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1 Introduction

In 1944 von Neumann and Morgenstern formulated their well-known axioms
for preferences over random payoffs (see [von Neumann & Morgenstern, 44])
and showed that these preferences are equivalent to an Expected Utility
Representation of preferences. After some time their model was criticized
because the distributions of their payoffs were exogenously given and purely
objective. Since this is a very restrictive assumption their model was ex-
tended in [Savage, 54] and in [Anscombe & Aumann, 63]. In contrast to the
von Neumann and Morgenstern model Savage regarded the distributions of
the payoffs to be purely subjective and endogenous. Anscombe and Aumann
then combined both models taking some objective distributions as given and
having others arising purely out of the model.

At some point criticism also arose against these models. One of the most
mentioned objections can be found in [Ellsberg, 61]. He conducted experi-
ments and empirically showed that Expected Utility models do not always
mirror reality. One way of explaining these findings is that people behave
only boundedly rational. Another way is to distinguish between uncertainty
and risk, an ansatz proposed in [Knight, 21]. While in a risky setting the
decision maker is sure of the distributions of the outcomes in an uncertain
setting he is unsure of the right distribution and thinks more than one pos-
sible. Following this idea Gilboa and Schmeidler developed their Multiple
Priors Model in [Gilboa & Schmeidler, 89] using Anscombe’s and Aumann’s
model as a basis. They weakened the Independence Axiom and added an
additional axiom formalizing Uncertainty Aversion. This lead the decision
maker to maximize 1%»16% Ef[u o f] among all possible acts f, where C is a

non-empty, closed and convex set of probability measures.

Since this is a purely atemporal model in [Epstein & Schneider, 03] the
Multiple Priors Model was expanded to incorporate the factor time. They
modified preferences to be not only state but also time-dependent, adjusted
the Gilboa-Schmeidler-axioms appropriately and asked for Dynamic Consis-
tency as an additional axiom. This restriction on preferences yields a very
specific property of the set of measures in their Utility Representation. They
found out that preferences are dynamically consistent if and only if the set
of measures in their Recursive Multiple Priors Representation is rectangular.
Rectangularity is a restriction on the whole set of measures. It demands
that it is possible for the one-step-ahead measures to be mixed arbitrarily.



Since for some purposes (e.g. solving concrete optimal stopping problems)
this is not a very easy definition but never the less an important one it is
very natural to try and find equivalent definitions.

This was done by various authors. In [Riedel, 09] one can find a survey
of the different concepts and a proof of their equivalence. Among these
concepts is rectangularity which was introduced in [Epstein & Schneider, 03]
and is a property concerning the one-step-ahead measures. They asked that
at every point in time all possible one step ahead measures can be added.
Another concept is stability. It was introduced in [Follmer & Schied, 02].
Here for two measures P and Q in the set of measures and every stopping
time 7 the measure that takes P up to 7 and Q afterwards also lies in the set.
The last concept is time-consistency which was introduced in [Delbaen, 03].
This property demands that at every stopping time density processes can
be consistently pasted together. A more formal definition of this specific
property will be given in the next section.

In the above cited paper Riedel among other things constructed time-
consistent sets of measures via their density processes. Consequently the
question arose if in this special setting all time-consistent sets of measures
can be constructed in this way. That is why we took a closer look at time-
consistent sets of measures and found out that not quite all sets are of this
kind. However a slight modification of his construction does the trick.

The main content of this paper is this alternative characterization of time-
consistent sets. They are described via a set of predictable processes with
specific properties. This will be our first and main theorem. In addition to
showing how the set of measures can be related to this set of processes we
will also show that sets of processes with the assumed properties define sets
of time-consistent measures. This will be the content of our second theorem.
So altogether we will provide an equivalent formulation for time-consistent
sets of measures.

The build-up of this paper will be the following. After pinning down the
model framework and specifying the attributes of our sets more precisely in
Section 2 we will deduct the first theorem in the succeeding Section 3. Then
in Section 4 we will commit ourselves to proving the second theorem. In
the following fifth section we will introduce some example setting where our
results are applicable and might simplify calculations. After that we discuss
possible extensions in Section 6 and then conclude in the last and seventh
section.



2 Model

To specify the setting we start with a discrete set Q = {wy, ...,wr}. On this
state space we have an information structure {F};—o__r which is a sequence
of partitions of €2, which become finer as t increases, i.e. every set of F;
is a subset of some set of F; for all ¢. Additionally we assume Fy = € and
Fr={{w}, ..., {wx}}

Heuristically this concept describes the information of the prevailing state
available at a certain time ¢. This means for a fixed time ¢ the decision maker
will not necessarily be able to observe the exact state which occurs but merely
which subset of F; is realized. If the observed subset consists of only a single
state then of course the decision maker has full knowledge of the realization.

If you want to express this in terms of o-fields and filtrations you just
take the power set Pot(2) for the filtration F and define the filtration {F;}:
by setting F; := o(F}) i.e. Fy is the set of atoms generating F;.

For our considerations we assume our information structure to have a
constant and finite splitting function with splitting value v. This implies
that the filtratioin drawn as an information tree will have the same finite
number of branches at every vertex. Formally the splitting function f of an
information structure {F;}, is defined in the following way

f:QX[anO)_)N > f(wat):ﬁ{AeFt+1|AgFt(w)}

where Fy(w) is the set B € F; with w € B. The finiteness of this index
will allow us to apply the martingale representation given in Theorem 5.15
in [Dothan, 90] and the constancy will result in unique processes in the rep-
resentation. We will make these two things more precise in the following
section.

For now we will also restrict this model to a finite time horizon [0, 7.
The finite splitting index and the finite time horizon result in a finite (2.

To complete our probability space we still need to fix a probability mea-
sure Py as a reference measure which pins down the sets of measure zero.
Since we are on a tree like structure any measure which assigns non-zero
probability to each branch will do, for simplicity let us choose the uniform
distribution.

The set of measures we want to characterize will be denoted by P. In
the following we will make some assumptions on this set and justify their
plausibility.



Our first assumption will be

Assumption 2.1. We assume Py € P and for all other measures P € P
P(A) >0 for all A € Fr

In this assumption Py’s function as a reference measure becomes clear.
One can see that it has no influence on the stochastic structure of the other
measures. It simply implies that all measures contained in P have the same
null sets which means that we know what sure and impossible events are.

In [Epstein & Marinacci, 06] an economic interpretation of this assump-
tion was given. They related it to an axiom on preferences first postulated
in [Kreps, 79]. He claimed that if a decision maker is ambivalent between
an act x and z U 2’ then he should also be ambivalent between x U z” and
xUz'Uz”. Meaning if the possibility of choosing x’ in addition to = brings no
extra utility compared to just being able to choose z, then also no additional
utility should arise from being able to choose x’ supplementary to = U z”.

In our second assumption we claim

Assumption 2.2. P is time-consistent. This means for a stopping time T

and densities py := (%)t and q; 1= (C%Q;)t belonging to P,Q € P that the

measure P defined by the density

AP\ [ p ift <
ﬁh ) EZ else
t

ar
belongs to P as well.

As mentioned in the introduction this assumption also originates from
a feature claimed for preferences introduced in [Epstein & Schneider, 03].
They expanded the Multiple Priors Model (cp [Gilboa & Schmeidler, 89]) to
a dynamic setting and asked the decision maker to be dynamically consistent
in his decisions. With this they meant that if two acts are identical up to
some time ¢t but in £ 4+ 1 one is preferred over the other, then this should
already be the case at time ¢. This implies that a decision maker will never
regret his earlier decisions. In their paper Epstein and Schneider then showed
that preferences fulfill this requirement if and only if the utility functional
one obtains contains a rectangular set of measures. Rectangularity is equiv-
alent to time-consistency. Time-consistency was introduced in [Delbaen, 03]
where he also showed the equivalence to rectangularity. These two features



stand for being able to judge each period in time with a different measure.
More technically they allow to consistently paste together different densities
at different times and still stay in the set. They also make it possible to
use backward induction in discrete settings and allow for a Law of Iterated
Expectations.

The set used to characterize P will be denoted by A. We will show that
it consists of predictable processes, is compact and that the process constant
to zero is contained in it. Furthermore we will see that it fulfills a property
we call stable under pasting and define in the following way.

Definition 1. A set of processes A is called stable under pasting if for every
stopping time T and all processes (o), (Br): € A the process defined by

| o ift<r
V= By else

belongs to A as well.

Later on we will show if we assume these properties for a set A then we
can derive a set of measures P that features our original characteristics.

3 From P to A

The goal of this section is to prove the main theorem of this paper, which
tells us, that every time-consistent set of measures in our setting can also be
described via a set of predictable processes A and a orthogonal martingale
basis {my,...,m,_1} fulfilling certain properties.

Expressed more formally this results in

Theorem 3.1. For every set of measures P satisfying Assumptions 2.1 and
2.2 there is a set of predictable processes A such that

P = {P ‘ (dP) =&(a), ac At e {O,...,T}} where
t

dP,
v—1
exp (Z ahsAmhs> ] )
h=1

The A resulting from each P inhabits following features:

t v—1 t
c‘ft(a) = exp (Z Z ps Amyps — Z InE
s=1

s=1 h=1




e c A
o A is compact.
o A is stable under pasting.

In order to prove this theorem we will derive a set of predictable processes
A for every time-consistent set P and then show that it inhabits the requested
features. One important step along this way will be a martingale representa-
tion theorem which we will explain more thoroughly in the next subsection.
After that we will show the construction of the processes starting with an
arbitrary time-consistent set of measures satisfying the above assumptions.
Following this we will show that the constructed processes really are what
we asked for.

3.1 Martingale Representation

This important tool which we will use in our proof tells us that in our setting
we can find a set of martingales with which we can represent every other
martingale in our setting with the help of predictable processes. A set of
martingales which has this representation property is called a martingale
basis. More formally we define

Definition 2. A finite set of martingales {my;}, ..., {mu:} is called a basis iff
for every martingale {z;} there are predictable processes {1}, ..., {ous} such
that for every 1 <t <T

kT
Ty = o+ g g s A where Amyps = mps — My 51
h=1 s=1

If the martingales {my;}, ..., {my:} are pairwise orthogonal, i.e. for every
1<j<k,1<h<m,j#handevery 0<t<T 6 (mj,my) =0, then
the basis {mu}, ..., {m} is called orthogonal.

For our purposes it would be good to know in which cases such a basis
exists especially with unique a’s. An answer for this is provided by the
following proposition. A slightly different version of this can be found in
[Dothan, 90] but since we are looking for a unique representation we need
to restrict the setting to a constant splitting function of our information
structure. The proof works along the same line as the one in [Dothan, 90].

7



Proposition. (Martingale Representation)

Given a discrete space Q0 = {wy, ...,wx } which is endowed with an information
structure {Fy}i—o, 1 with Fo = Q and Fpr = {{w1}, ..., {wr }} and a constant
splitting function with value v. Then there exists an orthogonal martingale
basis My, ..., My, 1, for which the predictable processes {af,},....{ad_;} in
the representation of every {x,;} are unique.

Remark 1. Since under the assumption of “no arbitrage” discounted assets
are martingales for a martingale measure P* this means for a binomaial tree
setting that there is one asset M; with which every other asset X; can be
replicated and therefore hedged. More general in an n-nomial tree we can
replicate every asset with a set of n — 1 many assets.

3.2 Exponential form of the densities

The next step we will take is to show that every measure P € P can be
uniquely related to predictable processes (off’s)s sy (045111,3)5-
Remark that this is exactly one process less than our splitting value v.
The equivalence of the measures in addition to Py € P (Ass.2.1) gives us
the possibility to identify each P € P uniquely with its density with respect

to ]P)().

If you define ((2‘%) =K {(%) ‘ ] for every t < T and every P € P
t Fi

with the expectation taken under Py, you obtain density processes which are
Py-martingales.

Using Jensen’s inequality and Doob’s decomposition theorem each of the
above densities can be written in the following form where (M,), is also a
Py-martingale and (A;); is a non-decreasing and predictable process with

AO - 0
dP
<dTP’o>t = exp(M; — Ay).

Applying the martingale representation theorem to M; we obtain an or-
thogonal martingale basis (1m5),, ..., (My—1,s),. This implies that there are
predictable processes (a]fs)s sy (045111,3)5 such that our densities can now be
written in the following manner where Amy, = mps — mp -1

dP t v-—-1
(dTPb)t = eXp <Z Z a],};Amhs — At> .

s=1 h=1

8



Now we still have to determine the A;’s. Using the martingale property of the
densities and the measurability of the A;’s we receive the following recursive

relation
v—1
exp (Z O‘]}I:,t—l—lAmh,t-i-l) ‘ ﬂ] .

h=1

At-i—l — At =Ink

This results in

t

t
Ay=> (A, - A, ) =) hE
s=1

s=1

v—1
exp (Z agSAmhs> ' ]:5_1] )
h=1

Additionally thanks to the assumptions on our information structure, we
can show that our filtration is generated by our martingale basis and this in
addition to the predictability of the a’s allows us to drop the conditioning
on fs—l-

dpP

So for our density (m

) we now have following representation
t

AP t v—1 t v—1
(dTP’o)t = exp <Z Z oy Amy, — Z InE |exp (Z oy Amy, . (1)
s=1 h=1 s=1 h=1

This construction now allows us to not only identify a measure P with its
density with respect to Py and the associated density process but also with
the predictable processes in the above representation (allps)s s s (04]5—1,5)5-
Consequently it gives us a mapping from our density processes to sets of
predictable processes.

For notational convenience and in resemblance to a stochastic exponential
we will denote the right hand side of (1) as &(af) seeing af = (af,...,af_))
as a v — l-dimensional process.

So now if we denote the set of processes generated via this construction

and the densities up to time ¢ by

At = {(a]is, [REX} affl,s)se{() ..... t} | ]:P E ,P} and

(), (£)) 177

we have constructed a mapping &' : D! — A"
From this construction and from the assumption that Py € P we directly
conclude that the a’s are predictable and that 0 € A := AT

9



3.3 Compact-valuedness of the a’s

One further thing we want to show is that the compactness of the densities
resulting from P implies compactness of A. The compactness on A’ is defined

via the norm ||al]; 1 := max ||ag||Lr-
’ {07’t}
This is a straight forward consequence of our assumptions and the pre-

ceding construction. In the construction of the a’s every step was unique
thanks to our assumptions. A density with respect to a designated measure
uniquely characterizes a measure, the same is true for the construction of
our density processes. Doob’s decomposition is also unique and since we as-
sumed a finite and constant splitting function the martingale representation
also delivers unique predictable processes once the martingale basis is fixed.
All in all the set of a’s that belongs to one P is unique. Additionally a set of
a’s provides exactly one density and through that uniquely one measure. For
this reason our & gives us a bijective mapping from the set of predictable
processes A' to our set of densities D'. This mapping is also continuous
since the elements of our martingale basis are bounded thanks to the finite
splitting index.

Since this also implies a continuous mapping between the densities and
the predictable processes, the compactness on one side carries over to the
other.

3.4 Stability under Pasting

The final property we claimed for our processes is stability under pasting.

This property however follows directly from the assumption that P is time-

consistent. To make this more clear for (af),, (o), € A and a stopping time

7 < T define
g, = ozf ife<r
Tl a2 else.

Our aim now is to show that this process lies in A, i.e. that there exists a
P* € P such that (%;) = &(f). If we plug § into Equation (1) and define
t

P* by )
(dP*) E(af) ift <t
= E(aQ)E, (oF)
d]PO ¢ W else
we notice that § € A is equivalent to P* € P. The fact that P* € P however
follows directly from our assumption of time-consistency.

10



If we now combine the above propositions we have shown Theorem 3.1.

4 Necessity

In this section we look at the conversion of the theorem above with the goal
of showing that every A with the above properties defines a time-consistent
set of measures. So we see that the properties of A are not only sufficient but
also necessary. For this purpose we will derive a set of measures P from a
given set A of predictable processes which are assumed to be compact-valued
and stable under pasting. Additionally we claim that A contains the process
constant to zero. Our goal will be to verify that the derived P satisfies the
assumptions made in the model specifications.
Formally this will lead to following theorem

Theorem 4.1. For every set of predictable processes A that satisfies the
properties shown in Theorem 3.1 there exists a set of measures P, such that

A_{a\ (%)t_ét(a) : IPEP}.

FEvery P constructed in this way has the following properties:
(] ]P)OGP andPNPOforallPGP
e P is compact

o P is time-consistent.

4.1 Construction of P

If we use the same identification as in part 3.2 between the processes (o )icqo,... 7}

dpP~

a5, for

and the densities we are able to construct a density process <
t/t

every a € A.

From the construction it follows immediately that the obtained processes
are Py-martingales with expectation 1 and since they are clearly strictly larger
than zero they are indeed density processes.

Let us define our new set of measures by

AP
=P | —
F { P,

Fi

= &(a) for a € A} .

11



Since the process a = 0 is assumed to be an element of A we get that
Py € P. From the fact that all P € P are constructed via density processes
with respect to Py that are strict positive we can also directly conclude that
our measures are all equivalent to our reference measure.

4.2 Time-Consistency

As when showing that we can derive A from P time-consistency in our set P
is equivalent to stability under pasting in our set A and thus this property
follows instantly from our assumptions.

4.3 Compactness of densities

Here again the fact that the & is a bijective and continuous mapping is the
reason why the compactness of the a’s implies compactness of the densities.

And again summarizing the above propositions leads us to the proof of
Theorem 3.1.

5 Examples

In this section we introduce some examples for which this result is applicable
and might simplify calculations.

5.1 Binomial Tree

The most basic example one can think of in this setting is a binomial tree.
It has a constant and finite splitting index of two. Here things are still very
basic to calculate. One can for instance show that a convex set of priors
results in a convex set of processes and vice versa which is in general not
true for a higher splitting index. Put more formally we have

Proposition. On a binomial tree every convex set of measures fulfilling
Assumptions 2.1 and 2.2, i.e. P = {(p1,...,pr) |pt € [pt, ) for all t =

{0,...,T}}, is equivalent to the respective processes lying in a predictable in-
terval [at, by], where py = P[X; = up |Fi—1].

Proof. For the proof we work ourselves through the tree successively for every
time period t.

12



Starting with ¢ = 1 the density for a fixed P takes following form

dP
dPy

2 exp(aAm (up))

Fi (up) = 2p = exp(aAmy (up)) + exp(aAm;(down))

this can be transformed to
1
a=In (Tp) (my(down) — m4(up)) ™

which is a function that is monotone and continuous in p. So if p € [p,p]
then this results in boundaries a, b which are Fy-measurable s.t. o € [a, b].

One can show the conversion by the same argumentation since the above
formula can be converted to a function p(a) which is also monotone and
continuous in «. Therefore a convex set of a’s gives us a convex set of
probabilities [p, p;] where p, = H;g)IP’[Xt =up |Fi_1].

This can easily be extended to further time periods by just looking at the
one step ahead measures or densities in an analogous way. O

[Chudjakow & Vorbrink, 09] present applications of this to american ex-
otic options on a binomial tree.

5.2 Trinomial Tree

The purpose of the following example is to show that switching between these
two representations does not work too well in general. Starting with a two pe-
riod trinomial tree which means we have a state space 2 = {s1, ..., So} and the
information structure Fo = Q | Fy = {{s1, s2, s3}, {54, S5, 86}, {57, 58, So } }
and Fy = {{s1}, ..., {s9}} we define the rather simple time-consistent set

1 1 1 11 1
'P:{<§+e,§+5,§—e—5) ‘6,56 <—§,§) ande—|—57£§}.

We then construct a martingale basis in this tree with respect to the uniform
distribution and then show what this set looks like expressed via predictable
processes and our basis.

13



A martingale basis {m}}, {m?} in this case is given by

ml 1 m2 —1
1 1
-1 2
3 2
2 -1
0 0 0 -2
—4 and -2
2 -3
1 2
1 1
-1 -1
-3 2

Figure 1: Martingale Basis

If we now calculate the processes that belong to each of the measures

above we obtain
fort=1andi=1,...,9

1 1+ 3e 1. (143e)(1—3e—30)
1 2
J=-In——=—  and )==1
) = ging—g5—g, and arls) =3 1130
and for ¢t =2
( 1 In 15880 fori=1,2,3
ay(s;) = tIn (173;2?(1%6) for i =4,5,6
\ Tln A5 for i =7,8,9
(
L VI3 g = 1,2,3
aj(si) =< SlnEEe1 4+ 36 for i =4,5,6 .
1 (1+3i)+(;3e—35) for i = 7.8.9

As one can see a comparably simple set in the one representation can become
relatively complicated in the other.

14



5.3 Exponential Families

A further example for expressing time-consistent sets of measures via pre-
dictable processes was given in [Riedel, 09]. He introduced what he calls
dynamic exponential families which is the discrete version of xk-ambiguity in
[Epstein & Chen, 02] but with predictable bounds.

He starts with a probability state space (S, S, vy) with S C RY. With this
he constructs a probability space with (2, B, (Ft)=1.... 1, o), where

e O =407

o B= ®?:1 S o-field generated by all projections ¢ : 2 — S
e (F;) generated by the sequence (¢;)

e Py =@, v probability s.t. ¢ iid with distribution 1,

Assuming that [ e*1y(dx) < oo the log-Laplace function L()\) = log [ eM*vy(dx)
is well defined and with the help of predictable processes (o), he then defines
densities on (€2, B, (F;)s, Py) via

¢ t
Dy :=exp (Z Qg€s — Z L(o@) :
s=1 s=1

For fixed predictable processes a < b one gets a set of densities which
defines a time-consistent set of measures by setting

pab _ {p| <%>tng, ac [a,b]}.

54 DTVQR

Another important area in which time-consistent sets of measures have been
studied are risk measures. In [Artzner et al., 99] it is shown that every coher-
ent risk measure p; has a robust representation involving a set of measures
P, ie.
X) =essinf E[X :
pu(X) = ess inf BV [X | 7]

Then in [Artzner et al., 02] it was shown that the family of dynamic risk
measures p = (p;), is dynamically consistent iff the set P is time-consistent.

15



[Roorda & Schumacher, 07] introduce dynamically consistent tail value at
risk (DTV@R) as one of these time-consistent risk measures.

As the set P they take all measures P for which the one step ahead
densities with respect to the reference measure Py are bounded by % where
A € (0,1] is the usual risk level. If we want to describe this in our character-
ization it gives us

~5'}(04)
St_l(Oé)

exp (ay - Amy)
E [exp (o - Amy)]

=exp (ay - Amy — InE [exp (oy - Amy)]) = <

1
A

forall t =1,..T and all a € A.
This allows to characterize the set A as soon as the martingale basis is
fixed.

6 Possible Extensions

In this section we discuss poaaible extensions which arise quite naturally.

6.1 Convexity

Since time-consistent sets are often used in optimization problems convexity
of the sets is often assumed. It would be nice if this feature would carry over
to the processes. Unfortunately this is not the case in general, as can be seen
in the following counterexample.

Take for example a trinomial tree with states s, sy and s3 and just one
time period. As a reference measure we will fix

Po(s1) = 50 Po(s2) = 1 and  Py(s3) = T
A second measure will be given by
1 1
Q(s1) = 3 Q(s2) = 3 and Q(s3) = g

The density of Q with respect to Py will then be

dQ dQ 1 dQ 3
P, (s1)=1, P, (s2) =7 and P, (53) = 3

16



Since we want to show that from a convex set of measures a non-convex
set of processes can arise, let us define our set of measures via

P := convH {P, Q} .

Then let us look at the set of processes A arising from this convex set, espe-
cially of° and a®. Now if A were a convex set, then every convex combination
of o and a® has to be an element of A. Since a is zero, because we chose
Py as our reference measure we look at %o/@. If we now calculate the associ-
ated density to this process, we see that it can never originate from a convex
combination of our original measures and therefore %aQ ¢ A and hence A is
not convex.

6.2 Infinite Horizon

When extending our statements to an infinite time horizon let us first remark
that our model assumptions can all be transferred without complications.
We will however need a further assumption on our set of measures. This
assumption will be

Assumption 6.1. The family of densities for a fixed t

dP
D, =< —
! { dP,

\PGP}

Fi
is weakly compact in L(2, F,Py).

Technically this assumption ensures that when looking at expressions of
the following kind Hi)n7f> EF [X,] the infimum is always attained for bounded
€

stopping times 7. (cp. [Riedel, 09])

[Arrow, 71] already gives an economic interpretation of this property by
claiming a feature of preferences which is related to this assumption in
[Chateauneuf et al., 05]. The condition we need to ask of the preferences
to obtain this feature is called Monotone Continuity. It means that if an act
f is preferred over an act g then a consequence x is never that bad that there
is no small p such that x with probability p and f with probability (1 — p) is
still preferred over g. The same is true for good consequences mixed with g.

Critics tend to object to this assumption by saying that if the probability
of dying is added to the better act f then surely the preferences have to
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be reversed. However if we take f for getting 100 dollars and ¢ for getting
nothing then having to drive 60 miles to get the 100 dollars and so adding a
small probability of getting killed will normally not reverse the preferences.

Expressed formally this means for acts f > ¢, a consequence z and a
sequence of events { £, }neny with Fy D Fy D ... and N,enE, = 0 there exists
an n € N such that

[ rif s € E;
f

zif s e Ej
(s)if s ¢ En }

The construction of the processes can also be maintained, since they are
always constructed for a fixed time horizon up to a time t. That is also the
reason why the mapping from our densities to our processes still inhabits
the same features, i.e. it is continuous and bijective. Therefore in this case
the compactness also carries over from one side to the other. It is also clear
that stability under pasting is equivalent to time-consistency for an infinite
horizon as well. So altogether our statements can smoothly be converted
from a finite to an infinite time horizon.

6.3 Looser Assumptions on Splitting Function

Since our assumptions on the filtration are very restrictive, it would be nice
if they could be relaxed in one way or another.

One way would be to give up the assumption of a constant splitting
function. In this case however you run into the problem that the a’s that
arise from the martingale representation are no longer unique and with that
the mapping no longer distinct and bijective.

A second way is allowing for the splitting value to become infinite. This
however has the consequence that the martingale representation will not
necessarily exist anymore.

7 Conclusions

For our special setting, i.e. discrete and with special assumptions on the
information structure, we have constructed an alternative characterization
for time-consistent sets of measures. We have shown that all sets of time-
consistent sets of measures can be expressed by predictable processes and
vice versa.
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As can be seen in the extensions standard generalizations fail to work.
So as far as I am concerned this is the most general this characterization can
be formulated in this setting.

For practical applications we have shown that for problems which can be
modeled in the form of decision trees (with a constant number of branches
e.g. trinomial trees) we now know what a time-consistent set of measures
must look like expressed via predictable processes which might simplify cal-
culations. So hopefully our construction will be helpful in the future e.g. for
solving Optimal Stopping Problems which can be modeled in this framework.
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