
Universität Bielefeld

Technische Fakultät
Center for Biotechnology (CeBiTec)

Clustering Biological Data by Unraveling
Hidden Transitive Substructures

Zur Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften an der Technischen Fakultät der

Universität Bielefeld vorgelegte Dissertation
von

Tobias Wittkop

January 25, 2010

Supervisors: Prof. Dr. Sven Rahmann
Prof. Dr. Jens Stoye

Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706.

2

Summary

Clustering is a computational technique for the assignment of objects into groups of
similar elements. Generally, it is widely used for business data interpretation, natural
language analyses, and image processing, just to name a few. Typical bioinformatic
applications are: (1) detection of homologous proteins; single and multi domain, (2)
prediction of protein complexes in protein-protein interaction networks, (3) identifi-
cation of overrepresented DNA sequence patterns, and (4) gene co-expression studies.
Traditionally, we distinguish between partitional, overlapping, and hierarchical ap-

proaches. Partitional and overlapping approaches follow two different strategies: (1)
center-based approaches for the detection of appropriate cluster representatives, such
as k-means and (2) methods for the identification of homogeneous clusters, such as
Markov Clustering. Hierarchical approaches allow for the construction of a tree struc-
ture; single linkage agglomerative clustering may serve as an example here.
Solving the following problems is crucial for a successful cluster analysis: (1) Proba-

bly most challenging is the identification of a problem-specific similarity function. (2)
Every clustering approach incorporates at least one parameter that influences the size
and number of the clusters. Determining such a density parameter strongly depends
on the problem and the chosen similarity function. Preferably, one can even prove
certain attributes of a clustering result, given a similarity function and the density
parameter. (3) Currently, high throughput experiments produce huge amounts of
data. Hence, a clustering environment has to be capable of processing hundreds of
thousands of data objects. (4) The integration of existing knowledge into a cluster
analysis is highly valuable for improving the clustering output. The integration of
known assignments may serve as an example here. (5) It is clear that the method
needs to be robust against noise and outliers. (6) From an end-user’s point of view,
integration with standard software, appropriate visualization capabilities, and easy-
to-use evaluation methods are highly beneficial.
This thesis introduces Transitivity Clustering (TC) and its accompanying software

framework TransClust, a method which addresses all of the aforementioned prob-
lems. It is a homogeneous partitioning method based on Weighted Transitive Graph
Projection (WTGP), which aims for unraveling hidden transitive substructures in a
given similarity graph deduced from a pairwise similarity measure. TC solves the
aforementioned problems (2-5). The software implementation TransClust is an easy-
to-use standalone and online application that solves the problems mentioned in (1,6).
Furthermore, in TC, the density parameter can be chosen intuitively and the underly-
ing weighted transitive graph projection model allows certain criteria of the clustering
results to be proven. In addition, the model has been extended in order to allow
for the following advanced features: (1) The integration of existing knowledge, for

4

instance, by means of upper and lower bounds, (2) the computation of an hierarchi-
cal clustering, and (3) the calculation of overlapping clusterings. These extensions
widen the applicability of TC and provide features that distinguish TC from other
bioinformatics alternatives.
The flexibility of TC makes it suitable for various real-world applications. In this

work, we concentrate on protein sequence clustering and the detection of protein
complexes in protein-protein interaction networks, showing that TC outperforms the
most-commonly used bioinformatics clustering techniques.
The software implementation of TC, TransClust, is available online at http://

transclust.cebitec.uni-bielefeld.de as web application, as standalone tool, and
as plugin for the standard network analysis tool Cytoscape. It provides results of sim-
ilar or superior accuracy to those of alternative approaches. It is unique in that it
features an easy-to-use clustering environment that contributes to all the important
steps in a cluster analysis: (1) the choice and evaluation of a meaningful similarity
function, (2) the detection of an appropriate density parameter, (3) the efficient com-
putation of a clustering, and (4) the interpretation and evaluation of the clustering
results.

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Applications . 11
1.3 Structure of the thesis . 12
1.4 Availability . 13

2 Background and related work 15
2.1 Definitions and notations . 15
2.2 Protein sequence similarity . 16

2.2.1 BLAST . 16
2.2.2 Similarity functions for sequence clustering 16

2.3 Clustering . 18
2.3.1 Quality measures between two clusterings 18

2.4 Clustering algorithms . 21
2.4.1 Hierarchical Clustering . 22
2.4.2 K-means . 22
2.4.3 Markov Clustering . 23
2.4.4 Spectral Clustering . 24
2.4.5 Restricted Neighborhood Search Clustering 25
2.4.6 GeneRAGE . 26
2.4.7 Affinity Propagation . 27
2.4.8 Summary . 29

3 Transitivity Clustering 33
3.1 Transitive graph projection . 34
3.2 Data partitioning by using weighted transitive graph projection 36
3.3 Extensions . 38

3.3.1 Upper and lower bounds . 38
3.3.2 Building hierarchies . 40
3.3.3 Identification of overlaps . 45

3.4 Algorithms solving the WTGPP . 47
3.4.1 Fixed parameter branch and bound strategy 47
3.4.2 FORCE . 48
3.4.3 A greedy approach . 48
3.4.4 Integer Linear Programming 49
3.4.5 Cluster Affinity Search Technique 49

6 Contents

4 The Transitivity Clustering framework TransClust 51
4.1 Data import . 52
4.2 Clustering methods . 53

4.2.1 Layout-based heuristic . 55
4.2.2 Integration of the CAST algorithm 60
4.2.3 Integration of the exact fixed parameter approach 61
4.2.4 Post-processing . 62
4.2.5 Extensions and integration of existing knowledge 64
4.2.6 Threshold determination and supporting analyses 64

4.3 Availability . 65
4.3.1 Standalone application . 65
4.3.2 Cytoscape plugin . 67
4.3.3 Web application . 69

4.4 Evaluation of the integrated TransClust framework 70
4.4.1 Data . 70
4.4.2 Optimizing the combination of methods in TransClust 71
4.4.3 Influence of post-processing on accuracy 71
4.4.4 Comparison against exact solution 73

5 Evaluations of the Transitivity Clustering model 77
5.1 Single-domain protein sequence clustering 78

5.1.1 Data . 78
5.1.2 Evaluation method . 79
5.1.3 Results . 79

5.2 Protein sequence clustering . 82
5.2.1 Data . 82
5.2.2 Comparison to different clustering methods 83
5.2.3 Example threshold determination 83
5.2.4 Integration of additional knowledge 85

5.3 Clustering protein-protein interaction networks 87
5.3.1 Data . 87
5.3.2 Robustness analysis . 88
5.3.3 Evaluation on experimental data 90
5.3.4 Finding overlaps with Transitivity Clustering 93

6 Integrated applications 95
6.1 MoRAine . 95

6.1.1 Transcription factor binding site annotation - A difficult and
error-prone task . 95

6.1.2 Methods . 96
6.1.3 Results and discussion . 97

6.2 CoryneRegNet . 101
6.2.1 Integration of Transitivity Clustering with CoryneRegNet . . . 102
6.2.2 Inter-species transfer of gene regulatory networks 103

Contents 7

7 Discussion 105
7.1 Transitivity Clustering and TransClust 105
7.2 Computational biology applications . 107
7.3 Integration in bioinformatics tools . 108
7.4 Future directions . 108

8 Conclusion 111

Bibliography 112

A Publications & cooperations 129

B TransClust data formats 131

C MoRAine 1.0 135

D Supplementary figures and tables 137

8 Contents

1 Introduction

1.1 Motivation
Clustering is one of the most widely used methods in computational biology [4]. It
describes the assignments of objects into groups that share common traits. Thereby, a
huge amount of data is combined in order to provide the data analyst with a compact
overview of the data sets to be investigated. One popular example in the life sciences
is the grouping of proteins into families and superfamilies. Usually, a similarity or
distance measure between the objects of interest is necessary. Generally it is desired
to construct groups, where objects of the same cluster show higher similarity to each
other than to objects from different clusters.
There are three different kinds of clustering:

Partitional clustering: Each object is assigned to exactly one group.

Overlapping clustering: Objects can be assigned to multiple groups.

Hierarchical clustering: For each two clusters, either one is a complete subset of the
other or they are disjoint. Hence, the results may be represented as a tree.

Most current approaches are limited to one of these three types. Hence, one has
to decide in advance for the desired type of clustering. As a consequence, different
clustering models are difficult to compare since they follow different strategies and
optimize a different objective function. If it is not known in advance, which clustering
type is best suited for the given problem, a flexible clustering model that can be
used for any of the three types of clustering would be beneficial. It would allow for
comparing the results of the three kinds instead of comparing completely different
approaches.
All clustering approaches share common problems and requirements. Crucial parts

of any cluster analysis are:

Similarity function: The similarity function is highly problem-specific and is probably
most influential for the clustering result. The detection of an appropriate sim-
ilarity function is hence the first step in each cluster analysis. Many clustering
methods skip this step and assume a similarity measure is given.

Density parameter: Every partitional clustering method needs at least one parameter
that influences the size and the number of the resulting clusters. The number
of clusters K in the widely used K-means approach may serve as an example
for such a density parameter. The choice of an optimal value for this parameter

10 Chapter 1: Introduction

is challenging. It demands either a parameter that can be chosen intuitively or
specialized methods for its detection. Additionally, a clustering model where at-
tributes of the resulting clusters are provably connected to the density parameter
is preferable, since it eases results interpretation.

Runtime and space efficiency: Clustering tasks, especially in computational biology,
can become very complex. The detection of groups of similar protein sequences,
for instance, means clustering of hundreds of thousands of sequences. In order
to handle such huge amounts of data, a clustering methods has to be runtime
and space efficient. It should further be capable of taking advantage of sparse
data, as this might improve the running time enormously.

Robustness against outliers and noise: Similarities are often derived from experi-
ments or heuristic approaches, and thus may not reflect reality perfectly. Single
outliers, for instance due to miscalculated similarities, should not have a high
influence on the clustering result. Furthermore, a clustering approach should
still be able to produce meaningful results even for noisy data.

Clustering has been used in computer science for a long time. Consequently, var-
ious different approaches were developed over the years. Most of them are designed
for a specific application. Hence, the corresponding similarity function and density
parameter were optimized application-specifically. Non-application-specific methods
require techniques to evaluate a similarity function and to detect a reasonable den-
sity parameter. These difficulties are usually neglected and left to the end-user. The
density parameter is particularly hard to specify and most methods help only little or
not at all with this task.
Further highly valuable aspects, considered only partially by most approaches, are:

Interpretable results: A clustering result with unclear relation to the similarities of
the objects is hard to interpret. One would have to understand the whole clus-
tering process of the used method to get an impression about how the clus-
ters emerged and what the cluster assignment actually means. Preferably, a
clustering model guarantees certain attributes of the clustering output. These
attributes are ideally coupled directly to the given similarity function and the
density parameter, allowing the end-user to intuitively judge the changes in the
output when altering the input parameters.

Integration of existing knowledge: Clustering is generally considered as unsuper-
vised learning. However, it might be important to include additional informa-
tion. If it is known that two objects have to be in one cluster or conversely, that
two objects must not be assigned to the same group, the clustering model should
consider this to avoid false assignments and to improve the clustering quality.
Generally, a clustering method should be able to benefit from the experience
and knowledge of its user with the specific application case.

1.2: Applications 11

Integration with standard software: Clustering is often only one step in a data anal-
ysis. All other parts require additional methods and software. For many appli-
cations, standard software exists. Moreover, some software environments were
developed to be applicable for multiple tasks. The network analysis and visu-
alization software Cytoscape [29] may serve as one example for such an envi-
ronment. It is highly valuable for a clustering method, to be integrated in such
standard software in order to avoid typical data pipelining and data integra-
tion problems (see e.g. [62] for further details); and may help to answer typical
application-specific follow-up questions.

Visualization: If the size of the clustering problem is limited to a few objects, a
graph-based visualization is a powerful tool. It aids with specifying a mean-
ingful density parameter and with the identification of outliers. Moreover, the
clustering results can be analyzed more efficiently and essential information can
be extracted quickly.

Evaluation methods: Various steps in a cluster analysis influence the results’ quality;
choosing the similarity function and the density parameter are only two of them.
It is necessary to evaluate each step in order to produce a good clustering for a
specific application.

Reproducible results: Another crucial feature in data clustering is the reproducibility
of the results. If a tool’s output differs for multiple runs on the same data sets
with the same set of parameters, it is hard to judge the result’s quality.

Small number of user-defined parameters: Many algorithms are heuristics. Hence
they need several parameters to control the trade-off between quality and speed.
The number of essential parameters should be limited to avoid misuage.

All of the above criteria are important, but for a specific application it is essential
that the results "make sense". This thesis will introduce Transitivity Clustering (TC)
and its implementation TransClust. It will be described how TC contributes to all of
the above mentioned issues. We will see, that TC can compete and even outperform
commonly used approaches for specific applications in computational biology. TC
is a flexible clustering model based on a graph modification problem, the Weighted
Transitive Graph Projection Problem (WTGPP). It can be utilized for partitioning,
overlapping, and hierarchical clustering. The clustering output has provable attributes
that depend on a single intuitive density parameter. The TransClust framework is an
efficient and easy-to-use implementation of TC, which is available as web application,
as standalone program, and as plugin for the standard network analysis environment
Cytoscape.

1.2 Applications
The value of efficient and accurate clustering methods is clarified in the following by
means of some brief application examples in the life sciences.

12 Chapter 1: Introduction

Gene expression data: Mao et al. [56] recently used Markov Clustering (MCL) to
cluster 16,293 genes of Arabidopsis thaliana based on their co-expression level.
They identified 527 modules (clusters) of co-expressed genes.

Data reduction: In 2007, Cameron et al. [25] presented a strategy to reduce the size
of sequence databases by storing only representative union-sequences for each
cluster of similar sequences. As an example the sequence database GenBank [67]
was reduced by 27%, resulting in a by 22% decreased search time, with no
significant change in accuracy.

Protein complexes: Krogan et al. [52] investigated a protein-protein interaction net-
work of the yeast Saccharomyces cerevisiae, consisting of 2,708 proteins and
7,123 interactions. By using MCL, 547 protein complexes with an average size
of 4.9 were predicted.

Word sense disambiguation: Recently, Duan et al. [31] used a clustering approach
based on a minimal spanning tree approximation to assign words to groups that
have the same meaning. On a test set of 21 ambiguous keywords, their approach
outperforms other commonly used unsupervised text mining methods by 2%.

Certainly, this list does not cover all possible applications for clustering. Various
others exist in computational linguistic, economics, or medicine, just to name a few.
The examples illustrate that clustering is an important research topic. Improvements
are necessary to keep up with new developments and technologies, and hence with
novel applications in large-scale, high-throughput data analysis.

1.3 Structure of the thesis
The remainder of this thesis is structured as follows: The next chapter concentrates
on the clustering problem in general, gives some basic definitions, and presents all
clustering methods used within the thesis. Subsequently, Chapter 3 introduces to
the WTGPP including attributes of the problem and modifications to customize it
for specific tasks. Existing algorithms for solving this graph modification problem
are presented in this chapter as well. Following this, Chapter 4 describes the software
framework TransClust. All implemented algorithms can be found here and the chapter
guides through the different TransClust options. Since TransClust also incorporates
algorithms developed by other scientists, the integration of these algorithms is also
described here, as well as an evaluation of the performance of the heuristic methods.
Chapter 5 describes experiments performed to evaluate the applicability of TC to
typical biological problems. Aside from a comparison against existing methods, the
modifications of the original model are also evaluated here. Further applications can be
found in Chapter 6. TC was integrated with MoRAine and CoryneRegNet. MoRAine
is a software that optimizes the information content of a Position Specific Scoring
Matrix (PSSM) by using clustering algorithms. With the integrated TC, runtime
and quality of MoRAine has been significantly improved. Chapter 7 and Chapter 8

1.4: Availability 13

complete this thesis with discussion and conclusion. Supplementary material can be
found in the Appendix.

1.4 Availability
All components of the presented software framework are online available at http://
transclust.cebitec.uni-bielefeld.de. The source code of TransClust, the three
Cytoscape plugins, and example files are available for download on this page. A web
application can be used to cluster small problem instances and an online tutorial
guides through the usage of TransClust. The predecessor of TransClust, FORCE, can
be found at http://www.cebitec.uni-bielefeld.de/comet/force, together with
the data used in the evaluation study of Section 5.1. The application MoRAine
(see Section 6.1) can be used as a web application or be downloaded from http:
//moraine.cebitec.uni-bielefeld.de. CoryneRegNet in can be found at http:
//www.coryneregnet.de. The network visualization and analysis software Cytoscape
can be found at http://www.cytoscape.org. Most applications are implemented in
Java and do not need any additional libraries. Java script must be activated in the
browser for some features at the TransClust website.

14 Chapter 1: Introduction

2 Background and related work

2.1 Definitions and notations
Throughout this work two kinds of graphs appear; an undirected simple graph and a
directed graph:

Definition 2.1 (Undirected simple graph). An undirected simple graph G = (V,E)
consists of a set of nodes V and a set of edges E ⊆

(V
2
)
, where

(V
2
)
denotes the set of

all two element subsets of V . Following this definition the edges are undirected and
the graph contains no self-loops or multiple edges between two nodes.

Note that uv is used shortly for an unordered pair {u, v} ∈
(V

2
)
.

Definition 2.2 (Directed graph). A directed simple graph G = (V,E) consists of a
set of nodes V and a set of edges E ⊆ V × V . Following this definition the edges
are directed and the graph may contain self-loops but no multiple edges between two
nodes.

Definition 2.3 (Induced subgraph). An induced subgraph G′ = (V ′, E′) of a graph
G = (V,E) consists of a set of nodes V ′ ⊂ V and a set of edges E′ ⊂ E. In E′ are
exactly those edges that connect elements of V ′ and are present in E, i.e. E′ = E∩

(V ′
2
)

for undirected graphs and E′ = E ∩ (V ′ × V ′) for directed graphs respectively.

In the following, definitions of connected components for these kinds of graphs are
defined. As prerequisite, a path between two objects has to be defined first.

Definition 2.4 (Path). In a graph G = (V,E) a path between two nodes u, v ∈ V
is a sequence of nodes u = v1, ..., vn = v for which every connecting edge exists, i.e.
for 1 ≤ i ≤ n − 1: {vi, vi+1} ∈ E (for undirected simple graphs) and (vi, vi+1) ∈ E
respectively (for directed graphs).

Definition 2.5 (Connected component/strongly connected component). A connected
component of an undirected simple graph G = (V,E) is an induced subgraph G′ =
(V ′, E′) of G, where V ′ is the maximal subset of V , such that there exists a path
between every two nodes in G′. For a directed graph the definition is the same but
G′ is called strongly connected.

Definition 2.6 (Weakly connected component). A weakly connected component of a
directed graph G = (V,E) is an induced subgraph G′ = (V ′, E′) of G, which consists
of a strongly connected component G′′ = (V ′′, E′′) and all nodes u ∈ V that are
connected to G′′, i.e. there exists a path between u and one node v ∈ V ′′ in G′.

16 Chapter 2: Background and related work

The last necessary definition used throughout this thesis is the transitivity of an
undirected graph.

Definition 2.7 (Transitivity). An undirected simple graph G = (V,E) is called tran-
sitive if

for all triples uvw ∈
(
V

3

)
, uv ∈ E and vw ∈ E implies uw ∈ E.

2.2 Protein sequence similarity
An application that repeatedly occurs in this work is the clustering of protein se-
quences. This section will introduce to BLAST [2], a heuristic for local alignments
of DNA and amino acid sequences. The results from BLAST can be used to define a
symmetric pairwise similarity function between protein sequences. Five such methods
have been developed and will be described here.

2.2.1 BLAST
The Basic Local Alignment Search Tool (BLAST), developed by Altschul et al. [2] is
a commonly used tool to compare sequences. BLAST uses a heuristic to find local
alignments between a query sequence and a database of subject sequences. First,
small sequences are located (default length 11) and afterwards extended to a local
alignment if beneficial. It can also be used to compare protein sequences against each
other in an all vs. all analysis. For each local alignment between subsequences of two
proteins, an High Scoring Pair (HSP) is reported. Note that the alignment may differ
for the two possible directions, due to BLAST’s heuristic nature. Further note, that
multiple HSPs may occur for the same pair of proteins for the same direction. In the
12 column tabular output (-m 8 option), BLAST lists HSPs as follows: (1) the name
of the query protein, (2) the name of the subject protein, (3) the percent identity, (4)
the alignment length, (5) the number of mismatches, (6) the number of gaps, (7) the
start of the query sequence, (8) the end of the query sequence, (9) the start of the
subject sequence, (10) the end of the subject sequence, (11) the E-value; the number
of hits that are expected to occur by chance in a database of the same size with at
least the reported Bit-score, i.e. a value for the significance of the alignment, and
(12) the Bit-score of the alignment. To limit running time one can specify an E-value
threshold.

2.2.2 Similarity functions for sequence clustering
Assume it is given a set of proteins V and a BLAST output file possibly containing
multiple HSPs in both directions. For two proteins u and v let (u← v)i and (u→ v)j ,
where i = 1, . . . , k and j = 1, . . . , l be the corresponding k HSPs in one and l HSPs in
the other direction, respectively. If no HSPs exist in at least one of the two directions,
any of the following similarities is set to the minimal value 0.

2.2: Protein sequence similarity 17

Best Hit (BeH) This widely used method concentrates on the E-value of a single
HSP: For both directions, one looks for the best hit, i.e., the HSP with lowest
E-value. To obtain a symmetric similarity function sim:

(V
2
)
→ R, the negative

logarithm of the worst (largest) of the two E-values is taken as similarity measure
between two sequences u and v. The resulting symmetric similarity function is
then defined as:

sim (uv) := − log10

(
max

{
min
i=1,...,k

E-value ((u← v)i) , min
j=1,...,l

E-value
(

(u→ v)j
)})

.

Sum of Hits (SoH) This approach is similar to BeH, but additionally includes every
HSP between two sequences. This may be useful if multiple unconnected subse-
quences are important for the protein assignment; one example is the problem
of protein domain shuffling [71]. The SoH similarity function is defined as:

sim (uv) := − log10

max


k∏
i=1

E-value ((u← v)i) ,
l∏

j=1
E-value

(
(u→ v)j

)
 .

Coverage (Cov) The third approach integrates the lengths and the sequence identity
of an HSP into the similarity function. To determine the coverage, the following
indicator function is needed:

Iuv(i) :=


1 if in u the position i is covered by any HSP (u← v)1≤n≤k

or (u→ v)1≤m≤l respectively
0 otherwise.

The coverage can now be defined as

coverage (uv) := min

 1
|u|

|u|∑
i=1

Iuv(i),
1
|v|

|v|∑
i=1

Ivu(i)

 .
In order to obtain a good similarity function, the influence of the coverage on
the overall similarity function is controlled by a factor f , and set to:

sim(uv) := sim′(uv) + f · coverage(uv).

where sim′ :
(V

2
)
→ R denotes one of the previously presented similarity func-

tions, BeH or SoH.

Score BLAST calculates a bit score for each HSP depending on the number of neces-
sary insertions and deletions for the alignment. A common approach to define a
pairwise similarity between two sequences is to use this score and normalize it to
the length of the HSP. It is recommended to filter the list of HSPs for hits with
reliable E-values. Otherwise the normalization may lead to high similarities of
dissimilar objects, if a common subsequence is very short. As in the previously

18 Chapter 2: Background and related work

introduced measure BeH, the maximal score for one direction is used if multiple
HSPs exist. Symmetry of the similarity function is achieved by choosing the
lower score of both directions. The similarity based on the normalized score is
defined as follows:

sim (uv) := max

 min
i=1,...,k

Score ((u← v)i)
|(u← v)i|

, min
j=1,...,l

Score
(
(u→ v)j

)
∣∣∣(u→ v)j

∣∣∣


2.3 Clustering

Clustering is a common computational technique for data analysis in the life sciences.
Essentially, it is the assignment of objects into groups, where objects within a group
are more similar to each other than objects between two groups. One can distinguish
between three types of clusterings: (1) Partitional clustering divides the set of objects
into disjoint groups, (2) overlapping clustering allows assignments of objects to multi-
ple groups, and (3) hierarchical clustering defines hierarchical sets, where two clusters
are either disjoint, or one is a complete subset of the other. The formal definitions
are:

Partitional clustering: A partitional clustering of a set of objects S is a subset S′ =
{s1, . . . , sn} of the power set P(S), such that S =

⋃n
i=1 si and si ∩ sj = ∅, 1 ≤

i 6= j ≤ n.

Overlapping clustering: An overlapping clustering of a set of objects S is a subset
S′ = {s1, . . . , sn} of P(S), such that S =

⋃n
i=1 si

Hierarchical clustering: An hierarchical clustering of a set of objects S is a subset
S′ = {s1, . . . , sn} of P(S), such that S =

⋃n
i=1 si and for each pair of clusters

si, sj 1 ≤ i 6= j ≤ n one of the following conditions holds:
• si ∩ sj = ∅

• si ⊂ sj
• sj ⊂ si

2.3.1 Quality measures between two clusterings

One method for evaluating the quality of a clustering is to compare it against a gold
standard assignment. This external quality evaluation allows to compare different
approaches, which optimize different internal optimization functions. For this purpose,
various methods have been developed, like calculating the Positive Predictive Value
(PPV) or the sensitivity between a clustering and a gold standard reference.
Some of the evaluations performed in Chapter 5 are based on previous studies.

Consequently, the quality measures are the same as in the corresponding evaluations.
This section introduces all measures used within this work.

2.3: Clustering 19

In the following let C = {C1, . . . , Cn} be the clustering obtained from the algorithm
and K = {K1, . . . ,Km} be the reference clustering. Furthermore let T = (ti,j) ∈
Nm×n denote the matrix where each entry is the number of common objects between
Ki and Cj .

ti,j = |{Ki ∩ Cj}| ; 1 ≤ i ≤ m, 1 ≤ j ≤ n

This section uses also the standard abbreviations for True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). Another notation is
|T | for the sum of all entries in T and |T·,j | and |Ti,·| for the sums of the entries of the
i-th row and j-th column respectively.
According to the evaluation of clustering algorithms for Protein-Protein Interaction

(PPI) networks in [23], the following definitions are given:

Definition 2.8 (Positive predictive value). The PPV is generally defined as:

PPV = TP
TP + FP

This value ranges from zero to one, and describes the ratio of correct predictions to
all predictions. It can only reach the highest value of 1, if no false positive predictions
occur, i.e. in the case of clustering: no pair of objects that belong to different clusters
in the gold standard are assigned to the same cluster. Since the reference clustering
may be overlapping, the PPV for each pair of clusters Cj ,Ki is defined as:

PPV(Cj ,Ki) = ti,j
|T·,j |

A cluster-wise PPV can then be defined for each cluster Cj as:

PPV(Cj) = max
1≤i≤m

PPV(Cj ,Ki)

To get an overall PPV between two clusterings, the cluster-wise PPVs are incorporated
as follows:

PPV(C,K) =
∑n
j=1 PPV(Cj) · |T·,j |

|T |

Definition 2.9 (Sensitivity). Sensitivity is a value that reflects the quantity of the
correct predictions. In the case of clustering this is the ratio between objects that are
in the same cluster, both in the reference clustering and in the obtained clustering,
against all objects in the reference clustering. Generally it is defined as:

Sen = TP

TP + FN

First a reference-cluster-wise sensitivity is defined as follows:

Sen(Ki) = max
1≤j≤n

ti,j
|Ki|

20 Chapter 2: Background and related work

A general sensitivity can then be calculated by:

Sen(C,K) =
∑m
i=1 |Ki| · Sen(Ki)

|K|

Definition 2.10 (Accuracy). The accuracy is a trade-off between PPV and sensi-
tivity. Both values on their own can be high even if the clustering is not perfect.
A clustering with only singletons would lead to a high PPV since no false positive
prediction occur, while building one big cluster containing all elements would have the
maximal sensitivity value. Neither of these examples is necessarily desirable. Hence,
a combination of these values, the accuracy, evaluates the quality better.

The arithmetic Accuracy (ACC) is the arithmetic mean of sensitivity and PPV.

ACCarit(C,K) = Sen(C,K) + PPV(C,K)
2

The geometric ACC takes the geometric mean of sensitivity and PPV.

ACCgeo =
√

Sen(C,K) · PPV(C,K)

A novel distance measure has been introduced by Brohée et al. [23] and is called
separation. In contrast to the above described values it takes all pairwise relations be-
tween the clusters obtained from the algorithm and the reference clusters into account,
and does not concentrate on the best matching cluster.

Definition 2.11 (Separation). The separation for each pair of clusters Cj and Ki is
defined as:

Sep(Cj ,Ki) =
t2i,j

|Ti,·| · |T·,j |
Now it is possible to define the separation for each cluster Cj and Ki as the sum of
pairwise separations:

Sep(Cj) =
m∑
i=1

Sep(Cj ,Ki)

and
Sep(Ki) =

n∑
j=1

Sep(Cj ,Ki)

To obtain an overall value for the two clusterings C and K one takes the mean
of separations for all clusters in C (cluster-wise) and K (reference-cluster-wise) and

2.4: Clustering algorithms 21

subsequently calculates the geometric mean.

Sep(C,K) =
√∑n

j=1 Sep(Cj)
|C|

·
∑m
i=1 Sep(Ki)
|K|

=
∑n
j=1

∑m
i=1 Sep(Cj ,Ki)√
m · n

=
∑n
j=1

∑m
i=1

t2i,j
|Ti,·|·|T·,j |√

m · n

Definition 2.12 (F-measure). The last quality measure is based on the general def-
inition of Recall, Precision, and the F-measure:

Recall: TP
TP+FN

Precision: TP
TP+FP

F-measure: 2 · Precision·Recall
Precision+Recall = 2·TP

(TP+FP)+(TP+FN)

Paccanaro et al. [61] modified the F-measure for comparing a clustering C against a
reference clustering K in the following way:
First the best cluster Cj for each cluster Ki of the reference is found with respect

to the standard definition of F-measure:

F-measure(Ki) = max
1≤j≤n

2 · ti,j
|Cj |+ |Ki|

The overall F-measure is then defined as:

F-measure(C,K) = 1∑m
i=1 |Ki|

m∑
i=1

(|Ki| · F-measure(Ki))

= 1∑m
i=1 |Ki|

m∑
i=1

(
|Ki| · max

1≤j≤n

2 · ti,j
|Cj |+ |Ki|

)

2.4 Clustering algorithms
Many clustering algorithms exist based on different models. While some try to find
a list of center nodes for a partitional clustering, others aim to identify homogeneous
clusters. Some partition the data and others create an hierarchical or overlapping
clustering. For this task most algorithms try to optimize an objective function, that
reflects the actual clustering aim. Since these optimizations often have a high problem
complexity, heuristic methods are frequently used. As a consequence, most methods
require several input parameters, which determine the quality of the used heuristic.
Since clustering is an unsupervised data mining technique, all approaches have to have
at least one parameter: the density parameter, which influences the number and size

22 Chapter 2: Background and related work

of the resulting clusters. This parameter can be as specific as the exact number of
expected clusters, or more abstract like the level in a hierarchy from which a partition
is created. This section will introduce the most-commonly used clustering techniques
in computational biology. For each approach, the underlying model is presented to-
gether with the corresponding objective, a description of the density parameter, and
the used algorithm.

2.4.1 Hierarchical Clustering

There are mainly two different kinds of hierarchical clustering; bottom-up approaches,
where a set is iteratively divided into subsets, and top-down approaches, which start
with only singletons and merge them iteratively. Subsequently, the focus lies on the
second kind, which is commonly referred to as agglomerative clustering.
Given a set of objects V and a pairwise similarity sim:

(V
2
)
→ R, the main idea is

to start with singletons as initial clustering and merge those two clusters which are
the most similar. While in the first step the similarity is given by a pairwise similarity
between the objects, in later iterations it is necessary to define a similarity between
two clusters. Given a partitional clustering C = {C1, . . . , Ck}, which initially contains
clusters of size 1, the three most popular similarity functions between two clusters Ci
and Cj are:

Single linkage: s (CiCj) := max {sim(uv);u ∈ Ci, v ∈ Cj}

Complete linkage: s (CiCj) := min {sim(uv);u ∈ Ci, v ∈ Cj}

Average linkage: s (CiCj) := 1
|Ci|·|Cj |

∑
u∈Ci

∑
v∈Cj sim(uv)

To get a partitional clustering, given an hierarchical clustering, one can either select
a set of cut nodes, which each represent a cluster, or specify a level in the hierarchy.
One drawback of hierarchical clustering is that once an object is assigned to a cluster
this decision is final. One popular example of hierarchical clustering in computational
biology is the SYSTERS [51,57] database, where single linkage clustering is one step
in the assignment of proteins into families and superfamilies.

2.4.2 K-means

K-means is a standard data partitioning method. For a given set of objects V =
{v1, . . . , vn} and a position pi ∈ Rl (l ≥ 1) for each object, the problem is defined as
follows:
Find that partitioning C = {C1, . . . , CK} of V , such that the sum of squares of

distances between the objects in one cluster and the cluster mean mj is minimized:

C = argmin
C′

 K∑
i=1

∑
vj∈C′i

‖pj −mi‖2


2.4: Clustering algorithms 23

The problem is known to be NP-hard1 in an Euclidian space [1]. Subsequently
described is the commonly used Lloyd’s algorithm, a heuristic to solve this problem
[55].
Starting with an initial selection of K seed positions, all objects are assigned to

their closest seed. Different methods can be used to define an initial seed selection,
for instance, a random choice within the range of the objects’ positions. After the
first clustering has been calculated, the mean of each cluster is used as a seed for the
next iteration. If only distances between the objects are used, that seed which has the
smallest distance to all other elements of its cluster is chosen as a new seed. These steps
of reassignment of the objects to clusters and calculating new seed positions is repeated
until a stable stage is reached, i.e. no changes in the clustering appear anymore.
Depending on the choice of initial seeds the result may vary. Consequently, having
random initial seed nodes may lead to different results for every run. A possibility to
overcome or reduce this problem is to either allow multiple runs with different initial
seed positions, or to develop a method to "guess" a good choice of initial center nodes.
Note that K-means can also be applied if only a distance or similarity between the

objects is defined. In this case the cluster mean (seed) is one of the nodes in the
respective cluster.

2.4.3 Markov Clustering

The Markov Clustering (MCL) algorithm, developed by Stijn van Dongen [76], finds
cluster structures in graphs by utilizing a mathematical bootstrapping procedure. The
algorithm works on a column stochastic matrix:

M = (mi,j) ∈ [0, 1]n×n, where
n∑
j=1

mi,j = 1 for all 1 ≤ i ≤ n

Given a pairwise similarity function, the entries of M are calculated by adding a loop
to each node, i.e. define a self-similarity if not present, and normalize each column
such that it is stochastic. This matrix is transformed by alternating two operations
until an equilibrium state is reached. The first operation is called expansion and
simulates a random walk on M as a simple matrix multiplication:

M →M2

Inflation, the second operation, transforms the columns individually. Each entry in a
column is taken to the power of a parameter k, the inflation parameter. Afterwards

1A decision problem is in NP if it can be solved in polynomial time with a non-deterministic Turing
Machine. P are the decision problems that can be solved in polynomial time with a deterministic
Turing Machine. A problem p is NP-hard if every other problem in NP can be reduced in poly-
nomial time to p. Unless P=NP, no NP-hard problem can be solved in polynomial time with a
deterministic Turing Machine.

24 Chapter 2: Background and related work

the columns are normalized, such that the matrix is again column stochastic.

mi,j →
mi,j

k∑n
i=1mi,j

k

The inflation increases the difference in affinity between the objects, i.e. higher sim-
ilarities become bigger while small similarities become smaller. This effect can be
controlled by the inflation parameter, where larger values increase the difference be-
tween the similarities more than smaller values. The choice of the inflation parameter
has a high impact on the clustering results, i.e. the granularity, and serves conse-
quently as the density parameter for this approach.
In the equilibrium state the clusters are defined as the weakly connected components

of the directed graph G = (V,E) induced by the final matrix. In G a directed edge
between two nodes i and j exists if mi,j > 0. The so defined clusters can overlap,
though in practice these overlaps rarely occur and are eliminated by merging the two
corresponding clusters.
MCL is a fast method with only one crucial parameter. A detailed description

about the convergence of this algorithm can be found in [76]. To further improve the
runtime, the implementation by van Dongen takes only the best n neighbors of a node
into account, where n is a variable parameter. The so derived sparse matrices can be
computed much faster at the expense of accuracy.
MCL has been widely used for the identification of homologous proteins2 (TribeMCL

[32]) as well as for the detection of orthologous proteins (OrthoMCL [54]). Since
it performed best in various comparisons between different clustering approaches,
for instance [23, 78], it is an ideal candidate for evaluating against other clustering
methods.

2.4.4 Spectral Clustering

In Spectral Clustering (SC) algorithms, the clusters are calculated by transforming
the initial similarity matrix into a matrix of eigenvalues and subsequently applying
K-means on this matrix. Consequently the number of expected clusters K has to be
specified in advance. SC works as follows:
A given similarity matrix S = (si,j) ∈ Rn×n is first normalized:

S′ = D−
1
2SD−

1
2

where D = (di,j) ∈ Rn×n is a diagonal matrix defined as:

D = diag(d1, . . . , dn); di =
n∑
j=1

si,j

2Two genes/proteins are homologous if they are evolutionary related. One distinguishes between
orthologous genes that occur due to a speciation event and paralogous genes that were created by
gene duplication.

2.4: Clustering algorithms 25

Afterwards one computes the matrix of eigenvalues U = (ui,j) ∈ Rn×k, where the
column ui corresponds to the K largest eigenvalues of S′. Each row of U will be
normalized again and one ends up with a matrix:

Y = (yi,j) ∈ Rn×K , with yi,j = ui,j√∑n
j=1 u

2
i,j

Finally each row of Y is treated as a point in RK and will be clustered using aK-means
algorithm.
The version of SC that is used for the evaluation in section 5.2 is a MATLAB

implementation by Paccanaro et al. [61]. It has been developed for the task of protein
sequence clustering. According to their publication the best number of clusters K has
been determined by calculating the eigenvalues λi of M = S ·D−1, where λi > λi+1
for each 1 ≤ i ≤ n by:

K = min{i; λi
λi+1

> ε}

where ε is a predefined threshold.
SC has similar advantages and disadvantages as K-means due to its density pa-

rameter and its objective function. Since it performed best in a recent comparison
between different protein domain sequence clustering approaches [61], besides MCL
it is a further candidate for subsequent evaluations.

2.4.5 Restricted Neighborhood Search Clustering

In 2004, King et al. [49] developed a cost-based clustering approach for the task of
predicting complexes of proteins in a PPI network. The Restricted Neighborhood
Search Clustering (RNSC) approach uses only non-weighted similarities, i.e. a simi-
larity function with values in {0, 1} that decides whether two elements are similar or
not. For a set of elements V the undirected graph G = (V,E) is naturally defined
using these similarities. Generally the goal is to find the clustering C that minimizes
the cost function

cost(G,C) = n− 1
3

∑
v∈V

(inc(G,C, v) + nadj(G,C, v))
|N(v) ∪ Cv|

where inc(G,C, v) denotes the number of cross-edges incident to v, and nadj(G,C, v)
are the number of vertices in C that are in the same cluster Cv as v but not adjacent
to it. N(v) is the open neighborhood of v. For a faster approximation a second cost
function is defined as:

naive-cost(G,C) = 1
2
∑
v∈V

(inc(G,C, v) + nadj(G,C, v))

Starting with an initial clustering, which can be either random or derived by other
clustering methods, the RNSC algorithm first tries to optimize the naive-cost function

26 Chapter 2: Background and related work

by moving nodes from one cluster to another. After reaching an optimum for the
naive-costs, RNSC again moves nodes from one cluster to another, but this time
tries to optimize the actual cost function. The moves made by RNSC are either
moves to decrease the costs, or random moves to avoid ending in a local minimum.
Furthermore, the algorithm forbids processing a node after it has been moved until a
certain number of other nodes has been moved. This avoids circling around a local
minimum. For every move it is allowed to empty a cluster or create a new singleton
cluster as long as the defined maximal number of clusters is not exceeded. Due to
the random moves and the random initial clustering the results can differ for different
runs of the algorithm.
Many parameters have to be specified in this method, namely: (1) the diversification

frequency for how often diversification movements should be applied to avoid ending
up in a local minimum; (2) the shuffling diversification length, which is the number of
random diversification movements that are performed in each iteration; (3) the tabu
length, which defines the size of the tabu list, that specifies if a node is allowed to be
moved again; (4) the tabu list tolerance, which is a value for how often an object can
appear in the tabu list before it is set to "not movable"; (5) the number of experiments
defining how often the clustering should be repeated, since the random aspect leads
to different results for every run; (6) the naive stopping tolerance, which defines the
number of moves that are allowed to be made without making any improvements to
the naive cost function; (7) the scaled stopping tolerance, which is similar to the naive
stopping tolerance but used for the accurate cost function and (8) the maximal number
of clusters, which is simply an upper bound for the clusters that can be produced.
Although many parameters effect the results quality, apparently the highest impact
has the user-specified maximal number of clusters; the density parameter.

2.4.6 GeneRAGE

Enright et al. presented GeneRAGE, a protein sequence clustering algorithm [33].
GeneRAGE also searches for multi-domain proteins that may belong to several families
thus producing an overlapping clustering. The main steps in the algorithm are:

Create directed similarity graph G = (V,E): First, the CAST algorithm developed
by Promponas et al. [63] is applied as a filtering algorithm (not to be confused
with the Cluster Affinity Search Technique (CAST) approach) on BLAST results
to remove biased hits. A directed similarity graph G = (V,E) is built afterwards
using a threshold t. Only the similarities above the threshold are taken into
account, leading to an edge set E ⊆ (V × V) of:

E = {(u, v) ∈ V × V ; sim(u, v) > t} .

Note that the similarity function at this point is not required to be symmetric.

Add/remove non-symmetric edges: For every two nodes u, v of V it is checked if
both directions are present in the edge set; (u, v) ∈ E and (v, u) ∈ E. If

2.4: Clustering algorithms 27

one direction exceeds the threshold but the other does not a Smith-Waterman
alignment [70] between the sequences is performed again. The missing edge is
added if the Z-Score of the alignment is above 10 and the present edge is removed
otherwise. The resulting graph is symmetric and can consequently be written
as an undirected graph G′ = (V,E′).

Search for multi-domain proteins: For every three proteins uvw ∈
(V

3
)
with uv, uw ∈

E′ and vw /∈ E′ a second check with a Smith-Waterman alignment between the
sequences v and w is performed. This check should indicate if the missing edge
is a false negative. If the Z-score for this alignment is below 10, u is added to
the list of putative multi-domain proteins, since it is connected to two groups,
that of v and that of w.

Clustering: Single linkage clustering is applied on the undirected graph G′, i.e. the
connected components of G′ are reported as clusters.

Split clusters with multi-domain proteins: Clusters obtained from the previous step
are separated into smaller clusters, if they contain multi-domain proteins that
act as connection between two families. These connecting proteins are assigned
to both clusters, leading to an overlapping clustering.

GeneRAGE has been designed for clustering protein sequences. The density parameter
of this approach is the similarity threshold used to create the initial directed graph G,
though other parameters might have an influence as well, such as the Z-score threshold
to validate an edge.

2.4.7 Affinity Propagation
Another centralized clustering algorithm is Affinity Propagation (AP) [34]. By passing
messages between the data points, centers of clusters are determined and each data
point is assigned to its closest center. Hereby AP tries to maximize the net-similarity
S, defined as:

S =
n∑
i=1

sim(i, ci) +
n∑
i=1

δi

where ci is the center corresponding to node i and δi is −∞ if a node is not its own
center (i 6= ci), but there exist other nodes with center i (∃j, 1 ≤ j ≤ n; i = cj)
and 0 otherwise. To optimize this objective function two kinds of messages are passed
between the data points:

Responsibility r(i, k) is sent from data point i to data point k reflecting how well k
would act as center/exemplar for i with respect to all other possible centers of
i.

Availability a(i, k) is sent from data point k to data point i, giving evidence of how
well k is suited to be a center of i using information about other nodes which
may have k as center.

28 Chapter 2: Background and related work

The process starts by initializing all availabilities to zero. The self-responsibilities
r(k, k) are the density parameter of this clustering approach. The values for respon-
sibility are determined by:

r(i, k) = sim(i, k)− max
1≤k′≤n;k′ 6=k

{a(i, k′) + sim(i, k′)}

The availabilities for i 6= k are calculated by:

a(i, k) = min

0, r(k, k) +
∑

1≤i′≤n;i′ /∈{i,k}
max{0, r(i′, k)}


and the self-availabilities are calculated by:

a(k, k) =
∑

1≤i′≤n;i′ /∈{k}
max{0, r(i′, k)}

It is further necessary to specify an additional parameter, the damping factor λ ∈
[0, 1]. To avoid numerical oscillations, the change of the values of responsibility and
availability is limited with this factor by:

r(i, k) = r(i, k)currentλ+ r(i, k)previous(1− λ)

where r(i, k)current is the responsibility for the current iteration, calculated as described
above and r(i, k)previous is the responsibility of the previous iteration. The same applies
to the availability:

a(i, k) = a(i, k)currentλ+ a(i, k)previous(1− λ)

During an iteration of AP the following steps are performed:

• Calculate all responsibilities.

• Calculate all availabilities.

• Assign all nodes i to that center k that maximizes a(i, k) + r(i, k):

ci = argmax1≤k≤na(i, k) + r(i, k)

The algorithm stops either if a user-defined maximal number of iteration is reached,
if changes of responsibilities and availabilities between the iterations fall below a user
defined threshold, or if the obtained center assignments do not change over a certain
number of iterations. Due to the multiple stopping criteria a convergence of the
algorithm is not guaranteed. According to the developers AP is capable of clustering
20,000 objects in less than a day (120,000 if the similarity matrix is very sparse and
the calculations of the message values are restricted to points where a similarity is
defined).

2.4: Clustering algorithms 29

2.4.8 Summary
Throughout this section it became obvious that one of the main challenges for each
clustering approach is to define a meaningful density parameter to define the num-
ber/size of clusters. Given an hierarchical clustering, a set of cut nodes or the level
in the hierarchy are such parameters to derive a partitioning. As there are various
clustering approaches, there exist many different kinds of density parameters. Some
approaches are limited to one value that has to be specified while others use a set of
parameters. Using these values is not equally intuitive. While the number of expected
clusters as in SC or K-means are intuitive values, the self-responsibility in AP or the
inflation factor in MCL are more abstract. Often more than one value has to be spec-
ified. Heuristic approaches have additional parameters that influence the quality of
the results according to their objective function. Table 2.1 summarizes the different
values for the presented algorithms and specifies whether the algorithms are heuristic.
Table 2.2 illustrates how the presented approaches fulfill the desired features (as

described in the Introduction).

30 Chapter 2: Background and related work

D
ensity

param
eter

Further
param

eters
Strategy

H
euristic

Im
plem

entation
Availability

H
ierarchical

C
lustering

set
ofcut

nodes
or

hierarchy
level

choice
of

sim
ilar-

ity
betw

een
clus-

ters
and

elem
ents

(m
in,m

ax,average)

assign
nodes

to
clos-

est
cluster

and
thus

create
hierarchy

N
O

libraries
for

m
any

program
m
ing

lan-
guages

available

online,free

K
-m

eans
num

ber
ofclusters

K
possible:

fixed
start

positions
of

center
nodes

m
inim

ize
sum

of
squares

of
distances

to
center

nodes

Y
ES

libraries
for

m
any

program
m
ing

lan-
guages

available

online,free

M
arkov

C
lustering

inflation
param

e-
ter

m
axim

al
num

ber
of

neighbors,
low

er
bound

alternatem
atrix

m
ul-

tiplication
and

in-
flation

until
stable

state

both
C
+
+

an
libraries

form
any

program
-

m
ing

languages

online,free

Spectral
C
lustering

num
ber

ofclusters
different

definitions
ofLaplace

m
atrix

K
-m

eanson
a
m
atrix

ofEigenvectors
Y
ES

M
AT

LA
B

upon
request

R
estricted

N
eighbor-

hood
Search

C
lustering

M
axim

al
num

ber
ofclusters

7
different

param
e-

ters
optim

ize
cost

func-
tion

Y
ES

C
+
+

upon
request

G
eneR

A
G
E

sim
ilarity

thresh-
old

Z-score
threshold

of
Sm

ith-W
aterm

an
alignm

ent

detection
of

protein
fam

ilies
and

m
ulti-

dom
ain

proteins

N
O

C
+
+

upon
request

A
ffi
nity

Propagation
selfresponsibility

dam
ping

factor,
it-

erations
m
axim

ize
net-

sim
ilarity

Y
ES

M
AT

LA
B

and
C
+
+
,

w
eb

appli-
cation

online,free

Table
2.1:C

om
parison

ofdifferent
clustering

approaches.

2.4: Clustering algorithms 31

Fe
at
ur
e

H
C

K
-m

ea
ns

M
C
L

SC
R
N
SC

G
en

eR
A
G
E

A
P

Si
m
ila

rit
y
fu
nc

tio
n∗

X
X

D
en

sit
y
pa

ra
m
et
er

+
X

X
X

R
un

tim
e
an

d
sp
ac
e
effi

ci
en

cy
(X

)
X

X
R
ob

us
tn
es
s
ag

ai
ns
t
ou

tli
er
s
an

d
no

ise
X

X
X

X

In
te
rp
re
ta
bl
e
re
su
lts

!
X

X
In
te
gr
at
io
n
of

ex
ist

in
g
kn

ow
le
dg

e
In
te
gr
at
io
n
w
ith

st
an

da
rd

so
ftw

ar
e

X
X

X
V
isu

al
iz
at
io
n

X
X

Ev
al
ua

tio
n
m
et
ho

ds
R
ep

ro
du

ci
bl
e
re
su
lts

X
X

X
X

Sm
al
ln

um
be

r
of

us
er
-d
efi

ne
d
pa

ra
m
et
er
s

X
X

X
X

X
X

Ta
bl
e
2.
2:

O
ve
rv
ie
w

of
a
va
rie

ty
of

cl
us
te
rin

g
al
go
rit

hm
s
an

d
ho

w
th
ey

fu
lfi
ll
th
e
de
sir

ed
fe
at
ur
es

as
sp
ec
ifi
ed

in
th
e
re
qu

ire
m
en
t

an
al
ys
is

in
C
ha

pt
er

1.
∗ :

in
cl
ud

es
m
et
ho

d
to

ev
al
ua

te
or

co
ns
tr
uc
t
a
sim

ila
rit

y
fu
nc
tio

n,
+
:
in
tu
iti
ve

de
ns
ity

pa
ra
m
et
er

or
m
et
ho

ds
in
cl
ud

ed
to

de
te
ct

a
m
ea
ni
ng

fu
ld

en
sit

y
pa

ra
m
et
er
,!
:
pr
ov
ab

le
at
tr
ib
ut
es

in
th
e
ou

tp
ut

gi
ve
n
th
e
sim

ila
rit

y
fu
nc
tio

n
an

d
a
de
ns
ity

pa
ra
m
et
er
.

A
bb

re
vi
at
io
ns
:
H
C
:
H
ie
ra
rc
hi
ca
l
C
lu
st
er
in
g,

M
C
L:

M
ar
ko
v
C
lu
st
er
in
g,

SC
:
Sp

ec
tr
al

C
lu
st
er
in
g,

R
N
SC

:R
es
tr
ic
te
d
N
ei
gh

bo
rh
oo

d
Se
ar
ch

C
lu
st
er
in
g,

A
P:

A
ffi
ni
ty

Pr
op

ag
at
io
n

32 Chapter 2: Background and related work

3 Transitivity Clustering

This chapter will describe Transitivity Clustering (TC), a universal clustering ap-
proach based on graph modification. The underlying model is the Weighted Transi-
tive Graph Projection (WTGP). This model defines a similarity graph G = (V,E),
as an undirected simple graph. An edge is drawn between two objects of V if their
similarity exceeds a given similarity threshold, the density parameter of this approach.
Afterwards edge modifications, adding and deleting edges, are performed to make this
graph transitive, i.e. every connected component is completely connected. The ob-
tained clusters are the cliques of the resulting graph. The NP-hardness of this problem
has already been proven in 1986 by Křivánek and Morávek [53] and a first approxi-
mation algorithm, the Cluster Affinity Search Technique (CAST) was introduced in
1999 by Ben-dor et al. [20]. Ben-dor et al. predicted co-expressed genes of microarray
experiments using the CAST algorithm.
Here, the Weighted Transitive Graph Projection Problem (WTGPP) will be pre-

sented and useful attributes of TC will be proven. The mean similarity within one
cluster, for instance, is always above the chosen threshold. On the other hand, the
mean similarity between two clusters is always below the threshold. If knowledge
about the similarity function is available, this eases finding a meaningful threshold. A
drawback of clustering data by using this approach is, as in many other approaches,
the necessity to solve a NP-complete problem. A helpful property of the underlying
model to overcome this problem is that one can divide the problem into much smaller
problems. The initial graph can be divided into subgraphs connected by edges above
the threshold, which are subsequently solved independently. This may reduce the
complexity enormously, allowing to find solutions in a reasonable time and allowing
for parallelization to further decrease runtime in practice.
Moreover, this chapter will describe how the WTGPP can be modified to integrate

existing knowledge. Elements can, for example, be forced to belong to the same cluster
or be forbidden to be assigned to the same group. This can be clusters of objects which
are experimentally validated or pairs of objects that exceed a second, much higher,
threshold. Although not used within experiments included in this work, one can
change the costs for edge modifications. Deleting an edge can be more penalized then
adding edges to rather produce larger clusters. In this chapter it will further be shown
that clustering with increasing thresholds does not lead to an hierarchical clustering.
Two approaches will be presented to overcome this problem, thus allowing to use TC
as an alternative for commonly used hierarchical clustering methods, while still taking
advantage of the attributes of TC. Furthermore, methods to predict overlaps between
clusters are described, which widens the applicability of TC even more.
The chapter concludes with a description of existing algorithms that solve aWTGPP.

34 Chapter 3: Transitivity Clustering

3.1 Transitive graph projection

This section introduces the graph modification problem that is used as the model
for the clustering approach of this thesis, the WTGPP. To begin with, a related
problem, the Transitive Graph Projection Problem (TGPP), will be described, and
later extended to the WTGPP.
For an undirected graph G = (V,E) the TGPP aims to find that transitive graph

G′ = (V,E′), with the least amount of edge modifications (additions/deletions) from
G to G′. Formally it is defined as follows.

Problem 3.1 (Transitive graph projection). Given an undirected simple graph G =
(V,E), find a transitive graph G′ = (V,E′), such that the edge modifications to derive
G′ from G are minimal. An edge modification is either an addition, if the edge was
not present in E, but exists in E′, or a deletion respectively. The costs for adding or
removing an edge is 1, and consequently the costs to get G′ from G is:

costs(G→ G′) =
∣∣E \ E′∣∣︸ ︷︷ ︸

deletion cost

+
∣∣E′ \ E∣∣︸ ︷︷ ︸

addition cost

Zahn et al. [80] first mentioned the TGPP in 1964. Its NP-hardness was later
proven by Křivánek and Morávek [53] and again by Shamir et al. [68]. A Fixed-
Parameter (FP) algorithm was first introduced for this problem by Gramm et al. [40].
Furthermore Grötschel and Wakabayashi formulated the problem as an Integer Linear
Program in [41]. In the literature it is also referred to as "Cluster Editing", "Correlation
Clustering", or "MinDisAgreement" problem.
The TGPP may be used for clustering data but lacks for precision, since no dif-

ference can be made between the different grades of similarity between two objects.
To overcome this restriction the model can be extended by adding such weights, and
changing the modification costs for each edge depending on the similarity between the
adjacent nodes. The WTGPP will serve as model for the clustering approach in this
thesis. It extends the TGPP, by adding weights to each pair of nodes and using a
threshold to determine whether an edge exists or not. In this case, the edge changes
are not treated equally but depend on the weights and the threshold. Each pair of
objects is assigned a modification cost, which is the absolute of the difference of the
weight and the threshold. Thus it is more expensive to add/delete edges with weight
far away from the threshold.

Problem 3.2 (Weighted transitive graph projection). Given a set of objects V , a
threshold t ∈ R, and a pairwise similarity function sim:

(V
2
)
→ R, the graph G is

defined as:
G = (V,E); E =

{
uv ∈

(
V

2

)
; sim(uv) > t

}
The goal of the weighted transitive graph projection problem is to determine a transi-
tive graph G′ = (V,E′), such that there exists no other transitive graph G′′ = (V,E′′),

3.1: Transitive graph projection 35

with cost (G→ G′′) < cost (G→ G′). Hereby the modification costs are defined as:

cost
(
G→ G′

)
=

∑
uv∈E\E′

|sim (uv)− t|

︸ ︷︷ ︸
deletion cost

+
∑

uv∈E′\E
|sim (uv)− t|

︸ ︷︷ ︸
addition cost

Note that more than one solution for a given problem instance may exist, but this case
almost never occurs in practice, if the similarity function is diverse and real-valued.

Figure 3.1: Illustration of the (W)TGPP. (A) shows the similarity graph G = (V,E)
with edges E whose value exceed the threshold. (B) shows a putative solution, where
red edges have to be removed and green edges are added. (C) shows the transitive
graph G′ = (V,E′) where each connected component is a clique

Since the WTGPP is a special case of the TGPP it is a straight forward task to
show its NP-hardness.

Lemma 3.3. The weighted transitive graph projection problem is NP-hard.

Proof. Each TGPP can be formulated as a WTGPP problem by setting the similarity
between two existing edges to 1, between all other nodes to -1, and the threshold to 0.
Naturally a solution for this problem is the solution for the corresponding TGPP.

In 2003, Charikar et al. [27] presented a proof that the WTGPP, which they refer
to as weighted MinDisAgree, is APX-hard1. Although this shows that it is time
consuming to solve a WTGPP one may take advantage of the following attribute,
which reduces the complexity enormously.

Lemma 3.4. Given a set of objects V , a threshold t ∈ R, and a pairwise similarity
function sim:

(V
2
)
→ R and a graph G = (V,E) as defined in the WTGPP, it is

sufficient to solve the WTGPP of the connected components G1, ..., Gm of G, i.e. if
1An optimization problem is in APX if there exists a polynomial-time approximation algorithm for
a certain fixed error rate. It is APX-hard if any problem in APX can be reduced to this problem.
For problems of that class, no polynomial-time approximation algorithm exists for each fixed error
rate, unless P=NP

36 Chapter 3: Transitivity Clustering

G′1, ..., G
′
m are solutions for the WTGPP of the connected components of G, G′ =⋃m

i=1G
′
i is a solution for the WTGPP of G.

Proof. In order to prove this lemma it is sufficient to show that there exists no solution
of a WTGPP with cliques that intersect with multiple connected components of the
similarity graph G. This will be done by assuming that such a solution exists and
leading this to a contradiction:
Let G′ be a solution of a WTGPP with cliques that contain objects from different

connected components of G. Edges in G′ between objects of different connected
components of G correspond to a similarity smaller than the threshold t due to the
definition of the similarity graph. Hence, deleting them results in a decrease in costs.
Furthermore, deleting all edges between a subset of nodes of a clique and all other
nodes of that clique leads to two disjoint cliques, since all nodes within the two sets
are still connected. Consequently, splitting the cliques in G′ into cliques that have no
intersection with two different connected components of G reduces the costs and still
respects the transitivity rule. It is in turn a transitive graph with lower costs than G′.
This is a contradiction to the minimal-cost criteria of a solution of a WTGPP.

3.2 Data partitioning by using weighted transitive graph
projection

The optimal solution for the WTGPP is an undirected graph G′ = (V,E′) following
the transitivity rule, i.e. all connected components are cliques. The clusters induced
by this graph are exactly these cliques. The similarity threshold serves as the density
parameter for this approach and hence defines the number of clusters and their sizes.
While the WTGPP is NP-hard to solve and some applications may induce problem
instances of large size, the main approach presented here uses heuristic methods. In
TransClust, a clustering environment based on TC, a combination of heuristic and
exact methods are applied to find a close to optimal solution for each problem in
reasonable time. Currently available algorithms to solve the WTGPP are described
in Section 3.4. The clustering framework TransClust, which integrates most of these
algorithms, will be presented in the next chapter.
Advantages of TC over other approaches are its flexibility and the intuitive density

parameter. The similarity threshold directly corresponds to the chosen similarity
function, and by choosing such threshold, it is defined what to consider as "similar
enough". Only some changes, the adding and deleting operations of the WTGPP, are
necessary to detect outliers and produce homogeneous clusters. Edges of elements
whose similarity is close to the threshold are more likely to be changed, since the
costs for the modifications are rather low. The following property of a partitional
clustering with TC gives an impression of the clustering results and thus helps specify
an appropriate threshold.

Lemma 3.5. Let C = {C1, ..., Cm} be the cliques/clusters of a solution G′ = (V,E′)
for a given WTGPP with threshold t and similarity function sim.

3.2: Data partitioning by using weighted transitive graph projection 37

(i) The mean similarity between an element u and all other elements of its clique
Cu is greater than or equal to the threshold t for all elements u ∈ V .

(ii) The mean similarity between all elements of one cluster Ci is greater than or
equal to t for all cliques Ci ∈ C.

Proof. (ii) is a direct consequence of (i). To prove (i), the negative proposition is
assumed and lead to a contradiction. Let u be an element of the cluster Ci of size
|Ci| ≥ 2. Assume the mean similarity between u and all other elements of Ci is below
t:

meansim(u,Ci) = 1
|Ci| − 1

∑
v∈Ci\{u}

sim(uv) < t

⇔
∑

v∈Ci\{u}
sim(uv) < t · (|Ci| − 1)

C ′ = {C1, ..., Ci \ {u}, ..., Cm, {u}} is a decomposition of the elements into cliques
and hence a putative solution for the underlying WTGPP. The costs for C ′ can be
calculated by using the costs that appear to build C and adding all costs to remove
edges between u and Ci. Note that these additional costs may be negative for edges
that did not exist in the initial graph and had to be added to create Ci. Using the
assumption that the mean similarity between u and all elements of Ci is below t, the
cost difference between C and C ′ is consequently:

∑
v∈Ci\{u}

(sim(uv)− t) =

 ∑
v∈Ci\{u}

sim(uv)

− (t · (|Ci| − 1)) < 0

This is a contradiction to the assumptions that C is a solution for the WTGPP, since
there exists a decomposition into cliques with lower costs.

A statement about the average similarity between an object and all the objects of
a foreign cluster is not possible. The following example illustrates that one element
might have a mean similarity above the threshold to all elements of a different cluster.
Example 3.6. Let V = {a, b, c} be the elements of interest. Let the similarity
between these elements be sim(ab) = 0.5, sim(ac) = 0, and sim(bc) = 1. For a
threshold t = 0.4 the clustering obtained by solving the corresponding WTGPP is
C = {C1, C2} = {{a}, {b, c}}. The mean similarity between objects within one cluster
is obviously above the threshold and the mean similarity between these clusters is
below the threshold:

sim(ab) + sim(ac)
2 = 0.25 < t

The mean similarity between b and a, which is one element from one cluster and all
elements from the other, is 0.5 and hence above the treshold.
It is possible though to make a statement about the average similarity between two

clusters.

38 Chapter 3: Transitivity Clustering

Lemma 3.7. Let C = {C1, ..., Cm} be the cliques of a solution for a given WTGPP
with threshold t and similarity function sim. The mean similarity between two cliques
Ci and Cj is below the threshold for all 1 ≤ i < j ≤ m.

Proof. Again the proof for this lemma is done by assuming the negated proposition
and leading it to a contradiction. Let Ci and Cj with i 6= j be cliques with average
similarity above the threshold t. The decomposition of the objects into cliques C ′ =
(C \ {Ci, Cj}) ∪ {Ci ∪ Cj} is a putative solution for the WTGPP. The costs for C ′
can again be calculated using the costs for C and adding all costs for adding the
connective edges between Ci and Cj :

costs(C ′) = costs(C) +
∑
u∈Ci

∑
v∈Cj

(− sim(uv) + t)

In order to see a contradiction to the assumption that C is a solution for the WTGPP
all that remains is to show that the second term is below zero. This can be derived
from the initial assumption that the average similarity between Ci and Cj is above
the threshold:

meansim(Ci, Cj) = 1
|Ci| · |Cj |

∑
u∈Ci

∑
v∈Cj

sim(uv) > t

⇔

∑
u∈Ci

∑
v∈Cj

sim(uv)

− t · (|Ci| · |Cj |) > 0

⇔
∑
u∈Ci

∑
v∈Cj

(sim(uv)− t) > 0

⇔
∑
u∈Ci

∑
v∈Cj

(− sim(uv) + t) < 0

3.3 Extensions
In order to improve the clustering results, one can modify the WTGPP. One option
is to include existing knowledge. Objects, where it is known that they belong to the
same cluster can be set to be inseparable for instance, or a second threshold may
specify a limit above which two elements are also forced to be in one cluster. Another
extension of TC is to compute a hierarchal or an overlapping clustering.

3.3.1 Upper and lower bounds
In some cases it is useful to force some elements to be in one cluster. If two elements
are more similar than a second threshold tu (upper bound), they can be considered
as "similar enough" to be inseparable. For instance, proteins whose best bidirectional
BLAST E-value is below 10−200 can be forced to belong to the same cluster. The

3.3: Extensions 39

following is a description of how such a restriction is defined formally. The integration
of known assignments works in a similar way to the modification with an upper bound.
Hence, only the modification with upper and lower bound are described here.
Given a set of objects V , a pairwise similarity function sim:

(V
2
)
→ R and a threshold

t ∈ R, a WTGPP can be formulated. Using an upper bound tu, all elements that are
connected via a path that consist only of edges with similarity above tu are assigned
to groups. These groups are the connected components Ĉ = {Ĉ1, ..., Ĉm} of the
graph G′ = (V,E′) with E′ =

{
uv ∈

(V
2
)
; sim(uv) > tu

}
and serve as new objects for

the subsequent clustering. Hence, they can no longer be separated. A group may
contain edges below tu or even below the original threshold t. Further note, that a
group Ĉi may consist of only one object. Afterwards the problem of clustering these
groups is defined again as WTGPP using a threshold of 0. The new similarity graph
Ĝ = (Ĉ, EĈ) is consequently defined as:

EĈ =
{
CC ′ ∈

(
Ĉ

2

)
; ˆsim(CC ′) > 0

}

where ˆsim is the similarity function between the new objects. ˆsim is defined for two
groups C,C ′ ∈ Ĉ as the sum of addition/deletion costs (according to the original
WTGPP) between all elements of C and all elements of C ′, where deletion costs are
subtracted:

ˆsim(CC ′) :=
∑
u∈C

∑
v∈C′

(sim(uv)− t)

This "new" problem is closely related to the original formulation and can even lead to
the same results, though not guaranteed. It can be shown easily (see Figure 3.2 as an
example), that solving the restricted problem may lead to a partitioning of the data
with higher costs according to the original WTGPP.
This operation may also be used as a heuristic to solve the initial WTGPP. The

costs for the corresponding partitioning of G, given a solution Ĝ′ for Ĝ, is the sum of
the costs for creating this solution and the costs to build the inseparable groups with
tu. These additional costs are on the one hand the costs for adding all non-existing
edges within a group of inseparable elements and on the other hand costs for defining
the edges between two groups or a group and another object. If an edge between two
groups C and C ′ exists, the costs for creating this edge is the sum of costs for adding
all non-existing edges between objects of C and objects of C ′. If an edge does not
exist between C and C, the additional costs are the sum of costs for removing all
edges between objects of C and C ′. These costs can be stored during the construction
of the graph Ĝ.
A second option to influence the results with additional knowledge, is to set some

edges to forbidden, meaning not allowing the adjacent nodes to be in one cluster. As
in the first restriction this would not lead to an optimal solution of the WTGPP, but
may reflect reality more precisely. An example for this can be found in the application
chapter, Section 6.1. It is possible to set a lower bound tl. Each similarity smaller

40 Chapter 3: Transitivity Clustering

Figure 3.2: Counter example, that the WTGPP with upper bound lead to higher costs.
Using a threshold t = 80 and an upper bound tu = 90. Without the upper bound
all nodes are separated with costs 40 to remove the two remaining edges, and with
upper bound all nodes are forced to be in one cluster, leading to costs 60 for adding
the missing edge.

than tl is set to −∞. Note that combining the two methods may lead to contradiction,
since two elements with a similarity below tl may still be part of the same cluster due
to a path of edges with similarity above the upper bound. In the work presented here,
the upper bound will be applied first.

3.3.2 Building hierarchies

Due to the nature of the underlying graph modification problem, TC is a partitional
clustering algorithm and, even with strictly ascending or descending thresholds, no
hierarchy is achieved (Figure 3.3 illustrates such an example). The question arises, in
which cases no hierarchical clustering occurs and why. TC depends on the threshold
and on the number of elements that are similar to each other. If objects from a large
set S are similar to one object x, x might be assigned to S even if it has higher
similarities to other elements. The following example illustrates this effect:

Example 3.8. Let V be the set of objects and assume there exist two disjoint groups
U,W ∈ V . The similarity of all elements within U and W is high, but low between
elements of U and elements of W . For simplification let the similarity within a group
be 1 and between the groups be 0. Furthermore, assume there exists one element
x ∈ V \ (U ∪W), which has similarity to all elements of U of 0.5 and a similarity to

3.3: Extensions 41

all elements of W of 1. Choosing a threshold above 0.5 clearly assigns x to W , but if
the threshold is below 0.5 the assignment of x depends on the size of U and W .
To assign x to U the costs for removing all edges between x and W must be lower

than removing all edges between x and U . In this example, one can ignore the edge
additions, since all edges are above the threshold.∑

w∈W
sim(xw)− t ≤

∑
u∈U

sim(xu)− t

⇔ |W | · (1− t) ≤ |U | · (0.5− t)

⇔ |W | · 1− t
0.5− t ≤ |U |

For a threshold t = 0.25, x is assigned to U if the number of elements of U is more
than three times the number of elements in W :

|W | · 1− t
0.5− t = |W | · 0.75

0.25 = |W | · 3 ≤ |U |

It is exactly this effect that is responsible for the WTGP to be non-hierarchical. A
similar example can be found in Figure 3.3, where x is similar to u and v, but more
similar to w. For a small threshold of 4, u and v combined are more similar to the
crucial node x. For a higher threshold of 7 the highest similarity between x and w is
important in determining the assignment of x.

To avoid such behavior, one may either force elements with high similarity to be in
one cluster, or force an hierarchical structure as in one of the two options; a bottom-up
and a top-down method. Both methods iterate through a list of thresholds, ascending
for the top-down approach and descending otherwise. While the top-down method
always uses the obtained clusters from the previously used threshold to create the
input graphs for the current parameter, the bottom-up method merges all nodes of
the previous clusters and calculates the new similarity as sum of similarities between
nodes from different cluster. If the bottom-up approach is chosen, elements with high
similarity are assigned to the same cluster in early iterations, and are not allowed to
be split afterwards. On the other hand, the top-down approach prefers to first build
big groups of elements with low similarity that will be split further in future iterations.
With both methods one does not lose the advantages of the WTGP.

Top-down

As described above, the top-down approach needs a list of ascending thresholds
t1, . . . , tk, with ti < tj for 1 ≤ i < j ≤ k. For t1, the WTGPP is formulated as
usual. Given a solution G′ consisting of cliques C1, ..., Cm, each clique defines a graph
Gi which serves as similarity graph for the next threshold, i.e. a WTGPP can be
formulated for each clique individually using the next threshold t2 and the graphs Gi,

42 Chapter 3: Transitivity Clustering

Figure 3.3: This illustrated example shows, that the WTGP does not produce an
hierarchical structure for ascending thresholds. Using thresholds t = 4 and t = 7
leads to different solutions as expected, but one can see that the clusters for the
higher threshold t = 7 are not subclusters of the groups obtained with threshold
t = 4

defined as follows:

Gi = (Ci, Ei); Ei = {{u, v} ∈
(
Ci
2

)
; sim(uv) > t2}

By iterating over all thresholds and by using the results of the previous solutions
to construct the next problem, a hierarchy is created. The mean similarity between
elements of one cluster is still above the threshold ti for the corresponding clustering
in iteration i.

Lemma 3.9. The previously described attributes for similarities between elements and
their group as well as between two clusters hold true for clusters obtained after i steps
of the top-down hierarchical approach, i.e.

(i) The mean similarity between one element and all elements of its cluster is greater
or equal to the threshold ti at iteration i.

(ii) The mean similarity between all elements of one cluster obtained in the i-th
iteration is greater or equal to the threshold ti.

3.3: Extensions 43

Proof. (ii) is a direct consequence of (i) and hence does not have to be proven inde-
pendently. As shown in Lemma 3.5, the statements are valid for the first iteration.
The results for each iteration i are used to construct a WTGPP. These problems are
independent from each other and hence follow the rules defined in Lemma 3.5.

Unfortunately, it can not be proven that the mean similarity between two clusters
is below the threshold. This statement is obviously true within one graph obtained in
the i-th iteration and clustered with threshold ti+1. It cannot be proven for comparing
clusters of two different graphs of the i-th iteration, since those graphs may contain
elements with mean similarity to another graph above the threshold ti and even above
ti+1 (see example 3.6).

Bottom-up

The second approach for creating a hierarchy using WTGP, starts with a set of small
clusters and merges them until either only one cluster is left or the list of thresholds is
processed. In contrast to the previous method, the required list of thresholds t1, . . . , tk
has to be descending (ti > tj for 1 ≤ i < j ≤ k). Starting with the highest value t1,
the WTGPP is formulated and solved. The cliques of the solution are the objects for
the next threshold t2. As described in Section 3.3.1, elements can be forced to belong
to the same cluster with an upper bound or a pre-specified assignment. In this case
all elements of one clique must not be separated anymore. The costs to delete or add
an edge between these constructed objects are defined as the sum of differences of
the weight and the next threshold t2 between elements of two groups. If this sum is
greater then zero the edge exists and otherwise it does not. Again, this process iterates
through the list of thresholds and, thus constructs a hierarchy. It seems to be similar
to a standard agglomerative hierarchical clustering, yet still differs. Rather than one
element being added to an existing cluster in each step, several may be assigned to
the same group, depending on the list of threshold. The clustering obtained for a
threshold ti still guarantees, that the mean similarity within one cluster is above the
threshold.

Lemma 3.10. A partitional clustering obtained in the i-th step of the bottom-up
hierarchical clustering has the following attributes:

(i) The mean similarity between one element and all other elements of its cluster
is greater or equal to the threshold ti at iteration i.

(ii) The mean similarity between two clusters obtained in the i-th iteration is below
the threshold ti.

Proof. (i) Again the statements for the first iteration are true due to Lemma 3.5.
Assuming the statements are true for the i-th iteration, what remains is to show that
this leads to the correctness for the i+ 1-th iteration.

44 Chapter 3: Transitivity Clustering

Solving the WTGPP for the next threshold ti+1 guarantees (again from Lemma
3.5) that the mean similarity within one cluster C is above the threshold:

∑
U∈C

∑
V ∈C\{U}

sim(UV) >
(
|C|
2

)
· ti+1

where the similarity between two elements (clusters for ti) U and V is, as previously
described, defined as:

sim(UV) =
(∑
u∈U

∑
v∈V

(sim(uv)− ti+1)
)

+ ti+1

This shows that the average inner similarity of clusters derived with ti in C is above
the threshold ti+1. Since it is assumed that the statement is correct for the previous
iteration, the remaining similarities, i.e. the average similarities within the clusters
obtained using ti, are above ti and, since ti > ti+1, also above ti+1. From this follows
that the mean similarity between all elements of one cluster C is also above the
threshold ti+1
(ii) From Lemma 3.5 it is known that the mean similarity between two clusters C

and K of the (i+ 1)-th iteration is below the corresponding threshold:

meansim(CK) = 1
|C| · |K|

∑
U∈C

∑
V ∈K

(sim(UV)) < ti+1

Together with the definition of similarity between two clusters, this proves that the
average similarity between the original objects from C and K is again below the
threshold. ∑

U∈C

∑
V ∈K

(sim(UV)− ti+1) < 0

⇔
∑
U∈C

∑
V ∈K

((∑
u∈U

∑
v∈V

(sim(uv)− ti+1)
)

+ ti+1 − ti+1

)
< 0

⇔ 1
((
∑
U∈C |U |) · (

∑
V ∈K |V |))

·
∑
U∈C

∑
V ∈K

(∑
u∈U

∑
v∈V

sim(uv)
)
< ti+1

These two approaches can be used to create an hierarchical clustering based on
the WTGPP. Alternatively it is an option to decrease the runtime of an iterative
analysis at the expense of accuracy. It can be used to get a fast approximation about
the results before the execution of a more precise method. As described above, the
hierarchical clustering methods are a way to control the outcome of the clusters, by
preferring either elements with high similarity to be in one cluster (bottom-up) or
bigger groups with an overall similarity between the objects (top-down).

3.3: Extensions 45

3.3.3 Identification of overlaps

This section describes three methods to create an overlapping clustering using WTGP.
The first approach creates a fuzzy assignment of the objects to clusters by using the
partitional clustering for a certain threshold. Based on the similarity function, each
element-cluster pair is assigned a value between zero and one, which is subsequently
used to assign those objects to additional clusters whose value exceeds a second thresh-
old. Another method is more related to the initial WTGPP. Again, the WTGPP is
solved first for one threshold. Afterwards single elements are assigned to other clusters
if this reduces the costs. As in any overlapping clustering, the transitivity rule can not
be fulfilled anymore. The last approach has been specifically developed for clustering
proteins based on their sequence similarity. Sequences compared using the BLAST
algorithm, result in multiple High Scoring Pairs (HSPs) each representing an align-
ment of subsequences of two protein sequences. While common clustering approaches
primarily use only the best bidirectional hit, i.e. ignoring the position of the aligned
subsequences and multiple HSPs for the same sequences, the method presented here
makes use of all this information.
In the following let C = {C1, ..., Cm} be a clustering obtained for a specific threshold

by solving the corresponding WTGPP, let V = {v1, ..., vn} be the objects that were
clustered, and let sim:

(V
2
)
→ R be the pairwise similarity function.

Overlapping clustering with fuzzy associations

This method assigns to each object vi and each cluster Cj a value fi,j = f(vi, Cj) ∈
[0, 1], such that: ∑

Cj∈C
f(vi, Cj) = 1 ; for all vi ∈ V

Therefore, the mean similarity mi,j between every pair of object vi and cluster Cj is
calculated and stored in the matrix M = (mi,j) ∈ Rn×m:

mi,j = 1
|Cj \ vi|

∑
v∈Cj ,v 6=vi

sim(vvi)

The matrix is transformed into a column stochastic matrix F = (fi,j) ∈ [0, 1]n×m to
fulfill the criteria as defined above. f is a value that determines how "well" an element
fits into a cluster. To get an overlapping clustering a second threshold is necessary.
This value t2 ∈ [0, 1] influences the number of allowed overlaps. Choosing a low
value would lead to many overlaps, while a value close to one would only assign few
elements to multiple clusters. The overlapping clustering itself is created by adding
an element vi to an additional cluster Cj if fi,j exceeds t2. One restriction is that
singletons cannot be assigned to any other cluster and that no element can be assigned
to singletons.

46 Chapter 3: Transitivity Clustering

Adding single objects to multiple clusters

The second approach also takes advantage of a previous clustering obtained by solving
a WTGPP. The basic concept is to assign objects to an additional cluster if the inter-
nal costs is below zero. By adding a node to an additional cluster and hence all edges
between the node and the cluster, the overall costs may be reduced if initially removed
edges are re-added again. In this approach, the transitivity rule no longer applies, as
with any overlapping clustering. The strength of the overlap cannot be specified as
with the previous approach, and only depends on the initially chosen threshold and
obtained clustering. Starting with a partitional clustering C = {C1, ..., Cm} each
object u can be assigned to an additional cluster Cj if

costs(u,Cj) =
∑
v∈Cj

(sim(uv)− t) < 0

For the combination u,Cj with smallest costs and costs(u,Cj) < 0 , the altered
clusters C ′ = {C1, ..., Cj ∪ {u}, ..., Cm} replace the previous clusters and the process
starts again. These operations are executed until no further improvement is possible,
i.e. no assignment of an object to an additional cluster would reduce the internal costs
of any cluster. As before, singletons are excluded as well as assignments to singletons.
With both overlapping methods, the mean similarity between an object and all

other object of its cluster is above the chosen threshold.

Overlapping clustering of protein sequences

The last overlapping approach has been developed particularly for the task of cluster-
ing proteins. A sequence comparison by using the BLAST algorithm serves as input
for this approach. The method is motivated by the fact, that proteins in a certain
family share domains and do not have to be completely identical. In some cases it
occurs that a protein has a subsequence similar to one group and another subsequence
similar to a second group. It is difficult to decide which group such a protein should be
assigned to. This problem can be solved by allowing overlaps thus assigning it to both
clusters. BLAST results are organized in HSPs, each representing an alignment be-
tween a subsequence of one protein sequence to a subsequence of another. Commonly
the best bidirectional E-value or the normalized score of these alignments are used
as pairwise similarity. Instead of clustering whole protein sequences, only the in the
BLAST file occurring subsequences are taken into account here, i.e. the subsequences
of a protein that have a high similarity to subsequences of other proteins. These se-
quences are initially clustered to identify regions within one protein sequence that can
also be found in sequences from other proteins. For each occurring two subsequences
s1 and s2 of the same protein p of length |p| the following value indicates how similar
they are:

sim(s1, s2) =
∑|p|
i=1 min{Is1(i), Is2(i)}

|p|

3.4: Algorithms solving the WTGPP 47

where Is : {1, ..., |p|} → {0, 1} is a function that indicates if the subsequence s cov-
ers the i-th position of p. s1 and s2 are treated as the same subsequence of p if
sim(s1, s2) > t, where t ∈ [0, 1] is a fixed threshold. Such groups of "almost iden-
tical" subsequences are the objects in a subsequent cluster analysis using TC. An
overlapping clustering can be obtained by identifying the subsequences again with
their proteins. With this method it might be possible to identify connecting proteins
which have a similar subsequence to one group and another one to a different group.
Although not verified yet those results may help detecting groups of domains that are
representatives for functionally related groups of proteins.

3.4 Algorithms solving the weighted transitive graph
projection problem

3.4.1 Fixed parameter branch and bound strategy

A FP strategy for the TGPP has first been introduced by Gramm et al. [39]. Later,
Böcker et al. [17] extended this approach to the WTGPP and added several im-
provements to decrease the runtime. The current implementation of the subsequently
presented FP approach, called PEACE, is available as web server at http://bio.
informatik.uni-jena.de/peace/.
Essentially, a branch and bound strategy is used with an increasing parameter k as

an upper bound for the modification costs. The trick is to restrict the search space to
those edges that contradict with the transitivity rule. Note that changing one edge
within a so-called conflict triple (three nodes and two edges) is sufficient to resolve
the contradiction to the transitivity rule. Thus, for one edge the search tree branches
into two subtrees: To keep an edge means to assign the connected objects to the same
cluster, while removing an edge means to separate them into different clusters. The
modification costs are calculated for each step and the branching stops if a certain k is
exceeded. Keeping an edge is processed by merging the two adjacent nodes and thus
reduce the number of nodes for this subtree by one. Each edge is processed at most
once, which guarantees to find a solution with costs smaller than k, if one exists. If no
solution was found for a given k, the algorithm is restarted with an increased value of
k. This is repeated until a solution is found. To improve runtime additional reduction
rules are implemented. These check in an efficient way for a given edge whether it is
possible to find a solution where the edge is kept, or removed. If no solution can exist
the edge is removed or kept respectively. The minimal cost for removing the edge uv
are:

minremovalcost(uv) =
∑

w∈N(u)∩N(v)
min{sim(uw), sim(vw)}

and the minimal cost for keeping the edge uv are:

minkeepingcost(uv) =
∑

w∈N(u)∆N(v)
min{| sim(uw)|, | sim(vw)|}

48 Chapter 3: Transitivity Clustering

where A∆B denotes the symmetric set difference of two sets A and B, and N(u) is the
set of neighbors of u. Note that the worst case running time of the algorithm is still
exponential but for problem instances where only few edge modifications are necessary,
the exact solutions can be found early. In practice, at least for protein sequence
clustering, for connected components of size 200 nodes or more, the algorithm may
not be able to find a solution in reasonable time (less than 24 hours on a standard
desktop computer).

3.4.2 FORCE

The FORCE approach [79] is the predecessor of the software TransClust, which is
described in the next chapter. It is a heuristic whose main concept is to arrange the
nodes of the graph on a plane in such way, that the layout reflects the similarity.
Afterwards a single linkage approach is used to determine the clusters. FORCE is
organized in three steps; (1) the layout step, (2) the partitioning step, and (3) the
post-processing step. In the layout step a graph layout algorithm similar to the force-
based algorithm by Fruchterman and Reingold [35] is applied to organize the nodes
on the plane. Since this algorithm is similar to the layout algorithm in TransClust, a
description can be found in Section 4.2.1 and Algorithm 1 on page 58. The partitioning
step applies a simplified version of the single linkage clustering algorithm, where for
a fixed list of distances d1, . . . , dn all nodes with distance smaller than di are assigned
to one cluster and the costs are calculated. The solution with smallest cost is then
passed to the last step, the post-processing step. The two post-processing methods
"merge" and "rearrange single nodes" are used here. Descriptions of these methods
can also be found in Section 4.2.4, since they are also implemented in TransClust.

3.4.3 A greedy approach

A heuristic greedy approach has been developed by Marcel Martin [65] for this task.
The main idea is to correctly guess the set of edges to remove from the input graph
G and afterwards take the transitive closure of the remaining graph as solution. To
determine which edges are good candidates for removal, a score for each edge removal
is defined. Let C(G) denote the set of conflict triples, i.e. the set of triples uvw ∈

(V
3
)

that contradict with the transitivity rule. The deviation from transitivity is then
defined as:

D(G, s) =
∑

uvw∈C(G)
min{| sim(uv)|, | sim(uw)|, | sim(vw)|}

Finally, the transitivity improvement and thus a score for an edge removal is defined
as:

score(uv) = D(G, sim)−D(G′, sim′)− sim(uv)

where sim is the similarity function and G′(V,E \ uv) is the graph G with edge uv
removed. sim′ equals sim except for the edge uv, where it is set to sim′(uv) = −∞.

3.4: Algorithms solving the WTGPP 49

The greedy algorithm searches for the best deletions according to the score function
until G is split into two connected components G1 and G2. All edge removals that
did not contribute to the splitting of G are re-added to G1 and G2. Subsequently the
algorithm is applied on the subgraphs recursively until a subgraph is a clique or the
cost for splitting the graph are higher than those for the transitive closure.

3.4.4 Integer Linear Programming
An Integer Linear Programming (ILP) formulation was first provided by Grötschel
and Wakabayashi [41]. In the following, let x be a decision vector with xuv = 1 if the
edge uv is part of the solution and xuv = 0 otherwise. For simplification, let xvivj be
denoted as xi,j for all vivj ∈

(V
2
)
. The WTGPP can now be formulated as

Problem 3.11 (ILP formulation for WTGPP).

minimize
∑
uv∈E

sim(uv)−
∑

1≤i<j≤n
sim(vivj)xi,j

subject to + xi,j + xj,k − xi,k ≤ 1 for all 1 ≤ i < j < k ≤ n
+ xi,j − xj,k + xi,k ≤ 1 for all 1 ≤ i < j < k ≤ n
− xi,j + xj,k + xi,k ≤ 1 for all 1 ≤ i < j < k ≤ n
xi,j ∈ {0, 1} for all 1 ≤ i < j ≤ n

Grötschel and Wakabayashi proposed a cutting-plane approach to solve this prob-
lem, which has been implemented and improved by Böcker et al. [18]. It has been
shown in a comparison between the ILP and the FP approaches, that the two methods
have similar runtime in practice.

3.4.5 Cluster Affinity Search Technique
The CAST algorithm by Ben-dor et al. [20] uses a fast technique to predict clusters
and thus present putatively "good" solutions for the WTGPP. The algorithm opens
a cluster Copen with an arbitrary node. For each element u ∈ V the affinity to this
cluster is calculated as the sum of the similarities between u and all elements of Copen:

aff(u,Copen) =
∑

v∈Copen

sim(uv)

The algorithm now alternates between two methods, ADD and REMOVE:

ADD The node with the highest affinity to Copen is added to it, if aff(u,Copen)≥
t · |Copen|. This is repeated until no such node exists or all nodes are assigned
to Copen. After each assignment, the new affinities of all remaining elements to
Copen are updated.

REMOVE The node u with lowest affinity to Copen is removed from it, if aff(u,Copen)<
t · |Copen|. As in ADD this is repeated until no such element is found or Copen

50 Chapter 3: Transitivity Clustering

contains only one element. After each removal, the new affinities of all remaining
elements to Copen are updated.

When no changes occur in both of these methods, Copen is defined as one cluster and
another node is picked out of the remaining set V \ Copen. The process is repeated
until every node is assigned to one cluster.
CAST already implemented a post-processing method similar to that in TransClust,

which moves one node to a different cluster if this would reduce the costs. This
operation is performed until no further movements would reduce the costs, or a user
defined maximal number of movements is reached.

4 The Transitivity Clustering framework
TransClust

The clustering framework TransClust has been developed as an implementation of
Transitivity Clustering (TC). It combines heuristic and exact approaches to optimize
quality and runtime. A first implementation and hence predecessor of TransClust, the
Force-Based Cluster Editing (FORCE) program, mainly uses a layout based heuristic,
inspired by physical forces between objects [79]. An improved version of this algorithm
serves as main heuristic approach in TransClust. In addition to this, the Cluster Affin-
ity Search Technique (CAST) algorithm is integrated as well as an exact algorithm.
While the CAST heuristic is fast, but less accurate, the exact Fixed-Parameter (FP)
strategy, developed by Böcker et al. [17], can be applied on small problem instances
only. Best results are obtained by combining all these approaches. A fast approxi-
mation for an upper bound leads to decreased runtime of the exact algorithm, and
different problem instances may be better solved by using different heuristic meth-
ods. The current implementation of the FP strategy is also used later to evaluate the
heuristic clustering process of TransClust.
Existing knowledge can be used in TransClust to detect a meaningful similarity

threshold. If, for example, a clustering of parts of the used data set is known, results
for varying thresholds may be used to see which parameter identifies these clusters
best. Additionally, a visual representation supports the data analysis. For this reason
the developed clustering framework TransClust has been integrated into the network
visualization and analysis software Cytoscape [69]. Together with the clustering meth-
ods of TransClust various follow up analysis steps may also be performed here. For
instance, the cluster size distribution may be visualized, or a similarity function can
be evaluated together with a gold standard assignment by plotting the similarities
between two clusters and those within a cluster. All these methods may support a
scientist by detecting a meaningful threshold for the clustering problem of interest.
TransClust can be applied in three different ways: (1) as a web application for small

problem instances, (2) as a standalone application with either graphical user interface
or via commandline, and (3) as a plugin for the network analysis software Cytoscape.
This chapter provides a detailed description of the TransClust framework. Figure

4.1 illustrates the structure of TransClust. The used data formats are presented on
the left side and linked to the parts of TransClust, where they are used. The middle
briefly summarizes the different clustering options and the right part illustrates the
three ways to execute TransClust.

52 Chapter 4: The Transitivity Clustering framework TransClust

Figure 4.1: Illustration of the TransClust program structure.

4.1 Data import

TransClust accepts several data formats as input for a subsequent cluster analysis.
One of the first application of TC was the clustering of protein sequences. One
accepted format is thus a BLAST and a corresponding FASTA file. From these files a
similarity file is created. Such a similarity file may also be used as input for any other
clustering task, where a pairwise similarity is given. To reduce the required space, an
individual Weighted Transitive Graph Projection Problem (WTGPP) can be stored
as costmatrix file. In such file, the names of the objects appear only once, and only
one direction of the symmetric pairwise similarity function is stored. Further data
formats are: a gold standard file, as reference for a comparison, a config file to store
configurations of the used heuristics, the results file containing all information about
the resulting cluster analysis, and a file containing existing information such as known
assignments for instance.

A description and examples for all data formats can be found in the Appendix
section B. An overview of the import process of TransClust is illustrated in Figure
4.2.

4.2: Clustering methods 53

Figure 4.2: Model of the data import process. For clustering sequences a BLAST and
FASTA file is converted into a similarity file. The similarity file can be used to either
calculate clusters for varying thresholds directly or to compute costmatrices. To-
gether with the costmatrices a file is created that contains every transitive connected
components.

4.2 Clustering methods

TransClust integrates several algorithms solving a WTGPP. Exact and heuristic
methods are combined in an efficient way to minimize the trade-off between runtime
and quality. This section describes all the clustering methods used and how they are
combined. It also includes methods that were developed for TransClust, but have
proven to be less efficient than the currently used alternatives. However, the integra-
tion of novel algorithms for parts of the clustering pipeline, shows that TransClust is
easy to extend and, moreover, that it is already optimized for runtime and quality
aspects.
Figure 4.3 depicts the architecture of the clustering process. Since it is sufficient

to solve a WTGPP for each connected component individually, the picture illustrates
the workflow in the example of one intransitive connected component. First, the fast
CAST is applied to pre-process the data. This initial clustering leads to a fast approx-
imation of the required costs for this problem. TransClust benefits in two ways from

54 Chapter 4: The Transitivity Clustering framework TransClust

this approximations. For every two nodes the minimum costs for removing the con-
necting edge can be calculated. If these costs are higher then the costs obtained with
CAST these two nodes can be merged to one node to reduce the problem complexity.
The second benefit of the approximated costs appears while applying the exact FP
algorithm. The runtime of this algorithm can be drastically reduced by guessing a
good upper bound. Since the FP algorithm has still exponential runtime its usage is
limited in TransClust. Only instances of a certain size are calculated exactly, and even
then the calculation is limited to a certain time. The main algorithm in TransClust is
a layout-based heuristic, which is slower then the CAST method but more accurate.
Both results, those from CAST and from the layout-based heuristic are transfered
to the post-processing phase. After fine-tuning the clustering new connected compo-
nents are created for each cluster and the procedure starts again. If this recursion does
not lead to any improvement, the best result of the two heuristics is reported. Note
that TransClust is capable of computing results for different connected components
in parallel. One can specify the number of CPUs to be used. This might not decrease
running time for an individual large component, but will in most cases speed up the
overall clustering procedure.

Figure 4.3: Model of the clustering process. First CAST is applied to produce a quick
approximation of costs. All nodes for which deleting the edge would lead to more
costs than the pre-calculated costs are merged. Next, depending on the size, ei-
ther the exact FP algorithm or the layout-based heuristic is applied. The resulting
clusters are then post-processed and each cluster is subsequently clustered again
individually. Finally, the clustering with lowest costs is reported.

4.2: Clustering methods 55

4.2.1 Layout-based heuristic

The goal of this approach is to arrange the vertices in a n-dimensional space, such
that the layout reflects the similarity values. Subsets of nodes with high edge-density
should be arranged next to each other, and far away from other nodes. Afterwards
the positions are used to cluster the data with geometrical clustering algorithms.
TransClust currently integrates two layout methods: the first algorithm moves the
nodes based on attractive and repulsive forces between the nodes and the second is
inspired by ant colony behavior. While the force-based approach always produces the
same layout for a given initial layout and a fixed set of parameters, the ant colony
method depends on probabilities and hence leads to different solutions for each run.
TransClust is implemented such that it can easily be extended and improved. This
means that practically any graph layout algorithm and geometric clustering algorithm
can be integrated. Moreover, it is possible to combine different approaches. One
algorithm may be the initial layout for another, in order to increase the performance
of the subsequently used geometric clustering methods. In this manner, it is possible to
create a list of different layout algorithms. This section describes the two implemented
layout algorithms as well as the integrated geometric clustering methods. Since both
layout methods have several parameters, an evolutionary parameter training has also
been integrated into TransClust. Figure 4.4 depicts the workflow of the layout-based
heuristic as it is implemented in TransClust.

Initial layout

Most graph layout algorithms depend on a starting point after which the position of
each node is altered until a desired positioning is reached. Such an initial layout can
be randomly chosen, but is preferably always the same for the same data to allow
reproducibility of the results. The default initial layout in TransClust is to arrange
the nodes in circles. For n dimensions

(n
2
)
circles are created, one for each pair of

dimensions. The nodes are also split into
(n

2
)
equally sized groups respecting the

order in which they were read as input. Each group is assigned to one circle and
its elements are arranged on the circle, such that all neighboring nodes are equally
distant from one another. Although the nodes are not as equally distributed over the
hypersphere as on a circle in 2 dimension, this methods guarantees reproducibility
and the initial layout can be computed quickly.

Force-based layout

The main idea of the force-based layout approach is to iteratively change the position
of each node, such that nodes corresponding to similar objects move towards each other
while nodes corresponding to dissimilar objects diverge. The implemented algorithm
is hence a customized version of the force-based layout algorithm by Fruchterman
and Reingold [35]. To reflect the underlying WTGPP, the nodes affect each other
depending on their similarity, the threshold of the problem, and the current position
of the nodes. For a user-defined number of iterations R, the interaction between every

56 Chapter 4: The Transitivity Clustering framework TransClust

Figure 4.4: Illustration of the layout-based heuristic as it is implemented in TransClust.
Starting with an initial layout, a list of layout algorithms can be processed consec-
utively. The final layout is used to create the cluster assignments with geometric
clustering methods.

pair of nodes and thus the displacement for every node is calculated. All nodes are
then simultaneously moved to their new position. Since this model is only inspired
by physical forces without friction, it does not include acceleration. As a first step,
before the layout method applies, the similarities are normalized in order to produce
similarly good results for different applications using the same set of parameters.
The displacements are computed according to the WTGPP, where nodes that are
connected by an edge attract each other and those that are not adjacent repel each
other. As described in Algorithm 1, the strength fu←v of the effect of one node v to
another node u (i.e., the magnitude of the displacement of u caused by v) depends
on the Euclidean distance d(u, v), on the cost to add or delete the edge and a user
defined attraction or repulsion factor fatt, frep:

fu←v =


cost(uv) · fatt · log(d(u, v) + 1)

|V |
for attraction,

cost(uv) · frep
|V | · log(d(u, v) + 1) for repulsion.

4.2: Clustering methods 57

Figure 4.5: An illustration of the force-based layout after (A) 10 iteration, (B) 30
iteration, and (C) 100 iterations. The circles in (C) represent putative clusters.

One can see that with increasing distance, attraction strength increases while repulsion
strength decreases. This allows nodes which are connected by an edge to reach one
another even if they were initially arranged far apart. Respectively, the repulsion
effect is stronger for nearby nodes, so that the system is stable and the possibilities
of both, adding and deleting edges, are treated equally.
In order to improve convergence to a stable position with minimal interactions, a

cooling parameter is added. In practice, this means that the displacement is limited
to a maximal magnitude Mi in each iteration i. Mi starts at an initial value M0 and
decreases with every iteration i:

Mi+1 = M0 · |V |
(i+ 1)k

k is a variable parameter, which is set to 2 by default based on empirical studies.
Algorithm 1 shows the pseudo code for this algorithm, and Figure 4.5 provides an
exemplary illustration of progress over time. TransClust allows, in contrast to its pre-
decessor FORCE, multiple dimensions to avoid conflicting interaction between objects.

Ant colony layout

The second layout method is based on ant colony behavior. Virtual ants run in the
layout space and can pick up an object and drop it at a different position depending
on the neighborhood. Over time dissimilar nodes are moved away from each other
and put together with similar nodes. In practice a grid is used for simplification.
The virtual ant jumps to an arbitrary node and decides whether to pick it up or not,
depending on all nodes in its neighborhood. One parameter of this heuristic is the size
of the neighborhood, which has an impact on quality and running time. The decision
about changing the position of a node u is modeled according to probabilities. It is

58 Chapter 4: The Transitivity Clustering framework TransClust

Algorithm 1 Graph layout
Input: similarity matrix (Sij)1≤i<j≤n with Sij := sim(ij) − t; circular layout radius

ρ, attraction factor fatt, repulsion factor frep, number of iterations R
Output: node positions pos = (pos[1], . . . , pos[n]); each pos[i] ∈ Rn.
1: pos = arrangeAllNodesCircular(ρ) B initial layout
2: for r = 1 to R do
3: B Compute displacements ∆ for iteration r
4: initialize array ∆ = (∆[1], . . . ,∆[n]) of displacement vectors to ∆[i] = (0, 0)

for all i
5: for i = 1 to n do
6: for j = 1 to i− 1 do
7: if Si,j > 0 then
8: fi←j = log(d(i, j) + 1) · Si,j · fatt B attraction strength
9: else

10: fi←j = (1/ log(d(i, j) + 1)) · Si,j · frep B repulsion strength
11: ∆[i] += fi←j · (pos[j]− pos[i])/d(i, j)
12: ∆[j] −= fi←j · (pos[j]− pos[i])/d(i, j)
13: B Move nodes by capped displacement vectors
14: for i = 1 to n do
15: ∆[i] = (∆[i]/‖∆[i]‖) ·min{‖∆[i]‖,M(r)}
16: pos[i] += ∆[i]
17: return pos

more likely for a node to be picked up if most nodes in its surrounding area are not
similar to it. By contrast, the probability is low if similar objects can be found in the
neighborhood. The pick-up probability is defined as:

ppick(u) =
(

k+

k+ + f(u)

)2

where k+ is a user defined parameter and f is a function to judge the neighborhood
of u defined as:

f(u) = max
(

0, 1
σ2

∑
v∈N

(
1− 1− c′(u, v)

α

))

where N denotes the set of items in the local neighborhood and σ2 its size. c′(u, v) are
the costs for adding/deleting the corresponding edge, normalized to [−1, 1] by dividing
through the maximal costs that appear in the graph. α is a variable parameter to
control the influence of the costs on the probability.

Carrying around this object, the ant randomly walks around and drops the object
after each step with a drop probability pdrop again depending on the other nodes

4.2: Clustering methods 59

within the area around the ant:

pdrop(u) =
(

f(u)
k− + f(u)

)
where f is defined as above and k− is another user-defined parameter for this approach.
A detailed description of this layout algorithm can be found in [50]. This heuristic

may produce different results for each run, because it integrates randomized parts.
The ant colony layout has been initially developed as an alternative to the force-based
layout method or as a pre-processing step. Unfortunately it was shown that this layout
approach performs worse than the force-based layout and could also not improve
the performance of the force-based method when used as initial layout. However, it
demonstrates the capability of TransClust to support various layout methods and the
combination of them.

Geometric single linkage clustering

Given a layout of the nodes in the layout space Rm, geometric single linkage clustering
is used to assign the nodes to clusters.
For a fixed radius r the nodes are assigned as follows: Starting with an arbitrary

node n1, all nodes with distance smaller than r are assigned to the same cluster.
Subsequently these nodes are used as new seeds. That is, all nodes that have distance
smaller than r to the new seeds are also assigned to the same cluster, and so on, until
no new nodes within range can be found. Again, from all remaining nodes, which
have no cluster assignment yet, a new seed is chosen randomly and the previously
described steps are repeated until every node is assigned to exactly one cluster.
To find the best clustering according to the objective function multiple radii are

used. A sorted list of all distances between nodes in the graph is partitioned into a
pre-defined number of k parts. The cost for an assignment using the k center distances
of each part are calculated. Recursively the part with the best cost is partitioned
again into k parts. This procedure is not guaranteed to find the best distance, but is
efficient and returns good solutions in practice. For a graph with n nodes, at most
k · argmaxi∈N{ki < n} complete assignments and subsequent calculation of costs are
necessary.

K-means clustering

An alternative geometric clustering approach is k-means. It was integrated into Trans-
Clust as an alternative to the geometric single linkage clustering method. Here, a
customized version of the standard k-means approach is used. The starting points are
not chosen completely random, but are positions of random nodes. Since the number
of clusters that optimize the objective function is not known in advance the clusters
are calculated for different k, ranging from 1 to max{n, kmax}, where n is the number
of nodes in the cluster and kmax is a pre-defined maximum. It is necessary to restrict
the maximal number of clusters (kmax), due to the long runtime that would otherwise

60 Chapter 4: The Transitivity Clustering framework TransClust

result for large problem instances. However, this restriction can be compensated with
the post-processing, particularly with recursive reclustering (see Section 4.2.4 for a
description of that post-processing method).
In [46] a comparison between the two geometric clustering approaches showed only

minor differences in the runtime and quality. This indicates, that the choice of the
geometric clustering method is not as important as the choice of a good layout al-
gorithm. However, it is possible to integrate any geometric clustering method into
the TransClust framework. The default method in TransClust is the geometric single
linkage clustering.

Parameter optimization

There are several parameters influencing the runtime and quality of a heuristic. The
force-based layout, for instance, needs the number of iterations R, the attraction and
repulsion scaling factors fatt, frep, and the magnitude M0 to be specified. A practi-
cal method for finding problem specific values is evolutionary training. TransClust
implements such a strategy in two different ways.
First, a good parameter combination is determined that can be applied to most

of the graphs. This is done by a pre-computation on a training data set. Since,
however, the optimal parameter constellation depends on the specific problem, one can
apply such a training algorithm to each individual problem (connected component).
TransClust allows the specification of the number of generations to train, and thus to
adjust runtime and the quality of the result.
Training works as follows: First, one starts with a set of 15 randomly generated

parameter sets and the initial parameters mentioned above. The parameter sets are
sorted by the cost of solving the WTGPP on the given graph. For each generation,
the best 10 parameter constellations are used as parents to generate 15 new combi-
nations. In order to obtain fast convergence into a good constellation, as well as a
wide spectrum of different solutions without running into local minimum, TransClust
splits these 15 new combinations into 3 groups with 5 members each. The first group
consists of parameters obtained only by random combinations of the 10 best already
known parameter constellations. The next group is generated with random param-
eters, while the third group is obtained by a combination of the previous methods.
To reduce the runtime for computing solutions of problems that are small or easy
to compute, a second terminating condition is added: If at most two different costs
appear while calculating the 15 start parameters, the best one is chosen, in which case
no more generations are computed.

4.2.2 Integration of the CAST algorithm

The CAST algorithm is a quick heuristic for finding a solution of a WTGPP. A
slightly changed implementation of this algorithm is integrated into TransClust for a
quick approximation of an upper bound of costs necessary to make the input graph
transitive. In contrast to the original method, the choice of the first element in one

4.2: Clustering methods 61

cluster is not selected randomly. Instead, all elements are sorted in descending order
by their average similarity to all other elements. The first element of each cluster, is
the first element of the sorted list that is not yet assigned to a cluster. For a descrip-
tion of the CAST implementation in TransClust see Algorithm 2. The TransClust
environment benefits from the computed boundary in two ways: First, data reduc-
tion rules as used in the FP algorithm can be applied. Hence, those nodes for which
the removal of their connecting edge would cost more than the costs computed with
CAST, are merged. It has been shown that these reduction rules are most efficient for
medium size graphs (refer to [18]). Consequently they are applied in TransClust on
instances with up to 200 objects. Second, the runtime of the FP algorithms depends
on a good guess for an upper limit. The closer the approximation is to the real costs,
the fewer unnecessary branches must be made. In practice, a fraction of the costs
calculated by CAST is taken as a starting point for the FP approach and increased
until a solution is found.
Due to its different nature, the CAST heuristic also sometimes reveals better results

than the layout-based heuristic. Thus, both approximation algorithms are executed
and the best solution is reported (refer to Section 4.4.3 for a comparison of the heuristic
methods in TransClust).

4.2.3 Integration of the exact fixed parameter approach

As previously described in Section 3.4.1 an exact branch and bound strategy for solving
the WTGPP was developed by Böcker et al. at Jena University. It will be shown in
later evaluations (see Section 4.4) that the fixed-parameter approach is applicable for
small instances of the problem. The runtime strongly depends on the specific graph
and not only on its size, making it often unpredictable how much computation time
is needed for one instance.
TransClust takes advantage of this approach by integrating it and restricting its

usage to a maximal instance size and a maximal time for each calculation. A simplified
version of the algorithm is implemented in Java, designed to work with the data
structures that are present in the TransClust framework.
Each instance of a smaller size than a pre-defined threshold is processed using the FP

approach. If the exact algorithm does not find a solution in a user-defined maximal
time it is aborted and the heuristic methods are applied instead. It is necessary
to restrict the usage of the fixed-parameter approach in order to produce results in
reasonable time.
The integration of this exact method is particularly beneficial in the recursive post-

processing method, which is described in the next section. The problem instances,
which have to be solved there, are usually much smaller in size and have a structure
which can be solved efficiently with the fixed-parameter method.

62 Chapter 4: The Transitivity Clustering framework TransClust

Algorithm 2 Implementation of the CAST algorithm in the TransClust framework
Input: similarity matrix (Sij)1≤i<j≤n with Sij := sim(ij)− t
Output: clustering assignment for each object c = (c[1], . . . , c[n]); each c[i] ∈ N.
1: initialize c with c[i] = −1 for all i = 1, . . . , n
2: initialize list remaining
3: add i = 1, . . . , n to remaining
4: sort remaining in descending order by their average similarity to all other nodes
5: initialize integer currentClusterNumber = 0
6: while remaining is not empty do
7: for i = 1 to n do
8: if i ∈ remaining then
9: c[i] = currentClusterNumber

10: remove i from remaining
11: currentClusterNumber = currentClusterNumber + 1
12: initialize double costChange = 0
13: Repeat ADD and REMOVE as long as changes occur
14: B ADD: add all elements that reduce costs by adding to cluster of i
15: while costChange ≤ 0 do
16: integer best = argminj∈remaining

(∑
{k;c[k]=c[i]}−Skj

)
17: double costChange = minj∈remaining

(∑
{k;c[k]=c[i]}−Skj

)
18: if costChange < 0 then
19: remove best from remaining
20: c[best] = c[i]
21: costChange = 0
22: B REMOVE: remove the worst elements from the cluster of i if this

reduces the costs
23: while costChange ≤ 0 do
24: integer best = argminj;c[j]=c[i]

(∑
{k;c[k]=c[i]} Skj

)
25: double costChange = minj;c[j]=c[i]

(∑
{k;c[k]=c[i],k 6=j} Skj

)
26: if costChange < 0 then
27: add best to remaining
28: c[best] = −1
29: return c

4.2.4 Post-processing

Small variations in a clustering can increase the value of the objective function enor-
mously. If, for instance, one node is assigned to a "wrong" cluster, all edges between
that node and its cluster, as well as that node and the "better" cluster, are affected. To
avoid such small mistakes, different post-processing method have been implemented
into the framework, which improve the output of a given heuristic. All three of these
integrated methods (merge, rearrange single nodes, and recluster recursively) are de-

4.2: Clustering methods 63

scribed below. However, TransClust uses a single method that combines all three of
the post-processing strategies. This method produces good results in almost the same
time as the individual strategies.
In the following let C = {C1, . . . , Cn} be the clustering used as input for every

post-processing method.

Merge The merge strategy iterates through every pair of clusters Ci, Cj ∈
(C

2
)
and

calculates the costs of the clustering Ci,j := C ∪ {Ci ∪ Cj} \ {Ci, Cj}. If there exist
two clusters Ci and Cj , such that the costs for producing the clustering Ci,j is smaller
than the costs for C, the pair which produces lowest costs is merged. The resulting
clustering is used as input for an additional iteration until no merging any pair would
lower the overall costs. Note that it is not necessary to compute the complete costs,
but only the change of costs, i.e. the costs to add all edges between the two clusters
of interest.

Rearrange single nodes To further improve the results of a clustering obtained from
a heuristic, this method tries to change the assignment for every single node. For one
iteration it calculates for each node v and each cluster Ci the costs for moving v to Ci.
The best movement is performed, if it reduces the overall costs. As in the previous
method, the modified graph is again input for an additional iteration of this method
until no further changes provide a reduction of costs. Note that a node can also be
assigned to an empty cluster and thus create a new singleton and a singleton can be
removed by assigning the corresponding node to a different cluster. In the current
implementation this method and the previously described merging alternate until no
changes are made in either of the two methods.

Figure 4.6: An overview of the recursive post-processing method. Taken from [46]

64 Chapter 4: The Transitivity Clustering framework TransClust

Recluster recursively The last post-processing method takes advantage of the fact
that the heuristics perform better on smaller instances and the exact solution may be
calculated for small problems with the integrated fixed-parameter approach. For every
cluster Ci a similarity graph Gi = (Ci, Ei) ⊂ G is defined as the induced subgraph of
the initial graph G:

Gi = (Ci, Ei); Ei =
{
u, v ∈

(
Ci
2

)
; sim(uv) > t

}

Depending on the sizes of Gi either a heuristic or the exact approach are used to solve
the corresponding WTGPP of the subgraph. This step can be repeated recursively for
the results for each Gi and stops if the subgraph cannot be split any further. Figure
4.6 illustrates all of the post-processing steps as they are implemented in TransClust.

4.2.5 Extensions and integration of existing knowledge
TransClust integrates the extensions to TC as described in the previous chapter. This
includes the alternative clustering strategies:

• Top-down hierarchical clustering

• Bottom-up hierarchical clustering

• Overlapping clustering with fuzzy associations

• Overlapping clustering by single rearrangement

Furthermore it is possible with TransClust, to integrate existing knowledge into the
clustering process to improve the clustering quality. This can be done in the following
ways:

• Define upper/lower bound

• Set known assignments

• Set/forbid any pair of objects to be in one cluster

4.2.6 Threshold determination and supporting analyses
Finding the right density parameter for a clustering problem is challenging and prob-
lem specific. TransClust supports the detection of a meaningful density parameter
in different ways. On the one hand it is possible with TransClust to cluster a given
input data with several thresholds. The distribution of each run is presented and aids
specifying the best threshold, if knowledge about the expected sizes of the clusters
is known. A second option is to use existing knowledge about parts of the data or
about a related problem. Again the data can be clustered for a set of thresholds
but in addition it is compared to the known assignments. The F-measure is used as
quality measure and reflects how close a clustering with a certain threshold is to the

4.3: Availability 65

gold standard clustering. Furthermore, the Cytoscape plugins of TransClust allow for
investigation of the similarity function and also help in finding the right threshold.
Histograms illustrate the distribution of similarities within a cluster and between two
clusters. Since the density parameter of TC is a similarity threshold, the interesting
range, where the best threshold can be found, is detectable using these plots.
Figure 5.5 on page 86 illustrates such a typical analysis for a given problem using the

TransClust plugin for the network visualization and analysis framework Cytoscape,
exemplarily for the task of sequence clustering. For this example it is assumed that
a gold standard assignment is known for a subset of the input. The corresponding
analysis can be found in Section 5.2.3.

4.3 Availability
Two important focuses during the development of TransClust were its availability
and applicability. On the one hand this means that the software should be free
and available online without requiring the purchase of any additional software. On
the other hand it means that the software must be intuitive to use. TransClust is
implemented in Java to allow for execution on any operation system. TransClust can
be accessed in three different ways: as a standalone version, which can be executed via
the commandline or with a graphical user interface, as an integration into the network
analysis and visualization software Cytoscape, and as a web application. This section
introduces to these three options. For large problem instances it is recommended to
use the standalone implementation of TransClust, since this option is optimized for
memory and runtime efficiency.

4.3.1 Standalone application
The standalone implementation of TransClust provides two ways for running the clus-
tering procedure. One can either start TransClust from the commandline or use the
implemented Graphical User Interface (GUI). This section describes how to perform
a clustering, using the GUI.
The graphical user interface of TransClust is organized in three panels; (1) the

parameter panel, (2) the preview panel, and (3) the console panel (see Figure 4.7):

Parameter panel This panel contains three tabs to specify the different parameters
of each method.
• The first tab is the clustering tab. From here one can cluster data from
a similarity file with a list of threshold. The range of thresholds and the
step size between different thresholds has to be specified here as well. Fur-
thermore, one can decide which kind of clustering should be performed: a
partitional clustering solving a WTGPP for each threshold, an hierarchi-
cal clustering using the bottom-up or top-down approach, or one of the
two overlapping methods presented in Section 3.3.3. An upper and lower
bound can be set in this tab as well, to influence the clustering results. To

66 Chapter 4: The Transitivity Clustering framework TransClust

start a clustering process from this tab a similarity file has to be loaded.
Either it has been directly specified through the menu or calculated using
the various similarity functions for sequence similarity on a BLAST and a
FASTA file.
• The second tab is the clustering-parameter tab, where the parameters of
the heuristics and exact algorithm can be specified. One can choose to use
only the faster but less accurate CAST approximation, or the CAST and
the more precise layout-based heuristic. The time and maximal size of a
component for applying the exact fixed-parameter algorithm can be spec-
ified in this tab as well. Further parameters are the choice of the layout
methods, the geometric clustering method of the resulting layout, the num-
ber of dimensions of the layout algorithm, whether post-processing should
be applied and which method, and the number of CPUs that should be
used for a parallel computation of the connected components. The default
parameters are set to be a good trade-off between speed and quality and
should be used mostly. Note that starting the clustering process from this
tab requires to specify a directory with costmatrices or to import/calculate
costmatrices from a similarity file or from a BLAST and FASTA file. All
specified clustering parameters will be used in any clustering process, in-
cluding those started from a different tab.

Figure 4.7: The graphical user interface of TransClust. Three panels are shown; (1)
the parameter panel (left), (2) the preview panel (right), and (3) the console panel
(bottom). Files can be imported and saved through the menu (top).

4.3: Availability 67

• The last tab in this panel is the import tab. After a tab delimited similarity
file, or a BLAST and FASTA file are loaded via the menu this tab offers
to specify parameters for creating costmatrices for a subsequent clustering.
For similarity files simply the threshold and an upper bound as described
above can be chosen. If a BLAST and FASTA file are loaded one has to
choose between the different similarity functions and has to specify an E-
value cutoff. Every High Scoring Pair (HSP) with higher E-value than this
cutoff will be ignored in the import. This might be especially interesting
if the score function is chosen (see Section 2.2.2 for more details about the
different similarity functions).

Preview panel Like in the previous panel the preview panel is also organized in tabs.
As soon as any file is loaded a preview of the first 100 rows can be seen here.
Furthermore the results of a clustering or an iterative clustering for different
thresholds will be displayed in this panel as a preview of the result file and a
sortable table. One can check if the loaded files have the correct format, and
which files are loaded so far. The panel automatically updates if any changes
are made or a clustering process is finished.

Console panel The console offers information about the current process. If a cluster-
ing process using costmatrices is started, the progress and clustering informa-
tions like time, score, size of connected component and cluster distribution of
the result are displayed. For an iterative or hierarchical clustering, only the cur-
rent threshold, the cluster size distribution for this threshold, and the calculated
F-measure are shown.

The last item to describe in this section is the menu. Here, one can import similarity
files or BLAST and FASTA files, from which costmatrices are created. A popup
window opens and provides the same options as the import tab of the parameter panel.
If a BLAST and FASTA file are imported the similarity file and the costmatrices are
produced. All files created in TransClust are stored in a temporary directory, which
must be specified on startup. To load an already existing similarity file without
creating costmatrices, one can use the load option in "File" menu. The results of a
clustering can additionally be stored in a different location.

4.3.2 Cytoscape plugin
Cytoscape is a network analysis and visualization platform that assists in the analysis
of a wide spectrum of network data [29]. Multiple formats for importing data are
supported and various layout options for a network are provided. Furthermore, it
allows developers to implement plugins for specific tasks.
The main advantage that Cytoscape provides for a cluster analysis is the visual-

ization of the network. To use this feature together with TC, TransClust has been
implemented as a plugin for Cytoscape. Furthermore two additional plugins have
also been developed: the BLAST2SimGraph plugin and the ClusterExplorer plugin.

68 Chapter 4: The Transitivity Clustering framework TransClust

Cytoscape supports various formats for importing networks from tables or other for-
mats, but does not include a similarity calculation between pairs of protein sequences.
This gap was closed with the BLAST2SimGraph plugin to allow a cluster analysis of
sequences from within Cytoscape. It reads an all-vs.-all BLAST result file and the
corresponding sequences in FASTA format and calculates a pairwise similarity based
on the function described in Section 2.2.2. The ClusterExplorer plugin offers various
methods for analyzing a given clustering. Most important is a visualization of the
intra vs. inter edge distribution, which, applied on a gold standard clustering, can
aid with the identification of a reasonable threshold and may also be used to evaluate
whether a similarity function can be used for a given task or not. Additional methods
within the ClusterExplorer plugin are the comparison between two clusterings, iden-
tifying the center of each cluster, and calculating the distance between two clusters
or between a object and a cluster. Furthermore the cluster size distribution can be
visualized as a histogram as well as the overall edge weight distribution.

Figure 4.8: Illustration of the Cytoscape software with integrated TransClust plugin
(left side). The right side shows a visualization of a similarity graph that was
clustered with the TransClust plugin.

The TransClust plugin has similar features to the standalone version of TransClust.
One can cluster a network with a specific threshold or use multiple threshold and
compare the clustering results against a gold standard. A typical analysis of pro-
tein sequences using these plugins is shown in Figure 5.5 on page 86. Note that

4.3: Availability 69

Cytoscape needs a lot of memory space and is thus not applicable for large scale
analysis of data. However, for a medium sized problem the additional visualiza-
tion and the ClusterExplorer features are very useful. Cytoscape is available at
http://www.cytoscape.org and the aforementioned plugins can be downloaded from
http://transclust.cebitec.uni-bielefeld.de. This site also includes an online
tutorial, which guides through the usage of TransClust and the Cytoscape plugins.

4.3.3 Web application

TransClust is available as a web application at the TransClust website. For problem
instances of up to 400 nodes this application provides an easy-to-use method to quickly
identify clusters. To use the web application one can upload a tab delimited similarity
file, a BLAST and a FASTA file to cluster sequence data, or a costmatrix file. Due
to server restrictions, it is only possible to cluster small sets of objects. For larger
applications it is recommended to either use the standalone version of TransClust
or download Cytoscape and the TransClust plugins for a visual analysis of the data.
The web page directly links to a Java web start application, that starts the standalone
application with graphical user interface as applet.

Figure 4.9: Screenshot of the TransClust website. From this site one can start the
web application (bottom). For larger files it is recommended to use the standalone
version, which can be executed from this site as Java web start and hence runs on
the client side. A tutorial explains how to use TransClust, including some example
applications. The source code of TransClust and the Cytoscape plugins are available
here as well.

70 Chapter 4: The Transitivity Clustering framework TransClust

4.4 Evaluation of the integrated TransClust framework
This section includes evaluations of the TransClust framework. First the different
methods in TransClust are compared against each other to explain the default config-
urations. Furthermore the influence of post-processing on the two heuristic methods
of TransClust is analyzed. This section concludes with a performance evaluation of
TransClust in comparison to the exact FP algorithm developed by Böcker et al.

4.4.1 Data
For this study real world data from protein sequence comparisons as well as artificial
data has been used.

Real world data obtained from COG

To have a sufficiently large set of connected components, and thus instances of the
WTGPP, protein sequences from all 66 prokaryotic genomes of the COG database
(2007) have been used for this study. BLAST [2] was performed on the corresponding
sequences with an E-value cutoff of 0.01. Subsequently the pairwise similarities are
calculated using the − log of the E-values as described in Section 2.2.2 (BeH). A
similarity threshold of 10 produces problem instances with sizes varying from singleton
clusters to instances with several thousand nodes. Table 4.1 summarizes the used
dataset.

Dataset All proteins in COG (2007)
Similarity BeH (best −log(E-value))
Threshold 10
Intransitive connected components 4,019
No. of proteins in transitive components 55,185 (31.3 %)
Size of largest component 4,410
Total no. of proteins 176,104

Table 4.1: The dataset used for runtime and quality analysis of TransClust heuristics
against fixed-parameter method. Taken from [46]

Artificial data

As a second data set, random artificial graphs were created. Given the number of
nodes n, an integer k ∈ [1, n] is randomly selected (uniform) and hence defines a cluster
of the first k nodes. The remaining n− k nodes are processed as above until no nodes
are left. This gives a random number of clusters of random sizes. The similarities of
objects within a cluster are then drawn from a Gaussian distribution N (µin, σ

2
in); they

are positive on average, but negative with some probability. Similarities of objects
in different clusters are conversely drawn from a Gaussian distribution N (µex, σ

2
ex),

4.4: Evaluation of the integrated TransClust framework 71

which leads to negative values on average. If the parameters are chosen carefully, this
construction leads to almost transitive graphs. For the evaluation in this section the
parameters are µin = 21, µex = −21 , and σin = σex = 20, so that the probability
of seeing an undesired or missing edge is about 0.147 per node pair. With these
parameters ten graphs for each of the sizes 10 to 300 in steps of 10 were constructed.

4.4.2 Optimizing the combination of methods in TransClust

TransClust optimizes the trade-off between accuracy and running time. This means
on the one hand, that the heuristic methods themselves have to be optimized and on
the other hand, that the decision when to use which approach has to be specified.
The CAST heuristic does not need any specification of parameters. In the layout-

based approach one has to decide which layout method and which geometric clustering
should be used.
In [50] a comparison between the ant colony layout (ACL) and the force-based

layout has been performed. This evaluation demonstrated that the force-based ap-
proach clearly outperforms ACL. For this reason, and to avoid irreproducibility, due
to the random aspects of ACL, the force-based layout is the default layout method
in TransClust. The parameters of this method, namely the attraction factor fatt, the
repulsion factor frep, the magnitude M0, and the number of iterations R have been
optimized by using the integrated parameter training on a subset of the COG data
set. The resulting parameters are: fatt = frep = 16, M0 = 100, and R = 80. The
layout dimension is set to 3, based on a study performed in [46].
The two different geometric clustering approaches K-means and single linkage clus-

tering were already compared in [46]. Both approaches have a similar runtime, but
single linkage clustering reveals better results and does not include any random mech-
anism. It is thus the default method in TransClust. The results of the aforementioned
comparisons can be found in the appendix.
The last decision that has to be made is about the limitations of the exact FP

algorithm. Table 4.2 summarizes the results of a corresponding test using different
limitations. A good trade-off between time and quality can be achieved with a maxi-
mal size of 50 nodes per instance and a maximal time of 1 second. For small instances,
the FP approach is even faster than the heuristic methods. Although the overall costs
may change only slightly, these changes occur mostly in small graphs, where changes
do not infect the costs as much as in large graphs. If a higher accuracy is wanted it is
still possible to change the settings. It is recommended in such cases to use 200 nodes
as maximal size and 10 seconds as maximal time.

4.4.3 Influence of post-processing on accuracy

In order to see the impact of the post-processing on the quality of the results of
the heuristic methods implemented in TransClust, an evaluation with the previously
described COG data set has been performed. The methods used in this evaluation are
the force-based heuristic and the CAST algorithm. As the post-processing method,

72 Chapter 4: The Transitivity Clustering framework TransClust

maximal size maximal time costs time
0 0 4275795.43 20min 26s
20 1 4275691 20min 34s
50 1 4275295.13 20min 55s
100 1 4275263 26min 49s
100 5 4275195.00 33min 33s
200 10 4273090.19 1h 1min 31s

Table 4.2: Costs and time for clustering of the COG data set using different limitations
for the exact FP approach

the recursive post processing method is used to compare the differences in the resulting
costs.

Figure 4.10: Comparison of the CAST heuristic and the force-based heuristic (force),
using either no post-processing (PP) or the default recursive post-processing method.

Figure 4.10 illustrates the results of this comparison for the COG data set. One
can see that the post-processing improves the results of the force-based heuristic much
more than those of the CAST algorithm. This might be explained by the methodical
similarity between the post-processing method and the CAST approximation. Even if
in some cases CAST initially produces results with lower costs than the layout-based
algorithm, the best results can mostly be achieved by using the combination of the
layout-based approach and the post-processing. However, it is not surprising that the
two methods perform differently on different instances. This further confirms that
it makes sense to combine different heuristic approaches to achieve the best possi-
ble results. While this section concentrated only on the comparison of the two main
heuristic approaches integrated into the TransClust software, the next section evalu-
ates the combined performance of these approaches in comparison to exact solutions.

4.4: Evaluation of the integrated TransClust framework 73

4.4.4 Comparison against exact solution

This section presents an quality and runtime evaluation of the TransClust frame-
work. For this comparison the current version of the FP branch and bound strategy
is used and compared to the TransClust method. Note that is not necessary to in-
clude FORCE in this evaluation, since TransClust improved the used methods and
adds new heuristics (see Figure D.1 and Figure D.2 for a comparison of FORCE and
TransClust, performed in 2008). Furthermore, TransClust has been implemented from
scratch and hence the used data structures where optimized for memory and runtime
efficiency. In [65] it has been shown that FORCE outperforms the greedy approach by
Marcel Martin (see Figure D.5 and Figure D.4 in the appendix for a runtime and qual-
ity comparison of FORCE, the greedy algorithm, and the fixed-parameter approach)
and consequently this method is also excluded from the here presented evaluation.
Although the Integer Linear Programming (ILP) formulation may be an alternative
for calculating the exact costs for the WTGPP only the exact fixed-parameter ap-
proach is taken into account. This is done due to the similarity in maximal size and
runtime of computable instances between the fixed-parameter and the integer linear
programming methods (See Table 4.3 for comparison), and the fact that the ILP
implementation needs the commercial CPLEX solver.

Size red. instances 3-49 50-99 100-149 150-199 200-249 250-299 300-1400
No. red. instances 297 52 16 10 9 2 19
Unfinished FP 0 0 1 1 2 2 15
time FP 125 ms 23.9s 44.1 min 4.52 min 47.3 min n/a 8.98 min
Unfinished ILP 0 0 0 0 1 1 10
time ILP 17 ms 6.97 s 5.3 min 18.2 min 76.2 min 6.85 min 1.67 h

Table 4.3: Running times on protein similarity data after data reduction for fixed-
parameter and integer linear programming approach. Running time for instances
that did not finish after 24h were ignored for average running time computation.
Taken from [18]

This test uses the COG data set and the artificially created data. Besides a quality
test, the runtime of the used methods are compared to illustrate the necessity of using
heuristic approaches for this problem. All tests are performed on the same machine to
guarantee a fair analysis. Quality results are displayed for only a subset of the COG
data: for some instances the exact solution could be found in reasonable time. The
maximum time for solving a connected component was set to 2 hours, which excluded
26 graphs with sizes ranging from 140 to 4410 from the evaluation (26,471 elements
in total sum), where FP could not find a solution in reasonable time. Note that even
with a maximal time of 24 hours, the FP algorithm would not find solutions for most
of these problems (see also Table 4.3).
Figure 4.11 summarizes the results of the quality analysis. Although there are some

instances which were not solved correctly by the heuristic approach, the overall quality
performance is remarkable. Out of almost 4000 connected components only 45 were

74 Chapter 4: The Transitivity Clustering framework TransClust

Figure 4.11: Quality evaluation of the heuristic. On the x-axis the number of nodes
is shown, while the y-axis is the distance to the optimal solution obtained with the
fixed-parameter algorithm

not solved correctly with TransClust and even fewer (4) have a score difference of
more than 10% to the exact solution. Note that some differences may occur, due to
rounding errors. TransClust produces results with an overall difference of the score of
less than 0.65% in a fraction of the time that would be required by the exact algorithm.
When comparing the runtime of the methods used, it can be seen that it is neccesary
to use heuristic approaches for problems of a larger size. Although a similarity graph
can be split into connected components, and it is sufficient to solve these, the COG
dataset shows that connected components with hundreds or even thousands of nodes
occur in real-world applications. Nevertheless, it is possible to make use of a fast
exact algorithm by combining it with heuristic methods. The performance of the FP
approach can be significantly improved by guessing an upper limit close to the exact
solution. In [18] it has been shown, that applying data reduction rules drastically
reduces the complexity of most problems. Some of these rules rely on an upper limit
as well and would benefit even more from a well estimated value. Still an exact
algorithm cannot produce results for large instances in a reasonable amount of time
even with such improvements. It is however possible to apply it to smaller instances.
TransClust takes advantage of this fact by integrating the FP approach and limiting
its usage.
Results for the artificial data set look similar to those of the real world data. Again

TransClust clearly outperforms the exact algorithm in terms of runtime. The corre-
sponding comparison can be seen in Figure 4.13. Note that it was not necessary to
display a quality comparison, since TransClust was able to solve all instances correctly.

4.4: Evaluation of the integrated TransClust framework 75

Figure 4.12: Runtime comparison between the exact fixed-parameter algorithm (red)
and TransClust (green) using the COG data set. The x-axis shows the number of
nodes, while the y-axis shows the time in ms. Note that the y-axis is log scaled.

Figure 4.13: Runtime comparison between the exact fixed-parameter algorithm (red)
and TransClust (green) on the artificial data set. On the x-axis the number of nodes
is shown, while the y-axis shows the time in ms. Note that the y-axis is log scaled

76 Chapter 4: The Transitivity Clustering framework TransClust

The overall finding of the evaluation of this section is that TransClust meets its
objective of balancing quality with runtime, matching exact algorithms in accuracy
and far outperforming them in speed.

5 Evaluations of the Transitivity
Clustering model

As demonstrated in the previous chapter, TransClust is an efficient integrated method
to accurately solve the Weighted Transitive Graph Projection Problem (WTGPP).
The following sections are dedicated to real world evaluations.
The flexibility of Weighted Transitive Graph Projection (WTGP) allows it to be

used for various applications. Throughout this section experiments on clustering pro-
tein sequences or predicting complexes in Protein-Protein Interaction (PPI) networks
will be described. Transitivity Clustering (TC) is not the first clustering approach
to be used for these tasks and, consequently, comparisons against commonly used
approaches are necessary. It will be shown that TC can compete with the other
clustering approaches and outperforms them in terms of quality. To ensure a fair
comparison, previously performed evaluations are taken into account and TC is ap-
plied on the corresponding data sets using the corresponding quality measures. One
such study is that of Brohée et al. [23], an evaluation of four clustering algorithms,
applied to predict protein complexes in PPI networks. The clustering methods used
in this study were Markov Clustering (MCL) [32,76], Restricted Neighborhood Search
Clustering (RNSC) [49], Super Paramagnetic Clustering (SPC) [21], and Molecular
Complex Detection (MCODE) [7]. A critical point in such evaluations is the choice of
the quality function. The chosen clustering problems have a reference assignment serv-
ing as the gold standard. Hence, external quality measures can be applied, meaning
the clusters obtained from an algorithm are compared to the ground truth assign-
ments. If different quality measures like recall and precision, or Positive Predictive
Value (PPV) and sensitivity are used, remarkable differences can be seen, and will
also be discussed in this work.
Sections 5.1, 5.2, and 5.3 show a comparison between different clustering methods

for real world applications. While the first two are evaluations performed on sequence
clustering of proteins and domains of proteins, the last comparison evaluates the
robustness and quality of clustering for PPI networks. For a fair comparison it was
chosen to use the same conditions as described in the respective publications. In
Section 5.1 this means, that the data sets used in a study by Paccanaro et al. [61]
are used as well as the quality measures. Similarly, the analysis in Section 5.3 follows
the same strategy as described by Brohée et al. [23]. In addition to these tests, a
recently published gold standard is used in the last comparison (Section 5.2), where
TC is evaluated against the popular MCL algorithm as well as the recently published
Affinity Propagation (AP) approach.

78 Chapter 5: Evaluations of the Transitivity Clustering model

5.1 Single-domain protein sequence clustering

In 2006 Paccanaro et al. [61] performed a comparison of their spectral clustering
implementation against other popular clustering tools, namely MCL, GeneRAGE,
and hierarchical clustering. The application case here, was to cluster protein domains
into related groups. For this task Paccanaro et al. chose to use the SCOP database
and, more specifically a subset of the ASTRAL95 dataset as gold standard. The same
data set with the same quality measure, the F-measure, has been used to evaluate the
performance of TC. In addition to the original study, the clustering tool AP has also
been taken into account.

5.1.1 Data

SCOP is an expert, manually curated database that groups proteins based on their
3D structures. It has an hierarchical structure with four main levels (class, fold, su-
perfamily, family). Proteins in the same class have the same type(s) of secondary
structures. Proteins share a common fold if they have the same secondary structures
in the same arrangement. Proteins in the same superfamily are believed to be evo-
lutionarily related, whereas proteins in the same family exhibit a clear evolutionary
relationship [3]. Here the SCOP superfamily classification is taken as ground truth
against which the evaluation of the quality of a clustering generated by a given al-
gorithm is compared. Since the complete SCOP dataset contains many redundant
domains that share a very high degree of similarity, most researchers choose to work
with the ASTRAL compendium for sequence and structure analysis in order to gener-
ate non-redundant data [26]. ASTRAL allows for the selection of SCOP entries that
share no more sequence similarity than a given cutoff, removing redundant sequences.
Two subsets of the ASTRAL dataset of SCOP v1.61 are extracted with a cutoff of

95 percent, which means that no two protein domain sequences share more than 95%
of sequence identity.
The two subsets are exactly those used in [61]. The first comprises 507 protein

domains from 6 different SCOP superfamilies, namely Globin-like, EF-hand, Cupre-
doxins, (Trans)glycosidases, Thioredoxin-like, and Membrane all-alpha. This data set
is referred to as ASTRAL95_1_161 in the following.
Due to the fact that SCOP is continuously updated, both the original data from [61]

(SCOP v1.61) and more recent data from the SCOP version (SCOP v1.71) are evalu-
ated. The novel version is slightly different. For example, the superfamily Membrane
all-alpha has been removed for the time being, and most of its protein domains are
assigned to different superfamilies. Also, several other proteins have been reassigned
to one of the five other superfamilies. This provides another dataset of 589 sequences
from the remaining 5 superfamilies, which is referred to as ASTRAL95_1_171.
The second subset consists of 511 sequences from 7 superfamilies, namely Globin-

like, Cupredoxins, Viral coat and capsid proteins, Trypsin-like serine proteases, FAD/
NAD(P)-binding domain, MHC antigen-recognition domain, and Scorpion toxin-like,
which is referred to as ASTRAL95_2_161 and ASTRAL95_2_171 respectively. SCOP

5.1: Single-domain protein sequence clustering 79

can be found at http://scop.mrc-lmb.cam.ac.uk/scop/, while the protein domain
sequences are available at http://astral.berkeley.edu/.

5.1.2 Evaluation method
In order to judge the quality of a resulting clustering, Paccanaro et al. chose to
use the F-measure (see Section 2.3.1) as quality measure. Note that in the present
context, it should not be considered cheating to optimize the similarity function and
threshold. The same kind of optimization was applied by Paccanaro et al. in [61].
Although AP was originally not included in this study, it is here to also use recently
developed approaches. The same data was used, and the necessary input parameters
for AP were optimized to evaluate against the best possible performance of AP. For
ASTRAL95_1_161, this was Cov-scoring with f = 20 and SoH as secondary scoring
function with fixed preference (all self-responsibilities) 600, and damping factor df =
0.8. For ASTRAL95_2_161, this was Cov-scoring with f = 14 and SoH as secondary
scoring function with preference 600, and df = 0.75. The results of this comparison
have been published in [79] using the predecessor of TransClust, FORCE. Since the
underlying model is the same, only the results from that study are presented here.

5.1.3 Results

Figure 5.1: Results for Spectral Clustering, Hierarchical Clustering, MCL, and Gen-
eRage for the ASTRAL95_1_161 dataset. Columns refer to superfamilies and each
row refers to a protein domain

Table 5.1 summarizes the results: Using FORCE, slightly better agreements than

80 Chapter 5: Evaluations of the Transitivity Clustering model

with spectral clustering are obtained. The best similarity function parameters and
score threshold for the ASTRAL95_1_161 dataset were Cov-scoring using f = 20
and BeH as a secondary scoring function, and t = −2.2. For the ASTRAL95_2_161
dataset, this was Cov-scoring with f = 19 and SoH as secondary scoring function with
t = −1.6.

For both datasets, AP performs worse than Spectral clustering. The overall poor
performance of AP might be explained by the fact, that AP searches for representatives
for a given cluster. This goal is not necessarily appropriate for clustering protein
domain sequences.

Dataset Method F-measure
ASTRAL95_1_161 FORCE 0.85
ASTRAL95_1_161 Spectral clustering 0.81
ASTRAL95_1_161 Affinity Propagation 0.65
ASTRAL95_1_161 GeneRAGE 0.47
ASTRAL95_1_161 TribeMCL 0.32
ASTRAL95_1_161 Hierarchical clustering 0.26
ASTRAL95_2_161 FORCE 0.89
ASTRAL95_2_161 Spectral clustering 0.82
ASTRAL95_2_161 Affinity Propagation 0.69
ASTRAL95_2_161 GeneRAGE 0.54
ASTRAL95_2_161 TribeMCL 0.52
ASTRAL95_2_161 Hierarchical clustering 0.42

Table 5.1: Evaluation of protein clustering tools The F-measure (between 0 and 1)
measures the agreement between a clustering resulting from a given algorithm and a
reference clustering provided with the dataset. An F-measure of 1 indicates perfect
agreement. ASTRAL95_1_161 and ASTRAL95_2_161 refer to the two datasets
of SCOP v1.61 used by Paccanaro et al. for spectral clustering [61]. All reported
values, except for our algorithm FORCE and for Affinity Propagation, are from the
same reference.

Figure 5.2 exemplarily illustrates the clustering results obtained for two similarity
functions, and dataset ASTRAL95_1_161. One can see that the classification is very
good for the superfamilies Globin-like, EF-hand, Cupredoxins, (Trans)glycosidases.
Thioredoxin-like and Membrane all-alpha are split into several clusters. Note, that for
Globin-like (left column) using similarity function SoH (B), the superfamily is split
into two clusters, where the second (the lower one) represents a family.

Additionally FORCE has been applied to the newest ASTRAL95 datasets (AS-
TRAL95_1_171 and ASTRAL95_2_171). Table 5.2 shows the resulting F-measures
for a variety of similarity functions and parameter choices.

5.1: Single-domain protein sequence clustering 81

Figure 5.2: Graphical summary of the obtained clustering results of FORCE for the
two similarity functions (A) BeH and (B) SoH, and dataset ASTRAL95_1_161.
The MATLAB scripts provided by Paccanaro were used to create images similar
to those of Figure 5.1. Each row corresponds to a cluster. Green bars represent a
protein assignment to a cluster; each protein is present in only one of the clusters.
Boundaries between superfamilies are shown by vertical red lines, and boundaries
between families within each superfamily are shown by dotted blue lines.

82 Chapter 5: Evaluations of the Transitivity Clustering model

Dataset Similarity Factor f Threshold F-measure
ASTRAL95_1_171 SoH 18 -3.0 0.91
ASTRAL95_1_171 BeH 15 -3.4 0.90
ASTRAL95_2_161 SoH 19 -1.6 0.89
ASTRAL95_2_171 SoH 15 -3.2 0.88
ASTRAL95_2_161 BeH 14 -2.4 0.87
ASTRAL95_2_171 BeH 13 -2.6 0.85
ASTRAL95_1_161 BeH 20 -2.2 0.85
ASTRAL95_1_161 SoH 20 -1.8 0.83

Table 5.2: Evaluation of the WGCEP model The best F-measures for each dataset
and each similarity function. ASTRAL95_1_161 and ASTRAL95_2_161 are as
in Table 5.1. ASTRAL95_1_171 and ASTRAL95_2_171 refer to the updated
ASTRAL95 data of SCOP v1.71. BeH or SoH denote the similarity function, while
the coverage factor f represents the influence of the coverage to the similarity.

5.2 Protein sequence clustering

Finding a good gold standard for remote protein homology detection is difficult, as
is the decision of which data to trust and which should be taken into account for an
evaluation. Most of the comparative studies presented here are based on previous
experiments. In addition to this, a dataset created by Brown et al. [24] is used as an
independent evaluation. This choice of data is based on the fact that it was specifically
created and hand curated as a gold standard dataset. Three different experiments
are performed using this data; a comparison to different clustering methods as in
the previous evaluation, an example of the density parameter estimation routine of
TransClust, and an evaluation of the impact of integrating additional information on
the quality of a clustering.

5.2.1 Data

For the experiments in this section, a dataset published by Brown et al. [24] is used,
consisting of 866 enzymes that were manually assigned to protein families and super-
families. Since this dataset is hand curated it is well-suited as a gold standard.
First similarities were calculated between the protein sequences using all-vs.-all

BLAST results. In contrast to the domain clustering, the score similarity function (see
Section 2.2.2) defines the pairwise similarity throughout this study. This similarity
function requires the restriction of the High Scoring Pairs (HSPs) of a BLAST file to
those with low E-values since, otherwise, the normalization of the score would increase
even "bad" HSPs to be equally valued as those with low expectation value. The best
results could be obtained using a cutoff of 1 · 10−5, wherein only HSPs with E-value
lower than this threshold are taken into account.

5.2: Protein sequence clustering 83

5.2.2 Comparison to different clustering methods

In order to ensure a fair comparison between the clustering approaches TC, MCL,
and AP all parameters were again optimized and only the best results are compared.
The range of the corresponding density parameters can be found in Table 5.3.

Method Density parameter Min value Max value Step size
TC threshold 0 1 0.05
AP preferences -10 2 0.1
MCL inflation factor 1.1 5 0.01

Table 5.3: Summary of the used density parameters for the protein clustering evalua-
tion.

The F-measure (refer to Section 2.3.1) is used as the quality measure, since it gives
a good idea of the accuracy of the resulting clusterings.

Method best density parameter best F-measure
TC 0.4 0.93
AP -2.9 0.67
MCL 2.15 0.89

Table 5.4: List of optimal density parameters with corresponding F-measure for protein
clustering.

Although the differences are not as high as in the previous experiment, one can see
from Table 5.4 that TC outperforms the other two methods. As in the last section,
the relatively bad results of AP may be explained due to its goal. Searching for
perfect representatives for the clusters does not reflect the group attributes of a protein
cluster. MCL performs much better than in the domain superfamily identification,
which indicates that it is much more suitable for identifying smaller groups than large
ones.

5.2.3 Example threshold determination

Figure 5.3 shows the impact of the chosen density parameter on the resulting cluster-
ing. As expected the F-measure changes for different choices of density parameters
for all three approaches. This illustrates well how important the density parameter
for each clustering algorithm is, and hence how much a method for the detection of
such a parameter is needed. TransClust integrates such methods that aid in finding
a good threshold. As illustrated in Figure 5.5 one can use the Cytoscape plugins for
guessing a good range for the similarity threshold. An example for such an analysis
is given below.

84 Chapter 5: Evaluations of the Transitivity Clustering model

Figure 5.3: Illustration of the impact of the choice of the density parameter on the
quality of the resulting clustering. (A) for MCL with varying inflation factors, (B)
for AP with varying initial self-responsibilities (preferences), (C) for TC with varying
threshold

(i) The dataset is divided into two subsets, a training set consisting of all 232
proteins of the amidohydrolase superfamily, and a test set of the remaining 634
proteins. Two according similarity files and two gold standard files, containing
only the elements of the respective two sets, are created from the original files of
the whole dataset. The original similarity file was built using the score similarity
function and a blastcutoff of 1 · 10−5.

(ii) Using the Cytoscape plugin "ClusterExplorer" the inter versus intra edge weight
distribution of the training set has been plotted (see Figure 5.4). Using this as
reference a good threshold can be found between 0.4 and 0.8, and no inter edges
can be found with weight higher than 1.

(iii) The clustering for the training set with thresholds of the range, described above
and an upper bound of 1 are calculated and compared to the gold standard file
of this subset. The highest F-measure of 0.977 can be found at threshold 0.48.

(iv) The best threshold is applied to the test set and in order to evaluate the quality
of this prediction the F-measure is calculated. At threshold 0.48 an F-measure
of 0.892 can be achieved, while the best threshold for this set would be 0.42 with
an F-measure of 0.933.

One can see from this example that although the best value has not been found,
this procedure helps in guessing a good threshold. The visualization of the edge
weight distribution via the corresponding Cytoscape plugin gives an initial intuition
about the range, where to search the threshold. Using this initial information, the
threshold can be determined more precisely by clustering the respective test data.
More experiments would be necessary to sufficiently evaluate this method, but to do
so, alternative and bigger gold standard sets are necessary.

5.2: Protein sequence clustering 85

Figure 5.4: Screenshot of the inter vs. intra edge weight distribution of the amido-
hydrolase superfamily using the ClusterExplorer Cytoscape plugin. The similarity
function is the normalized bit-score

5.2.4 Integration of additional knowledge

TC allows for the integration of additional knowledge. Such information can consist of
a known assignment for a subset or an upper bound, as used in the previous example.
An experiment should demonstrate how the integration of additional knowledge can
drastically improve the clustering results. From the gold standard assignment, it is
known which proteins should be in the same cluster and which should be in different
groups. If only a fraction of these pairwise assignments is known, i.e. if two proteins
belong to the same or different clusters, this already helps in avoiding false assign-
ments. In the following study, a certain percentage out of all pairwise assignments
is considered as known. Randomly these pairwise assignments are picked and the
corresponding similarity between the two elements is set to 100,000 if the nodes are in
the same gold standard cluster, and to -100,000, if not. Merging all nodes above the
upper bound 10,000 guarantees that two elements from the same cluster cannot be
separated. The results can be seen in Figure 5.6 for varying percentage of knowledge.
The experiment is repeated 10 times for each percentage and the average of the best
F-measures is displayed. Often an assignment for subsets is known. This is simulated
by only integrating information about elements within a gold standard cluster. Out
of all edges between two elements of one cluster, a certain percentage is randomly
chosen and set to 100,000.
One can see from Figure 5.6 that even if only a few interactions are known, this

already improves the clustering results drastically. Further tests may be necessary,
but this experiment clearly shows how important it is to have the ability to integrate
additional information into a clustering process.

86 Chapter 5: Evaluations of the Transitivity Clustering model

Figure 5.5: The following steps can be performed assisted by TransClust and Cy-
toscape. (1) Import of the amino acid sequences and all-vs.-all BLAST results, as
well as the known cluster assignment for the gold standard subset. (2) Computa-
tion and visualization of the corresponding similarity network. In the figure, edge
color and thickness correlate with the assigned similarity values. (3) Plotting of
the intra- vs. inter-cluster similarity distribution for the gold standard clusters to
estimate a promising region for the density parameter, i.e. the similarity threshold
(see Supporting Information). (4) Iterative clustering with varying thresholds and
comparison of the clustering results with the gold standard to identify the "best
threshold" that reconstructs the gold standard (quality). (5) Import of the full data
set. (6) Visualization of the corresponding full similarity network and (7) clustering
of this network assuming that the threshold is conserved between the gold standard
subset and the full data set. (8) Export the results or (9) perform further analyses
by using ClusterExplorer

5.3: Clustering protein-protein interaction networks 87

Figure 5.6: Illustration of the impact of the amount of additional knowledge added for
all pairwise interactions (red curve) and all interactions within gold standard groups
(green curve)

5.3 Clustering protein-protein interaction networks

In 2006, Brohée et al. [23] presented an evaluation of four graph based clustering al-
gorithms for the task of reconstructing PPIs. The algorithms compared were MCL,
RNSC [49], MCODE [7], and SPC [21]. In order not to replicate existing results, this
work concentrates only on the best algorithms of this experiment, namely MCL and
RNSC. A robustness analysis compares the performance of the clustering approaches
on altered graphs, where edges are removed and added at random. Large scale exper-
iments provide real-world data, on which the different approaches are applied again.
Furthermore, this study depicts the impact of the choice of the quality measure on the
resulting clustering. The last experiment in this section is similar to the robustness
analysis, but evaluates the performance of two presented overlapping methods based
on TC.

5.3.1 Data

This evaluation uses the same data as in [23] to ensure a fair comparison. The first
dataset consists of 1095 proteins of the yeast Saccharomyces cerevisiae obtained from
the MIPS database [58]. The complex annotations of these proteins are used through-
out the whole evaluation as the gold standard. For a robustness analysis, it is started
with an initial graph G = (V,E) where V represents the proteins, and an interaction

88 Chapter 5: Evaluations of the Transitivity Clustering model

is assumed, and thus an edge is drawn between every two proteins of a complex. Note
that a protein can belong to multiple complexes, which makes the graph intransitive
(refer to Figure D.6 A for a visualization of this graph). In the following, this graph is
modified by randomly adding and deleting a certain amount of edges. This has been
done in [23] and the modified graphs are available at http://rsat.bigre.ulb.ac.
be/rsat/data/published_data/brohee_2006_clustering_evaluation/. In what
follows, let Ai,j denote the graph where i% of edges are added and j% of edges are
deleted (refer to Figure D.6 B for the graph A100,40 with 100% added and 40% deleted
edges).
Furthermore, the performance of the different approaches was tested with high

throughput experiments obtained from the GRID database [22]. Two different meth-
ods have been used to detect PPIs. Gavin et al. [37, 38], Ho et al. [44], and Krogan
et al. [52] used mass spectrometry while Uetz et al. [75] and Ito et al. [45] predicted
interactions using the two-hybrid technique. A summary of the data can be found in
Table 5.5, where the results of the different clustering algorithm on these data set are
also displayed.
As a negative control and reference for the quality measure, the protein names in

the gold standard file were shuffled.

5.3.2 Robustness analysis
The evaluation presented here is a robustness analysis equal to those of MCL and
RNSC as described in [23]. The clusters calculated with TransClust were obtained
by using thresholds between 0 and 1 with steps of 0.05. Results for all graphs Ai,j of
the original study were compared against the gold standard. For this evaluation, the
F-measure serves as quality measure in addition to the originally used accuracy and
separation. The results from the original study and the performance of TC measured
with separation and accuracy can be found in the appendix. Each altered graph was
tested with a series of density parameters for all approaches. In order to test the
robustness, it is not the best value that is presented, but rather the values from that
density parameter that lead to the best results in the most cases. Figure D.7 illustrates
the results from the original study as a reference. The analysis has been repeated for
TC. Figure 5.7 illustrates the results for all altered graphs using the F-measure as
quality measure.
TC and RNSC produce similar results for the tested graphs. Both methods are

robust against edge additions and quite robust against edge deletions. MCL generally
has lower F-measures and seems also to be less robust against edge additions. All
tested methods show a clear difference between the altered graphs and those that
have additionally been shuffled as a control group.

5.3: Clustering protein-protein interaction networks 89

Figure 5.7: Illustration of the robustness analysis. On the left side the results for
the altered graphs is displayed and on the right side one can see the results for the
negative control group. The F-measure serves as quality measure. Results are shown
for MSL (top), RNSC (middle), and TransClust (bottom).

90 Chapter 5: Evaluations of the Transitivity Clustering model

5.3.3 Evaluation on experimental data
In order to compare TC, the same quality measures as in [23] are used, namely the
PPV, the sensitivity, the geometric and arithmetic accuracy, as well as the separation
(refer to Section 2.3.1 for a detailed description of this measurements). In addition to
this, the best methods MCL and RNSC are again applied on all used datasets and the
F-measure is calculated. These additional experiments give interesting insights into
how important the choice of the quality function is and how it influences the results.
In the original experiment the quality measures were calculated by comparing the

clustering results against the complete gold standard, as used in the robustness analy-
sis. This explains most of the "bad" results for data sets like "Uetz et al.", for instance,
where only a fraction of the clusters can be found (refer to Table 5.5 for the results of
the original study and TC). Consequently the following comparison restricts the gold
standard to those elements that intersect with the respective data set and, moreover,
also deletes any element from a cluster that cannot be found in the gold standard.
This restricts the experiment to those elements where knowledge is actually available.
Also a different quality measure, the F-measure, is used to get an additional point
of view on the results. The separation, which serves as the main quality measure in
the original study, strongly depends on the number of clusters. An approach that
produces a lot of singletons and may be more "careful" with an assignment cannot
reach a high score. The F-measure compares a gold standard group with the best
cluster in the produced clustering and hence ignores this drawback. The difficulties
in interpreting the results can also be seen by comparing the gold standard data set
against itself. Using the quality measures presented by Brohée et al. this leads to
values of 0.62 for the separation and 0.57 for the accuracy, which are smaller than the
results achieved by clustering methods. The F-measure is 1 for this comparison, and
always smaller when using a clustering result.
Table 5.6 summarizes the results for MCL, RNSC, and TC as applied to the large

scale data sets, where the quality measures are applied on the restricted gold standard
and clustering result set. The density parameters were optimized for a best possible
F-measure for each of the methods. MCLs inflation value varies from 1.1 to 5, RNSCs
density parameter (maximal number of clusters) varies from 1 to 3000, and TCs
threshold varies from 0.1 to 1.
One can clearly see the differences between the results from the original study and

the results from the new study. Restricting the evaluation to those elements that occur
in both sets, the real-world data and the gold standard data set, leads to higher values
in accuracy and separation. MCL still performs well, but the difference in quality to
the other methods is much smaller, and sometimes RNSC and TC even outperform
it. The difference between the methods in the second analysis is in general much
smaller than in the original study. If confidence information about the interactions
would be available, it is expected that methods like MCL and TC perform even better,
since they are designed for incorporating weights, in contrast to RNSC, which is only
defined for unweighted problems. In such cases, one could again take advantage of
the intuitive density parameter of TransClust.

5.3: Clustering protein-protein interaction networks 91

Dataset Measure MCL MCODE RNSC SPC TC
Uetz et al. orig rand orig rand orig rand orig rand orig rand
926 nodes Sn 57.3 38.6 84.3 74.5 49.4 36.5 65.5 43.3 52.05 36.55
865 edges PPV 53.8 45.9 25.5 21.6 59.6 54.4 38.0 38.9 57.89 54.97
1.175 mean ACC 55.6 42.3 54.9 48.0 54.5 45.5 51.8 41.1 54.97 45.76
degree Sep-co 23.0 20.6 48.9 62.5 15.5 14.8 19.1 21.2 18.33 18.26

Sep-cl 30.1 26.9 2.2 2.8 34.3 32.7 20.3 22.6 33.17 32.87
Sep 26.3 23.5 10.4 13.3 23.1 22.0 19.7 21.9 24.66 24.50

Ito et al. orig rand orig rand orig rand orig rand orig rand
2937 nodes Sn 34.9 26.0 66.9 68.0 31.4 24.0 73.2 64.6 32.31 24.35
4038 edges PPV 42.7 38.5 8.2 5.8 63.6 61.8 24.3 23.8 62.39 60.07
2.682 mean ACC 38.8 32.2 37.5 36.9 47.5 42.9 48.8 44.2 47.35 42.21
degree Sep-co 12.7 11.8 41.6 33.0 7.1 7.0 11.3 11.0 8.30 54.13

Sep-cl 36.2 33.9 1.7 1.3 56.7 55.9 20.1 20.4 55.61 54.13
Sep 21.4 20 8.4 6.7 20.1 19.8 15.4 15.0 21.13 21.2

Ho et al. orig rand orig rand orig rand orig rand orig rand
1352 nodes Sn 50.6 28.2 81.2 76.5 37.0 27.4 90.1 92.1 41.19 26.92
3210 edges PPV 47.1 35.6 12.9 8.5 61.5 57.1 10.4 8.2 58.01 50.80
4.7 mean ACC 48.9 31.9 47.1 42.5 49.3 42.2 50.2 50.2 49.60 38.86
degree Sep-co 22.6 19 44.7 37.2 11 10.5 19.3 13.8 13.33 12.95

Sep-cl 32.3 27.1 2.6 2.2 48 45.6 5.5 4.0 45.15 40.67
Sep 27.0 22.7 10.9 9.0 23 21.9 10.3 7.4 24.53 22.95

Gavin et al. orig rand orig rand orig rand orig rand orig rand
2002 Sn 74.1 24.2 67.0 51.1 52.1 20.8 91.8 81.4 57.98 20.81
1352 nodes PPV 57.0 23.9 20.4 9.4 62.0 46.0 18.1 10.7 60.24 42.93
3210 edges ACC 65 24.0 43.7 30.3 57.1 33.4 54.9 46.0 59.11 31.87
4.7 mean Sep-co 39.4 17.6 44.5 16.1 14.5 11.3 34.4 15.7 15.44 14.77
degree Sep-cl 38.0 17.0 5.5 2.0 46.9 36.5 13.6 6.2 42.81 35.18

Sep 38.7 17.3 15.6 5.6 26.1 20.3 21.6 9.8 25.71 22.79
Gavin et al. orig rand orig rand orig rand orig rand orig rand
2006 Sn 75.7 23.7 58.3 43.2 60.8 20.9 79.8 48.4 64.59 19.84
1430 nodes PPV 54.3 21.0 20.6 8.0 63.3 37.3 37.0 16.5 62.71 45.23
6531 edges ACC 65.0 22.4 39.5 25.6 62.1 29.1 58.4 32.4 63.65 32.54
9.1 mean Sep-co 38.1 15.5 44.7 15.3 20.1 12.9 34.9 14.9 20.89 14.73
degree Sep-cl 32.7 13.3 7.9 2.7 44.5 28.6 21.6 9.2 42.34 35.29

Sep 35.3 14.4 18.8 6.4 29.9 19.2 27.4 11.7 29.74 22.8
Krogan et al. orig rand orig rand orig rand orig rand orig rand
2675 nodes Sn 62.8 19.8 56.3 30.9 53.1 19.1 82.6 64.0 56.47 18.85
7088 edges PPV 56.2 33.5 21.9 9.7 63.3 51.1 25.4 17.2 62.29 50.00
5.296 mean ACC 59.5 26.7 39.1 20.3 58.2 35.1 54.0 40.6 59.38 34.43
degree Sep-co 20.0 12.1 33.2 13.6 10.3 8.7 20.3 11.9 11.99 10.82

Sep-cl 49.5 29.9 8.8 3.6 59.6 50.3 24.0 14.1 58.00 48.77
Sep 31.5 19.0 17.0 7.0 24.7 21.6 20.9 12.9 26.37 22.97

Table 5.5: Comparison between the different clustering approaches from Brohée et
al. [23] including results for TransClust. Abbreviations: MCL: Markov Clustering,
MCODE: Molecular Complex Detection, RNSC: Restricted Neighborhood Search
Clustering, SPC: Super Paramagnetic Clustering, TC: Transitivity Clustering, orig:
original dataset, rand: control group with random changes of the gold standard as-
signments, Sn: Sensitivity, PPV: Positive Predictive Value, ACC: geometric Accu-
racy, Sep-cl: cluster-wise Separation, Sep-co: complex-wise (reference-cluster-wise)
Separation, Sep: Separation. Parts taken from [23].

92 Chapter 5: Evaluations of the Transitivity Clustering model

Dataset Measure MCL RNSC TC
orig rand orig rand orig rand

Gavin 2002 Density 1.8 1.8 271 271 0.1 0.1
F-measure 72.71 27.16 69.07 26.99 70.42 26.93
PPV 57.01 33.85 57.13 29.69 56.65 29.93
Sn 74.11 21.26 64.85 21.26 70.43 21.62
ACC 65.00 26.82 60.86 25.12 63.16 25.43
Sep-co 62.38 21.47 48.96 21.94 50.87 21.65
Sep-cl 49.46 34.93 50.40 31.54 51.17 30.88
Sep 55.54 27.38 49.68 26.30 51.02 25.86

Gavin 2006 Density 2 2 301 301 0.3 0.3
F-measure 68.67 27.93 68.75 25.32 68.60 27.25
PPV 56.59 49.50 60.02 32.00 62.79 45.29
Sn 72.76 20.38 64.45 20.38 64.67 19.82
ACC 64.17 31.76 62.20 25.54 63.73 29.96
Sep-co 52.37 17.91 44.76 19.45 41.12 19.37
Sep-cl 46.25 45.98 51.82 31.28 55.06 45.43
Sep 49.21 28.70 48.16 24.66 47.58 29.67

Ho Density 2.4 2.4 231 231 0.1 0.1
F-measure 55.52 34.95 55.67 32.33 55.32 33.34
PPV 53.53 45.03 46.15 30.93 49.52 37.34
Sn 48.40 26.76 51.12 28.04 49.84 27.24
ACC 50.90 34.72 48.57 29.45 49.68 31.89
Sep-co 39.11 28.08 39.71 28.28 40.40 28.27
Sep-cl 51.76 47.25 40.42 31.50 46.93 38.94
Sep 44.99 36.43 40.06 29.85 43.54 33.18

Ito Density 2.6 2.6 971 971 0.15 0.15
F-measure 41.70 32.91 43.62 32.32 43.40 33.04
PPV 52.90 51.79 54.99 53.27 59.31 55.98
Sn 32.92 25.15 34.16 24.29 33.79 24.29
ACC 41.73 36.09 43.34 35.97 44.76 36.88
Sep-co 29.20 24.78 29.43 24.42 27.77 25.14
Sep-cl 54.01 52.78 55.81 54.29 58.84 58.74
Sep 39.71 36.17 40.53 36.41 40.42 38.43

Krogan Density 1.8 1.8 421 421 0.1 0.1
F-measure 63.99 27.32 64.99 25.68 64.97 26.20
PPV 56.19 45.10 57.86 33.09 56.84 37.06
Sn 62.85 19.41 60.44 19.50 64.42 19.22
ACC 59.43 29.59 59.14 25.40 60.51 26.69
Sep-co 43.07 19.40 42.52 19.64 44.80 20.13
Sep-cl 54.22 46.32 54.78 33.81 56.39 39.35
Sep 48.33 29.97 48.26 25.77 50.26 28.14

Uetz Density 2.3 2.3 261 261 0.15 0.15
F-measure 62.34 45.29 63.11 44.27 62.54 45.11
PPV 55.85 50.00 53.80 45.61 56.14 47.66
Sn 56.14 37.13 58.77 37.43 54.97 37.43
ACC 55.99 43.09 56.23 41.32 55.55 42.24
Sep-co 49.28 38.37 49.69 38.00 49.38 38.19
Sep-cl 55.59 52.19 52.48 46.81 56.49 49.19
Sep 52.34 44.75 51.07 42.17 52.82 43.35

Table 5.6: Comparison between MCL, RNSC, and TC on large scale data. The density
parameters were optimized for a best F-measure. Interesting values are highlighted;
F-measure (red), accuracy (blue) and separation (green). Abbreviations: MCL:
Markov Clustering, RNSC: Restricted Neighborhood Search Clustering, TC: Tran-
sitivity Clustering, orig: original dataset, rand: control group with random changes
of the gold standard assignments, Sn: Sensitivity, PPV: Positive Predictive Value,
ACC: geometric Accuracy, Sep-cl: cluster-wise Separation, Sep-co: complex-wise
(reference-cluster-wise) Separation, Sep: Separation.

5.3: Clustering protein-protein interaction networks 93

5.3.4 Finding overlaps with Transitivity Clustering
The gold standard set has an overlapping structure, which makes it perfect to evaluate
the corresponding modifications to TC as presented in Section 3.3.3. The first method
used in this evaluation uses average similarities between objects and other clusters to
assign them to additional groups. For this method a second threshold between 0 and
1 is necessary. The following Table 5.7 includes results for a threshold of 0.8. The
second method used here assigns objects to additional clusters, providing that reduces
the internal costs for that cluster. No additional value is necessary for this method.
For this study, the F-measure serves as the quality function. The datasets used for

this evaluation are the altered graphs, which were also used in the robustness analysis.
The average of the density parameters that lead to the best results for each of the
altered graphs is used to create the subsequent results. This restriction to the average
threshold also helps to evaluate the robustness of the overlapping clustering methods.

0 05 10 20
0 0.85/0.87/0.87 0.85/0.86/0.86 0.85/0.85/0.86 0.85/0.85/0.86
5 0.85/0.86/0.87 0.85/0.86/0.86 0.85/0.85/0.86 0.85/0.85/0.85
10 0.84/0.85/0.86 0.85/0.85/0.86 0.85/0.85/0.86 0.85/0.85/0.85
20 0.83/0.83/0.85 0.84/0.84/0.85 0.84/0.84/0.84 0.83/0.83/0.84
40 0.78/0.79/0.81 0.79/0.8/0.81 0.8/0.8/0.81 0.78/0.79/0.79
80 0.4/0.42/0.44 0.42/0.43/0.45 0.39/0.43/0.41 0.37/0.39/0.4

40 80 100
0 0.85/0.85/0.85 0.83/0.84 /0.83 0.83/0.82/0.82
5 0.84/0.84/0.84 0.83/0.83/0.82 0.82/0.82/0.81
10 0.83/0.83/0.84 0.82/0.82/0.82 0.81/0.81/0.81
20 0.82/0.81/0.83 0.8/0.8/0.8 0.79/0.79/0.79
40 0.77/0.78/0.77 0.73/0.74/0.72 0.73/0.73/0.7
80 0.36/0.36/0.37 0.32/0.31/0.32 0.31/0.3/0.31

Table 5.7: Comparison of the overlapping methods of TC. F-measures for the original
partitional clustering (black), the overlapping methods using either fuzzy associ-
ations (red) or direct secondary assignments (blue). The columns represent the
amount of edges that were added while the rows are the percent of removed edges.

Table 5.7 compares the results of the different methods. Both overlapping methods
perform better than the original partitional TC approach. This is only a limited
evaluation but it illustrates already that these methods can be applied to produce
overlapping clusters.

94 Chapter 5: Evaluations of the Transitivity Clustering model

6 Integrated applications

TransClust, the implementation of TC, allows for an easy integration into existing
software or calculation pipelines. The aforementioned integration into the Cytoscape
framework is only one example. Additionally, TC has been successfully used as part of
the MoRAine program [16], a method for increasing the information content of a Posi-
tion Specific Scoring Matrix (PSSM). Another application has been the integration of
TC into a pipeline to transfer transcriptional gene regulatory networks from a model
organism to closely related species. Since 2007, TC has been part of CoryneReg-
Net [8, 14], a reference database for corynebacterial gene regulatory networks, where
it is utilized for the identification of clusters of homologous proteins based on their
sequence similarity.

6.1 MoRAine

In this section it will be shown that TC is applicable for optimizing position specific
scoring matrices of transcription factor binding motifs. The goal here is to increase
the subsequent performance of prediction methods for finding new binding motifs.
The related framework MoRAine 1.0 was published in 2007 [16]. MoRAine 1.0 uti-
lized several clustering methods for this task. An improved version of this program,
MoRAine 2.0, now integrates TC as clustering method. In the following subsections,
the software MoRAine and its underlying problem will be described.

6.1.1 Transcription factor binding site annotation - A difficult and
error-prone task

The so-called transcription factors are important components of the cell’s regulatory
machinery. They are DNA-binding proteins that are able to detect intra- and extracel-
lular signals. By binding to so-called Transcription Factor Binding Motifs (TFBMs)
they control the expression of their target genes, thereby decisively influencing genetic
programs like growth, reproduction, and defense [5,6,14,60,66]. Given a set of known
TFBMs for a certain regulator, one can compute mathematical models to perform in
silico predictions of further TFBMs in order to predict regulatory networks. This task
is generally complicated by the relatively low level of TFBM conservation. The most
widely used model for TFBMs are so-called Position Frequency Matrices (PFMs) [72].
PFMs can be converted to Position Specific Scoring Matrices (PSSMs) by calculating
log-odds scores. These matrices are used, in turn, to predict TFBMs in the upstream
sequences of putative target genes for a certain Transcription Factor (TF). Various

96 Chapter 6: Integrated applications

software tools are available: PoSSuMsearch [19], Virtual Footprint [59], MATCH [48],
and P-MATCH [28], just to name a few.
Nowadays, TFBM wet lab determination is done by electrophoretic mobility shift

assays (EMSA) [43], DNAse footprinting [36], ChIP-chip [73], ChIP-seq [47], or mu-
tations of putative TFBMs and subsequent expression studies. All of these methods
lack a precise binding sequence identification that is accurate to one base pair [12].
Another problem occurs: Since TFs bind the double-stranded DNA, the question of
which strand of the TF-binding sequence is annotated becomes a matter of interpreta-
tion. Clearly, both issues directly affect and complicate TFBM modeling as position
frequency matrices and hence, the subsequent PSSM-based binding site prediction.
This problem occurs when a TFBM from either strand, based on approximate knowl-
edge of its position, is entered in a reference database and subsequently used blindly for
PSSM-based predictions. This does happen in practice for regulatory databases that
integrate information from other sources [16], for instance, in CoryneRegNet [8,10,12].
For mis-annotated TFBMs, one may observe a poor information content of the

subsequently computed PFM, which consequently leads to a decreased binding motif
prediction for the PSSM that was constructed from that PFM. This problem can
be solved by re-annotating the TFBMs by possibly switching their strands and/or
shifting them a few positions, in order to maximize the information content of the
resulting PFM.

6.1.2 Methods
The following definitions are needed to explain how MoRAine works and to compare
the re-adjustment performances of MoRAine 1.0 and 2.0.
Let Σ := {A,T,C,G} be the DNA alphabet. In accordance with [16], a position

frequency matrix F = (fσj) for a set of n TFBMs of length m over the alphabet
Σ is defined as a |Σ| × m matrix, where fσj is the relative frequency of letter σ at
position j.
Crooks et al. introduced in [30] the information content as quality measure for

PFMs. The information content Ij for column j of F is defined as

Ij := log2 |Σ|+
∑
σ∈Σ

fσj · log2 fσj [bits].

If all symbols at position j agree, Ij reaches its maximum with maximal value 2 bits
for a 4-letter alphabet Σ. The mean information content I(F) for a given PFM F is
defined as the average Ij over all positions j:

I(F) := 1
m

m∑
j=1

Ij .

In what follows, we use the mean information content I(F) as a quality measure for
a given PFM F and denote it shortly with I if F is fixed. The information content
is used to compare the quality of two different PFMs F1 and F2 by comparing I(F1)

6.1: MoRAine 97

with I(F2). If F2 is the PFM of the MoRAine-adjusted TFBMs, while F1 is the
PFM computed from the input TFBMs, with I(F1) ≤ I(F2), one can calculate the
percentage improvement performance P with P = 100 · I(F2)

I(F1) .
MoRAine now works as follows: The input is a set of n annotated length-m TFBM

sequences that extend l bp to the left and r bp to the right. Hence, the length of the
given input sequences is m+ := m + l + r. First, MoRAine computes the set M of
every possible motif of length m = m+ − l − r derived by the operations shift and
switch applied to each of the n input sequences. The operation shift provides every
substring of length m for a given motif of length m+, and the operation switch its
reverse complement sequence. We obtain a set Si ofM := |Si| = 2 ·(l+r+1) potential
TFBM sequences of length m for each input sequence i, with i = 1, . . . , n.
So far MoRAine 1.0 and 2.0 work in a similar way. For both, the goal is to find

a set C of TFBMs that contains exactly one TFBM from each Si and maximizes
the mean information content of the corresponding PFM FC . MoRAine 1.0 offers
two heuristic clustering algorithms, (cg) and (km), both working on either of two
similarity functions, (simC) and (simS) (a description of these methods can be found
in the Appendix). Table 6.1 summarizes the running times and TFBM annotation
improvement performance of MoRAine 1.0 for all four combinations. One can see a
trade-off between accuracy and running time: (cg/simS) provides best results but
(cg/simC) is much faster.
Using TC as the clustering method in MoRAine 2.0 closes this gap and provides a

powerful tool that now provides better results than MoRAine 1.0 with (cg/simS) at
running times equal to (cg/simC). The goal can be cast as follows: Partition the set
of input TFBMs intoM = 2 · (l+r+1) clusters, where each cluster contains exactly n
motifs, one of each Si (i = 1, . . . , n) and thus is a putative solution. In the following,
it is described how TC was integrated with MoRAine 2.0 to find such a set C.
TC is flexible and offers the capability to integrate additional knowledge, making

it perfect for the needs here. As similarity function, instead of the functions from
MoRAine 1.0, (simC) and (simS), the difference between the motif length l = |p| = |q|
and the hamming distance h(p, q) for two TFBMs p, q: s(p, q) = l − h(p, q) is used.
To ensure that each cluster of TFBMs contains only one motif from each set Si, the
similarity function s is set to −∞ if p ∈ Si and q ∈ Si for any Si, i.e. if both potential
solutions (the TFBMs p and q) originate from the same input TFBM. The threshold
t is set to zero, which guarantees that each cluster contains exactly one TFBM from
each set Si. TC’s integration with MoRAine is mainly responsible for the increased
performance of MoRAine 2.0, as will be demonstrated in the following section.

6.1.3 Results and discussion

Implementation

MoRAine 2.0 is an open source JAVA 6 program. It can be accessed and downloaded at
http://moraine.cebitec.uni-bielefeld.de. As shown for MoRAine 1.0 in [13],
release 2.0 of MoRAine may be included into a database back-end as a quality as-

98 Chapter 6: Integrated applications

surance tool, or to provide a bioinformatics workflow with adjusted position weight
matrices for TFBM predictions.
MoRAine 2.0 can still be used as web application. The user may copy and paste

binding sequences in FASTA format at the MoRAine web site to calculate the adjusted
motifs as well as the corresponding sequence logos by using the Berkeley web logo
software [30]. Just as MoRAine 1.0, the second release is an easy-to-use alternative
for the computation of sequence logos and adjusted transcription factor binding sites,
but it now provides increased accuracy at decreased running times and a simplified
user-interface with fewer parameters to adjust.

Increased information content improvement with MoRAine 2.0

Figure 6.1 illustrates the output of the MoRAine online service for the binding sites
of the transcription factor RamB of Corynebacterium glutamicum. The TFBMs have
been taken from CoryneRegNet release 5.0. As in most databases, in CoryneReg-
Net [12], each binding site is annotated in 5′ → 3′ direction relative to the regulated
target gene. By using MoRAine 2.0 the average information content is improved from
0.64 (original database TFBMs) to 1.15 (MoRAine-adjusted TFBMs) by switching
the strands for 15 of the 38 input sequences. The computation time was less than
2 seconds.

Figure 6.1: A screenshot from the MoRAine 2.0 web site. A comparison of the sequence
logos constructed from the original TFBMs (left side) for the transcription factor
RamB of Corynebacterium glutamicum and the adjusted TFBMs by using MoRAine
2.0 (right side).

To demonstrate the performance, i.e. decreased running time and increased infor-
mation content improvement, of MoRAine 2.0, the same datasets as in [16] were used:
1165 binding sites of 85 transcription factors of Escherichia coli. The average run-
time and the mean information content improvement of MoRAine 2.0 are compared
to the four methods implemented in MoRAine 1.0 for different lengths of the flanking
sequences (l and r, respectively). As shown in Table 6.1, with MoRAine 1.0 the com-
bination (cg/simC) had the best runtime, but to gain the best information content
improvement, one would use the combination (cg/simS) [16]. With MoRAine 2.0,
the gap between running time and accuracy has been closed. In Table 6.2, MoRAine
2.0 is compared with release 1.0 using the most accurate combination (cg/simS) and

6.1: MoRAine 99

the fastest combination (cg/simC), respectively. For a fair running time comparison,
MoRAine 1.0 (cg/simC) and MoRAine 2.0 are re-evaluated on the same standard
desktop PC. Table 6.2 shows that MoRAine 2.0 outperforms the previous release in
terms of information content improvement with running times almost as fast as those
of (cg/simC). Furthermore, MoRAine 2.0 does not require the user to choose various
input parameters to optimize its results.

Difference (%)
l = r cg/simC cg/simS km/simC km/simS
0 26.1 27.0 26.5 26.8
1 50.9 54.4 50.1 52.3
2 57.5 63.6 57.6 62.4
3 60.0 69.5 64.6 64.7
4 65.3 70.1 65.0 69.3
5 66.3 73.0 68.8 73.3
6 66.6 73.1 74.3 74.9
7 68.0 78.7 73.5 78.4

Time (s)
l = r cg/simC cg/simS km/simC km/simS
0 0.6 0.7 1.2 1.1
1 0.7 2.3 7.2 4.0
2 0.8 4.2 45.9 8.3
3 1.0 8.4 128.0 12.8
4 1.1 11.9 198.3 19.5
5 1.3 16.8 298.3 30.5
6 1.8 23.9 427.0 34.4
7 2.0 30.1 505.4 42.6

Table 6.1: This table was taken from [16] and summarizes the average information
content improvements and the mean running times of MoRAine 1.0 for different l-
and r-values and the four search method/similarity function combinations over all
TFBMs of 85 transcriptional regulators of E. coli.

Predicting binding sites with adjusted TFBMs

The PSSMs derived from TFBMs are often used to predict further TFBMs in a given
set of DNA sequences, generally in sequences upstream of putatively regulated target
genes or operons. A PSSM allows to assign a score to any length-m DNA sequence
window. We say that a PSSM matches such a window if the score exceeds a given
threshold. A match is considered to be a good candidate for a real TFBM if the score is
properly chosen (generally as the log-odds score between the nucleotide distribution
of true binding sites on the one hand and a background distribution on the other

100 Chapter 6: Integrated applications

Difference (%) Time (s)
l = r MoRAine 1.0 (cg/simS) MoRAine 2.0 MoRAine 1.0 (cg/simC) MoRAine 2.0
0 27.0 27.2 0.21 0.23
1 54.4 54.7 0.26 0.29
2 63.6 66.5 0.32 0.36
3 69.5 72.2 0.38 0.42
4 70.1 75.5 0.46 0.50
5 73.0 75.7 0.55 0.59
6 73.1 77.8 0.60 0.66
7 78.7 79.1 0.71 0.77

Table 6.2: This table shows a comparison between the average information content
improvement and the mean running time of MoRAine 1.0 and MoRAine 2.0 for
different l- and r-values over all TFBMs of 85 transcriptional regulators of E. coli.
MoRAine 2.0 is compared with the most accurate combination of similarity function
and search method of MoRAine 1.0 (left side) and with the fastest combination (right
side).

hand) and the threshold (ideally based on statistical considerations; see e.g. [64]).
Different algorithms and implementations exist to perform these searches. Here the
tool PoSSuMsearch [19] is used for further analyses. It uses lookahead scoring and
it is based on efficiently searching an enhanced suffix array that previously has been
created from upstream sequences of E. coli. The threshold for a match is automatically
computed based on the tolerable frequency of hits in random sequences (p-value) by
an efficient and exact lazy-evaluation method (for more details refer to [19]).
In the following, PoSSuMsearch is used to evaluate the prediction performance

of (1) PSSMs constructed from the original TFBMs extracted from the RegulonDB
database and (2) the MoRAine-adjusted PSSMs using TC as clustering method. One
will see that by using MoRAine for pre-processing, the classification performance is
significantly increased. As mentioned before, 1165 TFBMs for 85 TFs from Regu-
lonDB are extracted to construct 85 PSSMs. Additionally, 3341 upstream sequences
of all transcriptional units of E. coli are obtained from CoryneRegNet (see Section
6.2). In CoryneRegNet, an upstream region is defined as that DNA sequence −560 to
+20 bps upstream to the start codon of a transcriptional unit (a gene, or an operon
respectively).
For each PSSM, both forward and reverse strand of upstream sequences are used

to predict TFBMs with PoSSuMsearch, using different p-value thresholds. For each
threshold, the precision, recall and F-measure are calculated, where

FP number of incorrectly predicted motifs

FN number of wrongly not predicted motifs

TP number of correctly predicted motifs

In Figure 6.2, precision vs. recall are plotted for varying p-value thresholds for
all PSSMs readjusted with MoRAine 2.0 for l = r = 4 (blue curve) in comparison

6.2: CoryneRegNet 101

Figure 6.2: Prediction performance comparison of PoSSuMsearch by means of precision
and recall. All values are measured for varying p-value thresholds based on PSSMs
learned from the original TFBMs (red line) compared to those of readjusted TFBMs
with MoRAine 2.0 (blue line) and readjusted TFBMs with MoRAine 1.0 (green line).

to the prediction performance obtained with the original PSSMs (red curve) and the
performance using MoRAine 1.0 adjusted PSSMs (green curve). For a fixed recall,
the MoRAine-adjusted precision is always higher than with the original, unadjusted
TFBMs/PSSMs. Figure 6.3 plots the F-measure against different p-value thesholds.
The plot show that predictions based on adjusted PSSMs outperform those based on
original PSSMs for all thresholds.

6.2 CoryneRegNet
As shown in Chapter 5, TC is capable of providing meaningful information about pro-
tein clusters. Thus, TransClust has been integrated into CoryneRegNet. This section
will describe how this integration was performed. Furthermore, a recently published
application [12] where protein clusters obtained with TC are used to transfer gene
regulatory networks from one model organism to closely related species, is presented.
CoryneRegNet [8] (online available at http://www.coryneregnet.de) is a refer-

ence database and analysis platform for Corynebacteria. It allows a pertinent data
management of regulatory interactions along with the genome-scale reconstruction
of transcriptional regulatory networks of corynebacteria relevant in human medicine

102 Chapter 6: Integrated applications

Figure 6.3: Prediction performance comparison by means of plotting the F-measure
for varying PoSSuMsearch p-value thresholds for the original TFBMs (red line), the
MoRAine 1.0-adjusted TFBMs (green line), and the MoRAine 2.0-adjusted TFBMs
(blue line) allowing 4 shifts to the left and right (l=r=4).

and biotechnology, together with Escherichia coli. CoryneRegNet is based on a multi-
layered, hierarchical and modular concept of transcriptional regulation and was imple-
mented with an ontology-based data structure. It integrates the fast and statistically
sound method PoSSuMsearch [19] to predict transcription factor binding sites within
and across species. Reconstructed regulatory networks can be visualized on a web
interface and as graphs. Special graph layout algorithms have been developed to
facilitate the comparison of gene regulatory networks across species and to assist bi-
ologists with the evaluation of predicted and graphically visualized networks in the
context of experimental results. To extend the comparative features, adequate data
on gene and protein clusters is needed. The integration of this information widens
the scope of CoryneRegNet, and assists the user with the reconstruction of unknown
regulatory interactions [8–10].

6.2.1 Integration of Transitivity Clustering with CoryneRegNet

Using TransClust, protein clusters for all organisms integrated in CoryneRegNet:
Corynebacterium diphtheriae, Corynebacterium efficiens, Corynebacterium glutam-
icum, Corynebacterium jeikeium, Escherichia coli, Mycobacterium tuberculosis CDC-

6.2: CoryneRegNet 103

1551 and Mycobacterium tuberculosis H37Rv (altogether 22,797 proteins) are calcu-
lated. Based on the cluster size distribution, a comparatively high threshold of 30
was used with the similarity function SoH. This was empirically determined and can
be explained by the relatively close evolutionary relationship of most organisms in
CoryneRegNet.
The results computed by TransClust are parsed into the object oriented back-end

and further on translated into the ontology based data structure of CoryneRegNet.
The new concept class ProteinCluster has been added, as well as the relation type bc
(belongs to cluster), which links the proteins to their clusters. Finally, the CoryneReg-
Net back-end has been adapted to import the new data into the database and the
web-front-end to present the clusters.

6.2.2 Inter-species transfer of gene regulatory networks

In a recent study, Baumbach et al. [12] used protein clusters obtained by using TC to
transfer gene regulatory networks from the model organism Corynebacterium glutam-
icum to the closely related Corynebacteria diphteria, C. jeikeium, and C. efficiens.
Together with the PSSM adjustment tool MoRAine and the binding site prediction
software PoSSuMsearch a reliable prediction of whole networks was possible. Figure
6.4 illustrates the workflow. First all PSSMs for transcription factors of C. glutam-
icum were extracted from CoryneRegNet and improved using the MoRAine software.
Afterwards PoSSuMsearch was applied to all upstream regions of genes in the target
organisms to predict TFBMs. TC is used to identify clusters of homologous proteins.
A regulation is considered to be conserved if (1) the source gene is conserved, (2)
the binding site is conserved, and (3) the target gene is conserved as well. Choosing
restrictive values for the parameters of the binding site prediction and the homol-
ogy detection leads to a low number of false positives. In fact the parameters were
adjusted to have no false positive prediction according to the known regulations in
the database. By using this reliable network transfer, the database content was in-
creased by a factor of 4.2. Table 6.3 summarizes the results for this study. In a
recently published review by Venancio and Aravind [77], the workflow presented here
was mentioned as the best current practice model.

TFs TFsC TFsK TFsK
C Regulations

CG 128 69 530
original transferred transferred original transferred

CD 63 49 (77.8%) 2 (3.2%) 20 (× 10) 20 (40.1%) 46 193 (× 4.2)
CE 103 77 (74.8%) 5 (4.9%) 28 (× 5.6) 28 (36.4%) 64 348 (× 5.4)
CJ 55 31 (56.4%) 1 (1.8%) 13 (× 13) 13 (41.9%) 51 150 (× 2.9)
Av 69.6% 3.3% × 9.5 39.7% × 4.2

Table 6.3: Comparison between the original and the transferred database content of
CoryneRegNet. Abbreviations: CG = C. glutamicum, CD = C.diphteriae, CE =
C. efficiens, CJ = C. jeikeium, Av = Average, TFs = Transcription factors, TFsC
= Common TFs with CG, TFsK = TFs with known regulations, TFsK

C = Common
TFs with CG that have known regulations. Taken from [12]

104 Chapter 6: Integrated applications

Figure 6.4: Illustration of the workflow for gene regulatory network transfer. Starting
with the database content of CoryneRegNet (1) the transcription factors and their
known binding sites are extracted, (2) clusters of homologous proteins are calcu-
lated with FORCE, (3) the Position Specific Scoring Matrices are improved with
MoRAine, and (4) afterwards used to predict binding sites in the upstream regions
of all genes with PoSSuMsearch. Predicted regulations are entered in a new version
of CoryneRegNet (5.0 predicted)

7 Discussion

This work presented the clustering approach Transitivity Clustering. TC has proven
to be useful in various bioinformatic tasks and even outperforms popular existing
approaches like MCL or AP. Together with the software environment TransClust,
TC contributes to all the important steps of a cluster analysis.

7.1 Transitivity Clustering and TransClust

In the introduction of this work (Chapter 1, page 9), a list of crucial and highly
valuable necessities for a successful cluster analysis were discussed. As demonstrated
in Chapter 2, many approaches only partially address these criteria. In the following,
it will be discussed how TC and its implementation, TransClust, contribute to each
point.

Similarity function: TransClust implements several methods of calculating similar-
ities between two sequences based on BLAST results. The Cytoscape plugins
"BLAST2SimGraph" and "ClusterExplorer", which are part of the TC Cytoscape
plugin framework, integrate methods for computing and evaluating similarity
measures. If a gold standard assignment for a related problem is given, or
cluster assignments of a subset of the data is known, these may be utilized to
investigate the appropriateness of the similarity measure.

Density parameter: TC needs only one single intuitive density parameter, a similarity
threshold. The threshold defines what is considered as "similar enough". This
value may be known in advance or can be guessed by a specialist in the field of the
given application. It has been proven that a clustering obtained with TC follows
certain rules that depend on this density parameter and the similarity function:
The average similarity within a cluster is always above the threshold, while the
average similarity between two clusters is always below the threshold. These
conditions even partially hold for the extensions of TC, i.e. for overlapping or
hierarchical clustering. Again, additional methods in the associated Cytoscape
plugins have been implemented to ease the detection of a meaningful density
parameter; see the example in Section 5.2.3 and Figure 5.5 on page 86.

Runtime and space efficiency: Although the graph modification problem underly-
ing TC is NP-complete and even APX-hard, the TC approach and its efficient
implementation, TransClust, have proven to be applicable even for large scale
experiments. Clustering of more than 100,000 objects is possible in only a few

106 Chapter 7: Discussion

minutes on a standard desktop PC. This is, on the one hand, due to the efficient
implementation of TransClust, which combines very fast and accurate heuristics
with an exact method. On the other hand, the WTGPP may be solved sepa-
rately for the connected components of the input graph. Often, initially huge
problems can be split into multiple smaller problems, which can be solved within
a drastically reduced running time. This property is particularly beneficial if
very sparse data serves as input.

Robustness against outliers and noise: As demonstrated in Chapter 5, TC is very
robust against noise. The underlying WTGPP is further robust against outliers,
since an assignment of a single element depends on its similarities to all other
elements and their similarity to each other. Apparently, this is the reason why
the transitivity concept is perfectly suited for clustering.

Interpretable results: Due to the intuitive density parameter, which directly "works"
on the similarity function, the clustering output of TC has some intuitive prop-
erties that help to get an intuition about the final cluster assignment.

Integration of existing knowledge: Thanks to the flexibility of TC, the integration
of existing knowledge is a straightforward task. Different methods have been
implemented in TransClust: It is possible to set upper and lower bounds, to
include an existing pre-clustering for a subset of the data. Accordingly, it is
possible to directly specify whether two elements must be assigned to the same
or to different clusters. A brief evaluation in Section 5.2.4 demonstrated the
advantages. Little background information may already improve the quality of
the clustering drastically.

Integration with standard software: TC has been successfully integrated with sev-
eral other software systems: (1) the network analysis and visualization software
Cytoscape, (2) the TFBM re-adjustment tool MoRAine, and (3) as homology
prediction in the corynebacterial reference database CoryneRegNet.

Visualization: In order to not reinvent the wheel, and to profit from existing and
specialized software, TransClust has been integrated into Cytoscape. The Trans-
Clust plugin framework for Cytoscape provides various options to import, pre-
process, cluster, and visualize the data at each step of the typical data analysis
workflow with just a few mouse-clicks.

Evaluation methods: The TransClust software framework provides the end-user with
extensive aid with the following data analysis steps: (1) selection and config-
uration of an appropriate case-specific similarity measure, (2) estimation of a
reasonable density parameter, and (3) evaluation and comparison of the cluster-
ing results. Note that the Cytoscape plugins also cover these tasks, but further
allow answering to typical follow-up questions, such as the identification of out-
liers.

7.2: Computational biology applications 107

Reproducible results: In theory, the existence of more than one solution for a given
WTGPP is possible. In practice, this almost never happens due to the real-
valued similarity function. On the implementation side, TransClust does not
include any randomized algorithm but the parameter training, which is optional.

Small number of user-defined parameters: TC needs only one parameter, the den-
sity parameter. The TransClust framework asks for more parameters to control
the trade-off between runtime and quality. These parameters are already opti-
mized and usually do not need to be changed.

7.2 Computational biology applications

In addition to the theoretical attributes of TC, the applicability to real-life prob-
lems has been demonstrated by means of three case studies. The TC approach was
compared to other commonly used clustering tools.
First, in Chapter 5, it has been demonstrated that TC is capable of clustering

protein domains into superfamilies based on their sequence similarity alone; a long-
standing challenge in computational biology. The corresponding analysis was per-
formed similarly to the one by Paccanaro et al. [61]. A subset of the SCOP database
served as gold standard reference here. TC performed best in comparison to Spec-
tral Clustering, Markov Clustering, Hierarchical Clustering, GeneRAGE, and Affinity
Propagation. Note that TC even outperformed the method of Paccanaro et al. (Spec-
tral Clustering (SC)) on their own test data set and their quality measure.
In another study, whole protein sequences were clustered into families. A manually

curated gold standard data set by Brown et al. [24] served as ground truth. Two
other methods, namely MCL and AP were evaluated on the same data. Again, TC
outperformed the other approaches. Furthermore, this study demonstrated the high
influence of the density parameter on the resulting clusters. Consequently, the benefit
of the threshold determination routine of TransClust has been showcased with this
data set. However, finding a reasonable case-specific density parameter still remains
problematic; even with background knowledge. Even worse, the limited amount of
available, manually curated gold standard data so far hinders furthers analyses in this
research area.
Last, we concentrated on the prediction of protein complexes in a given PPI network.

Again, the evaluation was based on a previously published data. In 2006, Brohée et
al. [23] compared four different clustering methods for this task and claimed MCL
to be the best current practice method. The same data set and quality evaluation
methods as in the original study were used to evaluate the applicability of TC. It
revealed that TC can compete with MCL in terms of quality and outperforms it in
terms of robustness. Since protein complexes do not need to be disjoint, i.e. one
protein may contribute to multiple complexes, these data sets have been ideal to
demonstrate the power of the overlapping clustering methods of TC.
To sum it all up, for all biological application cases with hand-curated data, TC

108 Chapter 7: Discussion

competes or even outperforms other state-of-the-art clustering tools in terms of accu-
racy and robustness.

7.3 Integration in bioinformatics tools
Inter-species gene regulatory network transfer As demonstrated above, TC is suited

to detect clusters of homologous proteins. In a recently published bioinformat-
ics pipeline, these predictions were utilized to transfer gene regulatory networks
from a model organism to taxonomically closely related species. This method
has recently been cited as best current practice model.

Binding motif re-adjustment TC is part of the MoRAine software, a tool to re-adjust
TFBMs by utilizing clustering methods. The initial release MoRAine 1.0 imple-
mented clustering methods, which were either accurate or fast but not both. By
using TC, this gap between accuracy and running time was closed. MoRAine
2.0 now produces more accurate results in almost the same time as the previous
release.

Cytoscape The TC plugin framework for Cytoscape allows for an extended visual,
graph-based data analysis. Cytoscape provides an end-user with various possi-
bilities to import, layout, and analyze data that can be represented as graphs.
Aside from TC, plugins for MCL, hierarchical clustering, and MCODE have
been developed. But the TC plugin framework for Cytoscape offers more than
just a clustering method: In contrast to all other tools it integrates various
methods to help in each step of a typical cluster analysis.

7.4 Future directions
Although TC can be applied for various tasks, it has its limitations. This section de-
scribes ideas to overcome these problems together with more general future directions.

Huge data sets Like many other clustering tools, the applicability of TC is limited
with the problem size. For very dense similarity graphs, it may be impossible
to split the graph into multiple connected components. Such instances can still
be clustered with TC but it requires more time since the connected components
are rather large. Modifications to the heuristics to decrease the runtime may be
inevitable; but may lead to reduced accuracy. To cluster billions of data objects,
further modifications are necessary. Most obviously, in practice it is impossible
for any clustering software to store all similarities for each pair of objects for
such huge data sets. A putative solution would be the on-the-fly calculation of
the similarities while clustering the data, i.e. iterate through the list of elements
and decide in each step if it fits to one of the afore processed elements. To decide
whether an element fits to one cluster, one needs to calculate the similarities to
all already processed objects above a certain threshold. In such a way, connected

7.4: Future directions 109

components can be calculated even for very large data sets. These components
are much smaller and can then serve as input for a more precise clustering
approach like TC.

Fixed number of clusters One advantage of TC is its flexibility. However, there still
exist limitations in the applicability of TC. If, for instance, a specific number
of clusters is required or the problem aims to find central elements, a different
clustering approach might be better suited. One idea for the application of TC
on such tasks is to add a constraint to the WTGPP that allows only a fixed
number of clusters. This problem is known as MinDisAgree[k], where k is the
number of clusters. It would be interesting to investigate how existing algorithms
to solve the WTGPP may be extended to the MinDisAgree[k] problem.

Evaluation problems Most of all, the last evaluation study (PPI network cluster-
ing) points out the importance of the utilized quality measure; the results may
differ strongly. The proposed quality measures of the original study clearly fa-
vored MCL. By choosing the F-measure, this conclusion could not be validated.
Equally important is the choice of the gold standard. One example: Brohée
et al. compared different methods on real-world data against a gold standard;
the problem, however, was that this gold standard data only partially intersects
with the real-world data sets that have been used for the evaluation by Brohée et
al. In consequence, not only hand-curated assignments influenced the resulting
ranking of the compared tools. Generally, this shows how careful an evalua-
tion has to be performed. Many factors have to be taken into account, which
are: the choice of the data and the gold standard assignment, the algorithm
parameters for a fair comparison, and the quality measures. For future evalua-
tions it is desired to have much larger, high-quality gold standard data sets and
a standardized evaluation method. The work of Tompa et al. [74] about the
standardized analysis of de novo motif discovery tools may serve as an example
here.

In summary, future directions are the continuous improvement and development of
further heuristics for the WTGPP and new areas of application with standardized
evaluation routines.

110 Chapter 7: Discussion

8 Conclusion

This thesis introduced Transitivity Clustering, a clustering method based on weighted
transitive graph projection, which aims for unraveling hidden transitive substructures
in a given similarity graph deduced from a pairwise similarity measure.
TC attacks and solves all the crucial problems of a typical cluster analysis. The

results of TC have, for instance, provable attributes that depend on the similar-
ity function and the density parameter. This eases the detection of a meaningful,
application-specific density parameter and aids with the results interpretation. Addi-
tionally, TC allows for a direct inclusion of background knowledge into the clustering
process to further improve the accuracy. Another feature, which distinguishes TC
from other clustering approaches, is its capability of producing partitional, overlap-
ping and hierarchical clusterings. One may now use one model for each of these three
different kinds of clustering and hence avoid using completely different approaches,
whose results are hardly comparable.
The applicability of TC on bioinformatics tasks has been demonstrated by means

of solving real-world clustering problems with hand-curated biological data sets. The
identification of protein families and superfamilies based on their sequence similarity
is only one example where TC outperforms existing standard clustering tools, such as
Markov Clustering and Affinity Propagation.
TransClust is the efficient implementation of TC. It offers various methods to aid

with each step of a cluster analysis. The standalone version allows for clustering of
large data sets. Plugins for Cytoscape allow for an extended visual analysis and data
investigation. TransClust received external interest and has been integrated with other
bioinformatics applications. In the corynebacterial reference database CoryneRegNet,
TransClust applies TC to predict groups of homologous proteins. As part of an
internationally recognized computational pipeline, these predictions were utilized for
the inter-species transfer of gene regulatory networks. Furthermore, the transcription
factor binding motif re-adjustment tool MoRAine was improved by integrating TC.
Hence, TC is a novel, comprehensive clustering framework with special focus on

applications in computational biology.

112 Chapter 8: Conclusion

Bibliography

[1] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75:245–248, 2009.

[2] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research, 25(17):3389–3402, Sep 1997.

[3] A. Andreeva, D. Howorth, S. E. Brenner, T. J. Hubbard, C. Chothia, and A. G.
Murzin. SCOP database in 2004: refinements integrate structure and sequence
family data. Nucleic Acids Research, 32:D226–D229, 2004.

[4] B. Andreopoulos, A. An, X. Wang, and M. Schroeder. A roadmap of clustering
algorithms: finding a match for a biomedical application. Briefings in Bioinfor-
matics, Feb 2009.

[5] M. M. Babu, N. M. Luscombe, L. Aravind, M. Gerstein, and S. A. Teichmann.
Structure and evolution of transcriptional regulatory networks. Current Opinion
in Structual Biology, 14(3):283–291, Jun 2004.

[6] M. M. Babu, S. A. Teichmann, and L. Aravind. Evolutionary dynamics of
prokaryotic transcriptional regulatory networks. Journal of Molecular Biology,
358(2):614–633, Apr 2006.

[7] G. D. Bader and C. W. V. Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics, 4:2, Jan
2003.

[8] J. Baumbach. CoryneRegNet 4.0 - A reference database for corynebacterial gene
regulatory networks. BMC Bioinformatics, 8(1):429, Nov 2007.

[9] J. Baumbach and L. Apeltsin. Linking Cytoscape and the corynebacterial refer-
ence database CoryneRegNet. BMC Genomics, 9:184, 2008.

[10] J. Baumbach, K. Brinkrolf, L. F. Czaja, S. Rahmann, and A. Tauch. CoryneReg-
Net: an ontology-based data warehouse of corynebacterial transcription factors
and regulatory networks. BMC Genomics, 7:24, 2006.

[11] J. Baumbach, K. Brinkrolf, T. Wittkop, A. Tauch, and S. Rahmann. CoryneReg-
Net 2: An integrative bioinformatics approach for reconstruction and compari-
son of transcriptional regulatory networks in prokaryotes. Journal of Integrative
Bioinformatics, 3(2):24, 2006.

114 Bibliography

[12] J. Baumbach, S. Rahmann, and A. Tauch. Reliable transfer of transcriptional
gene regulatory networks between taxonomically related organisms. BMC Sys-
tems Biology, 3:8, 2009.

[13] J. Baumbach, A. Tauch, and S. Rahmann. Towards the integrated analysis,
visualization and reconstruction of microbial gene regulatory networks. Briefings
in Bioinformatics, 10(1):75–83, Jan 2009.

[14] J. Baumbach, T. Wittkop, C. K. Kleindt, and A. Tauch. Integrated analysis
and reconstruction of microbial transcriptional gene regulatory networks using
CoryneRegNet. Nature Protocols, 4(6):992–1005, 2009.

[15] J. Baumbach, T. Wittkop, K. Rademacher, S. Rahmann, K. Brinkrolf, and
A. Tauch. CoryneRegNet 3.0–an interactive systems biology platform for the
analysis of gene regulatory networks in corynebacteria and Escherichia coli. Jour-
nal of Biotechnology, 129(2):279–289, Apr 2007.

[16] J. Baumbach, T. Wittkop, J. Weile, T. Kohl, and S. Rahmann. MoRAine - A
web server for fast computational transcription factor binding motif reannotation.
Journal of Integrative Bioinformatics, 5(2):91, 2008.

[17] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truss. Going weighted: Pa-
rameterized algorithms for cluster editing. Theoretical Computer Science, 2009.
doi:10.1016/j.tcs.2009.05.006.

[18] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster editing:
Evaluation and experiments. Algorithmica, 2009.

[19] M. Beckstette, R. Homann, R. Giegerich, and S. Kurtz. Fast index based al-
gorithms and software for matching position specific scoring matrices. BMC
Bioinformatics, 7:389, 2006.

[20] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.
Journal of Computational Biology, 6(3-4):281–297, 1999.

[21] M. Blatt, S. Wiseman, and E. Domany. Superparamagnetic clustering of data.
Physical Review Letters, 76(18):3251–3254, Apr 1996.

[22] B.-J. Breitkreutz, C. Stark, and M. Tyers. The GRID: the general repository for
interaction datasets. Genome Biology, 4(3):R23, 2003.

[23] S. Brohée and J. van Helden. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics, 7:488, 2006.

[24] S. D. Brown, J. A. Gerlt, J. L. Seffernick, and P. C. Babbitt. A gold standard set
of mechanistically diverse enzyme superfamilies. Genome Biology, 7(1):R8, 2006.

Bibliography 115

[25] M. Cameron, Y. Bernstein, and H. E. Williams. Clustered sequence representa-
tion for fast homology search. Journal of Computational Biology, 14(5):594–614,
Jun 2007.

[26] J.-M. Chandonia, G. Hon, N. S. Walker, L. L. Conte, P. Koehl, M. Levitt, and
S. E. Brenner. The ASTRAL compendium in 2004. Nucleic Acids Research,
32:D189–D192, 2004.

[27] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative informa-
tion. Journal of Computer and System Sciences, 71:360–383, 2003.

[28] D. S. Chekmenev, C. Haid, and A. E. Kel. P-Match: transcription factor binding
site search by combining patterns and weight matrices. Nucleic Acids Research,
33(Web Server issue):W432–W437, Jul 2005.

[29] M. S. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys, C. Workman,
R. Christmas, I. Avila-Campilo, M. Creech, B. Gross, K. Hanspers, R. Isserlin,
R. Kelley, S. Killcoyne, S. Lotia, S. Maere, J. Morris, K. Ono, V. Pavlovic, A. R.
Pico, A. Vailaya, P.-L. Wang, A. Adler, B. R. Conklin, L. Hood, M. Kuiper,
C. Sander, I. Schmulevich, B. Schwikowski, G. J. Warner, T. Ideker, and G. D.
Bader. Integration of biological networks and gene expression data using Cy-
toscape. Nature Protocols, 2(10):2366–2382, 2007.

[30] G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner. WebLogo: a sequence
logo generator. Genome Research, 14(6):1188–1190, Jun 2004.

[31] W. Duan, M. Song, and A. Yates. Fast max-margin clustering for unsupervised
word sense disambiguation in biomedical texts. BMC Bioinformatics, 10 Suppl
3:S4, 2009.

[32] A. J. Enright, S. V. Dongen, and C. A. Ouzounis. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Research, 30(7):1575–1584, Apr
2002.

[33] A. J. Enright and C. A. Ouzounis. GeneRAGE: a robust algorithm for sequence
clustering and domain detection. Bioinformatics, 16(5):451–457, May 2000.

[34] B. J. Frey and D. Dueck. Clustering by passing messages between data points.
Science, 315(5814):972–976, 2007.

[35] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software - Practice and Experience, 21(11):1129–1164, 1991.

[36] D. J. Galas and A. Schmitz. DNAse footprinting: a simple method for the
detection of protein-DNA binding specificity. Nucleic Acids Research, 5(9):3157–
3170, Sep 1978.

116 Bibliography

[37] A.-C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau,
L. J. Jensen, S. Bastuck, B. Dümpelfeld, A. Edelmann, M.-A. Heurtier, V. Hoff-
man, C. Hoefert, K. Klein, M. Hudak, A.-M. Michon, M. Schelder, M. Schirle,
M. Remor, T. Rudi, S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes,
G. Neubauer, J. M. Rick, B. Kuster, P. Bork, R. B. Russell, and G. Superti-
Furga. Proteome survey reveals modularity of the yeast cell machinery. Nature,
440(7084):631–636, Mar 2006.

[38] A.-C. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz,
J. M. Rick, A.-M. Michon, C.-M. Cruciat, M. Remor, C. Höfert, M. Schelder,
M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi,
V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M.-A. Heurtier,
R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida,
T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-
Furga. Functional organization of the yeast proteome by systematic analysis of
protein complexes. Nature, 415(6868):141–147, Jan 2002.

[39] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation
of search tree algorithms for hard graph modification problems. Algorithmica,
39(4):321–347, 2004.

[40] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clus-
tering: Exact algorithm for clique generation. Theoretical Computer Science,
38(4):373–392, 2005.

[41] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering
problem. Mathematical Programming, Series B, 45:59–96, 1989.

[42] J. A. Hartigan. Clustering Algorithms. Wiley, 1975.

[43] L. M. Hellman and M. G. Fried. Electrophoretic mobility shift assay (EMSA)
for detecting protein-nucleic acid interactions. Nature Protocols, 2(8):1849–1861,
2007.

[44] Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S.-L. Adams, A. Mil-
lar, P. Taylor, K. Bennett, K. Boutilier, L. Yang, C. Wolting, I. Donaldson,
S. Schandorff, J. Shewnarane, M. Vo, J. Taggart, M. Goudreault, B. Muskat,
C. Alfarano, D. Dewar, Z. Lin, K. Michalickova, A. R. Willems, H. Sassi, P. A.
Nielsen, K. J. Rasmussen, J. R. Andersen, L. E. Johansen, L. H. Hansen,
H. Jespersen, A. Podtelejnikov, E. Nielsen, J. Crawford, V. Poulsen, B. D.
Sørensen, J. Matthiesen, R. C. Hendrickson, F. Gleeson, T. Pawson, M. F. Moran,
D. Durocher, M. Mann, C. W. V. Hogue, D. Figeys, and M. Tyers. Systematic
identification of protein complexes in Saccharomyces cerevisiae by mass spec-
trometry. Nature, 415(6868):180–183, Jan 2002.

[45] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A compre-
hensive two-hybrid analysis to explore the yeast protein interactome. Proceedings

Bibliography 117

of the National Academy of Sciences of the United States of America, 98(8):4569–
4574, Apr 2001.

[46] S. J.Lange. Efficient weighted graph cluster editing using an enhanced layout-
based approach. Master’s thesis, Bielefeld University, 2008.

[47] R. Jothi, S. Cuddapah, A. Barski, K. Cui, and K. Zhao. Genome-wide identifi-
cation of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids
Research, 36(16):5221–5231, Sep 2008.

[48] A. E. Kel, E. Gössling, I. Reuter, E. Cheremushkin, O. V. Kel-Margoulis, and
E. Wingender. MATCH: A tool for searching transcription factor binding sites
in DNA sequences. Nucleic Acids Research, 31(13):3576–3579, Jul 2003.

[49] A. D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based
clustering. Bioinformatics, 20(17):3013–3020, 2004.

[50] N. Kleinboelting. Protein clustering using an ant colony layouting approach.
Master’s thesis, Bielefeld University, 2009.

[51] A. Krause, J. Stoye, and M. Vingron. Large scale hierarchical clustering of protein
sequences. BMC Bioinformatics, 6:15, 2005.

[52] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu,
N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrín-Alvarez, M. Shales, X. Zhang,
M. Davey, M. D. Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie,
D. P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M. M.
Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J.
Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. S. Onge, S. Ghanny, M. H. Y.
Lam, G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J. S.
Weissman, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak,
A. Emili, and J. F. Greenblatt. Global landscape of protein complexes in the
yeast Saccharomyces cerevisiae. Nature, 440(7084):637–643, Mar 2006.

[53] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering.
Acta Informatica, 23(3):311–323, 1986.

[54] L. Li, C. J. Stoeckert, and D. S. Roos. OrthoMCL: identification of ortholog
groups for eukaryotic genomes. Genome Research, 13(9):2178–2189, Sep 2003.

[55] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28:129–137, 1982.

[56] L. Mao, J. L. V. Hemert, S. Dash, and J. A. Dickerson. Arabidopsis gene co-
expression network and its functional modules. BMC Bioinformatics, 10:346,
2009.

118 Bibliography

[57] T. Meinel, A. Krause, H. Luz, M. Vingron, and E. Staub. The SYSTERS Protein
Family Database in 2005. Nucleic Acids Research, 33(Database issue):D226–
D229, Jan 2005.

[58] H. W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Güldener, G. Mannhaupt,
M. Münsterkötter, P. Pagel, N. Strack, V. Stümpflen, J. Warfsmann, and
A. Ruepp. MIPS: analysis and annotation of proteins from whole genomes. Nu-
cleic Acids Research, 32(Database issue):D41–D44, Jan 2004.

[59] R. Münch, K. Hiller, A. Grote, M. Scheer, J. Klein, M. Schobert, and D. Jahn.
Virtual Footprint and PRODORIC: an integrative framework for regulon predic-
tion in prokaryotes. Bioinformatics, 21(22):4187–4189, Nov 2005.

[60] C. O. Pabo and R. T. Sauer. Transcription factors: structural families and
principles of DNA recognition. Annual Review of Biochemistry, 61:1053–1095,
1992.

[61] A. Paccanaro, J. A. Casbon, and M. A. Saqi. Spectral clustering of protein
sequences. Nucleic Acids Research, 34(5):1571–1580, 2006.

[62] S. Philippi and J. Köhler. Addressing the problems with life-science databases
for traditional uses and systems biology. Nature Review Genetics, 7(6):482–488,
Jun 2006.

[63] V. J. Promponas, A. J. Enright, S. Tsoka, D. P. Kreil, C. Leroy, S. Hamod-
rakas, C. Sander, and C. A. Ouzounis. CAST: an iterative algorithm for the
complexity analysis of sequence tracts. complexity analysis of sequence tracts.
Bioinformatics, 16(10):915–922, Oct 2000.

[64] S. Rahmann, T. Mueller, and M. Vingron. On the power of profiles for tran-
scription factor binding site detection. Statistical Applications in Genetics and
Molecular Biology, 2(1), 2003.

[65] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truß, and S. Böcker.
Exact and heuristic algorithms for weighted cluster editing. Conference on Com-
putational Systems Bioinformatics, 6(1):391–401, Aug 2007.

[66] O. Resendis-Antonio, J. A. Freyre-González, R. Menchaca-Méndez, R. M.
Gutiérrez-Ríos, A. Martínez-Antonio, C. Avila-Sánchez, and J. Collado-Vides.
Modular analysis of the transcriptional regulatory network of E. coli. Trends in
Genetics, 21(1):16–20, Jan 2005.

[67] E. W. Sayers, T. Barrett, D. A. Benson, E. Bolton, S. H. Bryant, K. Canese,
V. Chetvernin, D. M. Church, M. Dicuccio, S. Federhen, M. Feolo, L. Y. Geer,
W. Helmberg, Y. Kapustin, D. Landsman, D. J. Lipman, Z. Lu, T. L. Madden,
T. Madej, D. R. Maglott, A. Marchler-Bauer, V. Miller, I. Mizrachi, J. Os-
tell, A. Panchenko, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry,

Bibliography 119

M. Shumway, K. Sirotkin, D. Slotta, A. Souvorov, G. Starchenko, T. A. Tatusova,
L. Wagner, Y. Wang, W. J. Wilbur, E. Yaschenko, and J. Ye. Database resources
of the National Center for Biotechnology Information. Nucleic Acids Research,
Nov 2009.

[68] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Dis-
crete Applied Mathematics, 144:173–182, 2004.

[69] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Research, 13(11):2498–
2504, Nov 2003.

[70] T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147(1):195–197, Mar 1981.

[71] N. Song, J. M. Joseph, G. B. Davis, and D. Durand. Sequence similarity network
reveals common ancestry of multidomain proteins. PLoS Computational Biology,
4(4):e1000063, Apr 2008.

[72] G. D. Stormo. DNA binding sites: representation and discovery. Bioinformatics,
16(1):16–23, Jan 2000.

[73] L. V. Sun, L. Chen, F. Greil, N. Negre, T.-R. Li, G. Cavalli, H. Zhao, B. V.
Steensel, and K. P. White. Protein-DNA interaction mapping using genomic
tiling path microarrays in Drosophila. Proceedings of the National Academy of
Sciences of the United States of America, 100(16):9428–9433, Aug 2003.

[74] M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. D. Moor, E. Eskin, A. V.
Favorov, M. C. Frith, Y. Fu, W. J. Kent, V. J. Makeev, A. A. Mironov, W. S.
Noble, G. Pavesi, G. Pesole, M. Régnier, N. Simonis, S. Sinha, G. Thijs, J. van
Helden, M. Vandenbogaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu. Assessing
computational tools for the discovery of transcription factor binding sites. Nature
Biotechnology, 23(1):137–144, Jan 2005.

[75] P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lock-
shon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin,
D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields,
and J. M. Rothberg. A comprehensive analysis of protein-protein interactions in
Saccharomyces cerevisiae. Nature, 403(6770):623–627, Feb 2000.

[76] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht„ 2000.

[77] T. M. Venancio and L. Aravind. Reconstructing prokaryotic transcriptional reg-
ulatory networks: lessons from actinobacteria. Journal of Biology, 8(3):29, 2009.

120 Bibliography

[78] J. Vlasblom and S. J. Wodak. Markov clustering versus affinity propagation for
the partitioning of protein interaction graphs. BMC Bioinformatics, 10:99, 2009.

[79] T. Wittkop, J. Baumbach, F. Lobo, and S. Rahmann. Large scale clustering of
protein sequences with FORCE – A layout based heuristic for weighted cluster
editing. BMC Bioinformatics, 8(1):396, Oct 2007.

[80] C. T. Zahn Jr. Approximating symmetric relations by equivalence relations.
Journal of the Society of Industrial and Applied Mathematics, 12(4):840–847,
1964.

Abbreviatons

ACC Accuracy

AP Affinity Propagation

BeH Best Hit

BLAST Basic Local Alignment Search Tool

CAST Cluster Affinity Search Technique

Cov Coverage

FN False Negatives

FORCE Force-Based Cluster Editing

FP False Positives

FP Fixed-Parameter

GUI Graphical User Interface

HC Hierarchical Clustering

HSP High Scoring Pair

ILP Integer Linear Programming

LP Linear Programming

MCL Markov Clustering

MCODE Molecular Complex Detection

PFM Position Frequency Matrix

PPI Protein-Protein Interaction

PPV Positive Predictive Value

PSSM Position Specific Scoring Matrix

RNSC Restricted Neighborhood Search Clustering

SC Spectral Clustering

122 Bibliography

SPC Super Paramagnetic Clustering

SoH Sum of Hits

TC Transitivity Clustering

TF Transcription Factor

TFBM Transcription Factor Binding Motif

TGP Transitive Graph Projection

TGPP Transitive Graph Projection Problem

TN True Negatives

TP True Positives

TU Transcription Unit

WTGP Weighted Transitive Graph Projection

WTGPP Weighted Transitive Graph Projection Problem

List of Figures

3.1 Illustration of the WTGPP. 35
3.2 Counter example, that the WTGPP with upper bound lead to higher

costs. 40
3.3 Example, that the WTGP does not produce an hierarchical structure

for ascending thresholds. 42

4.1 Illustration of the TransClust program structure. 52
4.2 Model of the data import process. 53
4.3 Model of the clustering process. 54
4.4 Illustration of the layout-based heuristic as it is implemented in Tran-

sClust. 56
4.5 Illustration of the force-based layout. 57
4.6 An overview of the recursive post-processing method 63
4.7 Illustration of the graphical user interface of TransClust 66
4.8 Illustration of the Cytoscape software with integrated TransClust plugin 68
4.9 Screenshot of the TransClust website. 69
4.10 Comparison of the Cluster Affinity Search Technique (CAST) heuristic

and the force-based heuristic, using either no or the default recursive
post-processing method. 72

4.11 Quality evaluation of the heuristic. 74
4.12 Runtime comparison between the exact fixed-parameter algorithm and

TransClust. 75
4.13 Runtime comparison between the exact fixed-parameter algorithm and

TransClust. 75

5.1 Illustrations of the results from the protein domain clustering comparsion 79
5.2 Graphical summary of the obtained clustering results of FORCE for

protein domain clustering . 81
5.3 Illustration of the impact of the choice of the density parameter on the

quality of the resulting clustering. 84
5.4 Screenshot of the inter vs. intra edge weight distribution of the amido-

hydrolase superfamily using the ClusterExplorer Cytoscape plugin. . . 85
5.5 Illustration of a typical analysis work flow using TransClust 86
5.6 Illustration of the impact of the amount of additional knowledge added. 87
5.7 Illustration of the robustness analysis. 89

6.1 A screenshot from the MoRAine 2.0 web site. 98

124 List of Figures

6.2 Prediction performance comparison of PoSSuMsearch by means of pre-
cision and recall using original and MoRAine adjusted motifs. 101

6.3 Prediction performance comparison of PoSSuMsearch by means of the
F-measure using original and MoRAine adjusted motifs. 102

6.4 Illustration of the workflow for gene regulatory network transfer. . . . 104

D.1 Quality comparison between TransClust and FORCE on the COG data
set. 138

D.2 Runtime comparison between TransClust and FORCE on the COG
data set. 139

D.3 Comparison of the different layout methods in TransClust. 140
D.4 Runtime comparison between fixed-parameter approach, FORCE, and

Greedy heuristic. 141
D.5 Quality evaluation of FORCE and Greedy heuristic against exact solu-

tion obtained with fixed-parameter approach. 142
D.6 Protein-Protein interaction network that is used in the evaluations of

Chapter 5 . 143
D.7 Results of the original robustness analysis of clustering algorithm by

Brohée et al.. 144
D.8 Illustration of the results of the robustness evaluation for TransClust.

The used quality measure is the separation 145
D.9 Illustration of the results of the robustness evaluation for TransClust.

The used quality measure is the accuracy 145

List of Tables

2.1 Comparison of different clustering approaches. 30
2.2 Overview of a variety of clustering algorithms and how they fulfill the

desired features as specified in the requirement analysis in Chapter 1. 31

4.1 The dataset used for runtime and quality analysis of TransClust heuris-
tics against fixed-parameter method. 70

4.2 Costs and time for clustering of the COG data set using different limi-
tations for the exact Fixed-Parameter (FP) approach 72

4.3 Running times on protein similarity data after data reduction for fixed-
parameter and integer linear programming approach. 73

5.1 Summary of the evaluation of protein domain clustering 80
5.2 Summary of the results and parameters for FORCE for protein domain

clustering . 82
5.3 Summary of the used density parameters for the protein clustering eval-

uation. 83
5.4 List of optimal density parameters with corresponding F-measure for

protein clustering. 83
5.5 Comparison between the different clustering approaches from Brohée

et al. [23] including results for TransClust 91
5.6 Comparison between MCL, RNSC, and TC on large scale data. 92
5.7 Comparison of the overlapping methods of TC. 93

6.1 Quality and runtime of MoRAine 1.0 99
6.2 Quality and runtime comparison of MoRAine 1.0 and MoRAine 2.0 . . 100
6.3 Comparison between the orignial and the transferred database content

of CoryneRegNet . 103

D.1 Comparison of layout dimensions on the COG data set. 137
D.2 Clustering with K-means and parameter training. 137

126 List of Tables

Acknowledgments

This work would not have been possible without the support of a lot of people.
I am particularly grateful for the help and the support of my supervisors Prof. Dr.

Sven Rahmann and Prof. Dr. Jens Stoye. They helped me in various discussion and
always gave me honest feedback. During the last years, I learned a lot because of their
experience and their helpful advise.
Furthermore, I would like to express thanks to my co-workers, with whom I often

discussed open problems. Here, I also like to thank Dr. Jan Baumbach. Furthermore,
I like to thank my office mate Alexander Bunkowski and my colleagues Dorothea,
Heiko, Jochen, Sebastian O., Sebastian B., Sita, Wiebke and all members of the
Genome Informatics workgroup as well as the members of the graduate school.
For proofreading, I would like to thank Alexander, Alisa, and Jan.
I should not forget to thank my friends who supported me and ignored my absence

during the last months of this thesis.
Furthermore, I would like to thank my family who supported me all my life and

especially during my studies and my PhD studies. I hope they are as proud of me as
I am of them.
Last but not least, I would like to thank my girlfriend Alisa, who has been always

there for me, listened to my problems, and is my inspiration in many fields.

128 List of Tables

A Publications & cooperations

Transitivity Clustering as clustering method using the WTGPP as model was pub-
lished and presented at CSB 2009 [65]. The force-based heuristic, a greedy approxi-
mation, and a first version of the fixed-parameter approach were also included in this
publication. This has been done in cooperation with Sebastian Böcker from Jena Uni-
versity, Marcel Martin from Dortmund University, and Jan Baumbach from the Inter-
national Computer Science Institute (ICSI) in Berkeley. Following this, the software
FORCE has been published in BMC Bioinformatics [79] together with Jan Baum-
bach and Francisco Lobo from Universidade Federal de Minas Gerais, Belo Horizonte,
Brazil. The software MoRAine 1.0 was presented at the International Symposium on
Integrative Bioinformatics (IB08) [16] as cooperative work with Jan Baumbach and
Jochen Weile from Bielefeld University. The author of this thesis took part in the de-
velopment of CoryneRegNet and the integration of TC. Corresponding publications
are [11, 15], and recently also [14]. Furthermore, a publication summarizing the re-
cent improvements to the TransClust framework is in preparation. It is expected to be
published in 2010. In cooperation with Dorothea Emig from the Max-Planck Institute
Saarbrücken, the Cytoscape plugins have been improved and will also be discussed in
that publication. The integration of TC into the software MoRAine (MoRAine 2.0)
has recently been submitted to the International Symposium on Integrative Bioinfor-
matics (IB10).

130 Chapter A: Publications & cooperations

B TransClust data formats

This chapter describes the data formates that are used in the TransClust framework.

Costmatrix file Lemma 3.4 states that it is sufficient to solve the WTGPP of the
connected components only, instead of using the whole graph. Thus all unnecessary
information can be discarded to save space. Similarity values of nodes from different
connected components are not necessary to save. Since the similarity function is
required to be symmetric also only one direction has to be stored. TransClust supports
the import of costmatrix files which correspond each to one connected components.
These files start with the number of nodes in the first line, followed by the names of
the objects in the connected component each in a separate line. The similarities are
written below these information. Following the order as given above the objects are
notated in the following as o1, ..., on. The i-th line after the names contains the costs
to remove or add the edge between oi−1 and {oi, ..., on} in a tab delimited format.
Hereby the costs to remove an edge is a positive number, while the costs for adding
an edge is negative. If the user has chosen to set an upper bound and thus merge all
objects whose similarity exceeds this limit, the format slightly changes. The already
produced costs for the merging operations, which are all costs for adding edges between
objects of a set of object that is merged, are written in the second line after the size
of the connected component. The names of these sets are stored, again tab delimited,
in the subsequent lines, each set (which may consists of only one object) in one line.
Finally, the costs between the sets are calculated and written as described above.
All costmatrices are stored in a directory together with a file containing all already
transitive components. This additional file is similar to the subsequently described
results file. It is tab delimited, where the first column contains the names of the
objects and the second column a different number for connected component/cluster.
Either a directory of costmatrices and a transitive connected component file or a single
costmatrix file may be chosen as input.

Similarity file A standard format to store similarity information is to use a tab
delimited similarity file, where the first and second elements are objects and the third
column contains the similarity values. For a large set of objects these files may become
very big. To save memory space, TransClust accepts only files in a certain format.
As usual the file should be tab delimited as described above, but all similarities for
one object have to be written in consecutive lines. This allows TransClust to create
an index and hence speed up the subsequent search for connected components given
a certain threshold. The file can contain non symmetric similarities which are later
made symmetric by TransClust by choosing the smaller value of the two directions.

132 Chapter B: TransClust data formats

It is important that both directions are written in the file if the chosen similarity
function is already symmetric, due to the fact that the import process of TransClust
treats non existing similarities as zero and thus would set the similarity of this pair
to zero as it is the smaller value. Such similarity file may be used to either create
costmatrix files as described above or directly as input for clustering with varying
thresholds (see Section 4.2.6 for a description of this method).

BLAST/FASTA file For the task of clustering sequences TransClust offers various
methods to derive a pairwise similarity from a given BLAST and FASTA file. The
FASTA file is needed as it contains the sequence length which is used to calculate the
coverage of a HSP and may contain proteins which do not occur in the BLAST file,
but should be included in the results. The BLAST file should be in the ten column
format (using the -m 8 option for BLAST) to include every necessary information.
From these files TransClust generates first a similarity file and with a given threshold
the costmatrix files corresponding to the connected components.

Gold standard file TransClust integrates a method to compare the obtained clus-
tering results to a gold standard. This can be used to either evaluate the clustering
quality for one specific threshold or help finding the best density parameter for this
problem (see Section 4.2.6 for details about this functionality). The corresponding file
should be again tab delimited where the first column contains all names and the sec-
ond column the corresponding gold standard cluster assignments. The cluster names
can be arbitrary strings, whose only restriction is, that it should not contain any tab
stops. It is important to use the same identifiers for the objects in the gold standard
file and in the input for the clustering algorithm to guaranty a valid comparison.

Config file TransClust accepts also a config file, containing all available parameters
of the program. It can be used to store the best configuration after a evolution-
ary parameter training (see Section 4.2.1) and to always use the same user defined
configurations without specifying all parameters again for each run.

Info file Using TransClust as a commandline tool it is possible to create an info
file, which summarizes the used parameters and information about the clustering. In
contrast to the results file it does not include the clustering itself, but a list of all used
connected components, the size of the corresponding clusters, the score, and how much
time was needed to calculate the clustering. These information might be interesting
for a comparison against other clustering tools and especially for an evaluation against
other algorithms that solve the WTGPP.

Results file The results of a run with TransClust are stored in a tab delimited
results file. This file can have two different formats, depending on the used method.
Clustering data from costmatrices, independent of how they were created, produces
a clustering file similar to the gold standard file. All objects which occur in either a

133

costmatrix file, or the transitive connected component file are listed here in the first
column together with its cluster in the second column. Clustering data iteratively
from a similarity file with a list of thresholds, leads to a results file that contains more
information. Using a gold standard, the results file contains in each line the used
threshold, the f-measure between the corresponding clustering and the gold standard,
and the information about the element assignments. While these informations are
separated by tabs, the clustering information divides each cluster by a semicolon and
in each cluster the including elements by a comma. If no gold standard file is provided,
the second column is just a dash, and the file may still be used to have information
about the cluster size distribution for the different thresholds.

Known assignments file TransClust offers to import known assignments to improve
the clustering quality. The corresponding file can have one of two possible formats.
Known clusters can be imported by using a file similar to the gold standard file. The
second option is to specify the relation between two objects directly. In a three column
tab delimited file the corresponding information are stored similar to the similarity
file. The first and second column contain the names of the object and the third column
specifies whether these two objects should be in one cluster (1) or not (-1).

134 Chapter B: TransClust data formats

C MoRAine 1.0

This section describes the similarity measures and clustering strategies that were used
in the MoRAine 1.0 software; for missing definitions and more information refer to
Section 6.1.

Similarity Measures
Motif-cluster similarity (simC) To measure the similarity between a single TFBM

s and an existing non-empty cluster C ′, one calculates the mean information
content I for the frequency matrix constructed from all TFBMs of C ′ and s itself.
It will be subsequently referred to as the motif-cluster similarity simC(s, C ′).

Motif-seed similarity (simS) Following another strategy, each cluster is represented
by a single seed motif s′. Here one calculates I for the frequency matrix built
from only the seed motif and the new TFBM s. This value is called the motif-
seed similarity simS(s, s′); it is faster to evaluate, but less accurate than simC.

These definitions apply only if the cluster C ′ to which a new motif s from a set Si is
to be assigned does not yet contain another motif from Si. Otherwise, the similarity
is set to −∞; this ensures that each cluster contains only one motif from every set Si.
Respectively the Hamming similarity between two motifs from the same set Si is set
to −∞.

Clustering strategies
The goal is to partition the set of motifs into M = 2 · (l+ r + 1) clusters, where each
cluster contains exactly n motifs, one of each Si (i = 1, . . . , n) and thus is a putative
solution. The clustering strategies are:

Variant of k-means with random seeds (km) In this application, the number M of
clusters is known; so one can use a variation of the k-means algorithm [42].
In the end, the cluster with the highest mean information content I is chosen.
Starting with a random set of M (out of n ·M) motifs (the seeds) that form
the initial clusters, the following procedure is iterated until convergence: Each
motif, in arbitrary but fixed order, is assigned to the cluster that maximizes the
similarity (simC or simS) value. This results in M clusters, each consisting of
n motifs. A new seed sequence is chosen for each cluster as the sequence that
best represents the cluster. This continues until no more changes occur for the

136 Chapter C: MoRAine 1.0

seed sequence set; see Algorithm 3 for details. This strategy can be repeated for
different initial seeds and addition orders.

Algorithm 3 k-means variant (km)
Input: sets Si, i = 1, . . . , n, with |Si| = M ; a similarity function sim
Output: Set C of motifs with high information content I
1: oldseeds← {}
2: seeds← {M arbitrary elements of

⋃n
i=1 Si}

3: while seeds 6= oldseeds do
4: initialize clusters Cj , j = 1, . . . ,M , with one seed per cluster
5: oldseeds← seeds
6: for i← 1 to n do
7: for all motifs s in Si do
8: assign s to cluster Cj with maximal sim(s, Cj) over j = 1, . . . ,M
9: seeds← {}

10: for all clusters Cj do
11: find motif s ∈ Cj with maximal

∑
s′∈Cj sim(s, s′)

12: add s to seeds
13: C ← Cj , with maximal I(FCj) over j = 1, . . . ,M
14: return (C, I(FC))

Cluster growing (cg) Since each motif of each Si must be in a different cluster, each
Si is used in turn as a set of initial seeds. Subsequently, the other motifs are
added to their most similar cluster, similarly to the first iteration of the km
algorithm, but this procedure is not iterated. Finally, the best solution obtained
from the n different starting configurations is reported (see Algorithm 4 for
details).

Algorithm 4 Cluster growing (cg)
Input: sets Si, i = 1, . . . , n, with |Si| = M ; a similarity function sim
Output: Set C of motifs with high information content I
1: Ibest ← 0, Cbest ← {}
2: for i← 1 to n do
3: seeds← Si
4: initialize clusters Cj , j = 1, . . . ,M , with one seed per cluster
5: for each k 6= i do
6: for all motifs s in Sk do
7: assign s to Cj with maximal sim(s, Cj) over j = 1, . . . ,M
8: C ← Cj , with maximal I(FCj) over j = 1, . . . ,M
9: if I(FC) ≥ Ibest then

10: Ibest ← I, Cbest ← C
11: return (Cbest, Ibest)

D Supplementary figures and tables

Layout dimension Cost Time
2D 4, 408, 598 13 h 40 min 35 s
3D 4, 413, 944 12 h 58 min 33 s
4D 4, 407, 247 12 h 30 min 13 s
5D 4, 406, 788 13 h 14 min 36 s
6D 4, 403, 265 14 h 47 min 20 s
7D 4, 410, 258 15 h 01 min 06 s
8D 4, 405, 635 17 h 16 min 41 s

Table D.1: Comparison of layout dimensions on the COG data set. The force-based
method is used together with single linkage clustering, recursive post-processing and
parameter training for each problem instance. The table was taken from [46]

Layout dimension Cost Time
2D 4, 425, 695 13 h 55 min 14 s
3D 4, 466, 969 13 h 25 min 17 s
4D 4, 440, 647 13 h 59 min 58 s
5D 4, 458, 026 15 h 08 min 41 s
6D 4, 433, 953 16 h 32 min 26 s

Table D.2: Clustering results of the COG data set for different layout dimensions. The
used methods were the force-based layout algorithm, K-means as geometric clus-
tering, recursive post-processing, and parameter training for each instance. Taken
from [46]

138 Chapter D: Supplementary figures and tables

Figure D.1: Quality comparison between TransClust and FORCE on the COG data
set. Negative values correspond to instances where FORCE results in higher costs
than TransClust, and positive results vice versa. Taken from [46]

139

Figure D.2: Runtime comparison between TransClust and FORCE on the COG data
set up to 1000 nodes per problem instance. Taken from [46]

140 Chapter D: Supplementary figures and tables

Figure D.3: Comparison of the different layout methods in TransClust. The x-axis
shows the costs of the different methods performed on an artificial data set. Ab-
breviations: ACL-SL: ant colony layout with single linkage as geometric clustering,
ACL-KM: ant colony layout with K-means as geometric clustering, ACL-FORCE:
ant colony layout as pre-processing for force-based layout with single linkage clus-
tering, FORCE: force-based layout with single linkage clustering. Taken from [50]

141

Figure D.4: Runtime comparison between fixed-parameter approach, FORCE, and
Greedy heuristic. Taken from [65]

142 Chapter D: Supplementary figures and tables

Figure D.5: Quality evaluation of FORCE and Greedy heuristic against exact solution
obtained with fixed-parameter approach. Taken from [65]

143

Figure D.6: Graph of PPI network with (A) no edge modifications and (B) 100% added
and 40% removed edges. Taken from [23]

144 Chapter D: Supplementary figures and tables

Figure D.7: Results of the original robustness analysis of clustering algorithm by Brohée
et al.. Taken from [23]. The quality measures are accuracy (left) and separation
(right). (A-B) edge addition to the unmodified graph. (C-D) edge removal from
the unmodified graph. (E-F) Edge removal from a graph with 100% randomly
added edges. (G-H) Edge addition to a graph with 40% randomly removed edges.
The compared approaches are: MCL (blue), RNSC (red), MCODE (orange), SPC
(green). The control group is displayed as dotted lines.

145

Figure D.8: Illustration of the results of the robustness evaluation for TransClust. The
used quality measure is the separation

Figure D.9: Illustration of the results of the robustness evaluation for TransClust. The
used quality measure is the accuracy

146 Chapter D: Supplementary figures and tables

Erklärung

Hiermit versichere ich, dass ich diese Dissertation selbständig verfasst, keine anderen
als die angegeben Quellen und Hilfsmittel benutzt und alle Stellen, die dem Wortlaut
oder dem Sinne nach anderen Werken entlehnt sind, durch die Angabe von Quellen
als Entlehnungen kenntlich gemacht habe.

Bielefeld, 14. Dezember 2009

Tobias Wittkop

