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Abstract

Leptin has shown positive effects on respiratory function in experimental settings. The role

of leptin on perioperative respiratory function in morbidly obese patients has not been estab-

lished. We performed a retrospective analysis of morbidly obese patients undergoing lapa-

roscopic sleeve gastrectomy. Fasting serum leptin and interleukin (IL)-6 were measured

preoperatively, and arterial blood gases were obtained pre- and postoperatively. Outcome

variables were arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon

dioxide (PaCO2), and differences in PaO2 and PaCO2 between pre- and postoperative val-

ues (ΔPaO2, ΔPaCO2; postoperative minus preoperative). Patients with lower (<40 μg/L)

and higher (�40 μg/L) leptin levels were compared. Bravais-Pearson’s correlation, multiple

linear regression, and logistic regression analysis were performed. A total of 112 morbidly

obese patients were included. Serum leptin was significantly higher in females than in males

(42.86±12.89 vs. 30.67±13.39 μg/L, p<0.0001). Leptin was positively correlated with body

mass index (r = 0.238; p = 0.011), IL-6 (r = 0.473; p<0.0001), and ΔPaO2 (r = 0.312; p =

0.0008). Leptin was negatively correlated with preoperative PaO2 (r = -0.199; p = 0.035).

Preoperative PaO2 was lower, ΔPaCO2 was smaller, and ΔPaO2 was greater in the high

leptin group than in the low leptin group. In multiple regression analysis, leptin was nega-

tively associated with preoperative PaO2 (estimate coefficient = -0.147; p = 0.023). In logis-

tic regression analysis, leptin was associated with improved ΔPaO2 (odds ratio [OR] =

1.104; p = 0.0138) and ΔPaCO2 (OR = 0.968; p = 0.0334). Leptin appears to have dual

effects related to perioperative gas exchange in obese patients undergoing bariatric sur-

gery. It is associated with worse preoperative oxygenation but improved respiratory function

after surgery.
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Introduction

The incidence and prevalence of obesity continue to increase globally [1]. Obesity has major

importance because of its strong association with morbidity and all-cause mortality [2–4].

Obesity reflects an imbalance between food intake and energy expenditure, leading to exces-

sive accumulation of adipose tissue [5].

Adipose tissue is not only the main storage site for surplus food energy, but it is also an

endocrine organ [5]. It produces bioactive substances, called adipokines or adipocytokines,

that initiate chronic low-grade inflammation and affect numerous processes in various organs.

Among these substances, leptin seems to have an integral role in morbid obesity [6]. Leptin is

a 16-kD protein encoded by the ob gene that interacts with receptors in the hypothalamus to

inhibit eating. Its importance is clearly illustrated by the extreme obesity observed in the ob/ob
mouse (C57BL/6J-Lepob), which cannot produce functional leptin [7].

Leptin may also have respiratory effects. Evidence from animal models suggests that leptin

stimulates ventilation. Acute leptin replacement significantly increases baseline ventilation [7–

9]. Leptin microinjections into the nucleus tractus solitarius of rat brains is associated with

increased ventilation, suggesting that leptin may act directly through the respiratory control

center [7–9]. Studies in several animal models, such as rats, mice, and baboons, identified lep-

tin receptors in the lungs, suggesting that these organs are also a target for leptin-mediated sig-

naling [7–9].

Obesity has well-established effects on respiratory function, which are exacerbated by

supine positioning, surgery, and anesthesia. Arterial blood gases are often abnormal in obesity,

characterized by hypoxemia and, less frequently, hypercapnia [10–12]. Data are lacking

regarding the potential respiratory effects of leptin in obese patients. Examining pulmonary

effects is complicated, as it can be difficult to distinguish the role of leptin from the effects of

obesity, as well as the biology of adipose tissue [7]. High leptin levels have been associated with

hypoxemia in obstructive sleep apnea-hypopnea syndrome (OSAHS) and obesity hypoventila-

tion syndrome (OHS) [13,14]. Leptin has not been heretofore investigated in the perioperative

period. The goal of this study was to explore the potential role of leptin on perioperative respi-

ratory function, assessed by gas exchange analysis, in patients with morbid obesity undergoing

bariatric surgery.

Materials and methods

Population

We conducted a retrospective evaluation using our hospital database and medical records of

morbidly obese patients who underwent laparoscopic sleeve gastrectomy under general anes-

thesia at our institution. We included only patients with obstructive sleep apnea (OSA) in

whom fasting serum leptin was measured preoperatively and arterial blood gases were mea-

sured preoperatively and postoperatively. Patients were recruited consecutively until the sam-

ple size was achieved. An equal allocation strategy was used to include adequate numbers of

patients with high (�40 μg/L) and low (<40 μg/L) serum leptin values. We chose 40 μg/L as

the cut-off based on previous studies [14,15]. No other exclusion criteria were applied.

Anesthesia

All patients underwent a standardized general anesthetic. Anesthesia was induced with propo-

fol 2 mg/kg lean body weight (LBW), ketamine 1 mg/kg LBW, and fentanyl 3–4 μg/kg LBW,

and neuromuscular blockade was achieved with rocuronium 1 mg/kg LBW [16]. After tracheal

intubation, the patients’ lungs were ventilated with a 35/65 oxygen/air mixture using a

Leptin and gas exchange

PLOS ONE | https://doi.org/10.1371/journal.pone.0199610 July 5, 2018 2 / 13

https://doi.org/10.1371/journal.pone.0199610


pressure-regulated volume-control mode (FLOW-i Ventilator, MAQUET Medical System,

Italy). The expiratory tidal volume was maintained at 8 mL/kg LBW, and the respiratory rate

was adjusted to keep the partial arterial carbon dioxide pressure (PaCO2) at 35–40 mm Hg.

Lung recruitment maneuvers were performed after tracheal intubation and immediately

before tracheal extubation. Anesthesia was maintained with desflurane to ensure a bispectral

index value of approximately 40. At the conclusion of surgery, sugammadex 2 mg/kg total

body weight was administered to ensure full reversal (train-of-four ratio�1.0) of moderate

neuromuscular blockade. Ketoprofen 100 mg and ondansetron 8 mg were also administered at

this time to reduce postoperative pain, as well as nausea and vomiting.

Endpoints

Preoperative and postoperative arterial partial pressure of oxygen (PaO2) and PaCO2 were the

primary outcome variables. Arterial blood was obtained for gas exchange analysis 15 minutes

before anesthesia induction and 15 minutes after tracheal extubation. We computed changes

in PaO2 and PaCO2 from before to after surgery as follows: ΔPaO2 = PaO2
POST–PaO2

PRE and

ΔPaCO2 = PaCO2
POST–PaCO2

PRE. Sex, age, and body mass index (BMI) before surgery were

recorded as potential confounding variables.

Fasting serum leptin concentration was measured within 1 month before surgery. As previ-

ous research indicated that leptin participates in inflammation modulation, promotes the pro-

duction of pro-inflammatory cytokines [5], and is a predictor of interleukin (IL)-6 in obese

juveniles [17], serum IL-6 concentrations were measured in each serum sample to explore the

relationship between leptin and IL-6.

Blood samples

Arterial blood was obtained for gas exchange analysis using a small caliber needle to minimize

patient discomfort. Gas exchange analysis was performed immediately after sampling using

the Rapidlab11200 System (Siemens Healthcare Diagnostics Ltd., Camberley, UK).

Venous blood sample for leptin and IL-6 was collected into a 10-mL vacutainer before

noon, after patients underwent a 12-hour overnight fast. The sample was maintained in a poly-

styrene container with ice packs and brought quickly to the laboratory for analysis; all analyses

were performed within 2 hours of blood collection. Leptin was measured by radioimmunoas-

say (Mediagnost1, Reutlingen, Germany) according to the routine methodology used in our

institution’s laboratory. The analytical sensitivity of the assay was 0.1 ng/mL and the intra-

assay coefficient of variability was <5%. IL-6 was measured by electrochemiluminescence

immunoassay (Immulite 1, Siemens, UK England) according to our laboratory’s standard pro-

cedures. The intra-assay coefficient of variability was <7%.

Statistical analysis

The sample size was based on prior studies. A difference in preoperative PaO2 of 5 mm Hg

between low and high leptin groups was previously observed and considered clinically relevant

for predicting postoperative hypoxemia in obese patients [18,19]. PaO2 was assumed to be nor-

mally distributed, with a standard deviation homoscedastic between groups and equal to 10

mm Hg; the type I error was set as 0.05 and the type II error as 0.2; and data were anticipated

to be missing for approximately 10% of patients. Considering these assumptions and settings,

the sample size was calculated as 112 patients, divided equally between low and high leptin

groups.

Descriptive analysis was used to summarize patient characteristics. Normality of distribu-

tion of quantitative characteristics was analyzed using the Shapiro-Wilk test. Pre- and
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postoperative variables were compared using the paired t-test if the variable was normally dis-

tributed or the Wilcoxon signed rank test if it was non-normally distributed. To determine the

strength and direction of association between two variables, we used Bravais-Pearson’s correla-

tion test for normally distributed variables and Spearman’s rank correlation test for variables

that were not normally distributed.

Continuous variables are presented as mean ± standard deviation (SD) and 95% confidence

interval (CI). The two-tail Student’ t-test or two-tail Mann-Whitney U test was used to com-

pare low to high leptin groups for variables normally or non-normally distributed variables,

respectively. Median, minimum, and maximum values are reported for non-normally distrib-

uted variables. Sex distribution is presented as number (percentage) and compared between

groups using the chi-square test.

We used multiple linear regression analysis to determine the relationship between one

dependent normally distributed variable and one or more independent normally distributed

variables. For non-normally distributed variables, we first dichotomized continuous variables,

then conducted logistic regression analysis to determine odds ratios (ORs) with 95% CIs.

All statistical analyses were conducted using R version 3.4.0 (2017-04-21). P-values <0.05

were considered statistically significant.

Ethical statement

All procedures in the study were performed in accordance with the ethical standards of our

institutional research committee and the 1964 Helsinki declaration and its later amendments.

Formal consent was not necessary for this type of study (the data were analyzed retrospectively

and anonymously). The Ethics Committee for Clinical Research of Padova approved this

study.

Results

The characteristics of the 112 consecutive morbidly obese patients included in this study are

summarized in Table 1. There were more females than males (69 vs. 43, p<0.001). BMI did

not differ between females and males (44.54±6.23 vs. 45.16±5.06 kg/m2, p = 0.583). Females

had significantly higher serum leptin levels (42.86±12.89 vs. 30.67±13.39 μg/L, p<0.0001) and

PaO2
POST (82.91±11.96 vs. 77.02±8.60 mm Hg, p = 0.006) than males. No other significant

sex-related differences were observed.

In the total population, serum leptin correlated significantly with BMI, serum IL-6,

PaO2
PRE, and ΔPaO2 (Fig 1). BMI was significantly correlated with PaO2

PRE, PaCO2
PRE, and

ΔPaO2 (Fig 2).

Characteristics of the high leptin and low groups are shown in Table 2. The high leptin

group had a significantly lower PaO2
PRE, larger ΔPaO2, and smaller ΔPaCO2 than the low lep-

tin group. No other significant differences in gas exchange parameters were observed between

groups.

During multiple regression analysis, male sex (p = 0.021), BMI (p = 0.004), and serum lep-

tin (p = 0.023) were negatively associated with PaO2
PRE, and male sex (p = 0.0059) was nega-

tively associated with PaO2
POST. Age (p = 0.005) and BMI (p = 0.003) were positively

associated with PaCO2
PRE. No variables were significantly associated with PaCO2

POST

(Table 3).

In logistic regression analysis, serum leptin (p = 0.013) and BMI (p = 0.024) were signifi-

cantly associated with ΔPaO2, whereas only leptin (p = 0.021) was significantly associated with

ΔPaCO2 (Table 4).
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Discussion

This study demonstrated that leptin (as well as BMI and male sex) was negatively associated

with preoperative respiratory function—mainly associated with a reduced PaO2—and posi-

tively associated with postoperative respiratory function—as evidenced by improved gas

exchange.

Obesity is associated with worse gas exchange compared with normal-weight individuals

[20]. Even in the current study involving only morbidly obese patients, higher BMI was associ-

ated with a lower PaO2
PRE, higher PaCO2

PRE, and greater ΔPaO2. Zavorsky et al. found lower

PaO2 (mean 81, range 50–95 mm Hg), normal PaCO2, and higher alveolar-to-arterial oxygen

partial pressure difference (P[A-a]O2 23, range 5–38 mm Hg) in morbidly obese patients. Fur-

thermore, morbidly obese men had poorer gas exchange at rest than morbidly obese women

[21]. Among 42 morbidly obese subjects scheduled for bariatric surgery, a 10-mm Hg PaO2

difference and an 8-mm Hg P(A-a)O2 difference were observed between sexes, with women

exhibiting superior gas exchange [22]. In obesity, adipose tissue accumulation in the chest wall

and thoracic cavity, increased pulmonary blood volume, and excessive abdominal contents

pushing the diaphragm upward decrease lung volume and compliance [23–26] and lead to

atelectasis, ventilation-perfusion mismatch, increased intrapulmonary shunting [11,23], and

heterogeneous airway narrowing [27]. These changes culminate in arterial hypoxemia and

sometimes hypercapnia [26–29].

Adipose tissue can also affect respiratory function through pro-inflammatory adipokines,

such as leptin [5,30]. Airway epithelial cells express leptin receptors, suggesting that visceral

and locally released leptin may affect airway function (as observed in animal models) and con-

tribute to airway remodeling in obese people [30]. Additionally, leptin may indirectly act on

airways through pro-inflammatory cytokines produced by inflammatory cells, such as tumor

necrosis factor [TNF]-α and IL-6 [7,24,30–33]. TNF-α promotes airway inflammation and

reactivity, increases airway smooth muscle cell contractility, and may be implicated in airway

remodeling [34]. In the current study, we observed a positive correlation between serum leptin

levels and serum IL-6 levels. IL-6 enhances airway inflammation and affects the function of

numerous non-inflammatory cells in the lung (e.g., epithelial cells, endothelial cells, smooth

Table 1. Characteristics of 112 morbidly obese patients included in the study.

Min Q1 Median Q3 Max IQR Mean SD 95% CI

Age (years) 24 42.8 47 52 68 9.3 46.9 8.3 45.3, 48.4

BMI (kg/m2) 34.7 41 44.8 47.7 66.2 6.7 44.8 5.8 43.7, 45.9

Serum leptin (μg/L) 12 28 40 48 88 20 38.2 14.3 35.5, 40.9

Serum IL-6 (ng/L) 1.5 2.5 3.4 4.3 11.3 1.82 3.8 1.9 3.4, 4.1

PaO2
PRE (mm Hg) 53.6 71. 8 78 85.8 100.3 14.0 78.7 9.1 77.0, 80.4

PaO2
POST (mm Hg) 51.4 73.0 79.5 87.1 112.2 14.2 80.7a 11.1 78.6, 82.7

ΔPaO2 (mm Hg) -63.9 -5.9 0.05 7.8 65 13.8 0.13 17.3 -3.1, 3.37

PaCO2
PRE (mm Hg) 24.7 34.8 38.1 40.8 51.8 6.0 37.8 4.2 37.0, 38.5

PaCO2
POST (mm Hg) 23.2 37.0 40.1 42.9 50.1 6.0 39.7b 5.2 38.8, 40.7

ΔPaCO2 (mm Hg) -28.2 -5.4 0.85 8.5 39.9 13.9 1.94 11.7 -0.24, 4.12

BMI, body mass index; CI, confidence interval; IL-6, interleukin 6; IQR, interquartile range; max, maximum; min, minimum; PaCO2
POST, postoperative arterial partial

pressure of carbon dioxide (PaCO2); PaCO2
PRE, preoperative PaCO2; ΔPaCO2, PaCO2

POST minus PaCO2
PRE; PaO2

POST, postoperative arterial partial pressure of oxygen

(PaO2); PaO2
PRE, preoperative PaO2; ΔPaO2, PaO2

POST minus PaO2
PRE; Q1, first quartile; Q3, third quartile; SD, standard deviation.

a p = 0.080 for PaO2
POST vs. PaO2

PRE (paired t-test)
b p<0.0001 for PaCO2

POST vs. PaCO2
PRE (paired t-test)

https://doi.org/10.1371/journal.pone.0199610.t001
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muscle cells, fibroblasts), acting directly and via other cytokines (e.g., IL-4 and IL-13) [35].

Interestingly, hypoxemia increases IL-6; this increase seems to be independent of pro-inflam-

matory adipokines [36]. Furthermore, leptin negatively modulates regulatory T cells and

increases Th1 proliferation (leading to increased interferon-γ production); both of these effects

are associated with airway hyperresponsiveness and airflow obstruction [37]. Leptin also stim-

ulates the release of vascular endothelial growth factor (VEGF) from airway smooth muscle

cells. VEGF may in turn promote subepithelial neovascularization and vascular permeability,

which are important findings related to the pathogenesis of asthma [37].

Sex steroid hormones are likely involved in the sex-related serum leptin differences

observed in the current study [38–40]. In murine adipocytes, leptin production and secretion

were reduced by dihydrotestosterone but increased by 17β-estradiol. [39]. Increased leptin

production per unit mass of adipose tissue induced by sex steroids may explain the higher

serum leptin levels in women [38–40]. Conversely, sex steroids do not appear to influence rest-

ing gas exchange [41]. Thus, a greater amount of metabolically active adipose tissue in males

may explain the differences in gas exchange previously reported between obese men and

women [20,22]. The lower PaO2
POST observed in men in our study may likewise be explained

by these differences in adipose tissue, as well as the lower serum leptin levels in men.

Obesity is one of the most important factors contributing to upper airway changes [42]. Fat

deposition in the soft tissue of the pharynx increases extraluminal pressure and augments the

mechanical load on the upper airway, thereby promoting upper airway narrowing and col-

lapse. In addition, central adiposity decreases lung volumes by diaphragm displacement, fur-

ther increasing pharyngeal collapsibility [43]. Postoperative upper airway or pharyngeal

dysfunction and muscle weakness following anesthesia are additional factors that promote

upper airway obstruction in obese patients, particularly those with OSA [1–3]. Animal models

have demonstrated that leptin prevents upper airway obstruction through both peripheral

mechanical and central neuromuscular actions [7]. Elevated serum leptin concentrations have

been associated with increased neuromuscular responses of the upper airway during sleep in

obese women scheduled for bariatric surgery [15]. Shapiro et al. hypothesized that leptin may

enhance compensatory neural mechanisms triggered by upper airway obstruction, thereby

reducing collapse of the upper airway and severity of OSAHS [15]. These responses were inde-

pendent of BMI and may be insufficient if upper airway mechanical loads (passive pharyngeal

critical pressure) are markedly elevated [13,15]. Using the ob/ob mouse model, Yao et al. iden-

tified activation of the forebrain (potentially the dorsomedial hypothalamus) as the mechanism

through which leptin reduces upper airway obstruction during episode of sleep apnea [44].

Leptin may also play a role in positively modulating respiration. Models of animals lacking

the gene responsible for leptin production exhibit marked abnormalities in breathing control,

leading to respiratory failure (hypoxemia and hypercapnia) [7]. Although the precise mecha-

nisms by which leptin exerts its respiratory effects remain under investigation [7], strong evi-

dence suggests important roles of the central nervous system, including the brain’s

melanocortin system [8]. Leptin increases the ventilatory response to CO2, which is likely

mediated by its action in hypothalamic and brainstem nuclei. In the hypothalamus, leptin’s

ventilatory effects appear to be mediated by the melanocortin system [8]. In the ob/ob mouse

model, Yao et al. identified the hindbrain (possibly the nucleus tractus solitarius) as the main

Fig 1. Correlation between serum leptin and other variables. As shown, leptin was positively correlated with BMI, serum

IL-6, PaO2
POST, and ΔPaO2 and negatively correlated with PaO2

PRE, PaCO2
PRE, PaCO2

POST, and ΔPaCO2. BMI, body mass

index; IL-6, interleukin 6; PaCO2
POST, postoperative arterial partial pressure of carbon dioxide (PaCO2); PaCO2

PRE,

preoperative PaCO2; ΔPaCO2, PaCO2
POST minus PaCO2

PRE; PaO2
POST, postoperative arterial partial pressure of oxygen

(PaO2); PaO2
PRE, preoperative PaO2; ΔPaO2, PaO2

POST minus PaO2
PRE; r, Bravais-Pearson correlation coefficient.

https://doi.org/10.1371/journal.pone.0199610.g001
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Fig 2. Correlation between body mass index and other variables. As shown, BMI was positively correlated with PaCO2
PRE, PaCO2

POST, and ΔPaO2 and

negatively correlated with PaO2
PRE, PaO2

POST, and ΔPaCO2. BMI, body mass index; PaCO2
POST, postoperative arterial partial pressure of carbon dioxide
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site of leptin’s effects on ventilatory control [44]. In humans, limited evidence has reinforced

the relationship between leptin and ventilatory function in obesity. High leptin levels and cen-

tral leptin resistance observed in OHS have been associated with hypoxemia and hypercapnia

[14]. In hypercapnic obese patients, noninvasive ventilation significantly reduced serum leptin

levels. These findings suggest that leptin may compensate for the increased ventilatory load in

obesity by maintaining alveolar ventilation, and that noninvasive ventilation may reduce the

need for high leptin levels to counteract the increased load [45].

This study has two main limitations. It is not a randomized controlled study and thereby

has the drawbacks of all observational studies. Furthermore, several factors, including aspects

of anesthetic care, may have influenced the postoperative data. Rapid, short-acting volatile

anesthetics, low doses of opioids, sugammadex for reversing rocuronium-induced neuromus-

cular blockade, and prophylactic intraoperative lung-protective mechanical ventilation have

been previously reported to improve postoperative respiratory function and gas exchange [46–

48]. However, when using a standardized approach incorporating these strategies (as in this

(PaCO2); PaCO2
PRE, preoperative PaCO2; ΔPaCO2, PaCO2

POST minus PaCO2
PRE; PaO2

POST, postoperative arterial partial pressure of oxygen (PaO2); PaO2
PRE,

preoperative PaO2; ΔPaO2, PaO2
POST minus PaO2

PRE; r, Bravais-Pearson correlation coefficient.

https://doi.org/10.1371/journal.pone.0199610.g002

Table 2. Characteristics of high and low serum leptin groups.

Variable Leptin (μg/L) p-value

<40

(n = 56)

�40

(n = 56)

Sex (%) Male 27 (48.2) 16 (28.6) 0.051

Female 29 (51.8) 40 (71.4)

Age (y) Mean (SD)

[95% CI]

47.12 (8.77)

[44.77, 49.46]

46.61 (7.8)

[44.52, 48.69]

0.742

BMI (kg/m2) Mean (SD)

[95% CI]

43.62 (5.64)

[42.11, 45.13]

45.94 (5.7)

[44.41, 47.46]

0.033

Serum leptin (μg/L) Mean (SD)

[95% CI]

26.77 (8.41)

[24.51, 29.02]

49.6 (8.83)

[47.23, 51.96]

<0.001

Serum IL-6 (ng/L) Mean (SD)

[95% CI]

3.14 (1.72)

[2.67, 3.60]

4.37 (1.95)

[3.84, 4.89]

<0.001

PaO2
PRE (mm Hg) Mean (SD)

[95% CI]

80.97 (7.32)

[79.01, 82.93]

76.44 (10.2)

[70.20, 79.67]

0.008

PaO2
POST (mm Hg) Mean (SD)

[95% CI]

78.85 (10.5)

[76.03, 81.66]

82.44 (11.5)

[79.36, 85.52]

0.088

ΔPaO2 (mm Hg) Mean (SD)

[95% CI]

-2.12 (9.49)

[-4.66, 0.42]

5.99 (12.17)

[3.44, 8.53]

<0.001

Median [min, max] -3.45 [-28.20, 25.50] 5.95 [-26.40, 39.90]

PaCO2
PRE (mm Hg) Mean (SD)

[95% CI]

37.35 (4.2)

[36.22, 38.47]

38.15 (4.1)

[37.05, 39.24]

0.317

PaCO2
POST (mm Hg) Mean (SD)

[95% CI]

40.47 (4.7)

[39.21, 41.72]

38.97 (5.5)

[38.49, 41.44]

0.128

ΔPaCO2 (mm Hg) Mean (SD)

[95% CI]

3.11 (5.19)

[1.72, 4.5]

0.82 (6.03)

[-0.79, 2.43]

0.0372

Median [min, max] 2.85 [-10.70, 13.70] 0.8 [-17.50, 10.10]

BMI, body mass index; CI, confidence interval; IL-6, interleukin 6; max, maximum; min, minimum; PaCO2
POST, postoperative arterial partial pressure of carbon

dioxide (PaCO2); PaCO2
PRE, preoperative PaCO2; ΔPaCO2, PaCO2

POST minus PaCO2
PRE; PaO2

POST, postoperative arterial partial pressure of oxygen (PaO2); PaO2
PRE,

preoperative PaO2; ΔPaO2, PaO2
POST minus PaO2

PRE; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0199610.t002
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study), it appears that high leptin levels are associated with improved respiratory function of

morbidly obese patients in the postoperative period.

Table 3. Multiple linear regression analysis to explain the relationship between gas exchange values and variables considered.

Variables Regression model Fitted regression model

Dependent Independent VIF EC SE t- value p-value AR2 p-value EC SE t- value p-value AR2 p-value

PaO2
PRE Sex (M) 1.257 -4.239 1.84 -2.291 0.024 0.138 <0.001 -4.287 1.83 -2.339 0.021 0.145 <0.001

Age 1.044 0.025 0.09 -0.260 0.794 - - - -

BMI 1.117 -0.426 0.14 -2.899 0.004 -0.420 0.14 -2.906 0.004

Leptin 1.318 -0.148 0.06 -2.292 0.024 -0.147 0.06 -2.295 0.023

PaO2
POST Sex (M) 1.257 -5.115 2.379 -2.149 0.0338 0.037 0.089 -5.885 2.098 -2.804 0.0059 0.058 0.006

Age 1.044 0.004 0.128 -0.036 0.971 - - - -

BMI 1.117 -0.103 0.189 -0.547 0.585 - - - -

Leptin 1.318 0.057 0.083 0.687 0.493 - - - -

PaCO2
PRE Sex (M) 1.257 1.539 0.856 1.798 0.074 0.128 <0.001 1.423 0.767 1.856 0.066 0.136 <0.001

Age 1.044 0.131 0.046 2.845 0.006 0.130 0.045 2.848 0.005

BMI 1.117 0.191 0.068 2.816 0.005 0.197 0.065 3.033 0.003

Leptin 1.318 0.009 0.029 0.310 0.757 - - - -

PaCO2
POST Sex (M) 1.257 0.778 1.138 0.683 0.496 -0.017 0.712 - - - - - -

Age 1.044 -0.006 0.061 -0.105 0.916 - - - -

BMI 1.117 0.045 0.090 0.498 0.619 - - - -

Leptin 1.318 -0.032 0.040 -0.812 0.418 - - - -

Multiple linear regression analysis was performed to explain the relationship between one dependent normally distributed variable (gas exchange parameters) and

independent normally distributed variables (sex, age, BMI, and serum leptin). Multicollinearity was not detected using variance inflation factors. Using the Akaike

information criterion, backward/forward stepwise regression analysis was then performed to choose the best model. BMI, body mass index; EC, estimate coefficient;

PaCO2
POST, postoperative arterial partial pressure of carbon dioxide (PaCO2); PaCO2

PRE, preoperative PaCO2; ΔPaCO2, PaCO2
POST minus PaCO2

PRE; PaO2
POST,

postoperative arterial partial pressure of oxygen (PaO2); PaO2
PRE, preoperative PaO2; ΔPaO2, PaO2

POST minus PaO2
Pre; SE, standard error; VIF, variance inflation

factor.

https://doi.org/10.1371/journal.pone.0199610.t003

Table 4. Logistic regression analysis between leptin and BMI and variation of gas exchange parameters.

Variables Regression model Fitted regression model

Dependent Independent VIF OR L95% U95% p-value OR L95% U95% p-value

ΔPaO2 Sex (M) 1.239 1.020 0.409 2.540 0.9670 - - - -

Age 1.040 1.010 0.964 1.060 0.6190 - - - -

BMI 1.069 1.090 1.010 1.180 0.0248 1.090 1.010 1.180 0.0246

Leptin 1.238 1.040 1.010 1.070 0.0218 1.040 1.010 1.070 0.0138

ΔPaCO2 Sex (M) 1.235 0.752 0.296 1.910 0.5480 - - - -

Age 1.063 0.966 0.917 1.020 0.1840 - - - -

BMI 1.108 0.974 0.904 1.050 0.4820 - - - -

Leptin 1.280 0.962 0.930 0.995 0.0231 0.966 0.938 0.995 0.0210

Logistic regression analysis was performed to explain the relationship between one dependent non-normally distributed variable (ΔPaO2 and ΔPaCO2) and independent

normally distributed variables (sex, age, BMI, and serum leptin). Multicollinearity was not detected using variance inflation factors. Using the Akaike information

criterion, backward/forward stepwise regression analysis was performed to choose the best model. BMI, body mass index; L95%, lower limit of the 95% confidence

interval (CI); OR, odds ratio; PaCO2
POST, postoperative arterial partial pressure of carbon dioxide (PaCO2); PaCO2

PRE, preoperative PaCO2; ΔPaCO2, PaCO2
POST minus

PaCO2
PRE; PaO2

POST, postoperative arterial partial pressure of oxygen (PaO2); PaO2
PRE, preoperative PaO2; ΔPaO2, PaO2

POST minus PaO2
PRE; U95%, upper limit of the

95% CI; VIF, variance inflation factor.

https://doi.org/10.1371/journal.pone.0199610.t004
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Conclusions

Although the precise mechanisms by which leptin affects respiratory function are not yet

established, our data suggest that leptin is involved in respiration and may exert a stimulatory

ventilatory effect in obese patients undergoing bariatric surgery. Leptin appears to have dual

effects, as it is associated with worse preoperative oxygenation but improved respiratory func-

tion after surgery.
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