
A Librarian’s Introduction to Programming: C

Tim Ribaric

One of the most enduring computer programming languages you’re ever likely to encounter is C.

Unlike other languages that were created in the 1970’s, many applications are still actively developed in

C. Contrast this longevity for example with code written in FORTRAN, many institutions with legacy

systems have additional development costs allocated exclusively to make sure these systems continue to

operate, mostly because new programmers do not spend time developing FORTRAN skills. In conrast

code written in C doesn’t have the same upkeep costs since programmers with an understanding of

modern languages de facto have some workable knowledge of C.

In fact since C is a common ancestor for a series of newer languages including: C++, Java,

Objective-C and Python, just to name a few. Developing an understanding of the syntax and semantics of

C provides a great basis for understanding these new languages. However there is an interesting

dichotomy floating around the industry. Some professional advocate that C should be the first language

any programmer embarks up since it provides the right combination of syntactic structures and imparts an

understanding of how memory is allocated and used. On the other hand some argue that writing good

code in C is very difficult due to exactly the same rationale. In fact poorly written C might end up being a

liability as it sometimes exposes very obscure security problem. The recommended resources has a brief

sampling of this discussion.

As an information professional you’ll probably never have a direct use-case for choosing the C

language to develop an application or web service but having an understanding of it will inform

everything else you’ll do with programming as every language out there can classify itself as C-like or not

C-like. That might seem like a tautology but the resonating characteristics of C do lend themselves to

such comparisons. Think almost of C as Latin, modern programming and paradigms are built on the root

words of C. Unless Latin however, C is not a dead language. In fact it is thriving now as much as it ever

has in its 4 decade history.

History/Development

C was the result of the work of Ken Thompson and Dennis Ritchie who were employed at AT&T

Bell Labs. During the years of 1969 – 1973 Thompson and Ritchie were working on a language to re-

implement the UNIX operating system, this work first began using a language called B. The result was a

great success as it allowed UNIX to be written in hardware agnostic language C. For example a

development team just needed to write a C-compiler in Assembler and then compile the C code using that

compiler. Up until this point an operating system was written in the lowest level language called

Assembler. This means that the operating system is tied very heavily to the Assembler used to write it. So

for example if a new chip came out with more memory on it the Assembler would have to be rewritten to

accommodate the new chip, meaning essentially a rewrite of the operating system. In this new

development paradigm after a new chip is invented you simply need to write a new C compiler in your

Assembler to build UNIX for that hardware. This is considerably easier then rewriting the whole

operating system.

As years progressed however C began to undertake different authoritative versions as computer

hardware and understanding evolved. The underlying mechanisms however were consistent through these

iterations, so knowing one type is sufficient to know about them all. The major epochs were:

K & R – Named after authors of the original language specification Kernighan and Ritchie, first see in

the early 1970’s.

ANSI C – Came into existence officially in 1989 and was the first attempt to create a more complete

standardized version of C so that it may start to be used with the new fledging microcomputer market. Up

until this point C was mostly for mainframe use and the desktop computer was slowly finding its way into

homes.

C99 – First finalized in 1999 its goal was to introduce a new collection of features that allowed for things

like in-line functions and variable-length arrays. Features that were shipping with other lanaguages there

were being developed at this time.

C11 - Work on this version first began in 2007 but the first official specification was published in 2011.

Much like the C99 iteration this version of C sought to add more features to the language.

It is fascinating to note over the course of 40 plus years C is still being actively expanded and

improved. This is testament to the ubiquity and usefulness of the language.

What then about the descendants of C? Knowing that C is a general purpose language useful for

implementing UNIX what/when did its progeny first begin? A comprehensive look would take volumes

but some of the highlights:

C++ - An extension of C that introduced a programming paradigm called Object Oriented, the

specification of this was first released in 1983.

C# - Pronounced as if were a music note: C-sharp. It can be seen as a progression of both C and C++

developed by Microsoft to be utilized on their proprietary .NET platform. It was first released in 2000.

Objective-C – A slight extension of the C language heavily used by Apple for the OS X and iOS

operating systems, also first seen in 1983.

Python – Quite often Python is the language of choice for those interested in embarking on a learning to

coding project, especially in the past few years. It is a language built on top of C whose primary aim is to

create code that is human readable that can encapsulated very complex operations in short snippets of

code. Python was first introduced in 1991. Having a good understanding of C allows a coder to really

appreciate the beauty and complexity that Python programs are capable of.

Uses

As mentioned previously the initial use of C was to implement the UNIX operating system.

However as time progressed C demonstrated that it is a very capable application great for writing all sorts

of applications. C requires a large amount of understanding from the programmer who chooses to use it.

The language doesn’t provide a completely structured environment where all modules/libraries are

interactively included when needed. However not all C use is esoteric or operating system specific. One

interesting field where knowledge of C is handy is with the Arduino microcontroller. The Arduino is a

miniature credit card sized board that has been one of the key components of the recent maker surgence.

A picture of the modern Arduino board called Yun. It's defining feature is that is that has build in Wifi.

The paper clip is to demonstrate scale.

An Arduino is a device that let you make hardware devices that interface with your computer through a

variety of different components attached to the board. Think, switches, buttons, LCD displays and

infrared emitters. In the image above these sensors are plugged into the series of black plugs. The code

you write for the Arduino is more or less a flavor of C.

Pros and Cons

A programming language can't really enjoy a 40 year lineage without have some endearing

qualities. On the downside these good qualities are pretty specific.

Pros

Fast and Utilizes hardware well - The primary and obvious benefit to using C is that is utilizes the

computer/machine it is working on very well. Due to this fact you can find C programs running on

embedded systems that are running UNIX or some variation of it such as Linux. The Internet router in

your home is most likely running a version of Linux on a low powered processor. Sending our radio

waves through the wifi antennas is probably made possible by some sort of C code. OpenWrt a popular

after market operating system for home routers is more or less a version of Unix that ships with utilities

written in C. OpenWrt is the operating system powering the LibraryBox, which is a standalone wifi

powered file sharing outpost.

Extensive Support and existing products – Because C has been around for so long chances are there is

a library already written that your program can us. For example if you are writing some software that

uses cryptography in some way you can utilize a library called cryptlib which is written in C and can

perform all the complicated math you'll need. In fact many Open-Source applications are compiled C

products. For example OpenSSL a software packed used to ensure the https traffic in your web browser is

a C program.

C is ubiquitous - While you code and create programs in other languages the underlying compiler that

that language uses might in fact be written in C. As mentioned earlier the Python programming language

is itself an off-shoot of C. With a little bit of work it is possible to compile a Python program to a

corresponding C program, which quite often is done so the code runs quicker. Consider also the extremely

popular and ubiquitous web language PHP. The underlying software used to interpret the language is a

platform called Zend Engine and which is written in C.

Cons

Integration into a Web Environment – Today most budding coders are interested in creating web based

services. That is to say the most popular form of development these days seems to be making apps that

are accessed via the browser. This type of development with C is pretty much a non-starter, however it is

not a complete impossibility. If pressed you could utilize a ‘Common Gateway Interface (CGI)’ program

where a web server could render a web page and include the output of a C program in the final HTML.

While C is a possibility with CGI programming PERL is often the language of choice for this kind of

setup. Couple this further with the idea that CGI web programming in general is never really a first

choice for web developers. There are other more reliable ways to generate dynamic web content,

unfortunately C isn't well suited for this.

GUI Based Applications – Since C was born on the UNIX command line it is mostly capable of creating

programs for the command line. If you’d like to create a desktop application to run in a GUI you’ll need

to spend some time learning how to use an external library that renders windows in the interface. This

could be something along the lines of GTK+. Contrast this for example to Visual Basic which allows you

to interactively draw widgets and forms and add code in a fluid interactive process.

Environment and Setup

Putting an environment together to write and compile C programs is a bit different for each operating

system. In a Linux / Mac OS environment the basic tools come right out of the box, conversely in a

Windows environment some additional tools need to be installed on the computer. This difference

originates in the lineage of these two categories of Operating Systems. UNIX and its decedents are

something called POSIX compliant. The acronym stands for Portable Operating System Interface, which

is a standard written by the IEEEE that outlines some must haves for an operating system. Most of these

prerequisites have to do with C implementation details and other specific Linux utilities. The way

Windows evolved was separate and distinct from UNIX, so POSIX compliance was never a driving factor

with that operating system. The important thing to remember is that the main goal of the POSIX standard

is to ensure compatibility between systems. This goes hand in hand with the previously stated original

objective of C to be a language that can be used to build UNIX through a compilation of C code. The

short of it is that POSIX compliant operating systems implicitly ship with all the tools you need to write C

code. Windows on the other hand is not a POSIX compliant operating system and getting the basic tools

together requires the installation of a piece of software that makes your Windows computer behave more

like a UNIX based machine. Now you wouldn’t want to try to start writing enterprise level code after

setting up using the methods described below, this is strictly a crash course that will provide you with just

a taste of what C is and how it differs from other languages.

Linux / Mac OS

As mentioned previously the tools are available out of the box. Our investigation will use two tool:

gcc – which stands for gnu c compiler. If you open a terminal window and type ‘gcc’ and hit enter you’ll

probably see some error and message that ‘compilation terminated’. Great that was easy.

nano – Any text editor will do to enter code. We’ll use ‘nano’. In both Linux (in this case Ubuntu) and

Mac OS it comes pre-installed. To verify open a Terminal and type in nano. You’ll see a rudimentary

interface drawn to the screen. Hit Ctrl + X to exit.

Done. Compare this now with the instructions for Windows.

Windows

A version of the C tools you’ll need doesn’t really ship with Windows out of the box. If for

example you have installed some version of Microsoft’s Visual Studio it will come with the tools we’ll

need. In our case we are going to do something different. We are going to install a utility called CygWin.

CygWin is essentially a piece of software that will help you to recreate a Linux environment in Windows.

The added benefit of CygWin is that it will allows you to run other interesting and very helpful Unix shell

commands like more and echo. More on these later. Traditionally speaking learning C goes hand in

hand with UNIX, you would be best served to spend some time getting comfortable on a command line to

get a full flavor of the experience.

To begin download the correct version of CygWin from http://cygwin.com/install.html. To make

things easier try the 64 bit release first and then try the 32 bit if that doesn’t work. Once you run

http://cygwin.com/install.html

the file you downloaded you’ll be prompted with a lot of click throughs. You’ll need to pick a

Download Site from this screen, any one will do:

You can also pick a site that is geographically close to help speed up the download. Just look for

domain names that match your locale. Once the base system is installed you’ll be prompted to install what

packages you want. There are many options available here but all we want to do is expand the ‘Devel’

box and click on the double arrow so that everything will be installed. It should look like the following:

The box under 'Bin?' changes from an empty square to a checked square.

Now search for ‘nano’ expand ‘Editors’ click on the ‘Skip’ to toggle it so that it is a checked

square. It will look like the following:

Now hit ‘Next’ a couple of times, wait for the download and the install, hit ‘Finish’ at the last step to

complete the process. Look for 'Cygwin Terminal' or similar in your start menu. The result is a box with a

blinking cursor ready for you to type away.

Examples

For the sake of simplicity the example following will be shown using screen shots from a

computer running Linux. Before we can begin with some actual examples, first a general overview of the

steps in actually creating a C program:

- Write the source code of the application. Source code has the extension of c

- Compile the source code into an intermediate ‘object file’ that is something halfway between the

human readable code and the binary instructions that the computer will run

- Link the newly generated ‘object file’ with additional ‘object files’ that introduce the necessary

built in library functions required by the application. For example, if your program includes code

that manipulates files you’ll need to link to object files that provide this functionality. The human

readable version of these built in functions are kept in header files that have an extension of h

- The final step is to create an executable file that can be run standalone on the terminal command

line

In our examination we'll be abbreviating some of these steps to make things a bit easier to follow.

Examples 1 - Hello World

Open a Terminal window (or Cygwin depending on your operating system) and type the following:

nano helloworld.c

You'll be greeted with that rudimentary text editor interface. Type in the following exactly as it is written:

/* Hello World program */

#include<stdio.h>

main()

{

 printf("Hello World\n");

}

It should look like the following:

Hit Control + O to save the file. Then Control + X to exit.

Once you have returned to the command line type the following:

gcc helloworld.c

This will compile and link your program into an executable file.

ls

This will show you the contents of the current folder/directory.

./a.out

This will run your program. a.out is the default program name that gcc compiles to. We prepend ./ to

the beginning of the command because we are saying look in the present directory first. The . is a shortcut

operator the references the current directory. When we want to refer to something that is in a directory we

use the / character.

After all of this wizardry only the most basic of tasks has been completed. Here is the output of the

command terminal following all of these steps:

Before looking at the actual code line by line it is worth pointing out the tight coupling between Linux

and C. Now to the code listing. Let's go line by line:

Line 1. – This is a comment line. Anything written between /* and */ is there for the sake of the human

reading the code. The C compiler just skips that line.

Line 3. - This is an include which essentially tells C to include the libraries for standard input and output.

Every program you write that does anything interesting will require this line. It is a header file that lets

you use functions like pritntf that we will see later. Put simply a header file is a human readable version of

the 'object code' of those input/output functions.

Line 4. - Starts the main function of the program. It is proceeded with a the keyword void. Void is

reserved word in C and indicates that the function won't provide any returning value. We'll see an

example later where we want that main function return an integer. Anytime you write and compile a C

program it will look for the main function and run whatever it finds there first.

Line 5 - Is the opening brace of the main function. Anytime you define a function in C you need an

opening and closing brace character. The great things is that C doesn't care about indentation or white

space. That only exists for the sake of the humans reading the code.

Line 6 – The payload of this program. This printf statement is a function that takes the supplied argument

(in our case the quintessential introductory statement every programmer begrudgingly learns) and prints it

to standard output. In most cases the screen. The bit about \n at the end of the string is an escaped

character that appends a newline to the end of the string. After printf is you'll see a semi-colon. Every

line of code in C needs to be terminated with a semi-colon, with the exception of the include line.

With this obligatory example of out of way let's delve into something particularly C like.

Example 2 – Addresses of values

Back at the command prompt trying using nano to start a file called address.c and then enter in this text

and save the document:

/* Looking at the address of a variable */

#include <stdio.h>

main() {

int x;

int y;

x = 3;

y = 7;

printf("Value of x is: %d and located: %p\n",x,&x);

printf("Value of y is: %d and located: %p\n",y,&y);

}

The command line work flow should for this example should look like the following:

Your output will be different then what is in the image. A line by line account of the code now, let's skip

the parts we saw with the first bit of code.

Line 6. & 7. - Here we are declaring two integers. A fundamental data type of any language.

Line 8. & 9. - We assign some values to those newly created integers

Line 10. & 11. - Here is the C in action. We once again use printf to print some values to the screen. Printf

is a pretty versatile function that does more then you can imagine. If you provide it a string of text with a

% character embedded into it it will take other variables provided as arguments into the spot where the %

is located. In our first example we print x using the %d sequence. Another C-ism in action, C doesn't

really know what is in any memory address so by doing %d you are telling the interpreter to print the

contents of that memory address as if it were an integer. (You'd use %s if you had a string you'd want to

put into the sequence, %f for float etc) The second part is a %p which stands for pointer. The third

argument of printf is &x which is actually the address in memory where x resides. The & operator tells C

you want the address of the thing you are looking at, not the value of the thing.

The purpose of this example is to show you just how low in level you can get with C code. When

we print the two integers we first print their value, then we do something really obscure, we print the

address of the bit of memory where that value is storied (for x this is 0x7ffe28fd9a08) This ability to

look at the address of where something is located is a fundamental piece of C, this mechanism is called a

pointer. Understanding pointers is a lifelong pursuit and anyone who claims to have a great understanding

of them really doesn’t. Since C doesn’t have object oriented features (or highly abstracted data structures

like other languages such as Python) when you want to do something complex you usually pass a pointer

to the start of your complex thing. For example an array of n integers is actually just n sequential spots in

memory that are the size of integers long. When you want to reference the third item in the array you

basically reference the contents of the memory located at an offset of plus 2 from the memory address of

the first item in the array. Recall what was said earlier about bad C creating problems. If you are

accessing the contents of memory directly, it might very well be possible that you write or read a value

you weren’t supposed to. Before moving to the next example it is worth looking at the difference between

the two memory addresses of the integer variables. These numbers are written in a notation called

hexadecimal. So you count from 0 – 9 and then A through F before adding a place holder. For example

when you are counting in decimal (our usual method) when we go from 9 to 10 we start a new column

(the 1) followed by the 0. In hex you start that new column after F. Just to keep thing from getting even

more confusing we use a prefix of 0x every time we write a hexadecimal number. In this code we have

two integers which most likely have been placed in consecutive spots in the computer’s memory. The

difference between these two addresses is 0x4. Therefore an integers takes 4 bytes of memory. Yup C is

all about this kind of stuff. Great, why should we care? The next example tries to illuminate this.

Example 3 Oops.

Use nano again to edit the file oops.c

/* Accessing a bit of memory */

#include <stdio.h>

main () {

int oops;

oops = 8;

printf("Address of oops is: %p\n",&oops);

printf("Contents of oops is: %d\n",oops);

printf("Address of oops plus is: %p\n",&oops + 0x8);

printf("Contents of oops plus is: %d\n", *(&oops + 0x8));

}

The output of the terminal after the program is entered and the compiler has bee run should look like this:

So much like the previous example we declare an integer and display it’s address in memory (line 10) and

then its value (line 11). Next we few grab a random address that is 0x8 away from oops and display that

(line 12) and its contents (line 13) to the screen with the puzzling result of 32765. What is that value?

What uses it? I’m not sure, the only thing I can say is that this location in memory is 8 bytes higher than

the memory address of oops. Let’s extend this investigation and try to demonstrate an exploit using this

idea of accessing memory you aren’t supposed to.

Example 4 Overflow

Try this bit of code into a file named overflow.c

/* Buffer Overflow */

#include <stdio.h>

#include <string.h>

int main()

{

int super_user = 0;

char login[10];

printf("Enter username: ");

gets(login);

 if (strcmp("bob",login) == 0)

 {

 super_user = 1;

 }

 if(super_user)

 {

 printf("Super Access granted!\n");

 }

 else

 {

 printf("Sorry, you are not a super user\n");

 }

/* Do some other things only a super user can do */

return 0;

}

Here is the output of the code writing, save, compile cycle with a few additional runs of the final product.

Notice we have to pass some extra information to gcc by way of command line parameters to shut off

some built in protections the compiler usually uses.

Here's the line by line of what is introduced here:

Line 3. - We include string.h so that we can use the strcmp call later on.

Line 4. - We declare our main function returns an int or integer value. Used to make the example work as

intended.

Line 7.- We declare a character array of length 10. Which is how C for better or worse represents strings.

Line 13. - We use the built in gets function to get input from the keyword up until the user hits enter.

Line 15. - We compare the value entered by the user to the magical super user account name. C compares

strings in canonical way. Ie character by character and gives you the difference as an integer value . So

two identical strings have a difference of 0. In this case if it checks out super_user is set to 1 or true.

Line 20. - If super_user is true we know the user has special privileges so we let them know about it using

a printf statement.

Line 27. - To conclude the main function without compilation error we return an arbitrary integer 0. Much

like with the string compare we use 0 here to mean successful, unlike the check to see if super_user where

a non zero number means success. Yup another C-ism in action.

This example is a contrived one to demonstrate the ability C has to create something called a

buffer overflow. Buffer overflows are essentially exploits where you cram too much data into a series of

memory locations and something odd happens as a consequence. This simple program first asks for

someone to enter in a user name. If that user name is bob it then grants that user super privileges.

However this program is exploitable. The author of the software thought that a user name would only be

10 characters long. However if you were an enterprising individual you could find out that if you entered

in a user name longer than 10 characters the program tries to cram in all of those characters into 10 spots

and it dribbles out into adjacent memory and causes all sorts of problems. In this case it shortcuts the

attempt to compare the entered user name to “bob” and set super_user to 1 if that is the case. To beat this

example even more over the head the gcc line used to compile the program is a bit different then what we

have seen so far. In this case we are tell the compiler to explicitly not check against buffer overflows.

Example 5 – Mystery Code

 If C looks confusing, well its’ because it is. As demonstrated previously accessing everything in C is

done at a very low machine level. Down to the point of looking directly at memory locations. The data

structures that you are given are pretty minimal, basically a continuous block of memory you need to very

carefully reference. These low level specification create code that works well but the trade off is code

that can potentially be totally unreadable. This incongruence is taken to a shocking extreme with a series

of events C coders participate in. For example the Underhanded C Contest is a competition where the

entrants have to create a piece of code that seems benign but actually performs some dubious function. In

a previous year’s contest the goal was to create software to emulate an airline luggage processing system

that must secretly reroute certain luggage if a particular free text note is applied to the record. The code

also had to be written in a way that someone looking at it couldn't divine its purpose.

Another gem is the International Obfuscated C Code Contest. Take for instance this following code block

which is a slight modification of some code that was submitted in 1990. Enter in the following in a file

called mystery.c

#include<stdio.h>

v,i,j,k,l,s,a[99];

main()

{

for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k=i<s,j+=(v=j<s&&(!k&&!!

printf(2+"\n\n%c"-(!l<<!j)," #Q"[l^v?(l^j)&1:2])&&++l||a[i]<s&&v&&v-

i+j&&v+i-j))&&!(l%=s),v||(i==j?a[i+=k]=0:++a[i])>=s*k&&++a[--i])

;

}

Without a clear hint and some diagrams and polite description it would most likely be impossible to infer

the meaning of this code. The organizers of the contest have provided some hints on how to run this and

what the results should look like. Here is the code entry and compiling step:

You will probably get a bit of a error message but it is safe to ignore. Before moving to the description

and final product of this, let us look at the last line of the previous screen capture:

echo 8 | ./a.out

Here is another perfect example of how tightly coupled C is with Unix. If we read this line left to right.

echo is the name of the Unix utility that echos to the screen whatever follows it. 8 is what you expect it

to be, the numeral 8. Next is the | symbol. In Unix this is a command line argument that essentially says

take the output of the program on the left (a numeral 8 presented to the screen) and uses it for the input of

the next program, in our case the mysterious code we just compiled. This process is called piping. You

can pipe the output of pretty much any Unix command into any other Unix command, which makes it

possible to do very complicated operations on the computer in short order. To return to the example have

a look at the output it generates. Before reading on to see the description, can you determine what the

code is doing:

In short this code is displaying all the solutions to the 8 Queens problem. This is where you take a chess

board and try to place 8 Queen characters on the squares so that none of the Queens are attacking one

another. Yeah I didn't get that either from looking at the code. In our emoticon style diagram a space

represents a white square, a # is a dark square, and the Q is a Queen piece. The good thing about this code

is that it finds the solutions for Queens problem for whatever number you feed into it. You simply change

the number from 8 to something else. If you notice when you hit the enter button on the last line a large

string of text zipped past the screen. There is actually a Unix command called more which will only

output a screen full of text before stopping and requiring the user to hit the space bar before showing

another screen full of text. Knowing what you know about the|operator, how can you modify our line

from above to pipe the output from our compiled code into the more command? The answer to this is left

as an exercise for the reader.

This has been a whirlwind introduction to C that has emphasized how the language is used in a Linux

based system and has been meant to demonstrate the primary use cases you'd implement with the

language. The takeaway is that C is great at hardware programming an situations where you want a really

low level interaction with the computer. You probably wouldn't want to use the language for any HTML

work. It just isn't a plausible tool for something like that. C takes some work to understand, but the effort

invested will pay dividends as you'll be able to program well (because C forces you to write everything

with simple data structures) and you'll also develop a strong understanding of the underlying operating

system and where and how things are allocated in memory. These are the major tenets of C and as time

has demonstrated are enduring qualities that keeps the language relevant to this today. Put in other words,

the more time you spend learning C the more easy every other language will be to understand.

Bibliography

Bhaskar, K. “C - Past, Present, and Future - A Perspective.” Resonance: Journal of Science
Education 17, no. 8 (August 2012): 748–58. doi:10.1007/s12045-012-0085-9.

Bhatt, Pramod. “UNIX: Genesis and Design Features.” Resonance: Journal of Science
Education 17, no. 8 (August 2012): 727–47. doi:10.1007/s12045-012-0084-x.

Daintith, John, and Edmund Wright. Posix. Oxford University Press, 2008.

Dowling, Clay. “Using C for CGI Programming.” Linux Journal, no. 132 (April 2005): 84–89.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Prentice-Hall Software
Series. Englewood Cliffs, N.J: Prentice-Hall, 1978.

Klemens, Ben. 21st Century C: C Tips from the New School. Second edition. Sebastopol, CA: O’Reilly
Media, Inc, 2014. Print.

Horton, Ivor, Beginning C from Novice to Professional. Springer E-Books, 2006.
http://dx.doi.org/10.1007/978-1-4302-0243-1.

Isaak, James. “The History of Posix: A Study in the Standards Process.” Computer, no. 7 (1990):
89.

Oliphant, Zan. “Programming CGI in C.” PC Magazine 16, no. 5 (March 4, 1997): 235.

Purdum, Jack J., Beginning C for Arduino. Springer E-Books, 2006
http://dx.doi.org/10.1007/978-1-4302-4777-7.

Rajaraman, V. “Dennis M Ritchie.” Resonance: Journal of Science Education 17, no. 8 (August
2012): 721–23. doi:10.1007/s12045-012-0083-y.

Vine, Michael A. C Programming for the Absolute Beginner the Fun Way to Learn
Programming. Cincinnati, Ohio: Premier Press, 2002.

Recommended Resources
• CygWin - https://www.cygwin.com/
• cryptlib - https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
• OpenSSL - https://www.openssl.org/
• The LibraryBox Project - http://librarybox.us/
• Underhanded C Contest - http://www.underhanded-c.org/
• 7th International Obfuscated C Code Contest. http://www.ioccc.org/years.html#1990
• “You Can’t Dig Upwards.” An insightful plea on learning C as your first

programming language http://www.evanmiller.org/you-cant-dig-upwards.html
• “Death To C”. A look at why bad code in C is causing problems

http://techcrunch.com/2015/05/02/and-c-plus-plus-too/
• “The GTK+ Project.” http://www.gtk.org/
• OpenWrt Wiki http://wiki.openwrt.org/
• Zend Engine and PHP https://www.zend.com/en/community/php

https://www.zend.com/en/community/php
http://wiki.openwrt.org/
http://www.gtk.org/
http://techcrunch.com/2015/05/02/and-c-plus-plus-too/
http://www.evanmiller.org/you-cant-dig-upwards.html
http://www.ioccc.org/years.html#1990
http://www.underhanded-c.org/
http://librarybox.us/index.php
https://www.openssl.org/
https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://www.cygwin.com/

