coefficients for the LUMO of 12 obtained at the DFT 

(pBP/dn*) and Ab Initio (RHF/3-21G* and RHF/6-31G*)  

levels of theory 

 

Atomic orbital DFT (pBP/dn*) RHF/3-21G* RHF/6-31G* 

N(2px) -0.81388 -0.24370 -0.29475 

N(2py) -0.30839 -0.29574 -0.35770 

N(2pz) -0.01679 0.01068 0.01292 

O(2px) 0.71288 0.21613 0.25567 

O(2py) 0.26631 0.26228 0.31028 

O(2pz) -0.00377 -0.00947 -0.01120 
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between HOMO of 214 (“linear form”) and 

 group has a reverse orientation. 

ence of the M-ene process and can also explain 

223 (Scheme 63). 
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Scheme 63. Formation of the branched oxime ethers 221-223 by a M-ene process in which 

the nitroso group of 12 has a reverse orientation. 

 

In conclusion, both mechanisms - the [2+3] cycloaddition and the M-ene reaction with a reverse 

orientation of the nitroso group - can explain the occurrence of the oxygenation reaction instead 

of amination. Among other aminating reagents, oxazirines (Chapter 1.2.1.5) are reported to act 

both as aminating and oxygenating reagents, the nucleophilic attack at the oxaziridine ring being 

determined by the substitution pattern at the nitrogen. 

 

 

3.4 Studies towards the Electrophilic Amination of Allyl Organometallic 

Reagents using 1-Deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-manno-

furanose 

 

The studies towards the electrophilic amination of allyl organometallic substrates with 

1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 were based on the reports 

of Bartolli et al.14,16,18,19,21 concerning the synthesis of nitrones by the allyl Grignard addition on 

nitroalkanes and nitroarenes (see Chapter 1.2.1.6).  

The strategy followed for the electrophilic amination of allyl organometallic reagents using 156 is 

shown in Scheme 63. The nucleophilic attack of the allyl organometallic reagent to the nitro 

group would give the tetrahedral intermediate 241, which upon quenching with a proton source 

and further acidic hydrolysis would furnish the hydroxylamine hydrochloride 243. 
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Scheme 63:  The strategy followed for the electrophilic amination of allyl organometallic 

reagents using 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 

156. 

 

The reaction of the nitrosugar 156 with 2-butenyl (244) or 3,3-dimethylallyl (245) magnesium 

bromides in THF at -78oC to -50oC furnished 2,3:5,6-di-O-isopropylidene-α-D-manno-1,4-

lactone 247 as single product (Scheme 64). 
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Scheme 64: The reaction between 1-deoxy-1-nitrosugar 164 and the allyl organometallic 

reagents 244-246. 
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After 3 h reaction time TLC analysis confirmed the total conversion of 156 and showed the 

formation of 247 in 71% yield when 244 was involved, and 84% when 245 was used as substrate. 

The formation of the lactone 247 has been interpreted as result of the Nef reaction (Scheme 

65),180 with the metallic reagent or the conjugated base (MeO-) of the quenching reagent 

(methanol) acting as base. 
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Scheme 65: Formation of the lactone 247 from the 1-deoxy-1-nitrosugar 156 by Nef reaction. 

 

The base removes the relatively acidic proton in α-position to the nitro group. The anion 248 is 

in resonance with the aci-nitro form 249 which hydrolyzes to give the lactone 247 upon 

hydrolytic work up. Reaction of the 1-deoxy-1-nitrosugar 156 with 3,3-dimethylallyltitanium tri-

isopropoxide 246 in THF gave also only lactone 247. 

In contrast, the reaction of the relatively less basic 2-butenyl zinc bromide 214 with the 1-deoxy-

1-nitrosugar 156 furnishes the nitrone 250 (Scheme 66). 
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Scheme 66: Reaction of 2-butenyl zinc bromide 214 with the 1-deoxy-1-nitrosugar 156. 

 

No formation of the nitrone 250 is observed upon stirring at -78oC for 4 h (Table 10, Entry 1). 

Variation of the reaction temperature showed that up to -10oC the organozinc reagent is acting 

only as nucleophile, since only nitrone 250 and unreacted nitrosugar 156 are detected by TLC. 

When the reaction temperature is increased above -10oC the formation of the lactone 247 in a 

Nef reaction is observed. Reaction at 0oC affords lactone 247 as major product (68%), total 

conversion of the nitrosugar 156 is observed and nitrone 250 results in 7% yield. A slightly 

increased yield is observed upon addition of the organozinc reagent 221 to the nitrosugar 156 at 

-35oC, but if a longer reaction time is applied (Table 10, Entry 4) formation of the lactone 247 is 
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detected. The formation of the lactone 247 may occur during reaction (the organozinc reagent 

acts as base) or under the influence of the conjugated base (MeO-) of the quenching reagent 

(methanol). 

 

Table 10: Reaction conditions and yield of nitrone 250. 

Entry Reaction 
temperature oC  

Reaction time 
h 

Quenching agent Yield 
% 

Z:E a 

1 -78 4 MeOH - - 
2 -78 to -10 6 MeOH 12 1:3 
3    0 12 MeOH 7 1:3.2 
4 -35 14 MeOH 14 1:3.5 
5 -35 14 0.5 M TFA/DCM - - 
6 -35 to -10 2.5 1.3 M AcOH/DCM 17 1:7.5 

a Determined by 1H NMR 

 

Formation of the nitrone 250 is due to the stabilizing effect brought about by the conjugation of 

the newly formed C=N double bond with that of the allylic system. The quenching agent is first 

acting as proton source (Scheme 63) and then the remaining conjugated base B- may abstract HA 

or HB (Figure 34). Although HB is more acidic then HA, the formation of a conjugated system is 

energetically more favorable compared to the formation of an exocyclic double bond. 
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Figure 34:  Tetrahedral intermediate formed in the reaction of 2-butenyl zinc bromide 214 

with the 1-deoxy-1-nitrosugar 156. 

 

In order to use the relatively higher acidity of HB as a driving force for the formation of the 

nitrone 242 (R1=Me, R2=H), the strength of the conjugated base B- (Scheme 63) was reduced 

using stronger acids (AcOH, TFA) as quenching agents. 

Bartoli et al.21 used a similar strategy to obtain selectively the two nitrone regioisomers 255 and 

256 resulted upon the reaction between nitroethane 252 and benzylmagnesium chloride 253 

(Scheme 67). 
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Scheme 67. Formation of the nitrone regioisomers 255 and 256 in the reaction of nitroethane 

252 with benzylmagnesium chloride 253.21 

 

The weak conjugated base (Cl3CCOO-) resulted upon quenching with trichloroacetic acid, 

favours the elimination of the more acidic benzylic proton and formation of 256 only, whereas 

the stronger and bulky conjugated base derived from 2,6-dimethylbenzoic acid favours the 

formation of nitrone 255. 

In the present study, the formation of nitrone 250 only is observed upon quenching with 

AcOH/DCM. When TFA/DCM is involved, no nitrone 250 results, but a very complex mixture 

due to the deprotection of sugar moiety. Table 10 shows also that the type of quenching reagent 

plays a minor role on the reaction yield, which means that the significant process is the 

electrophilic attack of the nitrosugar on the nucleophile and not the further reaction with the 

conjugated base. A mixture of stereoisomers is observed (TLC, NMR) when MeOH and 

AcOH/DCM quenching is applied. Since the 1H NMR analysis shows a singlet for the C(1)-H 

proton (Scheme 66), it is concluded that no anomerisation occurrs at C(1) and the ratios 

presented in Table 10 correspond to the Z-E stereoisomers of 250. The different Z:E ratio which 

results upon quenching with AcOH/DCM is most probably due to the sterical hindrance 

brought about by the conjugated base AcO-. In the 1H NMR spectra the double doublet of the 

vinylic proton appears at 7.23 ppm, corresponding to the Z-isomer, and at 6.86 ppm for the 

E-isomer. The signal corresponding to the vinylic proton of the Z-isomer is shifted to a lower 

field due to its vicinity to the oxygen anion of the nitrone group. 

Analysis of the mass spectrum (electrospray ionisation, positive ion mode) of 250 shows beside 

the expected peaks corresponding to [M+Na]+ (m/z 350.1), [M+K]+ (m/z 366.1) and [2M+Na]+ 

(m/z 677.1), a peak with m/z = 625.2 which indicates the hydrolysis of the nitrone 250 to 

2,3:5,6-di-O-isopropylidene-D-mannose-oxime 134 (Scheme 68).  
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Scheme 68: Hydrolysis of the nitrone 250 to 2,3:5,6-di-O-isopropylidene-D-mannose-oxime 134. 

 

The peak with m/z = 625.2 results due to formation of the cluster [250+134+Na]+. 

Hydrolysis of the nitrone 250 with 1M HCl/CHCl3 followed by the TLC analysis of the organic 

phase confirms the formation of 134 and sustains the occurrence of such a pathway in  

ESI-MS. 

The use of 3,3-dimethylallyl zinc bromide 215 as nucleophile - a virtual replacement of proton HA 

by a methyl group - affords the hydroxylamine hydrochloride 225 as the hydrolysis product of 

the intermediary nitrone 257 (Scheme 69). The allyl organozinc reagent 215 shows very good 

regioselectivity since only the formation of the branched hydroxylamine hydrochloride 225 is 

observed. 
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Scheme 69: Reaction of 3,3-dimethylallyl zinc bromide 215 with the 1-deoxy-1-nitrosugar 156. 
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The intermediacy of 257 is proven by the appearance of the characteristic7,56 nitrone absorptions 

at 1587 cm-1 (C=N+) and 1222 cm1 (N-O) in the IR spectrum of the crude reaction mixture. 

Attempts to isolate the nitrone 257 by flash chromatography on silica gel or alumina results in the 

formation of mixtures of 257, 247 and hydroxylamine 225 (as free base), as determined by NMR. 

When similar conditions as above are involved (Table 10, Entry 2) a significantly longer reaction 

time is required to obtain 225 in 27% yield, probably due to the more sterically hindered allyl 

organozinc reagent 215 (Table 11). 

 

Table 11: Reaction conditions and yields of N-(1,1-dimethylallyl)hydroxylamine hydro-

chloride 225. 

Entry Solvent Temperature 
oC 

Reaction time 
h 

Lewis acid Yield of 
225 a 
 % 

1 THF -35 to 0 23 - 27 
2 THF -55 12 BF3·OEt2 - 
3 THF -30 to -20 5 BF3·OEt2 - 
4 THF -20 to 0 16 BF3·OEt2 8 
5 DCM -78 to -10 20 - 11 
6 DCM -78 to -10 18 BF3·OEt2 15 

a Lactone 253 formed as by-product 

 

The nitro group can be activated by Lewis acids (AlCl3, TiCl4, BF3·OEt2, SnCl4).181 Intramolecular 

transformations of γ-silylated nitroalkanes have been reported181 and it has been found that the 

nitroalkane-Lewis acid complex is stable in the absence of an electron donating group situated in 

γ position towards NO2. Moreover, the nitro compound can be recovered unchanged after the 

Lewis acid is removed.  

In the present study, the stability of the 156-BF3·OEt2 complex in THF or DCM is verified by 

stirring the mixture at room temperature for 48 h, under nitrogen atmosphere. TLC analysis of an 

aliquot showed only the presence of the nitrosugar 156. 

Upon reaction of the 1:1.1 complex 156-BF3·OEt2 with 3,3-dimethylallyl zinc bromide 215 in 

THF no formation of the nitrone 257 is observed below -20oC (Table 11, Entries 2 and 3). 

Stirring at -20oC for 1 h and then at 0oC for 11 h, followed by the subsequent hydrolysis furnishes 

the hydroxylamine hydrochloride 225 in 8% yield. Only 20% of the nitrosugar 156 are converted 

under these conditions (Table 11, Entry 4).  
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Scheme 70: Influence of the solvent on the product distribution in the reaction between the 

1-deoxy-1-nitrosugar 156 and 3,3-dimethylallyl zinc bromide 215 

 

A solution of 3,3-dimethylallyl zinc bromide 215 in DCM can easily be prepared by evaporating 

the THF in vacuo and addition of water free DCM at 0oC. Reaction of the nitrosugar 156 with 215 

in DCM furnishes the hydroxylamine hydrochloride 225 in 11% yield (Table 11, Entry 5) and 

lactone 247 in 85% yield as by-product due to a Nef reaction. The yield of hydroxylamine 

hydrochloride 225 is not increased significantly by the addition of the Lewis acid (Table 11, Entry 

6) and the lactone 247 results in 76% yield as by-product. 

It can be concluded that the Lewis acid has a minor activating effect on the nitro group of 156 

with respect to an increase of nitrogen electrophilicity. Decreasing the electron density on the 

nitro group favors mostly an increase of the α-proton acidity (Figure 35). Under these conditions, 

the organozinc compound 215 predominantly reacts as a base rather than as a nucleophile. 
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Figure 35:  Lewis acid activation of the nitro group of 156 favors the increase of α-proton 

acidity. 

 

Although the electrophilic amination of allyl organometallics with 1-deoxy-1-nitrosugar 156 has 

some important drawbacks (relatively high acidity of the α-hydrogen to the nitro group, poor 

electrophilicity of the nitrogen atom) it should be mentioned that there are still positive results 

concerning the synthesis of hydroxylamines, especially when a synthetically versatile allyl moiety 

is connected to nitrogen. Moreover, the method described here remains open for further 

investigations. An attractive approach is the use of O-protected α-D-fructofuranose 258 as 

optically active starting material for the synthesis of the nitrosugar 259 (Scheme 71). The absence 

of the acidic α-hydrogen towards the nitro group would exclude the occurrence of the Nef 

reaction pathway. 
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Scheme 71. Nitro sugar 259 proposed to be used as chiral aminating reagent of allyl 

organometallic compounds. 
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4. Summary 

 
These are only few efficient methods for reagent-controlled stereoselective electrophilic 

amination compared to those based on chiral substrates or chiral catalysts. An effective 

stereoselective amination reagent allows greater method flexibility, due to the high availability of 

prochiral nucleophilic substrates. In the present work the reactivity of three types of 

enantiomerically pure electrophilic amination reagents towards carbon nucleophiles was 

investigated, with the aim to provide a valuable method for the stereoselective synthesis of 

α-amino ketones and α-amino acids. 

N-Lithiated hydroxylamines are electrophilic species - nitrenoids - which react with organolithium 

reagents and provide amines. Although it was concluded that the electrophilic amination reaction 

involves a reaction of two anionic species - an interaction that should be repulsive - a SN2-like 

transition state 167 is suggested. Organolithium species are generally aggregated. It is proposed 

that such a transition state is reached by a pathway involving a dimer 166. 
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Enantiomerically pure reagents on the basis of lithiated N,O-disubstituted hydroxylamine 

derivatives were prepared starting from (1R,4S)-3-aza-2-oxabicyclo[2.2.2]oct-5-ene hydrochloride 

124 and O-substituted N-[10-(1R,5R)-pin-2-enyl]hydroxylamines 125. 
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Their amination potential was explored using phenyl lithium as substrate. The N-lithium amide 

168 undergoes β-elimination under the reaction conditions and proved to be improper as 

electrophilic amination reagent. O-substituted N-lithium-N-[10-(1R,5R)-pin-2-enyl]-hydroxyl-

amines 176-178 showed a good reactivity towards phenyl lithium (48-59% yield) and higher order 

phenyl cyanocuprate (70-94%), but were unreactive towards lithium or copper enolates. It has 

been suggested that formation of the associated species substrate-nitrenoid is the key step in the 

electrophilic amination reactions of carbanions using the nitrenoids 176-178. The compound 180 

(R = Ts) is unstable under the strongly basic reaction conditions. Highly aggregated substrates in 

which the metal ion is not available for complexation with the nitrenoid show less or any 

reactivity.  

The second type of electrophilic amination reagents involved in this study are enantiomerically 

pure α-chloronitroso reagents 65 and 74. 
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(+)-N,N-Dicyclohexyl-2-chloro-2-nitrosocamphor-10-sulfonamide 74 provides the correspond-

ding α-aminated ketone in moderate yields when lithium or zinc enolates derived from 

propiophenone are used as substrates, but was unreactive towards lithium or zinc ester enolates. 

2,3:5,6-Di-O-isopropylidene-1-C-nitroso-α-D-mannofuranosylchloride 65 proved to be 

incompatible with the strongly basic conditions involved, due to its labile sugar moiety. 

Allyl hydroxylamines could be regarded as masked synthons for the synthesis of α-amino acids. 

They are important buildings blocks in organic chemistry, but can be easily reduced to the more 

important allyl amines and further transformed to a range of products by functionalisation, 

reduction or oxidation of the double bond. Especially, the double bond oxidation could provide 

a variety of optically active α-amino acids when prochiral allyl derivatives are used as starting 

materials. Therefore, allyl organometallic reagents are appropriate carbanionic substrates which 

are prone to react with electrophilic amination reagents and to provide allyl amino compounds.  

Following this strategy, a new reaction pathway - attributed to an ene reaction mechanism - 

occurs when allyl organozinc reagents react with α-chloronitroso cyclohexane 12. 
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1-Chloro-1-nitrosocyclohexane 12 has been used as model system, due to its inexpensive 

synthesis and merely the same reactivity compared to 74. It has been demonstrated that despite 

of the SET or 1,2-addition mechanisms reported to occur in the reactions between 

α-chloronitroso compounds and organomagnesium or organoaluminum reagents, the [2+3] 

cycloaddition or the M-ene reaction with a reverse orientation of the nitroso group can be 

responsible for the formation of the reaction products 221-223. The oxime ethers 221-223 result 

exclusively in 82-97% yield if THF is used as solvent. The hydroxylamines 224 and 225 are 

formed in 2-14% yield, accompanied by the oxime ethers 221-223 (64-84%), if the reactions are 

performed in toluene. The procedure has not been extended to a stereoselective approach due to 

its low practical utility in the synthesis of allyl hydroxylamines. However, it should be mentioned 

that this is the first report of an ene type mechanism observed in the reaction between an allyl 

organometallic reagent and an α-chloronitroso compound. 

The reaction between 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 and 

allyl organometallic (Zn, Mg, Ti) reagents was further investigated. Allyl organomagnesium and 

organotitanium reagents favor exclusively the occurrence of the Nef reaction pathway, with the 

formation of the 2,3:5,6-di-O-isopropylidene-α-D-manno-1,4-lactone 247. 
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Electrophilic amination of 2-butenyl zinc bromide 214 with 156 affords the conjugated sugar 

nitrone 250 in 7-17% yield, accompanied by the formation of lactone 247. 
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Elimination of the allylic proton is favored by the formation of a conjugated system and nitrone 

250 results instead of the target compound 253. 

The use of 3,3-dimethylallyl zinc bromide 215 as substrate - a virtual replacement of the γ allylic 

proton by a methyl group - affords the hydroxylamine hydrochloride 225 in 8-27% yield, as the 

hydrolysis product of the intermediary nitrone 257. 
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The use of a Lewis acid (BF3·OEt2) has a minor activating effect on the nitro group of 156 in 

concerning the increase of nitrogen electrophilicity. Decreasing of the electron density on the 

nitro group favors mostly the Nef reaction pathway and formation of the lactone 247. Under 

these conditions, the organozinc compound is more prone to react as a base rather than as a 

nucleophile. 

 



Experimental Section 

 82

5. Experimental Section 

 

5.1 Solvents, apparatus and methods 

 
Solvents: 

THF, Diethylether successively distilled over potassium hydroxide, calcium 

hydride and finally from sodium benzophenone ketyl, 

under nitrogen atmosphere 

n-Hexane distilled over sodium under nitrogen atmosphere 

Dichloromethane successively distilled over calcium chloride and calcium 

hydride 

Toluene successively distilled over calcium hydride and sodium 

Petrolether distilled fraction 35-60oC 

Ethylacetate distilled over calcium chloride 

Triethylamine, Diisopropylamine distilled over calcium hydride 

 

Inert atmospheres: 

Nitrogen dried over phosphorus pentoxide 

Argon 

 

Flash Chromatography: 

Silica gel 60, 40-63 µm (Merck) 

 

Thin Layer Chromatography: 

Silica gel 60 F254 on aluminum foil (Merck) 

 

Melting Point Apparatus: 

Melting Point B-540 (Büchi) 

Electrothermal IA 6304 (Electrothermal) 

Dr. Tottoli Capillary Melting Point Apparatus (Büchi 510) 

 

Elemental analysis: 

CHNS-932 (Leco Corporation) 

Vario EL (Heraeus) 
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Gas Chromatography: 

Instrument GC-17A (Shimadzu) 

 Autosampler AOC-20i (Shimadzu) 

 Software CLASS VP43a 

 

Column HP-5MS capillary column (25 m, 0.25 mm ID, 0.25 µm 

film thickness, Hewlett Packard) 

 

GC Methods 

GC Pr. 1    Injection temperature: 280oC 

Detector temperature: 300oC 

Carrier: Hydrogen 

Temperature program: 

60oC for 2 min 

60oC → 180oC at 15oC/min 

180oC → 270oC at 5oC/min 

270oC for 5 min 

Column flow: 0.4 mL min-1 

Split ratio: 49:1 

 

GC Pr. 2    Injection temperature: 280oC 

Detector temperature: 300oC 

Carrier: Hydrogen 

Temperature program: 

     60oC for 2 min 

60oC → 270oC at 15oC/min 

270oC for 10 min 

Column flow: 1 mL min-1 

Split ratio: 48:1 

 

GC-MS: 

Instrument 1 

Gas Chromatograph   Hewlett Packard HP 5890 Series II Plus 

Mass Detector    Hewlett Packard HP 5972 A 
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Column HP-5MS capillary column (30 m, 0.25 mm ID, 0.25 µm 

film thickness, Hewlett Packard) 

Ionisation Energy 70 eV 

Carrier Helium 

Flow Rate 1 mL min-1 

Injector Temperature 250oC 

 

Instrument 2 

GC-MS    Shimadzu GCMS-QP5050A 

Column HP-5MS capillary column (25 m, 0.25 mm ID, 0.33 µm 

film thickness, Hewlett Packard) 

Ionisation Energy 70 eV 

Reagent Gas (Chemical Ionisation) Isobutane 

Carrier Helium 

Flow Rate 0.7 mL min-1 

Injector Temperature 250oC 

Split Ratio 25:1 

 

GC-MS Methods: 

GC-MS Pr. 1    Instrument 1 

Temperature program: 

70oC for 2 min 

70oC → 270oC at 25oC/min 

270oC for 3 min 

 

GC-MS Pr. 2    Instrument 2 

     Temperature program: 

     75oC for 5 min 

75oC → 270oC at 15oC/min 

270oC for 5 min 

 

GC-MS Pr. 3    Instrument 2 

Temperature program: 

60oC for 2 min 

60oC → 180oC at 15oC/min 
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180oC → 270oC at 5oC/min 

270oC for 5 min 

 

Analytical HPLC: 

Instruments:    Pump: LDC Gradient Master 1601 

Detector: Spectra System UV 100 (Thermo Separation 

Products) 

Integrator: CI-10B (LDC/Milton Roy) 

Column    CHIRACEL OD (Daicel Chemical Industries Ltd.) 

Solvents: n-Hexane:iPrOH = 1000:40 

 

IR Spectroscopy 

FT-IR Spectrometer Genesis (Mattson Instruments); WinFIRST software package 

FT-IR Spectrometer FT/IR-410 (Jasco); Jasco Canvas software package 

 

Polarimetry 

Digital Polarimeter DIP-360 (Jasco) 

 

Mass Spectrometry:  

Esquire 3000–Ion Trap Mass Spectrometer (Bruker Daltonik GmbH); Electrospray Ionisation 

(ESI) Method 

VG Autospec X (Micromass Co. UK Ltd.); Ionisation Energy 70 eV 

 
1H-NMR Spectroscopy: 

Varian GEMINI 200 (199.975 MHz) 

Varian GEMINI 2000 (200.041 MHz) 

Varian UNITY 400 (399.952 MHz) 

Bruker AC-250-P (250.133 MHz) 

Bruker DRX 500 (500.130 MHz) 

 
13C-NMR Spectroscopy: 

Varian GEMINI 200 (50.289 MHz) 

Varian GEMINI 2000 (50.305 MHz) 

Bruker AC-250-P (62.896 MHz) 

Bruker DRX 500 (125.758 MHz) 
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X-ray measurements: 

Nonius KappaCCD X-ray diffractometer 

 

Kugelrohr Distillation  

Büchi Glass Oven B-580 

 

Cryostat 

Lauda RLS 6 

 

Molecular Modeling Calculations 

Software:  Spartan 5.1, Wavefunction, Inc, 18401 Von Karman Avenue, Suite 370, Irvine, 

CA 92612 U.S.A 

Methods: The following steps were followed for determination of the HOMO and LUMO 

energies and electronic distributions: 

i) conformer analysis using MMFF force field; 

ii) geometry optimisation and determination of the HOMO and 

LUMO energies, respectively electronic distributions using 

Density Functional Theory (pBP/dn* basis set) and Ab Initio 

calculations at the RHF/3-21G* and RHF/6-31G* levels. 
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5.2 Synthesis of the Enantiomerically Pure Amination Reagents 

5.2.1 Synthesis of 2,3:5,6-Di-O-isopropylidene-1-C-nitroso-α-D-mannofuranosyl-

chloride 

 
2,3:5,6-Di-O-isopropylidene-α-D-mannofuranose 133 

 

399 mg p-Toluenesulfonic acid monohydrate (2.10 mmol, 1.9  mol %) were added in one portion 

to a suspension of 20 g D-(+)-mannose 132 (111 mmol) in 640 mL dry acetone. The suspension 

was refluxed at 60-70oC for 25 hours. The solution was then stirred with 7 g K2CO3 at room 

temperature until pH 8. The mixture was filtered through Celite 500 and evaporation of the 

solvent in vacuo from the filtrate gave a light yellow solid. The solid was dissolved in 

dichloromethane and was filtered through a bed of silica gel topped with Celite 500. After 

evaporation of the solvent in vacuo, the light yellow solid was suspended in 150 mL diethyl ether 

and was stirred at room temperature for 30 min. Filtration, washing with diethyl ether and drying 

in vacuo afforded 8.54 g of a white solid. n-Hexane was successively added to mother liquor and 

crystallization at 4oC gave a second crop (10.76 g) of colorless crystals. 
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Molecular formula:     C12H20O6 [260.28] 

Yield:      67% (19.3 g, colorless crystals)    [lit.102 85%] 

TLC:      Rf = 0.21 [Et2O:PE = 3:2]  

Melting point:     121-122oC       [lit.102 119-121°C] 

Optical rotation:     [ ]26
Dα = +9.8 (c = 1.3 in CHCl3)  

      [lit.102 [ ]24
Dα = +11.8 (c = 1.3 in CHCl3)] 

IR (KBr), ~ν  [cm-1]: 3436 (O-H), 2989 (C-H), 2948 (CH3), 2900 (CH2), 1459 (CH2), 1375 (CH3), 

1253, 1226, 1203 (C-O-C), 1166, 1087, 1070 (C-O-C), 1035, 975, 856, 838, 514. 
1H-NMR (CDCl3, 250 MHz) δ [ppm]: 5.38 (1 H, br s, H1), 4.82 (1 H, dd, 3J3-4= 3.7 Hz, 
3J3-2= 5.9 Hz, H3), 4.62 (1 H, d, 3J2-3= 5.9 Hz, H2), 4.37-4.45 (1H, m, H5), 4.19 (1 H, dd, 
3J4-3= 3.7 Hz, 3J4-5= 7.2 Hz, H4), 4.10 (1 H, dd, 3J6a-5= 6.0, 2J6a-6b= 8.6 Hz, H6a), 4.05 (1 H, dd, 
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3J6b-5= 5.1 Hz, 2J6a-6b= 8.6 Hz, H6b), 3.00 (1 H, br, OH), 1.46 (6 H, s, 2x CH3), 1.38 (3 H, s, CH3), 

1.33 (3H, s, CH3). 
13C-NMR (CDCl3, 62 MHz) δ [ppm]: 112.6 (C7), 109.1 (C8), 101.2 (C1), 85.5 (C2), 80.1 (C3), 79.6 

(C4), 73.3 (C5), 66.5 (C6), 26.8 (CH3), 25.8 (CH3), 25.1 (CH3), 24.4 (CH3). 

MS (ESI) m/z: 283.0 [M+Na]+, 229.0 [M+K]+, 543.0 [2M+Na]+. 

Elemental analysis (%):   Calcd: C 55.37  H 7.74 

Found: C 55.62  H 7.81 

 

2,3:5,6-Di-O-isopropylidene-D-mannose oxime 134 

 

A solution of 44.8 g hydroxylamine hydrochloride (645 mmol, 4.5 eq.) and 44.9 g NaHCO3 

(534 mmol, 3.7 eq.) in 220 mL water was stirred at room temperature until CO2 evolution 

stopped. Ethanol (220 mL) and 37.8 g 2,3:5,6-di-O-isopropylidene-α-D-mannofuranose 133 

(143 mmol, 1 eq.) were added, and the reaction mixture was stirred at 60-80 oC for 3 hours. 

Extraction with ethyl acetate (300 mL), drying (Na2SO4), evaporation of the solvent in vacuo and 

recrystallization from ethyl acetate/n-hexane (1:1) gave 36.2 g (131.2 mmol, 92%) colorless 

crystals. 
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Molecular formula:    C12H21NO6  [275.98] 

Yield:      92% (36.2 g, colorless crystals)  [lit.105 92%] 

TLC:      Rf = 0.34 [AcOEt:PE = 3:2] 

Melting point:    137.5 -140oC      [lit.105 139 -141°C] 

Optical rotation:    [ ]27
Dα = -115.9 (c = 1.0 in CH2Cl2) 

IR (KBr), ~ν  [cm-1]: 3534 (OH), 3378 (OH), 3293 (OH), 2992 (CH), 2939 (CH3), 2917 (CH2), 

2894 (CH), 1654 (C=N), 1560, 1459 (CH3), 1430  (CH2), 1382 (CH3), 1259, 1213 (C-O-C), 1160, 

1145, 1076 (C-O-C), 1062,  944, 910, 896, 858, 678, 570, 514. 
1H-NMR (CDCl3, 250 MHz) δ [ppm]:   

(Z)-Isomer: 9.86 (1H, s, N-OH), 7.12 (1H, d, 3J1-2= 3.4 Hz, H1),  5.25 (1H, dd, 3J= 7.6 Hz, 
3J1-2= 3.4 Hz, H2), 4.64-4.52 (2H, m, H3 and C-OH), 4.25-3.95 (3H, m, H6a,b and H5), 3.70 (1H, 

dd, 3J= 6.7 Hz, 3J= 2.5 Hz, H4), 1.52 (3H, s, CH3), 1.43 (3H, s, CH3), 1.41 (3H, s, CH3), 1.35 (3H, 

s, CH3). 
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(E)-Isomer (characteristic signals): 8.33 (1H, s, N-OH), 7.61 (1H, d, 3J1-2= 7.6 Hz, H1), 4.79 (1H, 

m, H3), 4.49 (1H, dd, 3J= 1.5 Hz, 3J1-2= 7.3 Hz, H2), 2.51 (1H, d, 3J= 6.9 Hz, H4). 

(Z):(E) = 79:21 
13C-NMR (CDCl3, 62 MHz) δ [ppm]: 

(Z)-Isomer: 152.1 (C1), 109.7 (C7), 108.3 (C8), 78.4 (C2), 77.8 (C3), 72.9 (C4), 67.6 (C5), 65.1 (C6), 

26.1 (CH3), 25.9 (2 x CH3), 24.7 (CH3). 

(E)-Isomer: 149.7 (C1), 109.7 (C7), 109.5 (C8), 76.7 (C2), 76.2 (C3), 75.0 (C4), 69.7 (C5), 66.9 (C6), 

26.7 (CH3), 26.7 (CH3), 25.3 (CH3), 24.5 (CH3). 

MS (ESI) m/z (%): 298.03 [M+Na]+, 314.0 [M+K]+, 573.05 [2M+Na]+. 

Elemental analysis (%):   Calcd: C 52.35  H 7.69  N 5.09 

      Found: C 52.48  H 7.70  N 5.01 

 

N-Hydroxy-2,3:5,6-di-O-isopropylidene-α-D-mannoimido-1,4-lactone 135 

 

A solution of 28 g sodium metaperiodate (131 mmol, 1.2 eq.) in 300 mL water was added via 

syringe pump, during 1 h, to a solution of 30 g 2,3:5,6-di-O-isopropyliden-D-mannose oxime 134 

(109 mmol, 1 eq.) and 8.94 g sodium acetate (109 mmol, 1 eq.) in 700 mL ethanol at a bath 

temperature of 75oC. The mixture was stirred at that temperature until the starting oxime had 

disappeared, as indicated by TLC [AcOEt:PE = 3:2] (ca. 2 h). The mixture was filtered and the 

residue was washed with ethyl acetate. The combined filtrate and washings were concentrated 

and the residue was extracted with ethyl acetate. The extract was washed successively with a 10% 

aqueous sodium sulphite solution and brine, dried (Na2SO4), and concentrated in vacuo. 

Crystallization from dichloromethane/n-hexane (2:1) afforded 22 g (80.5 mmol, 74%) of 

hydroximolactone 135, as colorless crystals. 
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Molecular formula:    C12H19NO6 [273.28] 

Yield:      74% (22.0 g, colorless crystals)   [lit.106 93%] 

TLC:      Rf = 0.34 [AcOEt:PE = 3:2] 

Melting point:    175.5-176.5°C    [lit.106 174-174.5°C] 

Optical rotation:    [ ]α D
27 = +99.5 (c = 1.1 in CHCl3) 
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      [lit.106 [ ]26
Dα = +98.6 (c = 1.1 in CHCl3)] 

IR (KBr), ~ν  [cm-1]: 3411 (OH), 3315(OH), 2985 (C-H), 2958 (CH3), 2939 (CH3), 2892 (CH), 

1691 (C=N), 1459 (CH2), 1376 (CH3), 1265, 1228 (C-O-C), 1159, 1116, 1087, 1068 (C-O-C), 973, 

937, 858, 792, 686, 663, 511. 
1H-NMR (CDCl3, 250 MHz) δ [ppm]: 7.61 (1H, br., N-OH), 5.15 (1H, d, 3J2-3 = 5.5 Hz, H2), 

4.87 (1H, dd, 3J2-3 = 5.5 Hz, 3J3-4 = 3.7 Hz, H3), 4.50 (1H, ddd, 3J5-4 = 8.4 Hz,  3J5-6a = 5.5 Hz, 
3J5-6b = 4.4 Hz, H5), 4.30 (1H, dd, 3J5-4 = 8.5 Hz, 3J3-4 = 3.7 Hz, H4), 4.19 (2H, m, H6), 1.49 (3H, s, 

CH3), 1.47 (3H, s, CH3), 1.41 (3H, s, CH3), 1.40 (3H, s, CH3). 
13C-NMR (CDCl3, 62 MHz) δ [ppm]: 156.9 (C1), 114.3 (C7), 109.8 (C8), 82.6 (C2), 77.5 (C3, C4), 

72.7 (C5), 66.7 (C6), 27.2 (CH3), 26.9 (CH3), 25.9 (CH3), 25.1 (CH3). 

MS (ESI) m/z: 295.98 [M+Na]+, 569.03 [2M+Na]+. 

Elemental analysis (%):   Calcd: C 52.74  H 7.01  N 5.13 

      Found: C 52.71  H 6.94  N 5.01 

 

2,3:5,6-Di-O-isopropylidene-1-C-nitroso-α-D-mannofuranosylchloride 65 

 

A solution of 9.63 g tBuOCl (75% w/w in tBuOH) (66 mmol, 1 eq.) in 85 mL water free 

dichloromethane was added dropwise during 1 h under nitrogen and protection against light, to a 

pre-cooled (-10°C) solution of 18.0 g N-hydroxy-2,3:5,6-di-O-isopropyliden-α-D-mannoimido-

1,4-lactone 135 (66 mmol, 1 eq.)  in 175 mL water free dichloromethane. After stirring for 15 

min. at -10°C, the reaction mixture was warmed-up to room temperature and the solvent was 

carefully evaporated in vacuo. The blue residue was dissolved in n-hexane and filtered. 

Crystallisation from n-hexane afforded 20.1 g (65.34 mmol, 99%) 65 as blue needles.  
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Molecular formula:    C12H18ClNO6 [307.72] 

Yield:      99 % (20.1 g, blue needles)    [lit.106 89%] 

TLC:      Rf = 0.57 [AcOEt:PE = 3:2] 

Melting point:    78-81°C     [lit.106 80oC] 

Optical rotation:    [ ]α D
27 = -1668 (c = 1.0 in CH2Cl2) 
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      [lit.106 [ ]α D
25 = -1400 (c = 5.0 in CHCl3)] 

IR (KBr), ~ν  [cm-1]: 2989 (C-H), 2960 (CH3), 2937 (CH), 2894 (CH), 1571 (N=O), 1457 (CH2), 

1382 (CH3), 1259, 1214 (C-O-C), 1186, 1155, 1114, 1070 (C-N), 1002, 973, 892, 846 (C-Cl), 819, 

755, 511. 
1H-NMR (CDCl3, 250 MHz) δ [ppm]: 5.54 (1H, d, 3J2-3= 5.5 Hz, H2), 5.00 (1H, dd, 3J3-2= 5.6 Hz, 
3J3-4= 3.5 Hz, H3), 4.54 (1H, ddd, 3J4-5= 8.1 Hz, 3J5-6a= 6.0 Hz, 3J5-6b= 4.1 Hz, H5), 4.24 (1H, dd, 
3J4-5= 8.2 Hz, 3J4-3= 3.6 Hz, H4), 4.17 (1H, dd, 2J6a-6b= 9.0 Hz, 3J6a-5= 6.0 Hz, H6a), 4.07 (1H, dd, 
2J6a-6b= 9.1 Hz, 3J6b-5= 4.0 Hz, H6b), 1.49 (3H, s, CH3), 1.40 (3H, s, CH3), 1.29 (6H, s, 2 x CH3). 
13C-NMR (CDCl3, 62 MHz) δ [ppm]: 125.2 (C1), 115.0 (C7), 109.8 (C8), 88.7 (C2), 82.3 (C3), 79.5 

(C4), 72.1 (C5), 66.7 (C6), 26.8 (CH3), 25.3 (CH3), 25.1 (CH3), 24.6 (CH3). 

MS (ESI) m/z: 207.8 [M+H-C5H9O2]+, 330.0 [M(C12H18
35ClNO6)+Na]+, 332.0 

[M(C12H18
37ClNO6)+Na]+.  

Elemental analysis (%): Calcd: C 46.84  H 5.90  Cl 11.52 N 4.55 

    Found: C 46.90  H 5.88  Cl 11.49 N 4.51 

 

5.2.2 Synthesis of (1R,4S)-3-Aza-2-oxabicyclo[2.2.2]oct-5-ene hydrochloride 

 

(1R,4S)-3-Aza-2-oxabicyclo[2.2.2]oct-5-ene hydrochloride 124 

 

A solution of 7.80 g 2,3:5,6-di-O-isopropylidene-1-C-nitroso-α-D-mannofuranosylchloride 65 

(25.33 mmol, 1 eq.) in 100 mL water free diethyl ether was pre-cooled to -10oC and protected 

against light. Cyclohexa-1,3-diene 138 (6.09 g, 75.99 mmol, 3 eq.) was added dropwise, followed 

by 30 mL absolute ethanol. The stirring was continued for 2 h at -10oC and 3 h at room 

temperature, the white precipitate was filtered off, washed with water free diethyl ether and dried 

in vacuo to afford 3.44 g (23.30 mmol, 92 %) 124 as white powder. 
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Molecular formula:    C6H10ClNO [147.6] 

Yield:      92% (3.44 g, white powder)     [lit.5 70%] 

Melting point:    132-134°C     [lit.5 135°C] 

Optical rotation:    [ ]α D
27 = +23.9 (c = 5.0 in CHCl3) 
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      [lit.5 [ ]α D
25  = +24.4 (c = 5.0 in CHCl3)] 

IR (KBr), ~ν  [cm-1]: 3600-3300 (NH2
+), 3054-2450 (CH), 1542 (NH), 1454 (CH2), 1419 (CH), 

1384 (=CH), 1282  (C-O), 1220 (N-O), 1176, 1122, 1087, 1062, 1027, 991, 944, 923, 860, 815, 

802, 779, 715. 
1H-NMR (D2O, 250 MHz) δ [ppm]: 6.88 (1H, ddd, 3J6-5= 8.5 Hz, 3J6-1= 5.8 Hz, 4J6-4= 1.6 Hz, 

H6), 6.63 (1H, ddd, 3J5-6= 8.3 Hz, 3J5-4= 6.4 Hz, 3J5-1= 1.6 Hz, H5), 4.98 (1H, dddd, 3J1-6 = 5.8 Hz, 
3J1-5= 1.6 Hz, 3J1-7endo= 1.5 Hz, 3J1-7exo= 1.5 Hz, H1), 4.52 (1H, m, H4), 2.24 (1H, dddd, 
2J7endo-7exo= 18.0 Hz, 3J7endo-8endo= 9.4 Hz, 3J7endo-8exo= 3.8 Hz, 3J7endo-1= 1.5 Hz, H7endo), 2.13 (1H, 

dddd, 2J7exo-7endo= 17.9 Hz, 3J7exo-8exo= 10.4 Hz, 3J7exo-8endo= 3.2 Hz, 3J7exo-1= 1.5 Hz, H7exo), 1.62 (1H, 

dddd, 2J8endo-8exo= 17.4 Hz, 3J8endo-7endo= 9.6 Hz, 3J8endo-7exo= 3.0 Hz, 3J8endo-4= 1.5 Hz, H8endo), 1.57 

(1H, dddd, 2J8exo-8endo= 17.6 Hz, 3J8exo-7exo= 10.6 Hz, 3J8exo-7endo= 3.6 Hz, 3J8exo-4= 1.4 Hz, H8exo). 
13C-NMR (D2O, 62 MHz) δ [ppm]: 138.4 (C6), 131.5 (C5), 73.9 (C1), 51.8 (C4), 24.4 (C7), 19.8 

(C8). 

MS (ESI) m/z: 111.9 [M-Cl-]+, 133.8 [M-HCl+Na]+. 

Elemental analysis (%): Calcd: C 48.82  H 6.83  Cl 24.02 N 9.49 

    Found: C 49.00  H 6.79  Cl 23.68 N 9.18 

 

 

5.2.3 Synthesis of the Enantiomerically Pure N,O-Disubstituted Hydroxylamines 

 

 

O-Methyl-(1R,5R)-(-)-myrtenal oxime 145 

 

A solution of 4.54 g O-methylhydroxylamine hydrochloride 143 (54.3 mmol, 1.5 eq.) and 5.34 g 

sodium acetate (65.2 mmol, 1.8 eq.) in 60 mL methanol was stirred for 10 min at room 

temperature. (1R,5R)-(-)-Myrtenal 142 (5.44 g, 36.2 mmol, 1 eq.) was added and the mixture was 

refluxed for 4 h. After completion, the solvent was evaporated in vacuo, 100 mL water were added 

to the residue, extracted with 100 mL diethyl ether and dried over MgSO4. Evaporation of diethyl 

ether in vacuo gave a yellow oil which was vacuum distilled (53oC, 0.27 mbar) and furnished 5.38 g 

(30.05 mmol, 83%) 145 as colorless oil. 
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Molecular formula:    C11H17NO [179.26] 

Yield:      83% (5.38 g, colorless oil) 

TLC:      Rf = 0.73 [AcOEt:PE = 1:12] 

Boiling point:     53oC (0.27 mbar) 

Optical rotation:    [ ]25
Dα = -17.7 (c = 1.3 in CHCl3) 

GC (GC Pr. 2):     tR= 10.47 min 

HPLC (CHIRACEL OD)   tR= 8.53 min (n-hexane:iPrOH = 1000:40) 

IR (neat), ~ν  [cm-1]: 2972 (CH2), 2937 (CH3), 2872 (OCH3), 1621 (C=N), 1465 (CH2), 1427 

(CH3), 1382 (C-Me2), 1367 (C-Me2), 1265, 1205, 1180, 1083, 1041 (C-O), 896 (C=C-H), 792, 653. 
1H-NMR (CDCl3, 200 MHz) δ [ppm]: 7.66 (1H, s, H10), 5.83 (1H, m, H3), 3.85 (3H, s, H11), 2.83 

(1H, ddd, 3J1-7s= 5.6 Hz, 4J= 5.6 Hz, 4J= 1.9 Hz, H1), 2.47 (1H, ddd, 2J7s-7a= 8.8 Hz, 
3J7s-1= 5.6 Hz, 3J= 5.6 Hz, H7s), 2.45 (1H, m, H4s), 2.38 (1H, ddd, 2J4a-4s= 19.6 Hz, 3J= 3.1 Hz, 
3J= 3.1 Hz, H4a), 2.13 (1H, m, H5), 1.33 (3H, s, H8), 1.15 (1H, d, 2J7a-7s= 8.8 Hz, H7a), 0.81 (3H, s, 

H9). 
13C-NMR (CDCl3, 50 MHz) δ [ppm]: 150.5 (C10), 143.3 (C2), 131.4 (C3), 62.0 (C11), 41.2 (C5), 40.8 

(C1), 38.1 (C6), 32.8 (C4), 31.6 (C7), 26.4 (C8), 21.3 (C9). 

MS (EI) m/z (%): 179 [M]+. (42), 164 [M–CH3]+ (25), 148 [M–OCH3]+ (70), 136 [C10H14]+ (80), 

132 (45), 118 (25), 106 [C7H7NH]+. (50), 105 [C7H7N]+ (65), 104 (62), 93 (30), 91 [C7H7]+ (79), 79 

(60), 77 [C6H5]+ (98), 65 (32), 53 (44), 51 (41), 43 (33), 41 [C3H7]+ (100), 39 (97), 29 (68), 27 (70), 

15 (34). 

Elemental analysis (%):   Calcd: C 73.70  H 9.56  N 7.81 

      Found: C 73.36  H 9.39  N 7.75 

 

O-Benzyl-(1R,5R)-(-)-myrtenal oxime 146 

 

A solution of 3.18 g O-benzylhydroxylamine hydrochloride 144 (19.97 mmol, 1.5 eq.) and 1.97 g 

sodium acetate (23.94 mmol, 1.8 eq.) in 50 mL methanol was stirred for 10 min at room 

temperature. (1R,5R)-(-)-Myrtenal 142 (2 g, 13.30 mmol, 1 eq.) was added and the mixture was 

refluxed for 3 h. After completion of the reaction, filtration of the reaction mixture over Celite 
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500 and evaporation of the solvent in vacuo afforded a light-yellow oil which was purified by flash 

chromatography on silica gel (AcOEt:PE = 1:12) and Kugelrohr distillation. 2.82 g (11.04 mmol, 

83 %) of analytically pure 146 resulted as colorless oil.  
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Molecular formula:    C17H21NO [255.37] 

Yield:      83% (2.82 g, colorless oil) 

TLC:      Rf  = 0.61 [AcOEt:PE = 1:12] 

Boiling point:     125oC (0.26 mbar) 

Optical rotation:    [ ]24
Dα = -7.2 (c = 1.1 in CHCl3) 

IR (neat), ~ν  [cm-1]: 3064 (ar. C-H), 3029 (=C-H), 2971 (CH), 2917 (CH), 2882 (O-CH2), 1621 

(C=N), 1496 (C=C arom.), 1467 (CH2), 1454 (CH2), 1426 (CH3), 1365 (CH3), 1330, 1205, 1051, 

1025 (ar. CH), 945 (ar. CH), 927 (ar. CH), 696. 
1H-NMR (CDCl3, 250 MHz) δ [ppm]: 7.74 (1H, s, H10), 7.28-7.74 (5H, m, Ph), 5.82 (1H, m, H3), 

5.08 (2H, s, H11), 2.85 (1H, ddd, 3J1-7s= 5.6 Hz, 4J= 5.6 Hz, 4J= 1.9 Hz, H1), 2.47 (1H, ddd, 2J7s-7a= 

8.8 Hz, 3J7s-1= 5.6 Hz, 3J= 5.6 Hz, H7s), 2.45 (1H, m, H4s), 2.36 (1H, ddd, 2J4a-4s= 19.6 Hz, 3J= 3.1 

Hz, 3J= 3.1 Hz, H4a), 2.13 (1H, m, H5), 1.33 (3H, s, H8), 1.15 (1H, d, 2J7a-7s= 8.8 Hz, H7a), 0.81 

(3H, s, H9). 
13C-NMR (CDCl3, 62 MHz) δ [ppm]: 150.4 (C10), 143.0 (C2), 137.5 (C, Ph), 131.0 (C3), 128.3 (4 x 

CH, Ph), 127.8 (CH, Ph), 76.0 (C11), 40.7 (C1), 40.4 (C5), 37.6 (C6), 32.3 (C7), 31.1 (C4), 26.0 (C8), 

20.8 (C9). 

GC-MS: tR (GC-MS Pr. 2) = 17.17 min; (CI) m/z (%): 256 [M+H]+ (62), 240 [M–CH3]+. (8), 148 

[M–OCH2Ph]+. (55), 107 [OCH2Ph]+ (30); (EI) m/z (%) : 255 [M]+., 164 [M–CH2Ph]+ (40), 91 

[C7H7]+ (100), 77 [C6H5]+ (12), 65 (14), 51 (10), 41 (12), 39 (10), 27 (8). 

Elemental analysis (%):   Calcd: C 79.96  H 8.29  N 5.49 

      Found: C 79.88  H 8.39  N 5.47 

 



Experimental Section 

 95

(-)-N-[10-(1R,5R)-Pin-2-enyl]-O-methyl hydroxylamine 147 

 

50 mL of a solution of HCl in absolute methanol (~5 M) were added dropwise, under stirring at 

room temperature, to a solution of 5 g O-methyl-(1R,5R)-(-)-myrtenal oxime 145 (27.93 mmol, 

1 eq.) in 100 mL absolute methanol. Stirring was continued for 5 min and then 5.26 g (83.79 

mmol, 3 eq.) NaBH3CN were added in 5 portions during 2 h. After stirring overnight at room 

temperature, a solution of 6M KOH was added until pH 9 was reached and the methanol was 

evaporated in vacuo. The reaction mixture was diluted with 50 mL water and extracted with diethyl 

ether (4 x 75 mL). The organic phases were combined, washed with 100 mL brine, dried over 

MgSO4 and the solvent evaporated in vacuo. The resulting light-yellow oil was purified by flash 

chromatography on neutral alumina (AcOEt:PE = 1:40) and Kugelrohr distillation (65-70oC, 

0.4-0.8 Torr), to afford 3.53 g (19.47 mmol, 70%) 147 as colorless oil. 
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Molecular formula:    C11H19NO [181.27] 

Yield:      70% (3.53 g, colorless oil) 

TLC:      Rf = 0.65 [neutral alumina, AcOEt:PE = 1:40]  

Boiling point:     65-70oC (0.4–0.8 Torr)   

Optical rotation:    [ ]23
Dα = -19.2 (c = 1.0 in CHCl3) 

IR (neat), ~ν  [cm-1]: 3249 (NH), 3032 (=C-H), 2989 (CH), 2930 (CH), 2829 (CH2), 1655 (C=C), 

1467 (CH2), 1364 (CH3), 1131, 1020, 908, 877, 842. 
1H-NMR (CDCl3, 200 MHz) δ [ppm]: 5.43 (1H, m, H3), 5.27 (1H, br., NH), 3.45 (1H, ddd, 
2J10b-10a= 13.2 Hz, J= 3.1 Hz, J= 3.1 Hz, H10a), 3.34 (1H, ddd, 2J10b-10a= 13.2 Hz, J= 3.1 Hz, J= 3.1 

Hz, H10b), 2.38 (1H, ddd, 2J7s-7a= 8.4 Hz, 3J= 5.65 Hz, 3J= 5.65 Hz, H7s), 2.05-2.28 (4H, m, H4, 

H1, H5), 1.27 (3H, s, H8), 1.16 (1H, d, 2J7s-7a= 8.4 Hz, H7a), 0.82 (3H, s, H9). 
13C-NMR (CDCl3, 50 MHz) δ [ppm]: 144.7 (C2), 120.7 (C3), 61.9 (C11), 57.4 (C10), 44.8 (C5), 41.1 

(C1), 38.4 (C6), 32.0 (C4), 31.7 (C7), 26.6 (C8), 21.4 (C9). 

GC-MS: tR (GC-MS Pr. 1) = 6.33 min; (EI) m/z (%): 181 [M]+. (5), 166 [M–CH3]+ (5), 150 

[M–OCH3]+ (7), 134 [C10H14]+ (20), 119 [C9H11]+ (43), 106 [C8H10]+ (56), 93 (41), 91 [C7H7]+ (100), 

79 (62), 77 [C6H5]+ (42), 60 [CH3ON(H)=CH2]+ (65), 53 (24), 41 (51), 39 (38), 28 (30). 

Elemental analysis (%):   Calcd: C 72.88  H 10.56 N 7.73 

      Found: C 72.68  H 10.51 N 7.69 
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(-)-N-[10-(1R,5R)-Pin-2-enyl]-O-benzyl hydroxylamine 148 

 

50 mL of a solution of HCl in absolute methanol (~5 M) was added dropwise, under stirring at 

room temperature, to a solution of 5.07 g O-benzyl-(1R,5R)-(-)-myrtenal oxime 146 (19.89 mmol, 

1 eq.) in 150 mL absolute methanol. The stirring was continued for 5 min. and then 3.75 g (59.67 

mmol, 3 eq.) NaBH3CN were added in 5 portions during 3 h. After stirring overnight at room 

temperature, a solution of 6M KOH was added until pH 9 was reached and methanol was 

evaporated in vacuo. The reaction mixture was diluted with 50 mL water and extracted diethyl 

ether (5 x 25 mL). The organic phases were combined, washed with 150 mL brine, dried over 

MgSO4 and the solvent evaporated in vacuo. The resulting light–yellow oil was purified by vacuum 

distillation (104oC, 0.017 mbar), to afford 4.35 g (16.90 mmol, 85 %) 148 as colorless oil. 
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Molecular formula:    C17H23NO [257.37] 

Yield:      85% (4.35 g, colorless oil) 

TLC:      Rf  = 0.13 [AcOEt:PE = 1:12] 

Boiling point:     104oC (0.017 mbar)   

Optical rotation:    [ ]23
Dα = -27.0 (c = 0.6 in CHCl3) 

IR (neat), ~ν  [cm-1]: 3263 (NH), 3029 (=C-H), 2985 (CH), 2913 (CH), 1654 (C=C), 1496 (C=C 

aromatic), 1454 (CH2), 1365 (CH3), 1205, 1081, 1051, 1002, 794, 744, 698.  
1H-NMR (CDCl3, 500 MHz) δ [ppm]: 7.27-7.37 (5H, m, Ph), 5.46 (1H, m, H3), 4.71 (2H, s, H11), 

3.49 (1H, dd, 2J10b-10a= 13.2 Hz, J= 1.3 Hz, H10a), 3.47 (1H, ddd, 2J10a-10b= 13.2 Hz, J= 3.1 Hz, 

J= 1.3 Hz, H10b), 2.40 (1H, ddd, 2J7s-7a= 8.8 Hz, 3J= 5.6 Hz, 3J= 5.6 Hz, H7s), 2.30 (1H, br. d, 2J4a-

4s= 17.6 Hz, H4s), 2.21 (1H, br. d, 2J4a-4s= 17.6 Hz, H4a), 2.18 (1H, ddd, 3J1-7s= 5.6 Hz, 
4J= 5.6 Hz, 4J= 1.3 Hz, H1), 2.09 (1H, m, H5), 1.28 (3H, s, H8), 1.18 (1H, d, 2J7s-7a = 8.8 Hz, H7a), 

0.83 (3H, s, H9). 
13C-NMR (CDCl3, 125 MHz) δ [ppm]: 144.1 (C, Ph), 137.8 (C2), 128.4 (2 x CH, Ph), 128.3 (2 x 

CH, Ph), 127.7 (CH, Ph), 120.4 (C3), 75.9 (C11), 57.2 (C10), 44.3 (C1), 40.7 (C5), 38.0 (C6), 31.6 

(C4), 31.3 (C7), 26.2 (C8), 21.1 (C9). 
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GC-MS: tR (GC-MS Pr. 3) = 20.41 min; (CI) m/z (%): 258 [M+H]+ (63), 150 [M–OCH2Ph]+. 

(98), 135 [M-HNOCH2Ph]+. (20), 123 [PhCH2ONH2]+. (5), 107 [PhCH2O]+. (100); (EI) m/z (%): 

257 [M]+. (2), 149 [M–HOCH2Ph]+. (10), 134 [C10H14]+ (22), 106 [PhCH=O]+ (80), 91 [C7H7]+ 

(100), 79 [C6H7]+ (78), 77 [C6H5]+ (82), 67 [C5H7]+ (18), 51 (30), 41 (19), 39 (18), 30 (28), 27 (11). 

Elemental analysis (%):   Calcd: C 79.33  H 9.01  N 5.44 

      Found: C 79.38  H 9.34  N 5.42 

 

(1R,5R)-(-)-Myrtenaloxime 149 

 

A solution of 4.52 g hydroxylamine hydrochloride (65.40 mmol, 1.2 eq.) and 6.23 g sodium 

acetate (75.90 mmol, 1.4 eq.) in 250 mL methanol was stirred for 10 min at room temperature. 

(1R,5R)-(-)-Myrtenal 142 (8.14 g, 54.20 mmol, 1 eq.) was added and the mixture was refluxed for 

4 h. After completion (TLC on silica gel, AcOEt:PE = 1:4), the reaction mixture was poured into 

200 mL of ice water, the white precipitate was filtered off, washed with cold water and dried in 

vacuo. 8.3 g (50.2 mmol, 93 %) analytically pure (GC) 149 resulted as white powder. 
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Molecular formula:    C10H15NO [165.23] 

Yield:      93% (8.3 g, white powder) 

TLC:      Rf = 0.41 [AcOEt:PE = 2:8] 

Melting point:    64-66 oC 

Optical rotation:    [ ]23
Dα = -24.7 (c = 1.0 in MeOH) 

GC (GC Pr. 2):     tR = 11.19 min 

IR (KBr), ~ν  [cm-1]: 3253 (OH), 3052 (=C-H), 2981 (CH3), 2919 (CH3), 2879 (CH2), 2825 (CH), 

1619 (conj. C=N), 1463 (CH2), 1425 (CH), 1365 (CMe2), 1315 (OH), 1290 (N-O), 989 (C=C), 

956, 889, 802, 717, 653. 
1H-NMR (CDCl3, 500 MHz) δ [ppm]: 8.08 (1H, OH, br), 7.73 (1H, s, H10), 5.92 (1H, m, H3), 

2.73 (1H, ddd, 3J1-7s= 5.6 Hz, 4J= 5.6 Hz, 4J= 1.3 Hz,  H1), 2.45 (1H,  ddd, 2J7s-7a= 8.8 Hz,  3J7s-1= 

5.6 Hz, 3J= 5.6 Hz, H7s), 2.42 (1H, m, H4s), 2.38 (1H, ddd, 2J4a-4s= 19.5 Hz, 3J= 3.1 Hz, 3J= 3.1 

Hz, H4a), 2.15 (1H, m, H5), 1.32 (3H, s, H8), 1.16 (1H, d, 2J7a-7s= 8.8 Hz, H7a), 0.81 (3H, s, H9). 
13C-NMR (CDCl3, 125 MHz) δ [ppm]: 151.3 (C10), 142.5 (C2), 132.1 (C3), 40.5 (C1), 40.5 (C5), 

37.7 (C6), 32.3 (C7), 31.1 (C4), 25.9 (C8), 20.8 (C9). 
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MS (EI) m/z (%): 165 [M]+. (38), 150 [M–CH3]+ (20), 148 [M–OH]+. (62), 146 [C10H12N]+., 133 

[C9H11N]+. (25), 132 [C9H10N]+. (30), 131 [C9H9N]+. (12), 122 [C9H14]+. (100), 121 [C9H13]+ (37), 

106 [m/z 132 – C≡N]+. (36), 105 [C8H9]+ (39), 104 [C8H8]+. (32), 91 [C7H7]+ (43), 77 [C6H5]+ (66), 

67 (20), 65 (22), 55 (19), 53 (26), 51 (24), 43 [C3H7]+ (26), 41 [C3H5]+ (55), 39 (52). 

Elemental analysis (%):   Calcd: C 72.69  H 9.15  N 8.48 

      Found: C 72.37  H 9.26  N 8.40 

 

(-)-N-[10-(1R,5R)-Pin-2-enyl]-hydroxylamine hydrochloride 150 

 

A solution of HCl in absolute methanol (~5M) was added dropwise to maintain a pH of 2-3 to a 

solution of 1.7 g (1R,5R)-(-)-myrtenaloxime 149 (10.3 mmol, 1 eq.) and 1.94 g NaBH3CN 

(30.9 mmol, 3 eq.) in 50 mL absolute methanol. After stirring at room temperature for 4 h, a 

solution of KOH 6 M was added until pH 9 was reached and methanol was evaporated in vacuo. 

The reaction mixture was diluted with 50 mL water and extracted five times with 25 mL diethyl 

ether. The combined organic phases were extracted with a solution of 1M HCl, the volume of the 

aqueous phase was reduced in vacuo and lyophilized to afford 1.95 g (9.6 mmol, 93 %) 150 as 

white crystals. 
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Molecular formula:    C10H18ClNO [203.71] 

Yield:      93% (1.95 g, white crystals) 

Melting point:    98-100oC 

Optical rotation:    [ ]24
Dα = -28.45 (c = 1.0 in H2O) 

IR (KBr), ~ν  [cm-1]: 3442 (OH br), 3060 (NH valence br), 2915 (CH), 2829 (CH), 2713 (CH), 

1652 (C=C), 1573 (NH deformation), 1446 (CH2), 1429 (N-O), 1224 (C-N), 1016 (C-C 

stretching), 971, 802, 794, 671. 
1H-NMR (DMSO-D6, 250 MHz) δ [ppm]: 11.49 (2H, br., NH2

+), 6.11 (1H, m, H3), 3.63 (2H, s, 

H10), 2.51 (1H, m, H1), 2.13-2.44 (3H, m, H7s, H4), 2.05 (1H, H5), 1.26 (3H, s, H8), 1.12 (1H, d, 
2J7s-7a = - 8.54 Hz, H7a), 0.81 (3H, s, H9). 
13C-NMR (DMSO-D6, 62 MHz) δ [ppm]: 137.4 (C2), 126.2 (C3), 54.7 (C10), 43.7 (C5), 39.5 (C1), 

37.5 (C6, C4), 31.0 (C7), 25.7 (C8), 20.7 (C9). 
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13C-NMR (D2O, 62 MHz) δ [ppm]: 139.3 (C2), 132.1 (C3), 59.0 (C10), 47.3 (C5), 42.9 (C1), 40.5 

(C6), 34.3 (C4), 34.2 (C7), 28.4 (C8), 23.5 (C9). 

MS (ESI) m/z (%): 190 [M-HCl+Na]+, 168 [M-Cl-]+, 135 [C10H15(10-pinenyl)]+. 

Elemental analysis (%):   Calcd: C 58.96  H 8.91  N 6.88 

      Found: C 58.74  H 8.86  N 6.73 

 

(-)-N-[10-(1R,5R)-Pin-2-enyl]-O-trimethylsilyl hydroxylamine 151 

 
A slurry of 1 g (-)-N-[10-(1R,5R)-pin-2-enyl]-hydroxylamine hydrochloride 150 (4.91 mmol, 1 eq.) 

and 1.49 g Et3N (14.73 mmol, 3 eq.) in 20 mL n-hexane (distilled over Na) was stirred at room 

temperature for 3 h, under N2. Trimethylsilyl chloride (0.54 g, 4.91 mmol, 1 eq.) (distilled over 

CaH2) was added via syringe and the stirring was continued overnight. Conversion of the 

hydroxylamine hydrochloride 150 was monitored by TLC (silica gel, AcOEt:PE = 2:1), with the 

free base of 150 as reference. Filtration and evaporation of solvent in vacuo afforded a light yellow 

oil which was distilled in vacuo (75oC, 0.038 mbar) to give 0.91 g (3.78 mmol, 77%) 151 as colorless 

oil. 
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Molecular formula:    C13H25NOSi [239.43] 

Yield:       77% (0.91 g, colorless oil) 

TLC:      Rf = 0.32 [AcOEt:PE = 2:1] 

Boiling point:     75oC (0.038 mbar) 

Optical rotation:    [ ]22
Dα = -31.8 (c = 1.1 in CH2Cl2) 

IR (neat), ~ν  [cm-1]: 3259 (NH), 3027 (=C-H), 2987 (CH), 2915 (CH), 2832 (CH2), 1654 (C=C), 

1465 (CH2), 1365 (CH3), 1248 (Si-CH3), 908, 877, 842 
1H-NMR (CDCl3, 500 MHz) δ [ppm]: 5.43 (1H, m, H3), 5.15 (1H, br, NH), 3.38 (2H, br. s, H10), 

2.37 (1H, ddd, 2J7s-7a= 8.8 Hz, 3J7s-1= 5.6 Hz, 3J= 5.6 Hz, H7s), 2.28 (1H, br. d, 2J4a-4s= 17.6 Hz,  

H4s), 2.19 (1H, br. d, 2J4a-4s= 17.6 Hz, H4a), 2.14 (1H, ddd, 3J1-7s= 5.6 Hz, 4J= 5.6 Hz, 4J=1.9 Hz, 

H1), 2.08 (1H, m, H5), 1.28 (3H, s, H8), 1.16 (1H, d, 2J7s-7a = 8.8 Hz, H7a), 0.81 (3H, s, H9), 0.13 

(9H, s, Si(CH3)3) 
1H-NMR (C6D6, 500 MHz) δ [ppm]: 5.27 (1H, m, H3), 4.78 (1H, t, 3JNH-10= 8 Hz, NH), 3.42 (1H, 

br. s, H10), 2.29 (1H, ddd, 2J7s-7a= 8.8 Hz, 3J= 5.6 Hz, 3J= 5.6 Hz, H7s), 2.15 (1H, br. d, 2J4a-4s= 17.6 



Experimental Section 

 100

Hz, H4s), 2.03-2.10 (2H, m, H1, H4a), 1.95 (1H, m, H5), 1.20 (3H, s, H8), 1.18 (1H, d, 2J7s-7a= 8.8 

Hz, H7a), 0.82 (3H, s, H9), 0.21 (9H, s, Si(CH3)3) 
13C-NMR (CDCl3, 125 MHz) δ [ppm]: 143.8 (C2), 120.7 (C3), 59.8 (C10), 44.9 (C5), 40.6 (C1), 38.0 

(C6), 31.6 (C4), 31.3 (C7), 26.2 (C8), 21.1 (C9), - 0.9 [Si(CH3)3]. 
13C-NMR (C6D6, 125 MHz) δ [ppm]: 144.5 (C2), 120.6 (C3), 60.1 (C10), 45.1 (C5), 41.0 (C1), 38.1 

(C6), 32.0 (C4), 31.6 (C7), 26.3 (C8), 21.2 (C9), - 0.7 [Si(CH3)3]. 

GC-MS: tR (GC-MS Pr. 3) = 11.68 min; (EI) m/z (%): 240 [M+H]+ (28), 239 [M]+. (32), 224 

[M–CH3]+ (12), 168 [M+H–SiMe3]+. (18), 150 [M–OSiMe3]+ (25), 134 [C10H14]+ (98), 118 

[CH2NHOSiMe3]+. (100), 107 [C6H5NH2]+. (40), 105 [Me3SiONH2]+. (95), 104 [Me3SiONH]+ (38), 

101 (80), 91 [C7H7]+ (20), 90 [Me3SiOH]+. (80), 79 [C6H7]+ (20), 74 [Me3SiH]+. (82), 72 [C3H8Si]+. 

(63), 69 (12), 64 (12), 59 (16), 53 (20), 45 (20), 43 (25), 41 (42), 39 (10), 30 (10); (CI) m/z (%): 240 

[M+H]+, 150 [M–OSiMe3]+. (100). 

Elemental analysis (%):   Calcd: C 65.21  H 10.52 N 5.85 

      Found: C 65.32  H 10.41 N 6.10 

 

(-)-N-[10-(1R,5R)-Pin-2-enyl]-O-tosyl hydroxylamine 152 

 
A slurry of 0.5 g (-)-N-[10-(1R,5R)-pin-2-enyl]-hydroxylamine hydrochloride 150 (2.45 mmol, 

1 eq.) and 0.74 g Et3N (7.35 mmol, 3 eq.) in 20 mL n-hexane (distilled over Na) was stirred at 

room temperature for 1 h under N2. Tosyl chloride (0.47 g, 2.45 mmol, 1 eq.) (recrystallized from 

PE) was added in portions and stirring was continued overnight. Conversion of the 

hydroxylamine hydrochloride 150 was monitored by TLC (silica gel, AcOEt:PE = 2:1), with the 

free base of 150 as reference. Filtration and evaporation of the solvent in vacuo afforded a light 

yellow oil which was dissolved in diethyl ether and washed sequentially with 45 mL 0.1 M HCl, 

15 mL satd. NaHCO3 sol. and 30 mL brine. Drying over MgSO4 and evaporation of the solvent 

in vacuo yielded a light yellow solid. Flash chromatography (silica gel, tBuOMe:MeOH = 10:1) and 

crystallization from Et2O/n-hexane (1:1) afforded 0.68 g (2.1 mmol, 85 %) 152 as colorless 

crystals.   
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Molecular formula:    C17H23NO3S [321.435] 

Yield:      85% (0.68 g, colorless crystals) 

TLC:      Rf = 0.66 [tBuOMe:MeOH = 10:1] 

Melting point:    131-133oC 

Optical rotation:    [ ]23
Dα = -22.1 (c = 1.1 in CHCl3) 

GC (GC Pr. 2):     tR = 15.41 min 

IR (KBr), ~ν  [cm-1]: 3394 (NH), 2913 (CH), 1658 (C=C), 1598 (Ph), 1334 (SO2O), 1164 (SO2O), 

1093, 811, 748, 661. 
1H-NMR (CDCl3, 500 MHz) δ [ppm]: 7.78 (2H, d, 3Jortho= 6.3 Hz, 3Jmeta= 1.8 Hz,  Ph-ortho), 7.36 

(2H, d, 3Jortho= 6.3 Hz,  3Jmeta= 2.5 Hz Ph-meta), 6.29 (1H, br, NH), 5.41 (1H, m, H3), 3.41 (2H, br. 

s, H10), 2.46 (3H, s, Ph-CH3), 2.40 (1H, ddd, 2J7s-7a= 8.8 Hz,  3J7s-1= 5.6 Hz, 3J= 5.6 Hz, H7s), 2.33 

(1H, ddd, 3J1-7s= 5.6 Hz, 4J= 5.6 Hz, 4J= 1.9 Hz, H1), 2.26 (1H, br. d, 2J4a-4s= 19.5 Hz, H4s), 2.18 

(1H, br. d, 2J4a-4s= 19.5 Hz, H4a), 2.08 (1H, m, H5), 1.29 (3H, s, H8), 1.14 (1H, d, 2J7s-7a= 8.8 Hz, 

H7a), 0.82 (3H, s, H9). 
13C-NMR (CDCl3, 125 MHz) δ [ppm]: 144.8 (Cpara), 141.6 (C2), 129.8 (C-S), 129.6 (2 x Cortho), 

129.5 (2 x Cmeta), 122.9 (C3), 57.9 (C10), 43.8 (C5), 40.7 (C1), 38.0 (C6), 31.6 (C4), 31.4 (C7), 26.1 

(C8), 21.6 (C-Ph), 21.1 (C9). 

MS (ESI) m/z: 344.0 [M + Na]+, 664.7 [2M + Na]+. 

Elemental analysis (%):   Calcd: C 63.52  H 7.21  N 4.36 

      Found: C 63.50  H 7.04  N 4.23 
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5.2.4 Synthesis of (+)-N,N-Dicyclohexyl-2-chloro-2-nitrosocamphor-10-sulfon-

amide 

 
(+)-N,N-Dicyclohexyl-camphor-10-sulfonamide 154 

 

A solution of 10.26 g isoquinoline (81.35 mmol, 2.04 eq.), 14.46 g dicyclohexylamine 

(79.76 mmol, 2 eq.) and 0.98 g DMAP (7.98 mmol, 0.2 eq.) in 50 mL DMF was cooled to 0oC 

and 10 g (+)-camphor-10-sulfonylchloride 153 (39.88 mmol, 1 eq.) in 50 mL DMF was added 

dropwise during 2 h. Stirring was continued for 2 h at 0oC and after completion of the reaction, 

150 mL dichloromethane were added and the reaction mixture was washed four times with 

100 mL 10% citric acid. Evaporation of solvent in vacuo and two consecutive crystallizations from 

EtOH/H2O (2:1) afforded 12.93 g (32.70 mmol, 82%) 154 as white solid. 
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Molecular formula:    C22H37NO3S [395.60] 

Yield:      82% (12.93 g, white solid)   [lit.182 60%]  

TLC:      Rf = 0.45 [AcOEt:PE = 4:10] 

Melting point:    134-135 oC       [lit.182 134-135oC] 

Optical rotation:    [ ]26
Dα = +26 (c = 1.1 in CHCl3) 

IR (KBr), ~ν  [cm-1]: 2935 (CH), 2852 (CH), 1747 (C=O), 1322 (SO2N), 1225 (C-N), 1164 

(SO2N), 1145, 1110, 1049, 979. 
1H-NMR (CDCl3, 500 MHz) δ [ppm]: 3.32 (1H, d, 2J10a-10b= 14.4 Hz, H10a), 3.31 (2H, m, H11, 

H17), 2.79 (1H, d, 2J10a-10b= 14.4 Hz, H10b), 2.60 (1H, ddd, 2J5exo-5endo= 11.9 Hz, 3J5exo-6= 8.8 Hz, 
3J5exo-4= 4.4 Hz, H5exo), 2.37 (1H, dd, 2J3exo-3endo= 18.2 Hz, 3J3exo-4= 4.4 Hz, H3exo), 2.07 (1H, dd, 
3J4-5exo= 4.4 Hz, 3J4-3exo= 4.4 Hz, H4), 2.02 (1H, dd, 2J5endo-5exo= 11.9 Hz, 3J5endo-6= 8.8 Hz, H5endo),  

1.92 (1H, d, 2J3endo-3exo= 18.2 Hz, H3endo), 1.74-1.81 (12H, m, HCy), 1.58-1.64 (3H, m, HCy, H6), 
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1.39 (1H, m, H6), 1.26-1.34 (4H, m, HCy), 1.19 (3H, s, H9), 1.10-1.14 (2H, m, HCy), 0.89 (3H, s, 

H8). 
13C-NMR (CDCl3, 125 MHz) δ [ppm]: 215.8 (C2), 59.0 (C1), 57.6 (C11, C17), 52.2 (C10), 47.5 (C7), 

43.0 (C4), 42.6 (C3), 32.9 (CCy), 32.5 (CCy), 26.8 (C5), 26.4 (CCy), 25.3 (C6), 25.2 (CCy), 20.3 (C9), 

19.9 (C8). 

MS (ESI) m/z: 418.2 [M + Na]+, 434.1 [M + K]+. 

Elemental analysis (%):   Calcd: C 66.79  H 9.43  N 3.54 

      Found: C 66.81  H 9.45  N 3.50 

 

 

(+)-N,N-Dicyclohexyl-camphor-10-sulfonamide oxime 155 

 

 

Method A 

A solution of 4.5 g KOH (80.20 mmol, 6.35 eq.) in 40 mL ethanol was added to a suspension of 

2.63 g hydroxylamine hydrochloride (37.89 mmol, 3 eq.) and 5.0 g (+)-N,N-dicyclohexyl-

(camphor-10-sulfonamide) 154 (12.63 mmol, 1 eq.) in 60 mL ethanol. The reaction mixture was 

refluxed for 6 h, neutralised with 1M HCl and 200 mL water were added. The white precipitate 

was filtered off and washed with water. Recrystallization from n-heptane/toluene (5:2) afforded 

3.22 g (7.8 mmol, 61%) oxime 155 as white crystals. 

 

 

Method B 

A solution of 2.36 g hydroxylamine hydrochloride (34.01 mmol, 3 eq.) and 2.98 g sodium acetate 

(36.27 mmol, 3.2 eq.) in 120 mL methanol was stirred for 10 min at room temperature. 

(+)-N,N-Dicyclohexyl-(camphor-10-sulfonamide) 154 (4.49 g, 11.34 mmol, 1 eq.) was added and 

the mixture was refluxed for 24 h. After completion (TLC on silica gel, AcOEt:PE = 4:10), the 

reaction mixture was poured into 200 mL of ice water, the white precipitate was filtered off, 

washed with cold water and dried in vacuo to afford 4.46 g (10.86 mmol, 96%) 155 as white 

powder. 
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Molecular formula:    C22H38N2O3S [410.61] 

Yield:      96% (4.46 g, white crystals)    [lit.13 96%] 

TLC:      Rf = 0.66 [tBuOMe:MeOH = 10:1]   

Melting point:    169-170 oC 

Optical rotation:    [ ]24
Dα = +0.8 (c = 1.5 in CHCl3) 

IR (KBr), ~ν  [cm-1]: 3367 (OH), 2937 (CH), 2856 (CH), 1687 (C=N), 1454 (CH2), 1396 (CMe2), 

1324 (SO2N), 1164, 1145, 1108, 1049, 981. 
1H-NMR (CDCl3, 500 MHz) δ [ppm]: 3.35 (1H, d, 2J10a-10b= 14.4 Hz, H10a), 3.33 (2H, m, H11, 

H17), 2.89 (1H, d, 2J10a-10b= 14.4 Hz, H10b), 2.62 (1H, dd, 2J3exo-3endo= 18.2 Hz, 3J3exo-4= 4.1 Hz, 

H3exo), 2.56 (1H, m, H5exo), 2.13 (1H, d, 2J3endo-3exo= 18.2 Hz, H3endo), 1.93 (1H, m, H4), 1.72-1.85 

(13H, m, HCy, H5endo), 1.58-1.65 (2H, m, HCy), 1.28-1.35 (6H, m, HCy, H6), 1.10-1.17 (2H, m, 

HCy), 1.09 (3H, s, H9), 0.86 (3H, s, H8). 
13C-NMR (CDCl3, 125 MHz) δ [ppm]: 169.4 (C2), 57.5 (C11, C17), 53.9 (C10), 53.1 (C1), 49.9 (C7), 

43.4 (C4), 33.3 (C3), 33.1 (CCy), 32.3 (CCy), 28.2 (C5), 27.0 (C6), 26.4 (CCy), 25.1 (CCy), 19.4 (C9), 

19.3 (C8). 

MS (ESI) m/z: 411.1 [M + H]+, 433.2 [M + Na]+. 

Elemental analysis (%):   Calcd: C 64.35  H 9.33  N 6.82 

      Found: C 64.37  H 9.06   N 6.61 

 

 

(+)-N,N-Dicyclohexyl-2-chloro-2-nitrosocamphor-10-sulfonamide 74 
 

A solution of 3 g (+)-N,N-dicyclohexyl-camphor-10-sulfonamide oxime 155 (7.31 mmol, 1 eq.) in 

60 mL water free dichloromethane was cooled to -10oC, under N2 atmosphere and protection 

against light. A solution of 1.48 g tBuOCl (10.23 mmol, 1.4 eq., 75% w/w in tBuOH) in 30 mL 
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water free dichloromethane was added dropwise during 2 h and the resulting blue solution was 

stirred for 2.5 h at -5oC. Evaporation of solvent in vacuo and recrystallization from AcOEt/PE 

(1:5) furnished 2.76 g (6.21 mmol, 85%) 74 as blue crystals. 
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Molecular formula:    C22H37ClN2O3S [445.06] 

Yield:      85% (2.76 g, blue crystals)     [lit.13 81%] 

TLC:      Rf = 0.38 [AcOEt:PE = 1:5]   

Melting point:    159-160oC (decomp.) 

Optical rotation:    [ ]26
Dα = -90.2 (c = 0.5 in CHCl3) 

IR (KBr), ~ν  [cm-1]: 2933 (CH3), 2854 (CH2), 1583 (N=O), 1450 (CH), 1324 (SO2N), 1166 

(SO2N), 1143 (C-Cl), 1108, 1051, 981, 894, 854, 775 (C-Cl).  
1H-NMR (CDCl3, 250 MHz) δ [ppm]: 3.39 (1H, d, 2J10a-10b= 14.4 Hz, H10a), 3.27 (1H, ddd, 
2J5exo-5endo= 14.1 Hz, 3J5exo-6= 9.1 Hz, 3J5exo-4= 3.1 Hz, H5exo), 3.12-3.17 (2H, m, H11, H17), 2.78 (1H, 

d, 2J10b-10a= 14.4 Hz, H10b), 2.52 (1H, dd, 2J3exo-3endo= 14.1 Hz, 3J3exo-4= 5.5 Hz, H3exo), 2.22 (1H, m, 

H5endo), 2.14-2.19 (2H, m, H4, H6a), 1.92 (1H, d, 2J3endo-3exo= 14.4 Hz, H3endo), 1.89 (1H, m, H6b), 

1.75-1.80 (6H, m, HCy), 1.65-1.71 (8H, m, HCy), 1.56-1.62 (2H, m, HCy), 1.24-1.31 (4H, m, HCy), 

1.23 (1H, s, H9), 1.16 (3H, s, H8). 
13C-NMR (CDCl3, 62 MHz) δ [ppm]: 123.7 (C2), 58.3 (C1), 57.4 (C11, C17), 54.3 (C7), 53.7 (C10), 

45.9 (C4), 43.7 (C3), 33.1 (CCy), 32.3 (CCy), 28.4 (C5), 27.4 (C6), 26.4 (CCy), 26.4 (CCy), 25.2 (CCy), 

20.3 (C9), 20.8 (C8). 

MS (ESI) m/z: 467.1 [M(C22H37
35ClN2O3S) + Na]+, 469.2 [M(C22H37

37ClN2O3S) + Na]+, 911.2 

[2M(C22H37
35ClN2O3S) + Na]+, 913.2 [2M(C22H37

37ClN2O3S) + Na]+. 

Elemental analysis (%):   Calcd: C 59.37  H 8.38  N 6.29 

      Found: C 59.25  H 8.41  N 6.20 
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5.2.5 Synthesis of 1-Deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-manno-

furanose 

 

53 mg VO(acac)2 (0.2 mmol, 0.04 eq.) were added to a solution of 1.38 g 2,3:5,6-di-O-iso-

propylidene-D-mannose oxime 134 (5 mmol, 1 eq.) in 30 mL ethyl acetate. The green solution 

was warmed up to 60oC and 1.37 mL tBuOOH (11 mmol, 2.2 eq., 80% solution in tBuOOtBu) 

were added carefully, under nitrogen atmosphere. The resulting red-brownish solution was 

heated to 60oC for 45 min, 50 mL H2O were added, the organic phase was separated, washed 

with 20 mL brine and dried over Na2SO4. Evaporation of the solvent in vacuo afforded a dark-red 

sirup which was purified by flash chromatography on silica gel (AcOEt:PE = 1:4), to afford 0.75 

g (2.6 mmol, 52%) 156 as colorless crystals. 
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Molecular formula:    C12H19NO7 [289.28] 

Yield:      52% (0.75 g, colorless crystals)    [lit.137 54%] 

Melting point:    111-112°C       [lit.137 111-112°C] 

TLC:      Rf = 0.26 [AcOEt:PE = 1:4] 

Optical rotation:    [ ]26
Dα  = +17.9 (c = 0.9 in CHCl3) 

      [lit.137 [ ]Dα  = +18.3 (c = 0.9 in CHCl3)] 

GC (GC Pr. 2):     tR = 14.34 min  

IR (KBr), ~ν  [cm-1]: 3001 (C-H), 2942 (CH3), 2908 (CH2), 1567 (NO2 asymm.), 1485 (CH2), 1374 

(NO2 sym.), 1266, 1214 (C-O-C), 1166, 1142, 1085 (C-O-C), 994, 971, 945, 847, 811. 
1H-NMR (CD2Cl2, 500 MHz) δ [ppm]: 5.65 (1H, s, H1), 5.06 (1H, d, 3J2-3= 5.6 Hz, H2), 4.85 (1H, 

dd,  3J2-3= 5.6 Hz, 3J3-4= 3.7 Hz, H3), 4.46 (1H, dd, 3J3-4= 3.7 Hz,  3J4-5= 7.2 Hz H4), 4.40 (1H, ddd, 
3J4-5= 7.2 Hz, 3J5-6a= 6.2 Hz, 3J5-6b= 5.0 Hz, H5), 4.12 (1H, dd, 2J6a-6b= 8.8 Hz, 3J5-6a= 6.2 Hz, H6a), 

4.07 (1H, dd, 2J6a-6b= 8.8 Hz, 3J5-6b= 5.0 Hz, H6b), 1.49 (3H, s, CH3), 1.42 (3H,  s, CH3), 1.35 (6H, 

s, 2 x CH3). 
13C-NMR (CD2Cl2, 125 MHz) δ [ppm]: 114.7 (C7), 111.3 (C1), 109.7 (C8), 86.7 (C2), 85.7 (C3), 

79.8 (C4), 72.9 (C5), 66.9 (C6), 26.9 (CH3), 26.1 (CH3), 25.2 (CH3), 24.8 (CH3). 

MS (ESI) m/z (%): 312.0 [M+Na]+, 500.5 [2M+Na–C5H9O2]+, 601.4 [2M+Na]+. 
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Elemental analysis (%):   Calcd: C 49.82  H 6.62  N 4.84 

      Found: C 49.73  H 6.36  N 4.73  

 

5.3 Electrophilic Amination of Carbanions using Enantiomerically Pure 

Nitrenoids 

 

Experimental procedure for the reaction between PhLi and the lithium amide 168 in THF 

 

A suspension of 0.8 g (5.42 mmol, 1 eq.) (1R,4S)-3-aza-2-oxabicyclo[2.2.2]oct-5-ene 

hydrochloride 124 in 20 mL water free THF was cooled to -60oC and 1 eq. MeLi (3.3 mL, 1.6 M 

in Et2O) was added via syringe. The mixture was allowed to reach room temperature, while a 

clear, colorless solution resulted, and then cooled to -78oC. The free base was lithiated by the 

addition of 1 eq. MeLi (3.3 mL, 1.6 M in Et2O). The light yellow solution was stirred for 15 min 

at -78oC and 1.05 eq. PhLi (5.69 mmol, 3.2 mL, 1.8 M in cyclohexane:Et2O = 70:30) were added. 

The light brownish solution was allowed to reach room temperature during 4 h, under TLC 

monitoring. The mixture was quenched with 10 mL satd. NH4Cl sol., the organic phase was 

separated, washed with 20 mL brine and dried over Na2SO4. N-(2,4-Cyclohexadienyl)-

hydroxylamine 170 was crystallized by slowly adding PE to the THF solution and cooling to 

-20oC. The white precipitate formed, decomposed during filtration. For the characterization of 

170, small samples were taken and washed in PE before analysis. 

 

Experimental procedure for the reaction between PhLi and the lithium amide 168 in n-hexane 

 

A suspension of 0.5 g (3.38 mmol, 1 eq.) (1R,4S)-3-aza-2-oxabicyclo[2.2.2]oct-5-ene 

hydrochloride 124 in 25 mL n-hexane was cooled to -60oC and 1 eq. MeLi (2.2 mL, 1.6 M in 

Et2O) was added via syringe. The mixture was allowed to reach room temperature, while a clear, 

colorless solution resulted, and then cooled to -78oC. The free base was lithiated by adding 1 eq. 

MeLi (2.2 mL, 1.6 M in Et2O). The light yellow solution was stirred for 15 min at 

-78oC and 1.05 eq. PhLi (3.55 mmol, 2 mL, 1.8 M in cyclohexane:Et2O = 70:30) was added. The 

light brownish solution was allowed to reach room temperature during 3 h, under TLC 

monitoring. The mixture was quenched with 2 mL absolute methanol and the volume of the 

organic phase was reduced in vacuo. The white slurry was dissolved in 3 mL THF and 

N-(2,4-cyclohexadienyl)-hydroxylamine 170 was crystallized by slowly adding PE to the THF 

solution and cooling to -20oC. 
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N-(2,4-Cyclohexadienyl)-hydroxylamine 170 
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Molecular formula:    C6H9NO [111.14] 

TLC:      Rf = 0.27 [DCM:MeOH = 20:1] 

Optical rotation:    [ ]α D
27  = -179.7 (c = 0.7 in THF)  

IR (KBr), ~ν  [cm-1]: 3239 (NH), 3143 (OH), 3120 (=CH), 3037 (=CH), 2867 (CH2), 2821 (CH), 

1637 (C=C), 1521 (NH), 1456 (CH2), 1405 (CH2), 1369 (OH), 1317, 1270, 1222, 1166, 1076 

(C-N), 1058 (C-N), 991, 970, 946, 898, 836, 779, 673 (=CH), 660 (=CH), 568, 503. 
1H-NMR (C6D6, 250 MHz) δ [ppm]: 5.82 (1H, dddd, 3J2-3= 9.5 Hz, 3J2-1= 5.0 Hz, 4J2-4= 1.2 Hz, 
5J2-5= 1.2 Hz, H2), 5.73 (1H, dddd, 3J3-2= 9.5 Hz, 3J3-4= 4.1 Hz, 4J3-5= 1.2 Hz, 4J3-1= 1.2, H3), 5.66 

(1H, dddt, 3J4-5= 9.5 Hz, 3J4-3= 4.1 Hz, 4J4-2= 1.2 Hz, 4J4-6= 1.2 Hz, H4), 5.57 (1H, ddddd, 3J5-4= 9.5 

Hz, 3J5-6a= 4.0 Hz, 3J5-6b= 4.6 Hz, 4J5-3= 1.2 Hz, 5J5-2= 1.2 Hz, H5), 3.57 (1H, dddd, 3J1-6b= 8.3 Hz, 
3J1-6a= 7.3 Hz, 3J1-2= 5.0 Hz, 4J1-3=1.2 Hz, H1), 2.51 (1H, dddd, 2J6a-6b= 18.2 Hz, 3J6a-1= 7.3 Hz, 
3J6a-5= 4.0 Hz, 4J6a-4= 1.2 Hz, H6a), 2.11 (1H, dddd, 2J6b-6a= 18.1 Hz, 3J6b-1= 8.2 Hz, 3J6b-5= 4.6 Hz, 
4J6b-4= 1.2 Hz, H6b). 
13C-NMR (C6D6, 62 MHz) δ [ppm]: 126.7 (C2), 125.6 (C3), 124.9 (C4), 123.7 (C5), 55.2 (C1), 26.4 

(C6). 

 

Electrophilic amination of PhLi with nitrenoids 176-178 generated from parent hydroxylamines 

147, 148 and 151, using MeLi (detailed working procedure given for nitrenoid 176) 

 

A solution of 1.0 g (5.51 mmol, 1 eq.) (-)-N-[10-(1R,5R)-pin-2-enyl]-O-methyl hydroxylamine 147 

in 10 mL n-hexane was cooled to -78oC, under N2 atmosphere, and 3.45 mL MeLi (5.51 mmol, 

1 eq., 1.6 M in Et2O) was added dropwise via syringe. The resulting colorless solution was stirred 

at -78oC for 1 h, warmed-up to -40oC and one equivalent of PhLi (5.51 mmol, 3.45 mL, 1.6 M in 

cyclohexane:Et2O = 70:30)  was added. The color turned to orange, but after stirring for 3 h at 

-40oC no 147 was detected (GC). After quenching with 1 mL absolute methanol, 10 mL 

tert-butylmethyl ether were added and the yellow mixture was washed successively with 15 mL 

satd. NH4Cl sol., 15 mL satd. NaHCO3 sol. and 30 mL brine. Drying over MgSO4 and 

evaporation of solvent in vacuo furnished a light-yellow oil which was purified by flash 

chromatography (silica gel, Et2O:PE = 1:10, 1% vol. Et3N) to afford 0.45 g (1.98 mmol, 36%) 

179 as colorless oil. 
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(-)-N-[10-(1R,5R)-Pin-2-enyl]-aniline 179 
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Molecular formula:    C16H21N [227.35] 

TLC:      Rf = 0.39 [Et2O:PE = 1:10, 1% NEt3] 

Optical rotation:    [ ]23
Dα = -20.3 (c = 0.5 in CHCl3) 

GC (GC Pr. 2):     tR= 15.83 min 

IR (neat), ~ν  [cm-1]: 3421 (NH), 3050 (CH arom.), 3020 (CH arom.), 2985 (=C-H), 2913 (CH3), 

2831 (CH2), 1602 (C=C), 1506 (C=C arom.), 1467 (CH), 1429, 1315, 1263, 1178, 1093, 748 (C-H 

arom.), 690 (C-H arom.). 
1H-NMR (CDCl3, 250 MHz) δ [ppm]: 7.12-7.18 (2H, m, Ph), 6.58-6.67 (3H, m, Ph), 5.44 (1H, 

m, H3), 4.14 (1H, br., NH), 3.61 (2H, br. s, H10), 2.39 (1H, ddd, 2J7s-7a= 8.5 Hz, 3J= 5.6 Hz, 
3J= 5.6 Hz, H7s), 2.14-2.31 (2H, m, H4), 2.05-2.12 (2H, m, H1, H5), 1.28 (3H, s, H8), 1.17 (1H, d, 
2J7s-7a= 8.5 Hz, H7a), 0.85 (3H, s, H9). 
13C-NMR (CDCl3, 62 MHz) δ [ppm]: 148.4 (C arom.), 145.4 (C2), 129.1 (2 x CH arom.), 117.9 

(C3), 117.2 (2 x CH arom.), 112.9 (CH arom.), 49.0 (C10), 44.2 (C5), 41.0 (C1), 38.1 (C6), 31.6 (C4), 

31.1 (C7), 26.2 (C8), 21.1 (C9). 

MS (EI) m/z (%): 228 [M+H]+ (8), 227 [M]+. (68), 226 [M–H]+ (9), 212 [M–CH3]+ (3), 211 

[M–H–CH3]+. (5), 134 [Ph-NH2-CH2-CH=CH2]+ (40), 119 [Ph-NH-CH=CH2]+. (50), 106 

[Ph-NH-CH2]+ (100), 93 [Ph-NH2]+. (63), 91 [C7H7]+ (75), 77 [C6H5]+ (68), 73 (10), 65 (9), 55 (7), 

43 (17), 41 (20), 29 (6), 27 (6). 

Elemental analysis (%):   Calcd: C 84.53  H 9.31  N 6.16 

      Found: C 84.29  H 9.25  N 5.81 

 

General procedure followed to determine the stability of lithiated hydroxylamines 147, 148, 151, 

and 152 in THF, respectively n-hexane 

 

A solution of 0.3 mmol hydroxylamines 147, 148, 151 or 152 in 2 mL THF, respectively n-hexane, 

was cooled to -78oC and 0.3 mmol MeLi (0.19 mL, 1.6 M in Et2O) was added slowly via syringe. 
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After 1 h, an aliquot was quenched with saturated aqueous NH4Cl, the organic phase was 

separated, 2 mL 1M HCl were added and the mixture was stirred for 15 min at room 

temperature. The organic phase was dried over Na2SO4 and the mixture was analysed by GC. 

 

1-[(5R,7R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)]methanimine 181 

 
NH

 
Molecular formula:    C10H15N [149.23] 

GC-MS: tR(GC-MS Pr. 1) = 5.35 min; (EI) m/z (%): 149 [M]+. (29), 148 [M-H]+ (38), 134 

[M-CH3]+ (100), 121 [M-HN=CH2]+. (4), 106 [C7H8N]+. (96), 93 [C7H9]+ (25), 79 [C6H7]+ (45), 77 

[C6H5]+ (42), 67 [C5H7]+ (78), 27 [HCN]+ (22). 

 

Electrophilic amination of PhLi with nitrenoids 176-178 generated in situ from parent 

hydroxylamines 147, 148 and 151, using PhLi (detailed working procedure given for nitrenoid 177) 

 

A solution of 0.70 g (2.72 mmol, 1 eq.) (-)-N-[10-(1R,5R)-pin-2-enyl]-O-benzyl hydroxylamine 

148 in 5 mL n-hexane was cooled to -78oC, under N2 atmosphere, and 1.7 mL PhLi (2.72 mmol, 1 

eq., 1.6 M in cyclohexane:Et2O = 70:30) was added dropwise via syringe. The resulting light-

yellow solution was stirred at –78oC for 15 min, warmed-up to -40oC and another mol-equivalent 

of PhLi was added. The colour turned to orange and after stirring for 3 h at -40oC no 148 was 

detected (GC). After quenching with 1 mL absolute methanol, 10 mL tert-butylmethyl ether were 

added and the yellow mixture was washed successively with 15 mL satd. NH4Cl sol., 15 mL satd. 

NaHCO3 sol. and 20 mL brine. Drying over Na2SO4 and evaporation of the solvent in vacuo 

furnished a light-yellow oil which was purified by flash chromatography (silica gel, Et2O:PE = 

1:10, 1% vol. Et3N) to afford 0.29 g (1.28 mmol, 47%) 179 as colorless oil. 

. 

Electrophilic amination of Ph2Cu(CN)Li2 182 with hydroxylamines 147, 148 and 151 (detailed 

working procedure given for hydroxylamine 151) 

 

Phenyl lithium (2.65 mL, 4.24 mmol, 2 eq., 1.6M solution in cyclohexane : Et2O = 7 : 3) was 

added to 10 mL water free THF and transferred via canula to 0.19 g CuCN (2.18 mmol, 1 eq.) pre-

dried in vacuo and pre-cooled to -40oC. After stirring for 20 min at that temperature, all CuCN 
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dissolved and a red-brownish solution resulted. The reaction mixture was cooled to –50oC and a 

solution of 0.51 g (-)-N-[10-(1R,5R)-pin-2-enyl]-O-trimethylsilyl hydroxylamine 151 (2.18 mmol, 

1 eq.) in 10 mL water free THF was added dropwise, during 15 min. The mixture was allowed to 

reach -20oC during 1 h, warmed up to room temperature and the stirring continued for 2 h. The 

resulting light-brownish solution was quenched with 5 mL satd. NH4Cl sol., 5 mL diethyl ether 

were added, the organic phase was separated, washed with 10 mL brine and filtrated through a 

Celite 500 pad. Evaporation of solvent in vacuo afforded a light yellow oil which was purified by 

flash chromatography on silica gel (Et2O:PE = 1:10, 1% vol. Et3N) to furnish 0.47 g (2.05 mmol, 

94%) 179 as colorless oil. 

 

General experimental procedure for the reaction between the lithium enolates of propiophenone 

75a, tert-butyl propionate 192 and ethyl phenylacetate 193 with the nitrenoids 176-178 (DMPU as 

co-solvent) 

 

A solution of 15 mL water free THF, 5 mL DMPU and 0.63 g diisopropylamine (6.22 mmol, 

3.2 eq.) was cooled to -50oC, under nitrogen atmosphere, and 3.8 mL nBuLi (6.12 mmol, 3.15 eq., 

1.6M in hexane) were added dropwise. The light yellow solution was stirred at -50oC for 15 min, 

cooled to -78oC and 1.95 mmol (1eq.) of the corresponding carbonyl compound were added 

dropwise. Stirring was continued at -78oC for 1 h, 3.89 mmol (2 eq.) of compounds 147-149, 

respectively, in 2 mL THF were added, the solution was warmed up to 0oC during 3 h, under 

TLC and GC-MS monitoring, and then stirred at room temperature for 6 h. Formation of 

the N-substituted α-amino ester 196 could only be detected by GC-MS when tert-butyl propionate 

192 was used as substrate and nitrenoids 176 or 177 as amination reagents. The lithium enolates 

of propiophenone 75a and ethyl phenylacetate 193 displayed no reactivity towards nitrenoids 

176-178. 

 

5.4 Electrophilic Amination of Enolates and Allyl Organometallic Reagents 

using α-Chloronitroso Reagents 

 

Electrophilic amination of propiophenone zinc enolate 206 with (+)-N,N-dicyclohexyl- 

2-chloro-2-nitrosocamphor-10-sulfonamide 74 

 

A stirred solution of LiHMDS (1.9 mL, 1.88 mmol, 1.05 eq., 1 M solution in THF) in 5 mL water 

free THF was cooled to -78oC under nitrogen atmosphere and 0.24 g propiophenone 75a 

(1.78 mmol, 1 eq.) were added. Stirring was continued at -78oC for 1 h. Propiophenone 75a 
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conversion was monitored by quenching an aliquot with TMSCl in n-hexane and GC analysis. A 

solution of 0.81 g ZnBr2 (3.59 mmol, 2 eq., dried at 130oC in vacuo) in 5 mL water free THF was 

added at -68oC to the lithium enolate via canula. The light yellow solution was left to reach 0oC 

during 40 min and then cooled to -50oC. A solution of 0.8 g 74 (1.79 mmol, 1 eq.) in 3 mL water 

free THF was added to the enolate via syringe and the mixture was left to reach the room 

temperature during 5 h, under TLC monitoring, and then stirred at room temperature for 24 h. 

The light blue solution was quenched with 1 mL H2O, 10 mL ethyl acetate were added, the 

organic phase was washed with 10 mL satd. NH4Cl sol. and dried over MgSO4. Evaporation of 

solvent in vacuo afforded a white foam which was purified by gradient flash chromatography on 

silica gel (AcOEt:PE = 2:2 to 3:2) to afford 0.18 g nitrone 207 (0.33 mmol, 19%), as a white 

foam. 

Hydrolysis of the nitrone 207 with 1M HCl/CHCl3 afforded 0.06 g 2-(hydroxylamino)- 

1-phenylpropan-1-one hydrochloride 208 (0.3 mmol, 16%) as a white crystalline solid. 

 

Electrophilic amination of propiophenone lithium enolate 206 with (+)-N,N-dicyclohexyl- 

2-chloro-2-nitrosocamphor-10-sulfonamide 74 

 

A stirred solution of LiHMDS (1.9 mL, 1.88 mmol, 1.05 eq., 1 M solution in THF) in 5 mL water 

free THF, was cooled to -78oC under nitrogen atmosphere and 0.24 g propiophenone 75a 

(1.78 mmol, 1 eq.) were added. Stirring was continued at -78oC for 1 h. Propiophenone 75a 

conversion was monitored by quenching an aliquot with TMSCl in n-hexane and GC analysis.  

The light yellow solution was left to reach 0oC during 40 min. A solution of 0.8 g 74 (1.79 mmol, 

1 eq.) in 5 mL THF was added to the enolate via syringe and the mixture was stirred for 3 h, 

under TLC monitoring. The light blue solution was quenched with 3 mL H2O, the organic phase 

was separated and hydrolyzed with 20 mL 1M HCl. Lyophilization of the aqueous phase afforded 

0.10 g 2-(hydroxylamino)-1-phenylpropan-1-one hydrochloride 208 (0.53 mmol, 30%) as a white 

crystalline solid. 

 

2-(Hydroxylamino)-1-phenylpropan-1-one hydrochloride 208 
O

NH2
+

OH
Cl

-

1
2

3

 
Molecular formula:    C9H12ClNO2 [201.65] 

Appearance:     white crystalline solid 

IR (KBr), ~ν  [cm-1]: 3425 (OH br), 2796 (CH), 1687 (C=O), 1637 (NH), 1448 (CH), 1403 
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(N-O), 1232, 1145, 1001, 975. 
1H-NMR (DMSO-D6, 500 MHz) δ [ppm]: 8.02 (2H, d, 3J= 7.5 Hz, Hortho), 7.72 (1H, dd, 
3J=7.5 Hz, 3J=7.5 Hz, Hpara), 7.56 (2H, dd, 3J=7.5 Hz, 3J=7.5 Hz, Hmeta), 5.29 (1H, q, 
3J2-3=6.9 Hz, CH), 1.43 (3H, d, 3J3-2= 6.9 Hz, CH3). 
13C-NMR (DMSO-D6, 125 MHz) δ [ppm]: 195.2 (C=O), 134.9 (Carom), 133.2 (CHarom), 129.1 

(CHarom), 128.8 (CHarom), 60.4 (CH), 13.9 (CH3). 

MS (ESI) m/z : 166.2 [M-Cl-]+, 188.2 [M-HCl+Na]+. 

 

2-[7,7-dimethyl-1-[N-(1-oxo-1-phenylprop-2-yl)(oxido)imino]bicyclo[2.2.1]hept-2-yl] methane-

sulfonamide 207 

Ph

O

N+

O
-

SO2NCy2

H

H

*

b

a10

 
Molecular formula:    C31H46N2O4S [542.77] 

Yield:      19% (0.18 g, white foam) 

IR (KBr), ~ν  [cm-1]: 2931 (CH), 2854 (CH), 1700 (C=O), 1598 (C=N+), 1450 (CH), 1322 (SO2), 

1164 (SO2N), 1143, 1110, 1049, 1027, 981. 

MS (ESI) m/z: 543.2 [M+H]+, 565.2 [M+Na]+, 581.2 [M+K]+. 

 

General procedure for the preparation of 2-butenyl 214, 3,3-dimethylallyl 215 and 3-phenylallyl 

216 zinc bromides 

 

To a slurry of 1.94 g zinc powder (29.6 mmol, 2 eq., granulation <63 µm, Fluka) in 20 mL water 

free THF, 0.13 mL 1,2-dibromoethane (1.48 mmol, 0.05 eq.) were added and the mixture was 

refluxed for 5 min and further cooled to room temperature. This procedure was repeated three 

times. Trimethylsilyl chloride (0.04 mL, 0.29 mmol, 0.01 eq.) was added, the mixture was stirred 

at room temperature for 30 min. A solution of 12.88 mmol (1 eq.) of allyl bromide 214, 215, 216, 

respectively, in 20 mL THF containing 0.15 mL dodecane (0.65 mmol, 0.05 eq.) as internal 

standard was added at 0oC to the zinc slurry via syringe pump. The concentration of the 

organozinc solutions were determined by gas chromatography using the iodine method.171 

The toluene solutions of 214-216 were prepared by evaporation of the THF in vacuo, followed by 

addition of water free toluene under nitrogen atmosphere. 
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General procedure for reaction of organozinc reagents 214-216 with 1-chloro-1-nitroso-

cyclohexane 12 in THF 

 

A solution of 1 g 1-chloro-1-nitrosocyclohexane 12 (6.77 mmol, 1 eq.) in 5 mL of water free THF 

was cooled to -78oC and 6.77 mmol (1 eq.) organozinc reagent 214-216 in THF were added 

dropwise via syringe under stirring, until the blue colour had disappeared. The resulting 

light-yellow solution was quenched immediately with 1 mL of absolute methanol and left to reach 

room temperature. TLC analysis showed formation of a single product and total conversion of 

12. tert-Butylmethyl ether (10 mL) was added and after washing with 20 mL of a satd. NH4Cl sol., 

the organic phase was dried over Na2SO4 and the solvents evaporated in vacuo. The products 

221-223 were obtained analytically pure (GC analysis) after flash chromatography on silica gel. 

 

General procedure for reaction of organozinc reagents 214–216 with 1-chloro-1-nitroso- 

cyclohexane 12 in toluene 

 

A solution of 0.5 g 1-chloro-1-nitrosocyclohexane 12 (3.39 mmol, 1 eq.) in 5 mL of water free 

toluene was cooled to –78oC and 3.39 mmol (1 eq.) organozinc reagent 214–216 in toluene were 

added dropwise, via syringe, under stirring, until the blue colour had disappeared. The resulting 

light-yellow solution was quenched immediately with 1 mL of absolute methanol and left to reach 

room temperature. After evaporation of solvents in vacuo, the residue was dissolved in 20 mL 

chloroform and extracted five times with 10 mL 1M HCl. Gas chromatography analysis of the 

organic phase showed the formation of cyclohexanone as the hydrolysis product of intermediary 

nitrones. Flash chromatography on silica gel of the organic phase afforded analytically pure 

oxime ethers 221-223. The collected aqueous phases were neutralised with KHCO3, extracted 

with ether and dried over Na2SO4. Hydroxylamine hydrochlorides 224 and 225 were isolated by 

precipitation from ether solution using gaseous hydrochloric acid.  

 

O-(1-methylallyl)cyclohexanone oxime 221 

N

O 1

2

3

4

 
Molecular formula:    C10H17NO [167.25] 

Appearance:     colorless oil 

Yield:      see Table 6 and 7 
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TLC:      Rf= 0.57 [AcOEt:PE =  4:10] 

IR (neat), ~ν  [cm-1]: 3081 (=CH2), 2981 (CH), 2932 (CH2), 2859 (CH3), 1642 (C=N), 1448 (CH2), 

1371 (CH3), 1239 (N-O), 1134 (C-O), 945 (C=CH). 
1H-NMR (CDCl3, 500 MHz) δ [ppm]: 5.91 (1H, ddd, 3J2-3= 17.3 Hz (trans), 3J2-3= 10.6 Hz (cis), 

3J2-1= 5.8 Hz, H2), 5.19 (1H, ddd, 3J3-2= 17.3 Hz, 4J3-1= 1.5 Hz, 2J3cis-3trans= 1.4 Hz, H3 trans), 5.10 

(1H, ddd, 3J3-2= 10.6 Hz, 4J3-1= 1.5 Hz, 2J3cis-3trans= 1.4 Hz, H3 cis), 4.59 (1H, dtq,  
3J1-2= 5.8 Hz, 4J1-3= 1.5 Hz, 3J1-4= 6.4 Hz, H1), 2.45-2.50 (2H, m, CH2), 2.17-2.22 (2H, m, CH2), 

1.56-1.68 (6H, m, CH2), 1.29 (3H, d, 3J4-1= 6.4 Hz, H4). 
13C-NMR (CDCl3, 125 MHz) δ [ppm]: 160.0 (C=N), 140.2 (C2), 114.7 (C3), 78.5 (C1), 32.3 (CH2), 

27.2 (CH2), 25.9 (CH2), 25.8 (CH2), 25.4 (CH2), 19.8 (C4). 

GC-MS: tR (GC-MS Pr. 2) = 9.59 min; (EI) m/z (%): 167 [M]+. (14), 152 [M-CH3]+ (10), 113 

[C6H10NO]+ (14), 96 [C6H10N]+ (17), 85 [C4H7NO]+ (19), 55 [C4H7]+ (100); (CI) m/z: 168 

[M+H]+. 

Elemental analysis (%):   Calcd: C 71.81  H 10.25 N 8.37 

      Found: C 71.97  H 10.16 N 8.12 

 

O-(1,1-dimethylallyl)cyclohexanone oxime 222 

1

2

3

4
N

O
5

 
Molecular formula:    C11H19NO [181.27] 

Appearance:     colorless oil 

Yield:      see Table 6 and 7 

TLC:      Rf= 0.52 [tBuOMe:PE = 1:10] 

IR (neat), ~ν  [cm-1]: 3084 (=CH2), 2987 (CH), 2932 (CH2), 2859 (CH3), 1642 (C=N), 1449 (CH2), 

1373 (CH3), 1253 (N-O), 1153 (C-O), 945 (C=CH). 
1H-NMR (CD2Cl2, 500 MHz) δ [ppm]: 6.01 (1H, dd, 3J2-3= 17.5 Hz (trans), 3J2-3= 10.6 Hz (cis),  

H2), 5.09 (1H, dd, 3J3-2= 17.5 Hz, 2J3cis-3trans= 1.5 Hz, H3 trans), 5.00 (1H, dd, 3J3-2= 10.9 Hz, 
2J3cis-3trans= 1.5 Hz, H3 cis), 2.42-2.45 (2H, m, CH2),  2.13-2.16 (2H, m, CH2), 1.55-1.63 (6H, m, 

CH2), 1.31 (6H, s, H4, H5). 
13C-NMR (CD2Cl2, 125 MHz) δ [ppm]: 159.2 (C=N), 145.4 (C2), 112.2 (C3), 79.0 (C1), 32.7 

(CH2), 27.6 (CH2), 26.3 (CH2), 26.2 (CH2), 25.9 (C4, C5), 25.5 (CH2). 
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GC-MS: tR (GC-MS Pr. 2) = 9.96 min; (EI) m/z (%): 181 [M]+. (5), 166 [M-CH3]+ (2), 151 

[M-C2H6]+. (3), 114 [C6H12NO]+ (7), 69 [C5H9]+ (100), 55 [C4H7]+ (5); 41 [C3H5]+ (55); (CI) m/z: 

182 [M+H]+, 114 [C6H12NO]+. 

Elemental analysis (%):   Calcd: C 72.88  H 10.56 N 7.73 

      Found: C 72.55  H 10.63 N 7.45 

 

O-(1-phenylylallyl)cyclohexanone oxime 223 

N

O 1

2

3
 

Molecular formula:    C15H19NO [229.32] 

Appearance:     light yellow oil 

Yield:      see Table 6 and 7 

TLC:      Rf= 0.43 [tBuOMe:PE = 1:5] 

IR (neat), ~ν  [cm-1]: 3084 (=CH2), 3062 (=CH), 3029 (=CH), 2982 (CH), 2932 (CH2), 2858 

(CH3), 1641 (C=N), 1449 (CH2), 1346 (CH3), 1254 (N-O), 1026 (C-O), 990 (CH), 931 (CH), 918 

(CH), 888 (CH), 700 (CH). 
1H-NMR (CDCl3, 250 MHz) δ [ppm]: 7.22-7.33 (5H, arom), 6.06 (1H, ddd, 3J2-3= 17.2 Hz (trans), 
3J2-3= 10.6 Hz (cis), 3J2-1= 6.2 Hz, H2), 5.54 (1H, dt, 3J1-2= 6.2 Hz, 3J1-3= 1.2 Hz, H1), 

5.24 (1H, dd, 3J3-2= 17.2 Hz, 2J3cis-3trans= 1.2 Hz, H3 trans), 5.20 (1H, dd, 3J3-2= 10.6 Hz, 
2J3cis-3trans= 1.2 Hz, H3 cis), 2.52-2.57 (2H, m, CH2), 2.15-2.19 (2H, m, CH2), 1.51-1.70 (6H, m, 

CH2). 
13C-NMR (CDCl3, 63 MHz) δ [ppm]: 161.0 (C=N), 140.8 (Ph), 138.4 (C2), 128.2 (Ph), 127.4 (Ph), 

127.0 (Ph), 116.2 (C3), 84.8 (C1), 32.1 (CH2), 27.0 (CH2), 25.8 (CH2), 25.7 (CH2), 25.6 (CH2). 

GC-MS: tR (GC-MS Pr. 2) = 14.72 min; (EI) m/z (%): 230 [M+H]+ (2), 117 [C9H9]+ (100), 115 

[C9H7]+ (20), 105 [C8H9]+ (5), 91 [C7H7]+ (10), 77 [C6H5]+ (5); (CI) m/z: 230 [M+H]+, 117 

[C9H9]+. 

Elemental analysis (%):   Calcd: C 78.56  H 8.35  N 6.11 

      Found: C 78.40  H 8.33  N 6.12 
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N-(1-methylallyl)hydroxylamine hydrochloride 224 

NH2
+

OH

Cl
-

1

2

3

4

 
Molecular formula:    C4H10ClNO [123.58] 

Appearance:     white solid 

Yield:      see Table 7 

Melting point:    58-61oC 

IR (KBr), ~ν  [cm-1]: 3465 (OH br), 3040 (NH valence, br), 2507 (CH), 1633 (NH deformation), 

1450 (CH2), 1426 (N-O), 1381 (CH), 1003 (C-N), 947 (C=CH). 
1H-NMR (D2O, 500 MHz) δ [ppm]: 5.62 (1H, dddq, 3J2-3= 17.3 Hz (trans), 3J2-3= 10.2 Hz (cis), 
3J2-1= 7.4 Hz, 4J2-4= 1.45 Hz, H2), 5.23 (1H, ddd, 3J3-2= 17.3 Hz, 4J3-1= 2.5 Hz, 2J3cis-3trans= 1.2 Hz,  

H3 trans), 5.19 (1H, ddd, 3J3-2= 10.2 Hz, 4J3-1= 2.2 Hz, 2J3cis-3trans= 1.0 Hz, H3 cis), 3.71 (1H, dtq, 
3J1-2= 7.4 Hz, 4J1-3= 1.5 Hz, 3J1-4= 6.6 Hz, H1), 1.10 (3H, dd, 3J4-1= 6.6 Hz, 4J4-2= 1.2 Hz, H4). 
13C-NMR (D2O, 125 MHz) δ [ppm]: 135.9 (C2), 122.4 (C3), 59.7 (C1), 13.9 (C4). 

MS (EI) m/z (%): 87 [M-HCl]+. (7), 72 [C3H6NO]+ (35), 55 [C4H7]+ (60), 41 [C3H5]+ (100), 40 

[C3H4]+ (69), 39 [C3H3]+ (42). 

 

N-(1,1-dimethylallyl)hydroxylamine hydrochloride 225 

NH2
+

OH

Cl
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Molecular formula:    C5H12ClNO [137.61]  

Appearance:     white solid 

Yield:      see Table 7 

Melting point:    60-63oC 

IR (KBr), ~ν  [cm-1]: 3467 (OH br), 3037 (NH valence, br), 2509 (CH), 1635 (NH deformation), 

1448 (CH2), 1426 (N-O), 1382 (CH), 1010 (C-N), 948 (C=CH). 
1H-NMR (DMSO-D6, 500 MHz) δ [ppm]: 10.41 (b, NH2

+), 6.03 (1H, dd, 3J2-3= 17.5 Hz (trans), 
3J2-3= 10.6 Hz (cis), H2), 5.35 (1H, d, 3J3-2= 17.5 Hz, H3 trans), 5.31 (1H, d, 3J3-2= 10.6 Hz, H3 cis), 

1.36 (6H, s, H4, H5). 
13C-NMR (DMSO-D6, 125 MHz) δ [ppm]: 137.2 (C2), 117.5 (C3), 61.6 (C1), 21.08 (C4, C5). 
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MS (EI) m/z (%): 101 [M-HCl]+. (6), 86 [C4H8NO]+ (11), 84 [C5H10N]+ (5), 74 [C3H8NO]+ (8), 69 

[C5H9]+ (53), 46 [C2H8N]+ (15), 41 [C3H5]+ (100), 40 [C3H4]+ (30), 39 [C3H3]+ (25). 

 

Synthesis of 1-chloro-2,2,6,6-tetramethyl-1-nitrosocyclohexane 226 

 

A solution of 6.77 g hydroxylamine hydrochloride (97.4 mmol, 3 eq.) and 8.52 g sodium acetate 

(103.87 mmol, 3.2 eq.) in 120 mL methanol was stirred for 30 min at room temperature. 

2,2,6,6-Tetramethylcyclohexanone (5 g, 32.46 mmol, 1 eq.) was added and the mixture was 

refluxed for 3 days. After completion, the reaction mixture was poured into ice water, the white 

precipitate was filtered off and washed with cold water. Recrystallisation from methanol afforded 

4 g (73%) analytically pure 2,2,6,6-tetramethylcyclohexanone oxime 232 as white crystals. 

 

2,2,6,6-tetramethylcyclohexanone oxime 232 

N
OH

 
Molecular formula:    C10H19NO [169.26] 

Yield:      73% (4 g, white crystals)  [lit.173 57%] 

TLC:      Rf= 0.36 [AcOEt:PE = 1:10] 

Melting point:    154-155oC           [lit.173 148.5oC] 

IR (KBr), ~ν  [cm-1]: 3304 (OH), 2930 (CH3), 2866 (CH2), 1646 (C=N), 1561 (N-O), 1459 (CH3), 

1381 (CH2), 1360 (CH3), 1220 (N-O), 935 (N-O). 
1H-NMR (CDCl3, 500 MHz) δ [ppm]: 8.74 (1H, br, OH), 1.60-1.65 (2H, m, CH2), 1.51-1.56 

(4H, m, 2xCH2), 1.36 (6H, s, 2xCH3), 1.21 (6H, s, 2xCH3). 
13C-NMR (CDCl3, 125 MHz) δ [ppm]: 168.6 (C=N), 40.5 (CH2), 37.9 (C), 37.6 (CH2), 37.0 (C), 

30.5 (2xCH3), 26.7 (2xCH3), 17.4 (CH2). 

MS (EI) m/z (%): 169 [M]+. (10), 154 [M-CH3]+ (12), 152 [M-OH]+ (32), 141 [C8H15NO]+ (7), 

137 [C10H17]+ (10), 126 [C8H14N]+ (8), 100 [C5H10NO]+ (35), 87 [C5H9NO]+ (19), 69 [C5H9]+ (100), 

55 [C4H7]+ (60), 41 [C3H5]+ (63), 27 [HCN]+ (20). 

Elemental analysis (%):   Calcd: C 70.96  H 11.31 N 8.28 

      Found: C 70.93  H 11.12 N 8.21 

 

A solution of 3.1 g tBuOCl (20 mmol, 1.1 eq., 70% w/w in tBuOH) in 30 mL water free 

dichloromethane was added dropwise during 30 min. under nitrogen and protection against light, 
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to a pre-cooled (0°C) solution of 3.05 g 2,2,6,6-tetramethylcyclohexanone oxime 232 

(18 mmol, 1 eq.) in 50 mL water free dichloromethane. After stirring for 1.5 h at 0°C, the 

reaction mixture was warmed-up to room temperature and the solvent was evaporated in vacuo. 

The blue residue was recrystallised from methanol affording 3.23 g (88%) of 226 as blue crystals. 

 

1-chloro-2,2,6,6-tetramethyl-1-nitrosocyclohexane 226 

N

O

Cl

 
Molecular formula:    C12H18ClNO [203.71] 

Yield:      88% (3.23 g, blue crystals) 

TLC:      Rf= 0.64 [AcOEt:PE = 1:10] 

Melting point:     115-117oC 

IR (KBr), ~ν  [cm-1]: 2977 (CH3), 2939 (CH3), 2872 (CH2), 1578 (N=O), 1471 (CH3), 1386 (CH3), 

1370 (CH3), 1202 (CH3), 627 (C-Cl). 
1H-NMR (CD2Cl2, 500 MHz) δ [ppm]: 2.71 (2H, m, CH2), 2.38 (1H, m, 4-CH2), 2.11 (1H, m, 

4-CH2), 1.94 (2H, m, CH2), 1.34 (6H, s, CH3), 0.21 (6H, s, CH3). 
13C-NMR (CD2Cl2, 125 MHz) δ [ppm]: 136.3 (C), 42.1 (2xC), 40.2 (2xCH2), 27.5 (CH3), 25.7 

(CH3), 19.9 (CH2). 

MS (EI) m/z (%): 168 [M-Cl]+. (6), 160 [C9H15
37Cl]+. (4), 158 [C9H15

35Cl]+. (13), 145 [C8H12
37Cl]+ 

(14), 143 [C8H12
35Cl]+ (43), 137 [C10H17]+ (53), 133 [C7H12

37Cl]+ (4), 131 [C7H12
35Cl]+ (13), 123 

[C9H15]+ (25), 107 [C8H11]+ (18), 105 [C8H9]+ (19), 103 [C8H7]+ (53), 97 [C7H13]+ (15), 95 [C7H11]+ 

(37), 91 [C7H7]+ (15), 83 [C6H11]+ (24), 81 [C6H9]+ (38), 79 [C6H7]+ (18), 77 [C6H5]+ (25), 69 

[C5H9]+ (100), 67 [C5H7]+ (37), 57 [C4H9]+ (35), 55 [C4H7]+ (45), 43 [C3H7]+ (25), 41 [C3H5]+ (72). 

Elemental analysis (%):  Calcd: C 58.96  H 8.91  N 6.88  

     Found: C 58.94  H 8.66  N 6.81 

 

Reaction of organozinc reagent 214 with 1-chloro-2,2,6,6-tetramethyl 1-nitrosocyclohexane 226 

in THF 

 

A solution of 0.35 g 1-chloro-2,2,6,6-tetramethyl 1-nitrosocyclohexane 226 (1.71 mmol, 1 eq.) 

10 mL of water free THF was cooled to –78oC and 1.71 mmol (1 eq.) organozinc reagent 214 

dissolved in THF were added dropwise via syringe. The mixture was stirred at -78oC for 1 h, 

allowed to reach 4oC during 2.5 h under TLC and GC monitoring, and then stirred at room 
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temperature for 12 h. The slightly blue solution was quenched with 5 mL satd. NaHCO3 sol. and 

the white precipitate formed was dissolved by adding 10 mL satd. NH4Cl sol. Separation of the 

organic phase, drying over Na2SO4 and evaporation of solvent in vacuo afforded 0.12 g 

O-(1-methylallyl)-2,2,6,6-tetra-methylcyclohexanone oxime 233 (0.53 mmol, 31%). To monitor 

the possible photochemical decomposition a sample of 226 in THF was run in parallel. 

 

Reaction of organozinc reagent 214 with 1-chloro-1-nitroso-2,2,6,6-tetramethylcyclohexane 226 

in toluene 

 

A similar procedure as above was followed, with the exception that a toluene solution of the 

organozinc reagent has been used. O-(1-Methylallyl)-2,2,6,6-tetramethylcyclohexanone oxime 233 

resulted in 28% yield. 

 

O-(1-methylallyl)-2,2,6,6-tetramethylcyclohexanone oxime 233 

1
2

3

4

N
O

 
Molecular formula:    C14H25NO [223.35] 

Appearance:     colorless oil 

TLC:      Rf= 0.62 [PE]  

GC (GC Pr. 2):     tR = 10.6 min 

IR (neat), ~ν  [cm-1]: 3082 (=CH2), 2959 (CH), 2930 (CH2), 2867 (CH3), 1645 (C=N), 1464 (CH2), 

1382 (CH3), 1362 (CH3), 1232 (N-O), 1160 (C-O), 946 (C=CH). 
1H-NMR (CD2Cl2, 500 MHz) δ [ppm]: 5.92 (1H, ddd, 3J2-3= 17.3 Hz (trans), 3J2-3= 10.6 Hz (cis), 

3J2-1= 5.7 Hz, H2), 5.18 (1H, ddd, 3J3-2= 17.3 Hz, 4J3-1= 1.5 Hz, 2J3cis-3trans= 1.4 Hz, H3 trans), 5.07 

(1H, ddd, 3J3-2= 10.6 Hz, 4J3-1= 1.5 Hz, 2J3cis-3trans = 1.4 Hz, H3 cis), 4.51 (1H, dtq, 
3J1-2= 5.7 Hz, 4J1-3= 1.4 Hz, 3J1-4= 6.7 Hz, H1), 1.56-1.6 (2H, m, CH2), 1.47-1.50 (4H, m, CH2), 

1.28 (3H, s, CH3), 1.27 (3H, d, 3J4-1= 6.7 Hz, H4), 1.26 (3H, s, CH3), 1.16 (3H, s, CH3), 1.14 (3H, 

s, CH3). 
13C-NMR (CD2Cl2, 125 MHz) δ [ppm]: 167.1 (C=N), 140.7 (C2), 114.4 (C3), 79.5 (C1), 41.4 

(CH2), 38.5 (CH2), 38.3 (C), 37.1 (C), 31.1 (CH3), 31.1 (CH3), 27.5 (CH3), 27.5 (CH3), 19.9 (C4), 

18.0 (CH2). 
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MS (EI) m/z (%): 223 [M]+. (5), 208 [M-CH3]+ (4), 169 [M-C4H6]+. (18), 152 [C10H18N]+ (25), 100 

[C5H10NO]+ (18), 87 [C5H9NO]+ (8), 69 [C5H9]+ (75), 55 [C4H7]+ (100), 41 [C3H5]+ (30), 29 [C2H5]+ 

(12), 27 [HCN]+ (20). 

Elemental analysis (%):   Calcd: C 75.28  H 11.28 N 6.27 

      Found: C 75.22  H 11.14 N 6.20 

 

 

5.5 Electrophilic Amination of Allyl Organometallic Reagents using 1-Deoxy-

2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 

 

General procedure for the preparation of allyl organomagnesium reagents 244, 245 

 

1.41 g magnesium turnings (58.22 mmol, 3 eq.) were added into a 100 mL two-necked flask. The 

flask was evacuated, filled with nitrogen and 20 mL water free THF were added. The suspension 

was cooled to 0oC, 1.16 mmol 1,2-dibromoethane (0.04 eq., 0.22 g, 0.2 mL) were added dropwise 

and the mixture was stirred for 30 min. The temperature was maintained at 0oC and 19.41 mmol 

allyl bromide 211, respectively 212, (1 eq.) in 10 mL water free THF were added dropwise via 

syringe pump during 5 h. The stirring was continued overnight at 0oC.  The 

dark-brown Grignard solution was titrated using N-phenyl-1-naphtylamine as indicator.183 This 

procedure afforded a 0.1 M solution of 244, respectively 0.3 M solution of 245 in THF. 

 

Reaction of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 with allyl 

magnesium reagents 

 

A solution of 0.5 g 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 

(1.72 mmol, 1 eq.) in 5 mL water free THF was cooled to -78oC, under nitrogen atmosphere and 

2.07 mmol (1.2 eq.) Grignard reagent were added dropwise via syringe. The mixture was left to 

warm up, while the reaction was monitored by TLC. Total conversion of 156 was observed after 

3 h reaction time. The mixture was quenched at -50oC with 2 mL absolute methanol, 10 mL 

tert-butylmethyl ether were added and the solution was washed with 10 mL satd. NH4Cl sol. and 

20 mL brine. Drying over Na2SO4, evaporation of the solvent in vacuo and gradient flash 

chromatography on silica gel (AcOEt:PE = 1:2 and 1:1) of the resulting light-yellow solid 

afforded 2,3:5,6-di-O-isopropylidene-α-D-manno-1,4-lactone 247 as single product. 
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Reaction of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 with 

3,3-dimethylallyltitanium triisopropoxide 246 

 

The solution of 3,3-dimethylallyltitanium triisopropoxide 246 in THF was prepared immediately 

before the reaction with 156, from 1 eq. 3,3-dimethylallylzinc bromide 215 and 1.01 eq. 

commercially available ClTi(OiPr)3. 

3,3-Dimethylallylzinc bromide 215 (2.07 mmol, 0.37 M in THF, 1.2 eq)  was cooled to -78oC and 

0.55 g (2.1 mmol, 1.21 eq.) ClTi(OiPr)3 were added via syringe. The dark-red solution was stirred 

at -78oC for 30 min and then added via canula to a solution of 0.5 g 156 (1.72 mmol, 1 eq) in 10 

mL water free THF. The mixture was left to warm up, while the reaction was monitored by TLC. 

Total conversion of 156 was observed after 4 h reaction time. The mixture was quenched at 

-42oC with 2 mL absolute methanol, 10 mL tert-butylmethyl ether were added and the solution 

was washed with 10 mL satd. NH4Cl sol. and 20 mL brine. Drying over Na2SO4, evaporation of 

the solvent in vacuo and gradient flash chromatography on silica gel (AcOEt:PE = 1:2 and 1:1) of 

the resulting light-yellow solid afforded 0.32 g (1.25 mmol, 73%) 2,3:5,6-di-O-isopropylidene-α- 

D-manno-1,4-lactone 247 as single product. 

 

2,3:5,6-Di-O-isopropylidene-α-D-manno-1,4-lactone 247 
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Molecular formula:     C12H18O6 [258.26] 

Appearance:     white solid 

Melting point:     122-124oC      [lit.184121-122oC] 

TLC:      Rf= 0.44 [AcOEt:PE = 3:2] 

Optical rotation:     [ ]25
Dα =+43 (c = 1.0 in CHCl3) 

  [lit.184 [ ]20
Dα =+49 (c=1.2 in CHCl3)] 

IR (KBr), ~ν  [cm-1]: 3054 (C-H), 2989 (CH3), 1793 (C=O), 1421 (CH2), 1376, 1265, 1218 (C-O-

C), 1186, 1151, 1118, 1070 (C-O-C), 997, 975, 944, 896, 842. 
1H-NMR (CD2Cl2, 250 MHz) δ [ppm]:  4.79-4.86 (2H, m, H2, H3), 4.37-4.40 (2H, m, H5, H4), 

4.05 (2H, m, H6), 1.44 (3H, s, CH3), 1.43 (3H, s, CH3), 1.40 (3H, s, CH3), 1.35 (3H, s, CH3). 
13C-NMR (CD2Cl2, 62.89 MHz) δ [ppm]: 173.7 (C1), 114.6 (C7), 110.0 (C8), 78.7 (C2), 76.5 (C3), 



Experimental Section 

 123

76.3 (C4), 73.1 (C5), 66.7 (C6), 27.0 (CH3), 26.9 (CH3), 25.9 (CH3), 25.2 (CH3). 

MS (ESI) m/z: 281.1 [M+Na]+, 538.7 [2M-H+Na]+. 

Elemental analysis (%):   Calcd: C 55.81  H 7.02 

      Found: C 55.78  H 7.10  

 
General procedure for the reaction of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α- 

D-mannofuranose 156 with 2-butenyl zinc bromide 214 

 

A solution of 0.5 g 156 (1.72 mmol, 1 eq.) in 5 mL water free THF was cooled to the mentioned 

temperature (Chapter 3.4, Table 10) and 1.89 mmol (1.1 eq.) 2-butenyl zinc bromide 214 (THF 

solution) were added via syringe. The reaction mixture was stirred at that temperature (Chapter 

3.4, Table 10, Entries 1, 3-5) or left to warm up (Chapter 3.4, Table 10, Entries 4, 6), while 

monitored by TLC. For the entries 2 and 4 the quenching with 2 mL absolute methanol was 

applied as soon as the formation of lactone 247 was detected by TLC, while for entries 1 and 3 

absolute methanol (2 mL) was added after 4, respectively 12 hours. For the entries 5 and 6 

(Chapter 3.4, Table 10) 5.2 mL solution 0.5 M TFA/DCM (1.5 eq) and respectively, 2.16 mL 

solution 1.3 M AcOH/DCM was used, and the quenching was done as soon as formation of 

lactone 247 has been observed. Further, 10 mL tert-butylmethyl ether was added and the mixture 

was washed with 10 mL satd. NH4Cl sol. and dried over Na2SO4. The purification was done by 

gradient flash chromatography on silica gel (AcOEt:PE = 1:1, AcOEt:PE:EtOH = 20:2:1). 

Nitrone 250 resulted as light yellow oil which solidified upon standing at 0oC. 

 

N-(2,3:5,6-Di-O-isopropylidene-α-D-mannofuranosyl)-1-methyl-2-propenylidene nitrone 250 
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Molecular formula:     C16H25NO6 [327.37] 

Appearance:     colorless vitreous solid 

Optical rotation:    [ ]25
Dα =+23 (c = 1.0 in CHCl3) 

TLC:      Rf= 0.27 [AcOEt:PE:EtOH = 20:2:1] 

IR (KBr), ~ν  [cm-1]: 2987 (CH), 2938 (CH), 1521 (C=N+), 1456 (CH), 1373, 1261, 1209, 1161, 

1114, 1066, 847, 755. 
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1H-NMR (CD2Cl2, 500 MHz) δ [ppm]: 

(Z)–Isomer: 6.86 (1H, dd, 3Jtrans = 16.9 Hz, 3Jcis = 11.3 Hz, CH=CH2), 6.05 (1H, s, CH-N), 5.60 

(1H, d, 3Jtrans= 16.9 Hz, CH=CH2-trans), 5.47 (1H, d, 3Jcis= 11.3 Hz, CH=CH2-cis), 5.29 (1H, d, 
3J2-3= 6.2 Hz, H2), 5.05 (1H, dd, 3J2-3= 6 Hz, 3J3-4= 4.1 Hz, H3), 4.62 (1H, dd, 3J3-4= 4.3 Hz, 
3J4-5= 7.5 Hz, H4), 4.01-4.09 (3H, m, H5, H6), 2.14 (3H, s, N=C-CH3), 1.47 (3H, s, CH3), 1.38 

(3H, s, CH3), 1.33 (3H, s, CH3), 1.32 (3H, s, CH3). 

(E)–Isomer: 7.23 (1H, dd, 3Jtrans= 17.7 Hz, 3Jcis= 11.5 Hz, CH=CH2), 5.88 (1H, s, CH-N), 5.81 

(1H, d, 3Jtrans= 18.2 Hz, CH=CH2-trans), 5.70 (1H, d, 3Jcis= 11.9 Hz, CH=CH2-cis), 5.33 (1H, d, 
3J2-3= 5.9 Hz, H2), 5.11 (1H, dd, 3J2-3= 5.9 Hz, 3J3-4= 3.5 Hz, H3), 4.66 (1H, dd, 3J3-4= 4 Hz, 
3J4-5= 7.8 Hz, H4), 4.31-4.39 (3H, m, H5, H6), 2.20 (3H, s, N=C-CH3), 1.48 (3H, s, CH3), 1.39 

(3H, s, CH3), 1.34 (3H, s, CH3), 1.32 (3H, s, CH3). 
13C-NMR (CD2Cl2, 125 MHz) δ [ppm]: 

(Z)–Isomer: 147.3 (C=N), 127.1 (=CH2), 120.6 (CH=), 112.7 (C7), 109.3 (C8), 95.6 (C1), 85.7 

(C2), 84.0 (C3), 80.8 (C4), 73.2 (C5), 66.6 (C6), 26.7 (CH3), 25.8 (CH3), 25.2 (CH3), 24.1 (CH3), 12.9 

(=C-CH3). 

(E)–Isomer: 146.8 (C=N), 128.6 (=CH2), 123.8 (CH=), 112.1 (C7), 109.1 (C8), 96.9 (C1), 85.5 

(C2), 84.1 (C3), 80.5 (C4), 73.6 (C5), 66.7 (C6), 26.8 (CH3), 26.0 (CH3), 25.2 (CH3), 24.4 (CH3), 13.4 

(=C-CH3). 

MS (ESI) m/z: 350.11 [M+Na]+, 366.11 [M+K]+, 625.22, 677.17 [2M+Na]+. 

 
 
Reaction of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 with 

3,3-dimethylallyl zinc bromide 215 in THF 

 

A solution of 0.5 g 156 (1.72 mmol, 1 eq.) in 10 mL water free THF was cooled to -35oC and 

2.59 mmol 215 (0.37 M in THF, 1.5 eq.) were added dropwise, via syringe. The mixture was left 

to warm up to 0oC during 3 h, while monitored by TLC, then stirred at 0oC for 20 h and 

quenched with 5 mL methanol. The solvent was evaporated in vacuo and the resulting light yellow 

foam was dissolved in chloroform and hydrolysed with 20 mL 1M HCl. From the organic phase 

0.24 g 156 (48%) was recovered by flash chromatograpy on silica gel (AcOEt:PE = 1:2 and 3:2). 

65 mg hydroxylamine hydrochloride 225 (0.47 mmol, 27%) resulted after lyophilization of the 

aqueous phase.  
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Reaction of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 with 

3,3-dimethylallyl zinc bromide 215 in THF and in the presence of BF3·OEt2 

 

A solution of 0.51 g 156 (1.76 mmol, 1 eq.) in 10 mL water free THF was cooled to -55oC and a 

solution of BF3·OEt2 (0.25 mL, 1.94 mmol, 1.1 eq.) was added dropwise via syringe followed by 

the addition of 3.52 mmol 215 (0.49 M in THF, 2 eq.). The light yellow solution was stirred for 

12 h at -55oC, then 5 h from -30 to -20oC. TLC monitoring showed only unreacted 156. Stirring 

was continued at -20oC for 1 h and then the mixture was warmed up to 0oC and stirred for 16 h, 

while monitored by TLC. The mixture was quenched with 1 mL absolute methanol, washed with 

10 mL satd. NH4Cl sol. and worked up as above. 0.41 g 156 (80%) was recovered and 21 mg 

hydroxylamine hydrochloride 225 (0.15 mmol, 8%) resulted as white powder. 

 

Preparation of 3,3-dimethylallyl zinc bromide 215 solution in dichloromethane 

 

The solution of 3,3-dimethylallyl zinc bromide 215 in dichloromethane was prepared from its 

THF solution by evaporation of THF in vacuo at 0oC, followed by the addition of water free 

dichloromethane under nitrogen atmosphere. After stirring the dichloromethane solution of 215 

at 0oC for 12 h, GC analysis of an aliquot using iodine method171 showed a practically negligible 

decrease of concentration (less then 5%). 

 

Reaction of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 with 

3,3-dimethylallyl zinc bromide 215 in dichloromethane 

 

A solution of 0.5 g 156 (1.72 mmol, 1 eq.) in 5 mL water free dichloromethane was cooled to 

-78oC and 2.07 mmol 215 (0.35 M in dichloromethane, 1.2 eq.) was added dropwise via syringe. 

The light yellow solution was left to reach -10oC during 20 h, while monitored by TLC. The 

mixture was quenched with 1 mL absolute methanol and worked up as above. Hydroxylamine 

hydrochloride 225 (26 mg, 0.19 mmol, 11%) resulted as white powder. From the organic phase 

0.43 g lactone 247 were isolated by evaporation of the solvent. 

 

Reaction of 1-deoxy-2,3:5,6-di-O-isopropylidene-1-nitro-α-D-mannofuranose 156 with 

3,3-dimethylallyl zinc bromide 215 in dichloromethane and in the presence of BF3·OEt2 

 

A solution of 0.5 g 156 (1.72 mmol, 1 eq.) in 5 mL water free dichloromethane was cooled to 

-78oC and a solution of BF3·OEt2 (0.24 mL, 1.94 mmol, 1.1 eq.) was added dropwise, via syringe. 
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The colorless solution was stirred at -78oC for 10 min and 2.07 mmol 215 (0.35 M in 

dichloromethane, 1.2 eq.) was added dropwise via syringe. The light yellow solution was stirred 

for 4 h at -70oC, while monitored by TLC, and then left to reach -10oC during 14 h. The mixture 

was quenched at -10oC with methanol, warmed up to room temperature and washed with 10 mL 

NH4Cl satd. sol. The solvent was evaporated in vacuo and the resulted light yellow foam was 

dissolved in chloroform and hydrolyzed with 20 mL 1M HCl. Hydroxylamine hydrochloride 225 

(35 mg, 0.26 mmol, 15%) resulting after lyophilization of the aqueous phase. Evaporation of the 

organic phase furnished 0.41 g lactone 247. 
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6. Appendix 

 

X-Ray Diffraction Analysis of (+)-N,N-Dicyclohexyl-(2-chloro-2-nitrosocamphor-10-

sulfonamide) 74 

 

Table 12.  Crystal data and structure refinement.  

     

Measurement device   Nonius KappaCCD  

Empirical formula   C22 H37 Cl N2 O3 S  92% 

     C22 H37 Cl N2 O4 S   8% impurity 

Formula weight   446.37  

Temperature    100(2) K  

Wavelength    0.71073 Å  

Crystal system, space group  Orthorhombic, P 21 21 21  

Unit cell dimensions   a = 8.9650(4) Å   alpha = 90.000(4) deg.  

b = 15.8530(7) Å    beta = 90.000(4) deg.  

c = 16.2330(8) Å   gamma = 90.000(4) deg.  

Volume    2307.07(18) Å3  

Z, Calculated density   4,  1.285 Mg/m3  

Absorption coefficient   0.282 mm-1  

F(000)     963  

Crystal size, colour and habit  0.30 x 0.29 x 0.28 mm3, blue cuboid  

Theta range for data collection  3.39 to 30.00 deg.  

Index ranges    -12<=h<=12, -22<=k<=22, -22<=l<=22  

Reflections collected / unique  6710 / 6710 [R(int) = 0.0000]  

Completeness to theta = 30.00  99.6%  

Absorption correction   multi-scan 

Max. and min. transmission  0.9253 and 0.9202  

Refinement method   Full-matrix least-squares on F^2  

Data / restraints / parameters  6710 / 2 / 321  

Goodness-of-fit on F2   1.023 

Final R indices [I>2sigma(I)]  R1 = 0.0459, wR2 = 0.1182 [5855]  

R indices (all data)   R1 = 0.0556, wR2 = 0.1259  

Absolute structure parameter  -0.04(6)  

Largest diff. peak and hole  0.505 and -0.260 eÅ-3 
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Remarks  Disorder:  C(1)-C(6):C(1A)-C(6A) 83:17% 

     C(7)-C(12):C(7A)-C(12A) 84:16% 

    Cl(1):Cl(1A),O(4) 92:8% 

 

Table 13. Atomic coordinates (x104) and equivalent isotropic displacement parameters 

(Å2x103). U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor. 

 x y z U(eq)

S(1)  1004(1) 4760(1) 8700(1) 29(1) 

Cl(1) -1315(1) 2648(1) 9438(1) 40(1)

Cl(1A) -227(12) 2110(6) 9600(6) 62(3)

O(4) -1680(3) 2370(7) 9020(5) 310(6)

N(1)  1672(2) 5185(1) 9524(1) 29(1) 

N(2) -2232(2) 3429(1) 8052(2) 49(1) 

O(1)  1843(2) 5089(1) 8015(1) 41(1) 

O(2)   -571(2) 4850(1) 8699(1) 45(1) 

O(3) -3250(2) 3557(1) 8515(1) 62(1) 

C(1)  3213(3) 5488(2) 9639(2) 28(1) 

C(2)  3581(3) 6282(2) 9148(2) 32(1) 

C(3)  5166(7) 6610(4) 9379(4) 39(1) 

C(4)  6319(3) 5921(2) 9275(2) 40(1) 

C(5)  5940(3) 5127(2) 9763(2) 35(1) 

C(6)  4389(3) 4808(2) 9512(3) 33(1) 

C(1A) 3314(17) 5412(9) 9354(10) 28(4)

C(2A) 3443(15) 6362(8) 9529(11) 33(3)

C(3A)   4890(3) 6600(2) 9330(2) 35(6) 

C(4A) 6251(17) 6141(9) 9733(10) 44(4)

C(5A) 6005(19) 5294(10) 9522(11) 34(4)

C(6A)  4480(2) 4890(12) 9763(11) 33(5)

C(7)    810(8) 5149(4) 10313(3) 45(2)

C(8)  1417(3) 4569(2) 10952(2) 34(1)

C(9)    305(6) 4495(4) 11683(3) 41(1)

C(10)    -121(4) 5349(2) 12015(2) 50(1)

C(11)    -742(6) 5929(3) 11348(3) 47(1)

C(12)     316(5) 5996(3) 10614(2) 36(1)
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C(7A)   658(19) 5077(11) 10223(12) 4(2)

C(8A)   712(16) 4353(8) 10732(7) 27(3)

C(9A)     490(3) 4486(16) 11552(15) 29(5)

C(10A)  -885(19) 5161(9) 11731(9) 39(3)

C(11A)    -330(3) 5987(18) 11324(19) 44(6)

C(12A)       50(2) 5860(13) 10474(13) 29(5)

C(13)   1394(2) 3652(1) 8750(1) 31(1) 

C(14)    551(2) 3108(1) 8132(1) 31(1) 

C(15)    458(3) 3476(2) 7240(1) 42(1) 

C(16)    125(4) 2695(2) 6700(1) 50(1) 

C(17)    129(3) 1970(1) 7320(1) 41(1) 

C(18) -1280(3) 2015(2) 7832(2) 46(1) 

C(19) -1043(3) 2827(1) 8365(1) 37(1) 

C(20) 1 349(3) 2237(1) 7941(1) 38(1) 

C(21)  1507(3) 1626(2) 8671(1) 44(1) 

C(22)  2899(3) 2330(2) 7563(2) 50(1) 

 

Table 14. Bond lengths [Å] and angles [deg].  

_______________________________________ 

S(1)-O(2)    1.4191(16)  

S(1)-O(1)    1.4400(16)  

S(1)-N(1)    1.6134(16)  

S(1)-C(13)    1.7922(19)  

Cl(1)-C(19)        1.781(2)  

Cl(1A)-O(4)          1.66(2)  

O(4)-C(19)          1.41(2)  

N(1)-C(7A)      1.463(18)  

N(1)-C(1)        1.474(3)  

N(1)-C(7)        1.497(6)  

N(1)-C(1A)      1.541(15)  

N(2)-O(3)        1.200(3)  

N(2)-C(19)        1.519(3)  

C(1)-C(6)        1.522(4)  

C(1)-C(2)        1.527(4)  

C(2)-C(3)        1.559(7)  

C(3)-C(4)        1.513(8)  
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C(4)-C(5)    1.525(5)  

C(5)-C(6)    1.534(4)  

C(1A)-C(6A)      1.49(2)  

C(1A)-C(2A)      1.54(2)  

C(2A)-C(3A)      1.40(3)  

C(3A)-C(4A)      1.57(4)  

C(4A)-C(5A)      1.40(2)  

C(5A)-C(6A)      1.56(3)  

C(7)-C(8)    1.488(7)  

C(7)-C(12)    1.496(7)  

C(8)-C(9)    1.555(5)  

C(9)-C(10)    1.506(7)  

C(10)-C(11)    1.526(6)  

C(11)-C(12)    1.526(5)  

C(7A)-C(8A)      1.42(2)  

C(7A)-C(12A)      1.42(3)  

C(8A)-C(9A)      1.36(3)  

C(9A)-C(10A)      1.66(3)  

C(10A)-C(11A)      1.55(3)  

C(11A)-C(12A)      1.43(4)  

C(13)-C(14)    1.523(3)  

C(14)-C(19)     1.544(3)  

C(14)-C(15)    1.563(3)  

C(14)-C(20)    1.586(3)  

C(15)-C(16)    1.546(3)  

C(16)-C(17)    1.527(3)  

C(17)-C(18)    1.514(4)  

C(17)-C(20)    1.546(3)  

C(18)-C(19)    1.566(3)  

C(20)-C(22)    1.526(3)  

C(20)-C(21)    1.537(3)  

O(2)-S(1)-O(1)           118.81(11)  

O(2)-S(1)-N(1)           109.13(10)  

O(1)-S(1)-N(1)             107.16(9)  

O(2)-S(1)-C(13)          107.01(10)  

O(1)-S(1)-C(13)          106.76(10)  
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N(1)-S(1)-C(13)     107.47(9)  

C(19)-O(4)-Cl(1A)     103.5(15)  

C(7A)-N(1)-C(1)       121.5(8)  

C(7A)-N(1)-C(7)           8.8(9)  

C(1)-N(1)-C(7)        112.8(3)  

C(7A)-N(1)-C(1A)     139.5(10)  

C(1)-N(1)-C(1A)         18.4(5)  

C(7)-N(1)-C(1A)       131.0(7)  

C(7A)-N(1)-S(1)       111.3(8)  

C(1)-N(1)-S(1)    126.06(19)  

C(7)-N(1)-S(1)        120.1(3)  

C(1A)-N(1)-S(1)       107.7(6)  

O(3)-N(2)-C(19)       115.5(2)  

N(1)-C(1)-C(6)        113.7(2)  

N(1)-C(1)-C(2)        113.8(2)  

C(6)-C(1)-C(2)        111.3(3)  

C(1)-C(2)-C(3)        110.2(3)  

C(4)-C(3)-C(2)        110.8(4)  

C(3)-C(4)-C(5)        112.7(3)  

C(4)-C(5)-C(6)        109.6(3)  

C(1)-C(6)-C(5)        111.0(3)  

C(6A)-C(1A)-C(2A)     114.1(14)  

C(6A)-C(1A)-N(1)     117.6(12)  

C(2A)-C(1A)-N(1)     105.5(11)  

C(3A)-C(2A)-C(1A)     107.2(19)  

C(2A)-C(3A)-C(4A)          120(2)  

C(5A)-C(4A)-C(3A)     103.0(18)  

C(4A)-C(5A)-C(6A)      118.1(15)  

C(1A)-C(6A)-C(5A)     106.0(15)  

C(8)-C(7)-C(12)       115.8(4)  

C(8)-C(7)-N(1)        115.5(4)  

C(12)-C(7)-N(1)       113.5(4)  

C(7)-C(8)-C(9)        110.1(4)  

C(10)-C(9)-C(8)       111.6(3)  

C(9)-C(10)-C(11)       112.4(3)  

C(10)-C(11)-C(12)       111.7(3)  
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C(7)-C(12)-C(11)     112.1(4)  

C(8A)-C(7A)-C(12A)   123.7(16)  

C(8A)-C(7A)-N(1)   121.8(13)  

C(12A)-C(7A)-N(1)   111.2(15)  

C(9A)-C(8A)-C(7A)   116.2(16)  

C(8A)-C(9A)-C(10A)   112.2(18)  

C(11A)-C(10A)-C(9A)   103.2(17)  

C(12A)-C(11A)-C(10A)       112(2)  

C(7A)-C(12A)-C(11A)        119(2)  

C(14)-C(13)-S(1)             115.34(13)  

C(13)-C(14)-C(19)             117.47(17)  

C(13)-C(14)-C(15)                              115.21(17)  

C(19)-C(14)-C(15)                              106.55(17)  

C(13)-C(14)-C(20)                              113.47(17)  

C(19)-C(14)-C(20)                              102.32(16)  

C(15)-C(14)-C(20)              99.62(16)  

C(16)-C(15)-C(14)                      103.70(17)  

C(17)-C(16)-C(15)                      103.25(17)  

C(18)-C(17)-C(16)                          108.9(2)  

C(18)-C(17)-C(20)                      102.70(17)  

C(16)-C(17)-C(20)                      102.98(19)  

C(17)-C(18)-C(19)                      103.20(19)  

O(4)-C(19)-N(2)                    107(3)  

O(4)-C(19)-C(14)                         135.3(10)  

N(2)-C(19)-C(14)                       112.71(18)  

O(4)-C(19)-C(18)                      86(5)  

N(2)-C(19)-C(18)                       103.67(18)  

C(14)-C(19)-C(18)                      103.20(18)  

O(4)-C(19)-Cl(1)                     29(5)  

N(2)-C(19)-Cl(1)                       109.31(16)  

C(14)-C(19)-Cl(1)                      114.36(14)  

C(18)-C(19)-Cl(1)                      113.02(16)  

C(22)-C(20)-C(21)                          106.7(2)  

C(22)-C(20)-C(17)                      114.12(19)  

C(21)-C(20)-C(17)                      113.26(19)  

C(22)-C(20)-C(14)                      113.92(18)  
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C(21)-C(20)-C(14)               116.04(17)  

C(17)-C(20)-C(14)                   92.72(17)  
___________________________________ 
   

Symmetry transformations used to generate equivalent atoms:  

             

Table 15. Anisotropic displacement parameters (Å2x103). 

 

The anisotropic displacement factor exponent takes the form: 

-2π2[ h2a*2U11 + ... + 2hka*b*U12]  

 

 U11 U22  U33 U23 U13 U12

S(1) 31(1)  28(1) 28(1) -1(1) -5(1)  3(1)

Cl(1)  40(1)  44(1) 34(1) -2(1) 7(1)  -4(1)

N(1)  26(1)  33(1) 27(1) 0(1) 0(1)  -5(1)

N(2)  38(1)  50(1) 60(1) -9(1) -16(1) 3(1)

O(1) 63(1) 34(1) 27(1) 1(1) 3(1) 2(1)

O(2)  30(1)  46(1) 60(1) -13(1) -13(1) 6(1)

O(3)      36(1)  67(1)  83(1)  -12(1)  -6(1)  6(1)

C(1)      26(1)  30(1)  28(1)  0(1)  2(1)  -5(1)

C(2)      36(1)  27(1)  34(2)  1(1)  4(1)  -4(1)

C(3)      37(3)  37(2)  4 3(2)  -5(1)  6(2)  -20(2)

C(4)      31(1)  45(2)  44(2)  -3(1)  6(1)  -11(1)

C(5)      29(1)  38(2)  38(2)  6(1)  -5(1)  -3(1)

C(6)      27(1)  34(1)  37(2)  4(1)  -1(1)  -3(1)

C(7)      57(3)  47(2)  31(2)  -5(2)  3(2)  -2(2)

C(8)      34(1)  37(1)  32(1)  3(1)  -2(1)  -5(1)

C(9)      34(2)  58(2)  32(2)  9(2)  10(1)  -9(1)

C(10)     44(2)  72(2)  33(1)  6(1)  13(1)  9(2)

C(11)     44(2)  62(2)  34(2)  -1(1)  12(2)  14(2)

C(12)     35(2)  40(2)  33(2)  -1(1)  3(1)  5(1)

C(13)     36(1)  27(1)  29(1)  2(1)  -5(1)  2(1)

C(14)     39(1)  29(1)  24(1)  1(1)  -4(1)  -2(1)

C(15)     59(2)  40(1)  26(1)  4(1)  -6(1)  0(1)

C(16)     71(2)  48(1)  32(1)  -2(1)  -9(1)  -4(1)

C(17)     57(1)  37(1)  31(1)  -8(1)  1(1)  -6(1)



Appendix 

 134

C(18)     51(1)  43(1)  43(1)  -10(1)  -3(1)  -9(1)

C(19)     37(1)  40(1)  35(1)  -2(1)  -4(1)  -1(1)

C(20)     45(1)  35(1)  33(1)  -5(1)  3(1)  2(1)

C(21)     55(1)  37(1)  40(1)  4(1)  3(1)  10(1)

C(22)     54(2)  47(1)  50(1)  -5(1)  14(1)  8(1)

   

Table 16.  Hydrogen coordinates (x104) and isotropic displacement parameters (Å2x103).   

   

  x y  z U(eq) 

H(1A)         3288 5654 10232 34 

H(2A)         2831 6725 9267 39 

H(2B)          3542 6155 8551 39 

H(3A)         5427 7095 9023 47 

H(3B)          5165 6806 9958 47 

H(4A)         7302 6136 9457 48 

H(4B)          6398 5775 8684 48 

H(5A)         5953 5254 10360  42 

H(5B)          6695 4686 9653 42 

H(6A)         4405 4638 8925 39 

H(6B)          4131 4305 9844 39 

H(1B)          3466 5342 8748 34 

H(2C)          2714 6680 9192 39 

H(2D)         3241 6478 10118 39 

H(3A1)        4991 7212 9458 42 

H(3A2)        5002 6548 8723 42 

H(4C)          7208 6347 9505 53 

H(4D)         6254 6218 10338 53 

H(5A1)        6806  4954 9778 40 

H(5A2)        6121 5242 8918  40 

H(6C)          4434 4299 9568  40 

H(6D)         4351  4896  10368  40 

H(7A)         -146  4872  10147  54 

H(8A)         2385  4787  11154  41 

H(8B)         1588  4005  10708  41 

H(9A)         -604  4196  11496  49 
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H(9B)          766  4157  12128  49 

H(10A)        767  5616  12266  60 

H(10B)        -880  5277 12452  60 

H(11A)       -908  6497  11583  56 

H(11B)       -1717  5709  11158  56 

H(12A)        -192  6299  10161  43 

H(12B)        1202  6330  10776  43 

H(7B)         -223  4893  9890  4 

H(8C)          -54  3950  10537  33 

H(8D)         1697  4081  10658  33 

H(9C)         1425  4708  11798  34 

H(9D)         263  3942  11822  34 

H(10C)      -1827  4967  11476  47 

H(10D)       -1045  5239  12330  47 

H(11C)       -1110  6424  11366  53 

H(11D)       566  6193  11623  53 

H(12C)        -871  5955  10148  34 

H(12D)       764  6307  10316  34 

H(13A)        2477  3568  8663  37 

H(13B)        1155  3450  9312  37 

H(15A)        -352  3898 7196 50 

H(15B)        1412  3743  7078  50 

H(16A)        -857  2747  6426  60 

H(16B)        906  2615  6276  60 

H(17A)        307  1405  7065  50 

H(18A)       -1388  1508  8184  55 

H(18B)      -2174  2069  7477  55 

H(21A)        2011  1111  8487  66 

H(21B)        515  1484  8883  66 

H(21C)        2094  1894  9107  66 

H(22A)        3324  1770  7463  75 

H(22B)        3544  2642  7943  75 

H(22C)        2825  2637  7041  75 
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