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Abstract

Within this paper we study the Minkowski sum of prisms (“Cephoids”)
in a finite dimensional vector space. For a vector a € R"™ with positive
components we write @ = (%, el %) and denote by IT = II® = {x ¢
R” | (@,z) <1 , « > 0 } the associated prism . We provide a
representation of a finite sum of prisms in terms of inequalities.
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1 Introduction

For two arbitrary subsets A, B C R™ the Minkowski sum is defined by the formula
A+B = {z=a+b|ac A, be B} and for A € R and A C R" the multiplication
is defined by AA = {x = Xa | a € A}. If A and B are convex sets then the sets
A+ B and A\A are also convex and if moreover A and B are polytopes, then A+ B
and AA are also polytopes. Thus the Minkowski sum of finitely many polytopes is
the convex hull of the sum of its extreme points.

In addition to this representation it is frequently helpful to have a dual repre-
sentation of the Minkowski sum of finitely many polytopes in terms of inequalities.
One point is that the Minkowski sums of prisms are the basic objects in coopera-
tive game theory (see [5], [4]). Another point is that they constitute the feasible
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regions of generalized knapsack problems, that is, of linear optimization problems
of the type:

max (¢, x)
under
(Po) x=z'+224.. . +2F
with
(@', 2%) < q ie{l,..,k},
zt >0

with ¢,a’, 2z € R” and a; € R.

Structural properties about the Minkowski sum of prisms, such as the number
of faces and symmetries for the generic case have been studied in [3]. We have
called a finite sum of prisms a “cephoid”.

Contrary to these investigations, we do not focus on the generic or “nondegenerate”
case in the present paper. As a consequence, the results are weaker but more
general. In particular, we provide a version of the coincidence theorem which
yields a necessary and sufficient condition for maximal faces — but lacks the specific
enumeration of the coordinates as specified in [3].

This version turns out to be much more suitable for computational purposes. When
computing the maximal faces of cephoids, we do not want to test for nondegeneracy
in advance. Hence, there is a particular emphasis on computational aspects in the
present paper.

Let us denote by 0 € R™ the origin of and by e’ the i-th unit vector of R™ for
i €{1,...,n}. For a vector a = (a,...,a,) >0 € R", let

I1¢ = conv ({O,al,...,a”})
with a’ = a;e’, i € {1,..,n}. We call TI® a prism associated to the vector

a=(ai,...,a,) >0¢cR"

Observe that IT* ={x € R" | (a@,z) < a and « >0 }, where a = (i . ) €

TR a
R™ is called the outer normal (for level a > 0) of II?. In this paper we will always
choose a = 1.

We call
A% = conv ({al, . a"})

the Pareto face of TI®.

Whenever we have finitely many vectors, say a®),...,a®) ¢ R" with a®) =
(a&k), . ,a%k)) > 0 € R”, we will write for the corresponding prisms

n® = ™ = conv ({O,G(k)’lv"’a(k),n})
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with ak) = agk)ei, ie{l,.,n}ke{l,...,K}.

2 The Decomposition Principle

Henceforth we write I = {1,...,n}. For the convex hull of the extreme points
a’l,...,a" of the prism II? we will use the abbreviation
conv ({ail,...,air ) =[a",...,a"] = A.(]a’),
with J = {i1,...,4,}. For a collection of prisms H“(k), k=1,..., K, we will write
k) _ A@®
AJ(k> - AJ(k)

for the convex hull of the extreme points

(k),l} ™
{a leg®) C

whenever J®) C I is subset of coordinates.

Lemma 2.1.
For a vector a = (a1, ...,a,) > 0 € R™ let II* be the associated prism. Then, for
every extreme set S C A?® there exist J C I such that

S = conv ({a’}) = Af;l).

iceJ
Proof: Let S C II® be an extreme set of the Pareto-face A® of II?. Then by
definition of an extreme set we have that for every two points u,v € II® whose
line-segment [u,v] intersects S, i.e. [u,v] NS # 0, it follows that w,v € S. If
we perform this procedure with the extreme points of TI* we get a collection of
extreme points {ai}i cJ of TI? which are elements of S. Hence it follows that

S = conv ({a'}), , = Al

ieJ
holds true which proves the assertion. q.e.d.
The key for all investigations of the structure of the Minkowski sum of prisms

or cephoids is the theorem on the addition of faces (see [6] and [7]), which we will
state here in the following way:

Lemma 2.2 (The Decomposition of Faces). Let a(V), ... a%) ¢ R™ be a
family of positive vectors and let

K
= > n®
k=1
with TI® = 2t for k € {1,..., K} be the generated cephoid. Let F' C II be a

mazimal face of II, i.e. dimF = (n —1) and let np € R™ be an outer normal of
the face F, i.e.
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F=IIn{xecll | (np,x)y=d*}, j=1,..,k,

where d" = r;leaﬁc(nF,@ > 0.
Then there exists Ko C {1,..., K} and index sets J*) C I (k € Kg) such that

_ ()
F=7% AT +p
keKy

where p is a sum of extreme points of the remaining prisms {H(k)}kgéK .
0

Proof: By [1] Theorem 1.5 there exist prisms 1), . TI07) such that
F = 52'1 + —G—SM +p

with ‘ ‘
S, ={z el | (pz)=d7}, j=1...r

where d% = max (np,x) > 0 and p is a sum of extreme points of the remaining

xell’s
prisms.
Put Ko = {i1,...,ir}. Since every Si is an extreme subset of the Pareto face of
H(k), it can be written as
—_ Ak
Sy = AJ<k)
with a suitable subset J®*) C T. g.e.d.

Hence every maximal face contains a translate of the Minkowski sum of non-zero
dimensional extreme sets of prisms. Observe that the outer normals of the maximal
face and the Minkowski sum of non-zero dimensional extreme sets of prisms are
equal up to a nonnegative multiple.

Henceforth we use K = {1,..., K} for the index set of a collection of positive
vectors. In view of the above presentation we assign to every maximal face

K
Fcm =) no® = Y O®W
k=1 ke K

the following collection of pairs of index sets

Ip = (Ko, [JUf)LGKO) .

Here Ky C K is the set of indices of those prisms IT*)| the face of which is not
zero-dimensional with respect to np, i.e., that satisfy

dim (Sy) = dim ({m cert® | (np,z)=d" }) > 1

with d* = ma§<np,w> > 0. Also, J®contains the indices of the extreme points
xcll

of this face in II®). We call set I the canonical reference system of F.
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Proposition 2.3.
Let aM ... aF) € R™ be a family of positive vectors and let

K
= > n®
k=1

with TI® = 2"’ for k € K. Let F C II be a maxzimal face and ng € R™ be an
outer normal of the face F.

Then ng s a strictly positive vector.

Proof: Let us assume that F' C ITis a maximal face of IT and that np = (a1...a,) €

R™ is an outer normal with level 1 of F. Then
F={xecll | (np,z)=1}.

By the decomposition principle there exist prisms ) (k € Ky) such that
F = Z Aflk()k) +p
keKyo
satisfying
AN ={zen® | (pz)=di}, keKo
where d¥ = max (np,z) > 0 and p is a sum of extreme points of the remaining

xcll
prisms. Moreover

(np,a®?y = dk (i e JW).
Since

(%)

i

(np,a®?) = aya

it follows that «; > 0 and from the assumption that F' is a maximal face, i.e.
dimF = n—1, it follows that all components of np are greater than zero. q.e.d.

Theorem 2.4.
Let aV), ..., a™) € R" be a family of positive vectors and let

K
m- 3o
k=1

with TI®) = 11°7 for k € K. Let F C II be a mazimal face of II with outer
normal np € R™ and let with suitable Ko C K

k
F=3 Al +p
keKy

k)

with

AW —fzen® | (pa)=d'}, ke K

where d¥ = ma&(np,aﬁ > 0 and p is a sum of extreme points of the remaining
xzell

prisms. Then, for any decomposition of I ={1,...,n} into two nonempty disjoint

subsets Iy and I, there exists k € K such that J) has a nonempty intersection

with both sets Iy and I;.



* SECTION 3: THE COINCIDENCE THEOREM % 6

Proof: Let us assume that the assertion is not true. Then there exists a decompo-
sition of {1,...,n} into two nonempty disjoint subsets Iy and I such that every
set J®) from the canonical reference system of F' belongs either to I or to I;.

Now, to every Kk € Kg we assign a fixed index iy € J (k) and a row-vector

Since ' '
(nF,a(k)l» — <nF7a(k)lk> (Z’GJ(’“)7

it follows that the above row-vector is orthogonal to the outer normal vector ng.

Now we build a matrix that involves all these row-vectors. Necessarily, after a
suitable permutation of rows and columns, this matrix has the following form:

N PR coi Iy
A 0
M:
0 B

Since the outer normal vector ng is uniquely determined up to a positive multiple
and belongs to the kernel of the above matrix M, we deduce, that the rank of M
is (n—1).

If both sub-matrices A and B do not have full rank, then M has at most rank
(n — 2) which is not possible, so we can assume, that B has full rank and A not.
Hence the equation Mnr = 0 has a solution, where all components of ng with
indices in I vanish and this is a contradiction to Proposition 2.3. q.e.d.

3 The Coincidence Theorem

Given two convex sets A, B C R™ we denote by
AV B = conv(AU B)
the convex hull of their union. Also we write
7=4ajv{o}

(k)

for the prism generated by an extreme set of A% The notation IT e

) then refers

to the vector a®) of a family. Then we have:
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Theorem 3.1.
Let aM ... aF) € R™ be a family of positive vectors and let

K
m- 3 on
k=1

with TI® = 11¢™ for ke {1,...,m}. Let F C II be a mazimal face of II.

Then a vector np € R™ is an outer normal (to the level 1) of the mazimal face
F C II if and only if there exist Ko C K and faces
(k) ke
A ca® ke K,

as well as positive numbers c, € R which satisfy the following conditions:

1. For every k € K the linear function x — (npx) is constant equal to 1 on

(k)
the face CkAJ(k)-

2. if, for some k,l € Ky, two different faces ckAfIk()k) and clA.(]% have extreme
points which lie on the same coordinate azis, then these extreme points coin-
cide.

3. The prism

n — (k)
= \/ gy,
keKy
is n-dimensional and its outer normal (to the level 1) is the outer normal np

of F.

Proof: Let us assume that /' C IT is a maximal face of IT and that np € R™ is an
outer normal of F. Then

F={xecll | (npx)=1}.

By the decomposition principle there exist prisms II*) k € K such that

_ (k)
F= Z AJ(’“) TP
ke Ky

where p is a sum of extreme points of the remaining prisms with index k ¢ K.
Again we know that with

A%) ={zecn® | (np,z)=d"}, ke K,

with d* = max (np,x) > 0.
zeIl®)
Now observe that the faces

(k)
AJ(’@)

are lying in parallel hyperplanes, namely

(k € Ko)

Hf={zeR" | (np,z)=d'}, ke Ko,
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with d* >0 (k € Kg). Now choose

1
Ck:%, kEKO

Then the first condition is satisfied.

Now assume that two faces ckAg?k) and CZA%) have extreme points which lie
on the j-th coordinate axis, i.e

cka§-k)ej S ckAfIk()k)
and ‘
clag-l)ej € CZAE%).
Then "
i\ _ gk
(np,a;’€e’)=d
and "
i\ gl
(np,a;’€e)=d,
hence
dk d'
agk) - agl)
which means that
cva® = ol
kaj —claj .

Hence, the two extreme points coincide. As a consequence, no extreme point of
(k)

any face cp A will become an inner point in

Jk)
M — (k)
o= \/ oy,
keKy
which implies that dimII = =n — 1. Moreover the function

x— (np,x)

is constant equal to 1 on II and therefore np € R™ is an outer normal (to the level
1) of IT which proves one direction of the theorem.

For the converse direction let us assume that there exists a set Ky C K and

faces

(k)
Al

of the corresponding prisms as well as positive numbers ¢, € R, k € K with the
following properties:

,cn®

1. For every k € K| the linear function = — (np,x) is constant equal to 1 on
the face ckAff()k).

: (k)
2. If two different faces cz A (k)

coordinate axis, then they coincide.

and CZA.%) have extreme points on the same
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3. The prism

= k
(3.1) o=\ oy,
keKy

is n-dimensional and its outer normal (to the level 1) coincides with the outer
normal ng of F.

Then let us consider the outer normal (to the level 1) ng of the n-dimensional prism
IT as given by (3.1) The functional f(-) = (ng,-) achieves its maximal values on

the prisms
{H(k) }keKo

A cn® (ke Ko).

on the faces

Since every maximal face of IT is the sum of faces of the prisms %) (k€ K), it
follows that a translate of the set
k
> Do

keKy

is contained in a maximal face F' C IL. Now we will prove that

dim Z ckA‘(Ik()k) =n-—1
keKy

holds true. Indeed, by condition 3) of the assertion the prism \/, . o Cknff()m is

full-dimensional. Hence the Pareto-face has the dimension (n—1). Since the Pareto-

face of IT is the convex hull of the faces CkAEf()k) (k € Ky), there exist edges of this

face which are orthogonal to the vector ng and span a linear space of dimension

(n — 1), which means that dim ;g ckAfIk()k) =n—1.

Consequently, I and the set ), K, ckA.(]k()k) have the same outer normal. Since

the set ), K, Ck Af}k()k) and the prism II have common outer normals, the converse
direction is proved. q.e.d.

Theorem 3.1 gives a possibility for an abstract description of the structure of faces
in higher dimensions.

Proposition 3.2.
Let a = (a1,...,a,) > 0 € R” and b = (by,...,b,) > 0 € R™ be positive vectors
and let TI* and TIP be the associated prisms.

Assume that the linear function x — (a,z) achieves its mazimum over 1 in
the extreme point b = b; e € TI°, then
a;

and b;,€™ is a common extreme point of both the prisms %Ha and TIP.
20
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Proof: Since the linear function = +— (a,z) achieves its maximum over TI? in the
extreme point b;,e" € IT®, we have

b,
max{(a,x) | x € Hb} =2
aio
which implies
aio
and that Z&H“ and IT® have bi,e" as a common extreme point. q.e.d.
20

4 Faces and Permutations

Tentatively we consider the case of two prisms. For convenience we use a simplified
notation. For two vectors a = (ay,...,a,) >0 € R"and b = (by,...,b,) >0 € R"”
we write

A = TI* = conv ({O, al,. .., a”})

and
B = II® = conv ({O,bl,...,b”})

for the associated prisms. In this case, if the two prisms A and B have a common
extreme point on their Pareto-faces then the following statement holds:

Lemma 4.1.
Suppose that a* = b" holds true for some i € I.

Then for every index | # i holds:

1. al € A is an extreme point of AV B if and only if B2

s

2. b' € B is an extreme point of AV B if and only if Z_ll <

I

Proof: In view of
A = conv ({O,al, .. .,a”}) and B = conv ({O,bl, .. .,b”})
we have

AVB = conv ({0, max{ai, bl}el, ...,max{a;_1, bi_l}ei_l, ape’, max{a;;1, bi+1}ei+1,
......... , max{ay, bl}el, ..., max{an, bn}e"}) .

Now b’ € B is an extreme point of AV B if and only if a; < b; which is equivalent
to 3t < 1= ¢, because a; = b; by assumption.

The proof of the first statement is identical to this one. g.e.d.
Now we consider the case of three prisms. We augment the notation by intro-

ducing
C =T1I° = conv ({0,61,...,0"})
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Lemma 4.2.

Let a, b, c be positive vectors and let A, B,C be the associated prisms. Assume
that for an index i € I the equations a' = b* = ¢' hold true.

Then, for every | # i, the extreme point ¢! € C is an extreme point of AV BV C

as well if and only if

a; _ a b; b
il > 4 and = > 2
C; q C; q

18 satisfied.

Proof: The proof is identical to the proof of the previous Lemma 4.1. If A, B
and C are as above, then we have

AVvBVC=

conv ({O, max{ay, b1, cl}el, ...,max{a;_1,bi_1, ci,l}ei_l, aie’, max{a;+1,bit1, Ci+1}ei+1,

......... ,max{ay, by, cl}el, .o .,max{ay, by, cn}e”}> )

Now ¢ € C is an extreme point of AV BV C if and only if a; < ¢; and b; < ¢

which is equivalent to ‘é—l’ <1l= ‘C‘—Z and 2—§ <1l= l;—:: because a; = b; = ¢; holds by

assumption. g.e.d.

Proposition 4.3.
Let a,b be positive vectors and let A, B be the associated prisms. For i € I let

Fy = conv <{al | 1e{l,..,n} with % > % })

)

and

IA
Sk

F'5 = conv <{bl | le{l,..,n} with

SaES

Then, for every index i € I the sum
Fiy + Fy
1s contained in a mazximal face of A + B.

Proof: As b;A and a; B have a common extreme point, the result follows imme-
diately from Lemma 4.1 and Theorem 3.1. q.e.d.

We may now reformulate Proposition 4.3 in terms of permutations as follows.

Definition 4.4. Let a > 0,b > 0 be vectors of R”. A permutation 7 : I — I
is called a positioning permutation if the sequence of quotients

a7 (n)

b

aray 972

> > > ...>
b

(1) m(2)

=

T(n)

is monotonically decreasing. We say that the vectors a, b as well as the two prisms
A = II% and B = II® are in regular position if their positioning permutation is
uniquely defined. The positioning permutation is then denoted by 74 p)-.
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A positioning permutation reflects the “relative position” of the associated prisms
A and B. Such a permutation does always exist, though it may not be uniquely
determined. To avoid degenerated cases, we will henceforth always assume that all
prisms are pairwise in regular position.

Corollary 4.5 (Faces and Permutations). Let a = (a1,...,a,) > 0 € R" and
b= (b1,...,bp) >0 €R" be given. Let T(a,B) be the positioning permutation of A
and B. Then, for every i € I and

Fy = conv ({al | le{l,...,n} with A, B)(l) < 77(7141,B)(i) })

and
F’g = conv ({bl | le{l,..,n} with Ta B)(l) > w(fAlB)(i) })

the sum A ‘
Fy+Fg

1s contained in a mazximal face of A+ B.

Given two prisms A and B, which are in regular position. Then the n-tuple

H(%) = [W(A7B)(1)77T(A7B)(2)7--';7['(,473)(71)}.

is a strictly decreasing set of indices, the order induced by 74 p), i.e

i>] = F(A’B)(Z') < 7r(_Al’B)(j).

Let us now introduce the abbreviation
AB(i) = F'y + F'g,

for the sum of two faces as defined above. Then for every i € I the part of the face
AB(i) which belongs to A is determined by the indices which are greater or equal
to k in the order induced by 7(4 gy and the part of the face AB(i) which belongs
to B is determined by the indices which are less or equal to k in the order induced

by 7'('(1473).

In terms of the positioning permutation we deduce from Lemma 4.2:

Proposition 4.6.

Suppose we are given 3 vectors a >0 € R", b >0 € R” and ¢ > 0 € R" and
let A, B and C be the associated prisms. Moreover, let (4 gy and w4 c) be the
corresponding positioning permutations.

Then for every index i € I the sum
ABC(i) = Fy+ F'g+ Fg
with

F'y = conv ({a | L € I with W(AB)(Z)<7T(AB)()aDd ﬂ(f‘l,c)(l)<ﬂ(_jc)()})



* SECTION 4: FACES AND PERMUTATIONS * 13

F's = conv ({al | le{l,..,n} with 71'(_31’14)(1) < Tr(_Bl?A)(i) and W(_é’c)(l) < 71'(_13170)(2’)})
and

i ! . —1 -1 —1 -1 ¢
F = conv ({a | le{l,..,n} with 7T(C7A)(l) < 77(0714)(1) and 7T(C7B)(l) < 7T(C7B)(Z)})

1s contained in a mazimal face of A+ B + C.

Proof: We know that b;c; A, a;c; B and a;b;C have a common extreme point. Now
the result follows immediately from Lemma 4.2 and Theorem 3.1. qg.e.d.

Note the the a similar condition stated in Proposition 4.6 is true for any finite
sum.

Proposition 4.7.

Suppose we have 3 vectors a > 0 € R*, b >0 ¢ R" and c > 0 € R" and let
A =TI% B =II°, and C = II€ be the associated prisms. Moreover, let T(A,B) and
T(a,c) be the corresponding positioning permutations.

If for two indices i,l € I we have:

— ¢ >1 in the order induced by 74 p),

— 1> in the order induced by 74 ),

then AB(l) and AC(i) have a parallel edge which is parallel to the line segment
between a' and a and conversely.

Proof: By Proposition 4.3 we have:
FiA = conv ({a'” | r €I with r>1 in the order induced by W(A’B)}) ,
FlB = conv ({bs | s€e I with s <1 in the order induced by 7T(A7B)}) ,

Fy = conv ({a®|seI with s>i in the order induced by w4 cy})

and
Fi- = conv ({cs | seI with s <i in the order induced by 7T(A7C)}) .

Since ¢ > [ in the order induced by 4 pyis follows, that the line segment [a’,a] C
Fi4. Analogous'ly, since lA > in the'order induced by m( A,B) it follows, that the
line segment [a’, a!] C F'y. Hence [a’,a!] € AB(l) and [a‘,a'] € AC(i).

The converse direction is also clear. q.e.d.

Proposition 4.7 gives a possibility to construct a maximal face by adjusting two
parallel edges. We will use the notation:

AB()AC(i) = FY4 + F'y + F = Fiy + Fig + Fg.

For the general case we have:
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Theorem 4.8.
Let aM ... aF) € R™ be a family of positive vectors and let

K
S
k=1
with TI® = 12" fork € K. Let F C II be a mazimal face with canonical reference

system
Ip = (Ko, {JW} >
ke Ky

ke Ko

such that

with a suitable sum p of extreme points of the remaining prisms is satisfied.
Then, for every two different indices p,q € Ky, we have for the index sets J®) and
JD that with respect to the order induced by (1) @) the inequality

min{J(p)} > maX{J(Q)}

holds true.

Proof: This is an immediate consequence of Proposition 4.3. q.e.d.

5 The Adjustment Process: Two Examples

Example 5.1. We consider 3 prisms in R* which are given by:

A = conv{(0,0,0,0),(7,0,0,0),(0,5,0,0),(0,0,3,0), (0,0,0, 1)}
B = conv{(0,0,0,0),(2,0,0,0),(0,1,0,0),(0,0,10,0), (0,0,0,1)}
C = conv{(0,0,0,0),(1,0,0,0),(0,6,0,0),(0,0,6,0),(0,0,0,5)}

For the permutations we have

T(AC) = (

2

2

1 2

™(B,C) = 1 3

N
—_

[ —
[N ROV w W =

N R SR
N———

Hence we have:



+x SECTION 5: THE ADJUSTMENT PROCESS: Tw0o EXAMPLES % 15
A
IIf=1| = |1, 2, 3, 4
(%) - 1 |
B
II{=) = 1[1, 3, 2,4
(2) - |
Table of Faces
Permu- Adjusting Adjusting Adjusting Adjusting
tation k=1 k=2 k=3 k=4
W(A,B) [al,ag] + [b17b37b4] AB(Q) =B AB(?)) =A [al,ag,ag] + [b3,b4]
AB(1) AB(4)
’/T(A,C) AC(l) =C [al,aﬂ + [02,03,64] [al,ag,ag] + [63,64] AC(4) =A
AC(2) AC(3)
T(B,C) BC(l) =C [bl, ba, bg] + [03, 64} [bl, bg] + [02, c3, 64} BC(4) =B
BC(2) BC(3)

This describes 9 faces. The last face is constructed by Theorem 4.8, it is:

F = [al,ag] + [bl,bg] + [02704],

because we have:

— min{1,2} > max{l,3,4} in the order induced by 74 p),
— min{1,2} > max{2,3,4} in the order induced by 74 ¢),
— min{1,3} > max{2,3,4} in the order induced by 7 c.

Hence the index set which belongs to A is {1, 2}, the index set which belongs
to Bis {1,3,4} N {1,3} = {1, 3}, as follows from the inequalities implied by
the orders of m(4 gy and 7(p ). Analogously the set of indices {2,4} belongs
to C, because {2,4} = I(Z)\ {1,3}.

The corresponding system of inequalities for A + B + C' is:

301 + 302y + Ox3 +
5:13'1 + 75172 + rs +
51’1 + 10]32 + rs +
or1 +  10xy + T3 +
150z, + 2107y + 3513 +
15z + 2lxzs + 3dx3 +
151 + 2lxs + 3dx3 +
25%1 + 30&32 + 51’3 +
101’1 + 14ZL‘2 + 7ZE3 +
251’1 + 35ZL‘2 + 5ZE3 +

61’4
10£L'4
21’4
5Ty
42£L‘4
42374
1051’4
614
70(134
Tx4

AN VAN VAR VANN VANR VANR VAR VAN VAN VAN

300
95
70
85

1610

665

980

255

490

260.
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The polytope A + B + C has the following 21 extreme points:

(70,1

0
6

Y

(0,0,0,0), (10,0,0,0), (9,1,0,0), (9,0,6,0), (9,0,0,5), (7,1,10,0), (70,16,
5), (7,0,0,6), (2,6,0,0), (2,5,0,5), (0,7,0,0), (0,6,0,5), (0,610,
(0,5,16,0), (0,5,10,5), (0,0,19,0), (0,0,13,5), (0,5,0,6), (0,0,10,6), (0,0,0,7

Example 5.2.

We consider 4 prisms in R? which are given by:

DAl

conv{(0,0,0,0,0),(7,0,0,0,0), (0,5,0,0,0), (0,0, 3,0,0), (0,0,0,1,0), (0,0,0,0,9)
conv{(0,0,0,0,0),(2,0,0,0,0),(0,1,0,0,0), (0,0, 10,0,0), (0,0,0,1,0), (0,0,0,0, 3)
conv{(0,0,0,0,0), (1,0,0,0,0),(0,1,0,0,0), (0,0, 4,0,0), (0,0,0,5,0), (0,0,0,0,2)

( ) ( ) ( ) ( ( ) ( )

}
}
}
conv{(0,0,0,0,0),(2,0,0,0,0),(0,3,0,0,0), (0,0,24,0,0), (0,0,0,4,0), (0,0,0,0,8) }

For these prisms we have:

=

=

=

=

=
TN N TN TN /N

UlQ UIm Qlw U= Qs Wi

=
N
~_
Il
u»-lk
\.}—‘
n
ot
w

~— ~—— ~— ~— ~—
I
-
»
“
S
w

From Proposition 3.2 it follows that

Next we have 12 faces generated by two prisms, where one face of the generat-
ing prisms is one-dimensional. This are the faces:
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AB(1) = [a1,a2] + [b1,b3,ba,b5] , AB(4) = [bs,bs] + [a1,a2,a3,a5] from
AC(2) = [a1,a2] + [c2,c3,ca,05] , AC(3) = [e3,ca] + [a1,a2,a3,a5] from
AD(2) = lai,a2] + [da,d3,dys,ds] , AD(4) = [ds,d4] + [a1,a2,a4,a5] from
BC(1) = [b1,b3] + [c1,¢2,¢c4,¢c5] , BC(2) = [c2,ca] + [b1,b2,b3,b5] from

BD(3) = [bl, b3] + [dz, ds, dy, d5] R BC(?) = [dQ, d4] + [bl, ba, b3, 55] from
CD(l) = [Cl, 64] + [dl, ds, ds, d5] R CD(5) = [dg, d5] + [01, Co, C4q, 65] from
There are 6 faces generated by two prisms, where both faces of the generating

prisms is two-dimensional. This faces are generated by the middle elements in the
ordered 5-tupels H(%), etc:

AB(5) = [a1,a,05] + [b3,ba,bs]  from TI(%)
AC(5) = [a1,a2,a5] + [c3,ca,05] from  TI(Z)
AD(5) = [a1,a2,a5] + [d3,dy,d5] from TI(4)
BC(5) = [b1,bs,bs] + [ca,carcs)  from  TI(4)
BD(5) = [b1,bs,bs] + [ds,ds,d5] from TI(5)
CD(2) = [c1,c2,ca] + [do,ds,ds] from TI(4)

The next 12 faces are generated by three prisms. By Theorem 2.4 this faces can
be generated by one or by two indices for the adjustment. We begin with the first
4 faces, which are generated by adjusting one index. This are the faces:

ABC(5) = [a1,a2,a5] + [b3, b5] + [c4,c5]  for min{l,2,5} = max{3,4,5} in II(
min{1,2,5} = max{3,4,5} in II(
min{1,3,5} = max{2,4,5} in II(

~—

ABD(5) = [a1,a2,a5) + [b3, b5] + [d4,d5] for min{l,2,5} = max{3,4,5} in II(
min{1,2,5} max{3,4,5} in II(
min{1,3,5} = max{2,4,5} in II(

);
);
);

);
)

ACD(2) = [a1, as] + [b2,bs] + [d2,ds3,d5] for min{l,2} = max{2,3,4,5} in II(
min{1,2} = max{2,3,4,5} in II(
min{1,2,4} = max{2,3,5} in II(

~

ACD(5) = [a1, a2, as) + [ca, 5] + [d3,d5]  for min{l,2,5} = max{3,4,5} in II(
min{l,2,5} = max{3,4,5} in II(
min{1,2,4,5} = max{3,5} in II(

);
)

~

leUlele UIUJUID>UUID> c|mc|:>oo|a> QI

=9 =2 =2 4

=
Qe e W T QD

—_—~ o~ o~ o~~~
~— N N~ N~ ~

=
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The next 8 faces are:

(AB(1))(AC(2)) = [a1, a2] + [b1, b, bs] + [c2,ca]  for  min{1
A
or  min{l,

(AC(2))(BC(5)) = [a1, a2] + [bs, bs] + [c2, ea, 5] for  min{2,

.

(AB(1))(BD(5)) = [a1, as] + [b1, bs, b5 + [ea, 5] for  min{1,

n

(AB(1))(BD(3)) = [a1, az] + [b1,b3,bs] + [c2,¢c4]  for min{1,
it
or min{l,

(AC(2))(CD(5)) = [ar, 0] + [c2, €4, ¢5] + [dg, 5]~ for  min{2,

an

(CD(2))(BD(5)) = [b1,bs,bs] + [c2,ca] + [d2,d5]  for m%n{2,

n

(BD(3))(CD(5)) = [b1, bs] + [e2, ¢4, 5] + [dg, d5]  for  min{2,

s

(BD(3))(CD(2)) = [b1,bs] + [c2,ca] + [d2,ds,ds]  for m%n{2,

e

or min{l,

There is one face which is generated by all four prisms, i.e.

(AB(1))(AC(2))(BD

(3) = [a1, as] +

b1, bs] +

[c2, ¢4

72} -
2} =

max{1,3,4,5} in II(
max{2,3,4,5} in II(
3,5} > max{2,4} in I(2),
3} > max{2,4,5} in II(7),

).

‘“vmmm

3,4,5} = max{1,2} in II(
4,5} = max{1,3,5} in II(
2} > max{3,4,5} in H(%

‘“mlml@

3,4,5} = max{1,2} in II
3,5} = max{2,4,5}in II
2} > max{3,4,5} in II(

~

blb:lil>|b3

3,4,5} = max{1,2} in
,3} = max{2,3,4,5} in
2} > max{3,4,5} in II(
2,5} > max{3,4} in II(

E E
il ?’bumm

w/hNw/hS

3,4,5} = max{1,2} in
2,4,5} = max{3,5} in
2} > max{3,4,5} in II(

);
);

E E
DIQEBIQ

Ol

4,5} =
3,5} =
3,5} >

max{1,3,5} in
max{1,2,4} in
max{2,4} in II(

)

E E
WS

QIUJ

3,4,5} = max{1,3} in II(
5} = max{1,2,4,5} in II(
3} > max{2,4,5} in II(2),

~

"qlwmlu

3,4,5} = max{1,3} in II(
3,5} = max{1,2,4} in II(

- B
2} > max{2,4,5} in H(g
3,5} > max{2,4} in II(Z),

~

g "qmmb

+ [ds, ds).

This face can be determined by Theorem 4.8 from the following inequalities:
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2 >1>3 in H(%),
1 > 2 in (%),
min{l,3} > 2 in H(g),
1> 3 in (%),
2 > 3 n nd).

This examples show that it is possible to determine all faces of the Minkowski
sum of prisms for small dimensions.
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