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Aim. Nonalcoholic steatohepatitis (NASH) is the consequence of insulin resistance, fatty acid accumulation, oxidative stress, and
lipotoxicity. We hypothesize that an increase in the inflammatory adipokine NOV decreases antioxidant Heme Oxygenase 1 (HO-
1) levels in adipose and hepatic tissue, resulting in the development of NASH in obese mice. Methods. Mice were fed a high
fat diet (HFD) and obese animals were administered an HO-1 inducer with or without an inhibitor of HO activity to examine
levels of adipose-derived NOV and possible links between increased synthesis of inflammatory adipokines and hepatic pathology.
Results. NASH mice displayed decreased HO-1 levels and HO activity, increased levels of hepatic heme, NOV, MMP2, hepcidin,
and increased NAS scores and hepatic fibrosis. Increased HO-1 levels are associated with a decrease in NOV, improved hepatic NAS
score, ameliorated fibrosis, and increases in mitochondrial integrity and insulin receptor phosphorylation. Adipose tissue function
is disrupted in obesity as evidenced by an increase in proinflammatory molecules such as NOV and a decrease in adiponectin.
Importantly, increased HO-1 levels are associated with a decrease of NOV, increased adiponectin levels, and increased levels of
thermogenic and mitochondrial signaling associated genes in adipose tissue. Conclusions. These results suggest that the metabolic
abnormalities in NASH are driven by decreased levels of hepatic HO-1 that is associated with an increase in the adipose-derived
proinflammatory adipokine NOV in our obese mouse model of NASH. Concurrently, induction of HO-1 provides protection
against insulin resistance as seen by increased insulin receptor phosphorylation. Pharmacological increases in HO-1 associated
with decreases in NOV may offer a potential therapeutic approach in preventing fibrosis, mitochondrial dysfunction, and the
development of NASH.

1. Introduction

Metabolic syndrome and its associated pathologies of obesity,
insulin resistance (IR), and dyslipidemia are often accompa-
nied by liver involvement, defined as nonalcoholic fatty liver
disease (NAFLD) [1]. NAFLD’s progression to nonalcoholic
steatohepatitis (NASH), characterized by low grade inflam-
mation, cell ballooning, and mitochondrial dysfunction,
is a primary risk factor for development of fibrosis and

cirrhosis and therefore an important area of clinical research
[2]. Chronic, low grade inflammation due to metabolic
syndrome is provoked when the capacity for adipocytes
to store fat is overwhelmed resulting in the production of
inflammatory cytokines leading to metabolic inflammation
[3]. Fatty acids released from hypertrophic, dysfunctional,
and insulin resistant adipocytes, together with increased
hepatic de novo lipogenesis and impaired (FA) fatty acid
export, cause an accumulation of triglycerides in the liver
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leading to lipotoxicity [4]. Increased calorie intake and obe-
sity lead to an increase in tissue fat mass through adipocyte
hyperplasia and hypertrophy, subsequently resulting in a
decrease in adiponectin and an increase of inflammatory
TNF-𝛼 causing IR, inflammation, and oxidative stress in
the liver [5]. Reactive oxygen species (ROS) can induce
lipid peroxidation leading to inflammation and liver damage
[6, 7]. Steatotic livers are more sensitive to increased ROS
and oxidative stress, leading to mitochondrial dysfunction,
decreased levels of hepatocyte antioxidants, and inflamma-
tion, and culminating in NASH and fibrosis [8, 9].

Induction of HO-1, an antioxidant gene highly inducible
in a range of cells, including erythrocyte phagocytosing
Kupffer cells and splenic macrophages and in all organs,
including fat tissues, but excluding testes and brain, confers
advantageous effects in metabolic syndrome [10, 11]. Cobalt
protoporphyrin (CoPP) induction of HO-1 contributes to
the phosphorylation of the insulin receptor, thus improving
insulin sensitivity [12, 13]. Additionally, HO-1 acts through
the degradation products of the prooxidant heme, biliru-
bin, and biliverdin, antioxidants that increase mitochondrial
fusion, while also serving to improve adipocyte function and
remodeling by increasing levels of adiponectin expression [14,
15]. Humans with low levels of HO-1 suffer severe oxidative
stress and organ failure and demonstrate iron deposits in
the liver [16, 17]. CoPP has been used to prevent body
weight gain, increase oxygen consumption, and decrease
fasting blood glucose in rats and mice [18] (reviewed in [11]).
Recently, CoPP decreased expression of proapoptotic pro-
tein, abridge percolation of inflammatory cells, and reduced
AST and ALT levels in IR induced liver damage [19, 20].
Moreover, HO-1 induction increased mitofusion over fission
related proteins and improved mitochondrial quality control
[21].

In adipose tissues, induction of HO-1 has been shown
to reduce body weight, decrease NOV, and increase PGC-1𝛼
mediated thermogenesis, thereby increasing energy uptake
and the stimulation of mitochondrial FA oxidation [22]. Adi-
pose PGC-1𝛼 serves as a keymoderator of energymetabolism
and promotes mesenchymal stem cell differentiation into
brown fat adipocytes [23] and the browning of white fat to
a distinct phenotype known as brite fat, which aids in the
prevention of the development of metabolic syndrome and
type 2 diabetes mellitus (T2DM) [24].

Another important component of metabolic syndrome is
an increase in the levels of the prooxidant heme. Intracellular
heme levels play a central role in the regulation of many cell
functions [25–27]. Inflammatory increases in IL-6 upregulate
hepcidin and iron trapping in Kupffer cell diseases [1]. The
resulting increase in cellular heme decreases levels of PGC-
1𝛼, lipid metabolism, and adipogenesis [28].

The recently discovered inflammatory adipokine,
NOV/CCN3 gene (nephroblastoma overexpressed) [29], is
also shown to be repressed in conditions of increased HO-1
levels [22]. This protein plays key roles in inflammation,
wound healing, fibrosis, and cancers [29]. NOV is involved
in the adhesion, migration, proliferation, differentiation,
and survival of different cell types [29] and modulates the
expression of inflammatory molecules [30, 31].

In adipose tissues, induction of HO-1 has been shown
to reduce body weight, decrease NOV, and increase PGC-1𝛼
mediated thermogenesis, thereby increasing energy uptake
and the stimulation of mitochondrial FA oxidation [22]. Adi-
pose PGC-1𝛼 serves as a keymoderator of energymetabolism
and promotes mesenchymal stem cell differentiation into
brown fat adipocytes [23] and the browning of white fat to
a distinct phenotype known as brite fat, which aids in the
prevention of the development of metabolic syndrome and
type 2 diabetes mellitus (T2DM) [24].

A recent study in mice has shown that myeloid-specific
depletion of NOV exacerbates liver injury in a mouse model
of NAFLD [32]. However, global NOV−/− mice fed a HFD
have less steatosis compared to WT mice, and hepatic
triacylglycerol content is reduced by approximately threefold
[29].

We hypothesize that the development of NASH is the
result of the combination of increased NOV and inflamma-
tion and a decrease of HO-1 in adipose and hepatic tissues
leading to the impairment of mitochondrial function. We
further propose that induction of HO-1 in adipose tissues
will have positive impact on hepatic tissue and reverse the
negative effects on NOV levels, decreasing NASH scores and
increasing mitochondrial integrity and function.

2. Methods

Eight-week-old C57Bl6 male mice were fed a high fat diet
(HFD) for 20weeks, a time frame inwhich themanifestations
of NASH are present. Mice were divided into four groups of
6 animals each: (1) control normal chow diet; (2) HFD; (3)
HFD treated for the last 8 weeks with cobalt protoporphyrin
(CoPP) (once/week a dose of 5 mg/100 g, bw); and (4) HFD
treated for the last 8 weeks with CoPP and the last 3 weeks
with tin mesoporphyrin (SnMP at a dose of 20 mg/100 g
BW), an inhibitor of HO activity (twice/week). BW at the
end of the 20-week period C57 lean, range; 29-31; HF; 56-59,
HF-CoPP; 34-39, CoPP-SnMP; 47-51 gm, blood glucose and
alanine aminotransferase (ALT) were measured as described
[22, 33]. All animal experiments followed the NYMC IACUC
institutionally approved protocol in accordance with theNIH
guidelines.

2.1. Histopathological Examination of Hepatic Tissue, NAS
Score Evaluation, and Hepatic Lipid Droplet Analysis. Liver
samples from each experimental group were fixed in 4%
paraformaldehyde, dehydrated, embedded in paraffin wax,
and sectioned (6 𝜇m thick). The main liver histopathological
features commonly described in NAFLD including steato-
sis, inflammation, hepatocyte ballooning, and fibrosis were
scored according to the NAFLD histologic activity score
(NAS) system, and lipid droplet analysis was performed as
previously described [33–35]. Briefly, double-blinded analysis
identified the degree of steatosis and NASH (grade 0 ≤ 5%;
1 = 5–33%; grade 2 = 34%–66%; grade 3 ≥ 66%), lobular
inflammation (0: no foci, 1 < 2 foci per 200x field, 2: 2
to 4 foci per 200x field, and 3: >4 foci per 200x field),
hepatocyte ballooning (0: none; 1: rare or few; 2: many), and
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fibrosis (0: no fibrosis, 1: perisinusoidal or periportal fibrosis,
2: perisinusoidal and portal/perioral fibrosis, 3: bridging
fibrosis, and 4: cirrhosis) [34].

2.2. Real-Time qPCR, Western Blot Analysis, HO Activity,
Heme Measurement, and O2 Consumption. Total RNA and
protein were extracted from liver and visceral adipose tissue
and gene expression analysis was performed by RNeasy�
Lipid Tissue (Qiagen), as indicated by the manufacturer
[24, 33]. RNA was determined by measuring the absorbance
at 260 nm (A260) with a Biotek� plate reader and the
Take3� plate (Biotek, Winooski, VT) and assessed by the
A260/A280 ratio. cDNA was synthesized from total RNA
(Applied Biosystems) using a High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). Real-time PCR was
performed using TaqMan� Fast Universal Master Mix (2x),
on a 7500 HT Fast Real-Time PCR System (Applied Biosys-
tems). For western blotting analyses, tissue was lysed in RIPA
lysis buffer supplemented with protease and phosphatase
inhibitors (Complete� Mini and PhosSTOP�, Roche Diag-
nostics, Indianapolis, IN as previously described [35]. Heme
levels were determined by ELISA (BioVision, Inc., Milpitas,
CA) as described [35].

HO activity was determined as described [36]. Briefly,
freshly lysed and homogenized tissue samples were incubated
in sealed vials at 37∘C for 90 min with 30 𝜇M heme, and
2 mM NADPH, in the absence or presence of an HO
inhibitor, SnMP (50 𝜇M). After termination of reaction,
headspace gas was analyzed for CO with C13O16 added as
an internal standard. CO measurements were performed
using an Agilent 5890 GC-MS. HO activity is calculated by
subtracting CO levels obtained in the presence of SnMP from
those obtained without. Data are normalized to total protein
and are presented as pmol CO/mg protein/h.

Mouse oxygen consumption was assessed as described
[22, 24]. Briefly, oxygen consumption (VO2) and carbon
dioxide production (VCO2) were measured using the Oxylet
gas analyzer and air flow unit (Oxylet; Panlab-Bioseb, Vit-
rolles, France). Hourly respiratory quotients were measured
and performed twice, on individualmice using theVCO2 and
VO2 obtained by the gas analyzer. The results are expressed
as the consumed VO2 per kilogram body weight per minute
(ml/kg/min). The respiratory quota is expressed as CO2
eliminated/O2 consumed.

2.3. Isolation and Development of NOV Overexpressing
Adipocytes. Viral transduction was performed as previously
described [35]. Briefly, 1x106 cells were seeded per well of
a 6-well plate 24 h prior to transduction. The cells were
incubated with the transduction medium (1x106 transducing
units (TU) of lentiviral particles (Precision LentiORF for
NOV (Dharmacon, Lafayette, CO)) in 0.5ml 𝛼-MEM growth
medium supplemented with polybrene (8 𝜇g/ml) for 3h
to maximize the contact between each cell and lentiviral
particles. Additional culture medium supplemented with
polybrene was then added to each well. After an additional
48 h incubation, antibiotic selection medium was used to kill
all the nontransduced cells.

2.4. Statistical Analyses. Statistical significance between
experimental groups was determined by Student’s t-test for
pairwise comparison between groups or by ANOVA with
Tukey-Kramer post hoc analysis for comparison between
multiple groups. The data are presented as means ± SEM and
the null hypothesis was rejected at p<0.05.

3. Results

3.1. HO-1 Induction Prevents Fibrosis and Decreases NASH
Score. As expected, livers of lean mice showed no significant
evidence of steatosis (0.67% of cells positive for intracellu-
lar lipid accumulation) with only rare ballooning and no
inflammatory foci and no fibrosis. The livers from HF mice
revealed a higher NAS score (NAS: 9) with elevated steatosis,
moderate lobular inflammatory loci, significant hepatocyte
ballooning, and fibrosis (Table 1; Figures 1(a)–1(e)). Increased
HO-1 expression with CoPP improved this score (NAS: 3),
diminished all the pathological parameters, and resulted in
mild steatosis, rare inflammatory loci and ballooning, and
no fibrosis. Inhibition of HO activity in HF mice caused
perisinusoidal steatosis and ballooning and portal fibrosis
(NAS: 8). Furthermore, the adverse effect of hepatosteatosis
was confirmed by detailed morphometrical analysis of liver
lipid droplet diameter (Figures 1(a)–1(e)). From these results,
we conclude that increased levels of HO-1 can prevent lipid
droplet formation in the liver, ultimately preventing the
development of NAFLD and NASH in obese mice.

3.2. Induction of HO-1 Decreases NOV and Fibrotic Markers
and Improves ALT and AST. As seen in Figure 2(f), levels of
NOV in the lean mouse are significantly (p<0.05) higher in
visceral adipose tissue (VAT) than in liver tissue.The HF diet
increased the expression of hepatic NOV/ CCN3 mRNA and
protein content (Figures 2(a), 2(b), and 2(c)) as compared to
lean mice (p<0.05). An increase in HO-1 expression resulted
in a normalization of NOV expression, an effect that was
blocked by an inhibitor of HO activity; SnMP (p<0.05)
(Figures 2(a), 2(b), and 2(c)) (p<0.05). Similarly, FAS protein
expression was significantly (p<0.05) elevated in HF fedmice
and normalized by CoPP (Figures 2(b) and 2(d)). Fibrotic
protein signaling in hepatic tissue of obese mice as measured
by the expression of MMP2 was reduced by increased HO-1
levels (p<0.05), an effect that was prevented by inhibition of
HO activity (Figures 2(b) and 2(e)). Obese mice developed
impaired liver function as indicated by increased levels of
serum AST (p < 0.05) and ALT (p < 0.05), all of which were
normalized by HO-1 induction (p<0.05) (Figures 2(g) and
2(h)). HO-1 reduction in AST and ALT levels was eliminated
by SnMP (Figures 2(g) and 2(h)). Taking all of these findings
together, it can be concluded that a decrease in levels of
the proinflammatory adipokine NOV in conjunction with
increased levels of HO-1mitigates the development of fibrotic
markers that contribute to the NASH phenotype.

3.3. Induction of HO-1 Decreases Heme and Hepcidin Expres-
sion. In accordance with our hypothesis, our results indicate
that NASH livers have significantly (p<0.01) increased heme
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Figure 1: HO-1 induction prevents fibrosis and decreases NASH score. Liver of lean (a), HF fed (b), HF fed treated with CoPP (c), and HF
fed treated with CoPP and SnMP (d) in mice and (e) graph summarizes the morphometrical analysis of liver lipid droplet diameter. ∗ p< 0.05
versus lean; # p< 0.05 versus HF fed; and + p< 0.05 versus HF fed mice + CoPP. Masson’s trichrome staining. Bar 20 𝜇m. The arrow shows
hepatic perivascular fibrosis and (∗) indicates the steatosis of control lean mice, HF fed mice, HF fed mice + CoPP, and HF fed mice + CoPP
+ SnMP.

Table 1: Histopathological NAS score evaluation. Degree of steatosis and NASH (grade 0 ≤ 5%; 1 = 5–33%; grade 2 = 34%–66%; grade 3 ≥
66%), lobular inflammation (0: no foci, 1 < 2 foci per 200x field, 2: 2 to 4 foci per 200x field, and 3: foci per 200x field), hepatocyte ballooning
(0: none; 1: rare or few; 2: many), and fibrosis (0: no fibrosis, 1: perisinusoidal or periportal fibrosis, 2: perisinusoidal and portal/perioral
fibrosis, 3: bridging fibrosis, and 4: cirrhosis).

NAS pathological score factors Control HF HF + CoPP HF + CoPP + SnMP
Steatosis 0 (0.67%) 2 (42.24%) 1 (10.28%) 2 (33.05%)
Inflammation 0 (no foci) 2 (2-4 foci/field) 1 (<2 foci/field) 2 (2-4 foci/field)
Ballooning 1 (rare) 2 (many) 1 (rare) 2 (many)
Fibrosis 0 (no fibrosis) 3 (bridging fibrosis) 0 (no fibrosis) 2 (perisinusoidal and portal fibrosis)
NAS value 1 9 NASH 3 8 NASH
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Figure 2: Induction of HO-1 decreases NOV and fibrotic markers and improves ALT and AST. (a) The mRNA expression of NOV, (b)
representative western blots and densitometry analysis of (c) NOV, (d) FAS, and (e) MMP2 and levels of (f) AST(U/L), and (g) ALT(U/L) in
hepatic tissues of control lean mice, HF fed mice, HF fed + with CoPP, and HF fed mice + CoPP + SnMP. (h) NOV mRNA levels in visceral
adipose tissue (VAT) and liver of leanmice. Results are mean ± SE, n=6, ∗p<0.05 versus leanmice, #p<0.05 versus HF fedmice, and ##p<0.05
versus HF fed mice + CoPP.
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Figure 3: Increase of HO-1 decreases heme levels and hepcidin expression. (a) Heme (pmol/mg protein) content, (b) representative western
blots of HO-1, (c) densitometry analysis of HO-1 and (d) CO production (𝜇mol/mg protein/h), and (e) mRNA expression of hepcidin in
hepatic tissues of control lean mice, HF fed mice, HF fed mice + CoPP, and HF fed mice + CoPP + SnMP. Results are mean ± SE, n=6,
∗p<0.05 versus lean mice, #p<0.05 versus HF fed mice, and ##p<0.05 versus HF fed mice treated with CoPP.

levels as compared to control lean mice fed a normal chow
diet. Induction ofHO-1 decreased heme levels as compared to
the HF diet group (p<0.01).The favorable effects of induction
of HO-1 were reversed by SnMP (Figure 3(a)). Western blot
analysis demonstrated that hepatic tissues of mice fed a HF
diet for 20 weeks had significantly (P<0.05) decreased levels
of HO-1 protein as compared to hepatic tissues of mice fed a
normal chow diet (Figures 3(b) and 3(c)). CoPP treatment
for 8 weeks increased liver levels of HO-1 as compared to
mice fed a HF diet alone, p<0.01 (Figures 3(b) and 3(c)).
The positive effects of increased HO-1 levels were reversed
by SnMP (Figures 3(b)–3(d)). Of note is the fact that SnMP
does not prevent an increase in HO-1 protein expression
but rather inhibits HO activity [37]. HO activity in hepatic
tissue was increased by CoPP and decreased by SnMP in
HF fed mice, p<0.05 (Figure 3(d)). As seen in Figure 3(e),
hepcidinmRNA level was increased inNASH livers of HF fed
mice, as compared to lean mice. Increased HO-1 expression

significantly, p<0.05, reduced the expression of hepcidin, an
effect which was reversed by SnMP (p<0.05).

3.4. Increase of HO-1 Expression Augments Mitochondrial
Integrity. MFN1, MFN2, and OPA1 expression levels were
increased, while FIS1 mRNA was decreased by HO-1 induc-
tion (p <0.05) an effect that was reversed by SnMP (p<0.05)
(Figures 4(a)–4(d)). These results indicate that HO-1 is a
powerful inducer of mitochondrial fusion (the merge of
dysfunctional to functional) and an inhibitor of mitochon-
drial fission. This increase in fusion (MFN1 and MFN2)
and decrease in fission (FIS1) contribute to an increase in
overall mitochondrial function, leading to a decrease in
adiposity in HF fed mice, a consequent reduction in obesity,
and a concurrent reduction in the development of NASH.
Mitochondrial expression of COX2 and COX4 as well as ATP
synthase were reduced in obese mice as compared to lean
mice (p<0.05), effects that were reversed by increased levels
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Figure 4: Continued.
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Figure 4: Increase of HO-1 expression augments mitochondrial integrity. mRNA expression of (a) MFN1, (b) MFN2, (c) OPA1, and (d) FIS1.
(e) Representative western blots and densitometric analysis of (f) COX2, (g) COX4, and (h) ATP synthase. (i) Total body oxygen consumption
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Figure 5: HO-1 upregulation increases hepatic pAKT, pAMPK, and insulin receptor phosphorylation levels. Representative western blots (a)
and densitometry analysis of (b) IRp972, (c) IRp1146, and (d) SIRT1 in hepatic tissues of control lean mice, HF fed mice, HF fed mice + CoPP,
and HF fed mice + CoPP + SnMP. Results are mean ± SE, n=4, ∗p<0.05 versus lean mice, #p<0.05 versus HF fed mice, and ##p<0.05 versus
HF fed mice + CoPP.

of HO-1 (p<0.05) (Figures 4(e)–4(h)). Oxygen consumption
in obese mice was decreased as compared to lean mice
(p<0.05) (Figure 4(i)). However, CoPP treatment of obese
mice normalizedO2 consumption (p<0.05), an effect blocked
by SnMP (Figure 4(i)).

3.5. HO-1 Upregulation Increases Phosphorylation of the
Insulin Receptor in the Liver of Obese Mice. Obese mice had

decreased expression levels of IRp-Tyr 972 and IRp-Tyr 1146
(p<0.05), as well as levels of SIRT1, as compared to control
lean mice. HO-1 induction ameliorated the effect of HFD on
insulin receptor phosphorylation and significantly increased
IRp-Tyr 972 and IRp-Tyr 1146, as well as SIRT1 levels (p<0.05)
(Figures 5(a)–5(d)). These effects were reversed by SnMP
(Figures 5(a)–5(d)). The reversal of these beneficial effects
corroborates the role of HO-1 expression and HO activity in
mediating the beneficial effects of CoPP.
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3.6. Adipose Tissue HO-1 Upregulation Increases Phosphoryla-
tion of Both the Insulin Receptor and Acetyl-CoA-Carboxylase
(ACC). To test the possibility that NOV-mediated increases
in adipose inflammation in turn decreases insulin receptor
phosphorylation in an obese mouse model, we examined
the effects of HO-1 on insulin receptor phosphorylation in
adipose tissue. Adipose tissue of obese mice had decreased
phosphorylation levels of IRp-Tyr 1146, IRp-Tyr 972, AMPK,
and ACC and reduced expression of HO-1 as compared to
control lean mice (p<0.05) (Figures 6(a)–6(f)). The negative
effects associated with obesity were normalized in obesemice
following induction of HO-1 (p<0.05) (Figures 6(a)–6(f))
and reversed by inhibition of HO activity (p<0.05) (Figures
6(a)–6(f)).

3.7. Adipose Tissue HO-1 Upregulation Increases Anti-
Inflammatory Adiponectin and Mitochondrial Fusion-
Associated Proteins, While Decreasing Proinflammatory NOV
and the Mitochondrial Fission-Associated Protein, FIS1. To
further test the possibility of potential crosstalk between
adipose and hepatic tissue we examined the effects of HO-1
on adipose mitochondrial function as it is related to the
proinflammatory adipokine NOV. Inflamed adipose tissue
from untreated obese mice expressed elevated levels of NOV.
As seen in Figures 7(a) and 7(b), the NOV level in visceral
adipose tissues of HF diet fed mice was elevated as compared
to the levels in leanmice (p<0.05). HO-1 induction decreased
visceral adipose tissue NOV levels (p<0.05), suggesting that
induction of HO-1 reprograms white adipose tissue to beige,
resulting in less inflammation (Figures 7(a) and 7(b)).

More importantly, as mitochondrial integrity in liver
tissue of HF diet fed mice was increased by HO-1 induc-
tion and as mitochondrial function is very important also
for the health of adipose tissue, we assessed the levels of
mitochondrial fusion and fission proteins in the visceral
adipose tissue. As seen in Figure 7(a), 7(c)–7(e), the levels of
MFN1 and MFN2 were decreased, while FIS1 was increased
in obese mice as compared to lean mice, p <0.05. HO-1
induction normalized these levels, an effect reversed by con-
comitant SnMP-treatment (p<0.05) (Figure 7(a), 7(c)–7(e)).
Healthy adipocytes express the anti-inflammatory adipokine,
adiponectin. As seen in Figures 7(a) and 7(f), the adiponectin
levels in visceral adipose tissues of HF diet fed mice were
decreased as compared to the levels in lean mice (p<0.05).
CoPP-mediated HO-1 induction normalized visceral adipose
tissue adiponectin levels, an effect that was prevented by
SnMP-treatment (p<0.05) (Figures 7(a) and 7(f)).

As induction of HO-1 in adipocytes decreased NOV
levels, we wondered whether overexpression of NOV would
cause a decrease of HO-1 levels. As seen in Figure 7(g),
overexpression of NOV in cultured adipocytes led to a
reduction in the HO-1 mRNA levels (p<0.05). Successful
transduction of cells with the NOV ORF lentiviral particles
was confirmed by measuring mRNA levels of NOV in
transduced and control adipocytes. The NOV mRNA level
was upregulated more than 100-fold (p<0.05) in the NOV
overexpressing cells as compared to control cells (data not
shown).

4. Discussion

The primary findings of this study are the following. (1)
The increase of the proinflammatory adipokine NOV and
decrease of HO-1 in hepatic and adipose tissue of obese
mice is associated with mitochondrial dysfunction and the
development and progression of obesity-induced NASH. (2)
Fat expansion is associated with remodeling marked by an
increase in proinflammatory molecules and oxidative stress
and a decrease in PGC-1𝛼 and insulin receptor phosphoryla-
tion with the eventual development of metabolic abnormal-
ities. (3) TNF-𝛼 and NOV are increased while adiponectin
is decreased in obese mice. (4) Reduction of levels of heme
through the pharmacological induction of HO-1 reduces the
severity of steatosis, inflammation, and fibrosis through the
improvement of hepatic mitochondrial function. We and
others have shown that heme levels are elevated in lipid laden,
unhealthy, terminal differentiated adipocyte, and increase of
HO-1; i.e., increase of heme degradation decreases adiposity
[38, 39]. Diminishing HO-1 levels are seen in maturing
inflamed adipocyte in hepatic tissues [35, 39, 40].

Increased levels of HO-1 shown to play a critical role in
the amelioration of oxidative stress, and, in both humans
and mice, low levels of HO-1 lead to organ damage [16, 41].
Moreover, overexpression ofHO-1 lowers levels of the inflam-
matorymediators TNF-𝛼 and IL-6 in the liver of mice [42]. A
decrease in HO activity exacerbates mitochondrial lipid per-
oxidation and mitochondrial dysfunction, while induction
of HO-1 upregulates mitochondrial transcription factor [21],
all of which support the hypothesis that a reduction in HO
activity results in mitochondrial dysfunction and increased
insulin resistance [22, 24]. Mitochondrial dysfunction leads
to a decrease in beta oxidation in the liver which allows fat to
accumulate resulting in a “fatty liver” [43, 44].

The potential beneficial role of decreasingNOV in obesity
and metabolic syndrome has been recently described [22].
Increased levels of NOV appear to be a key component of
the inflammatory and fibrotic response in the liver of obese
mice, and adiposity mediated increase of NOV appears to
be involved in hepatic IR and in the pathophysiology of
the inflammation and resulting fibrosis. In NOV−/− obese
mice, there is a reduction in body weight, a decrease in
expression of proinflammatory cytokines and chemokines,
and increase in the levels of PGC-1𝛼 and UCP1. In our obese
mouse model, increased levels of HO-1 led to a concomitant
reduction in NOV mRNA, as inflammation and markers of
fibrosis to the levels of lean animals. This effect was reversed
by inhibiting HO activity, not HO-1 protein, by SnMP, a
well-known effect for SnMP [37] indicating the pivotal role
of HO-1 and HO activity in the regulation of obesity and
metabolic syndrome. We speculate that a crosstalk exists
between adipose dysfunction and the development of fibrosis
and NASH.

Mitochondrial dysfunction is also a key player in the
generation of ROS [45], which results in abnormal respiration
[43]. Oxidative stress in NAFLD/NASH is associated with the
reduced expression of PGC-1𝛼 in adipose tissue, negatively
affecting mitochondrial biogenesis, thereby resulting in the
mitochondrial dysfunction that is seen in the development of
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Figure 6: Adipose tissue HO-1 upregulation increases phosphorylation of both insulin receptor and ACC. Representative western blot (a)
and densitometry analysis of (b) IRp1146, (c) IRp972, (d) HO-1, (e) pAMPK, and (f) pACC. Results are mean ± SE, n=4, ∗p<0.05 versus lean
mice, #p<0.05 versus HF fed mice, and ##p<0.05 versus HF fed mice + CoPP.
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Figure 7: Adipose tissue HO-1 upregulation increases anti-inflammatory adiponectin and mitochondrial fusion-associated proteins, while
decreasing proinflammatory NOV and themitochondrial fission-associated protein, FIS1. (a) Representative western blots, and densitometry
analysis of (b) NOV, (c) MFN1, (d) MFN2, (e) FIS1, and (f) adiponectin. (g) HO-1 mRNA levels in NOV overexpressing 3T3-L1 derived
adipocytes. Results are mean ± SE, n=4, ∗p<0.05 versus lean mice/control, #p<0.05 versus HF fed mice, and ##p<0.05 versus HF fed mice +
CoPP.
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IR [45]. PGC-1𝛼 targets SIRT3, a mitochondrial deacetylase,
which promotes mitochondrial biogenesis, suppression of
ROS [46], and mitochondrial FA oxidation [47]. PGC-1𝛼
adipocyte knockout mice develop IR and glucose intolerance
and consequently elevated levels of circulating lipids and
cholesterol [48]. This demonstrates the existence of PGC-
1𝛼 crosstalk between adipocytes and the liver, thereby corre-
lating adipocyte mediated release of inflammatory cytokines
with hepatic insulin resistance and steatosis. With HO-1
induction, levels of PGC-1𝛼 and markers of mitochondrial
fusion increase in adipose tissue, oxidative stress decreases,
and lipogenesis and liver function in obese mice improve.

A HFD increases the expression of the FIS1 gene,
which regulates mitochondrial fission, while concomitantly
reducing the expression of those genes responsible for
mitochondrial quality control and fusion processes, fueling
ROS generation, and causing tissue inflammation [49]. An
inverse relationship exists between Mfn2 mRNA levels in
skeletal muscles and BMI. Consistent with these obser-
vations, skeletal muscle from obese subjects presents an
altered, fragmented mitochondrial network, associated with
nutrient oxidation, respiratory chain defects, and IR [50].
Additionally, liver MFN2 levels are decreased in obesity, but
increased by increasing HO-1 levels, thereby reducing the
severity of NASH. In particular, increased levels of HO-1
decrease steatosis and abolish fibrosis, and the NAS score is

reduced. In agreementwith our data, NASHand fatty liver are
both associated with IR, but NASH alone is associated with
mitochondrial structural defects [51]. Finally, since hepcidin
is released from adipose tissue and is upregulated by NOV, it
follows that there would be increased hepcidin in individuals
with higher BMI and metabolic abnormalities who would
be more likely to develop NASH [1]. Thus, considering only
a small percentage of patients with NAFLD progress to
NASH, an increase in hepcidin might explain the conversion
and associatedmitochondrial dysfunction and inflammation.
Additionally, differences may exist in patients with fatty liver
based on different genetic backgrounds of these individuals
(increased heme-NOV and a decrease in HO-1 expression).

In conclusion, these data identify that a decrease in
adipose and hepatic HO-1 is associated with an increase in
adipose-derived NOV activation and that these perturba-
tions can be regarded as key mediators in the development
and progression of obesity-induced fibrosis and NASH.
Decreased heme levels result in improved mitochondrial
function and decreased FAS with an overall reduction in
NOV-inflammation, fibrosis, and NASH scores (summarized
in Figure 8). As the pursuit of a reliable surrogate marker
of inflammation and fibrosis continues, liver histopathology
is reflected by the NAFLD Activity Score, which remains
the gold standard end-point of therapeutic efficacy. However,
future pharmacologic targeting of the NOV/HO-1 axis may
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prove fruitful in reducing the severity of a disease process that
is increasing significantly in prevalence.
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