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Highlights 

 Increased vapour-pressure deficit significantly reduced survival of aquatic plants. 

 Elevated temperature reduced regeneration capacity even at higher relative humidity.  

 Mortality rates increased under longer desiccation exposure across all treatments. 

 Overall, longer exposure times also resulted in reduced regeneration capacity. 

 Floating species displayed a greater regeneration capacity than submerged macrophytes. 

 

 

Abstract 
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Invasive alien species represent a serious worldwide threat to natural and semi-natural ecosystems. 

Although successful overland transport of invasive aquatic macrophytes can be facilitated by more 

mobile organisms or anthropogenic activity, tolerance to desiccation is likely a limiting factor. 

Particularly in the case of vegetative fragmentary propagules. Here we examined survival and 

subsequent viability (i.e. regeneration by production of new shoot or root growth) for whole plantlets 

of two floating (Azolla filiculoides, Lemna minuta) and stem fragments of three submerged (Elodea 

canadensis. E. nuttallii, Lagarosiphon major) invasive macrophytes following exposure to different 

desiccation regimes. Species were exposed to selected temperature (20, 27, 36 °C) and relative 

humidity (18, 38, 60, 85 % RH) combinations for up to six hours. In general, floating plants displayed 

greater survival and viability than submerged species. Overall, survival and viability decreased 

significantly for all species with increased desiccation exposure times. In essence, increased vapour-

pressure deficit significantly reduced survival of aquatic plants. Although reduced humidity rates 

particularly decreased survival and viability, increased temperatures were observed to bolster the 

impact of certain humidity treatments. In particular, when exposed to low RH (≤ 38 %RH), little or no 

viability was observed after 2 h. Contrastingly, propagules kept under RH above 60 % RH at 20 °C 

retained viability for considerably longer intervals above 4 - 6 h. Overall, desiccation as a biosecurity 

tool alone is likely inadequate to prevent the spread of fragmentary propagule stages, as even small 

desiccated fragments that appear to be dry may still be viable.  

 

Key words: aquatic invasive species, biosecurity, desiccation-tolerance, invasive plants, invasive 

species management, spread prevention, vapour-pressure deficit.  

 

 

Introduction 

Globally, aquatic invasive species (AIS) are a major driver of detrimental change to freshwater 

ecosystems (Sala et al. 2000; Simberloff et al. 2013; Havel et al. 2015; Piria et al. 2017). In particular, 
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invasive aquatic plants such as invasive macrophytes, can negatively alter freshwater community 

dynamics and ecosystem function, often via the establishment of abundant populations that threaten 

native biodiversity through a variety of physical, chemical and biological impacts (Schultz and Dibble 

2012; Kuehne et al. 2016; Lu et al. 2018; O’Hare et al. 2018). For example, replacement of native plant 

species by invasive macrophytes can lead to reduced invertebrate and fish diversity, and water quality 

deterioration (Schultz and Dibble 2012; Lu et al. 2018). Management options for eradication and 

control of established invader populations are often complex, resource-intensive and costly endeavours 

(Hussner et al. 2017; Piria et al. 2017; Coughlan et al. 2018). Accordingly, biosecurity protocols that 

prevent further AIS spread have become an integral aspect of invasive species management 

(Simberloff et al. 2013; Caffrey et al. 2016; Cuthbert et al. 2018), and often represent the most cost 

effective management option (Hussner et al. 2017). 

While vectors that underpin the natural dispersal of AIS are frequently unknown (Coughlan et 

al. 2017c), freshwater systems are highly vulnerable to accidental or deliberate AIS introductions due 

to their exposure to multiple transport pathways (Dudgeon et al. 2006; Banha and Anastácio 2015; 

Banha et al. 2016). Despite a restricted ability to self-disperse, an abundance of AIS have successfully 

managed to rapidly colonise and recolonise hydrological unconnected sites (e.g. ponds and lakes; De 

Meester et al. 2002; Santamaría 2002; Hussner 2012; Coughlan et al. 2017b). Therefore, it has often 

been concluded that various means of assisted dispersal must be readily available to facilitate species 

spread and biological invasion (Santamaría 2002; Jerde et al. 2012; Barnes et al. 2013; Bruckerhoff et 

al. 2015; Green 2016). In particular, successful overland dispersal of AIS can be enabled by more 

mobile organisms (zoochory) such as birds (Green 2016; Coughlan et al. 2017a), and anthropogenic 

activity such as angling and boating (Johnson et al. 2001; Rothlisberger et al. 2010).  

Tolerance to desiccation is a limiting factor in the overland dispersal of many AIS, particularly 

invasive macrophytes (Evans et al. 2011; Barnes et al. 2013; Bickel et al. 2015). Accordingly, various 

stakeholder groups actively promote best practice biosecurity protocols (e.g. ‘Check, Clean, Dry’) 

which incorporate desiccation as a tool to reduce invader spread (Anderson et al. 2014). Moreover, 

desiccation also represents a critical challenge to the survival of established aquatic plants during 
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periods of water loss, such as seasonal drought or other periods of water drawdowns (Barrat-Segretain 

and Cellot 2007; Barnes et al. 2013). Accordingly, quantifying survival and subsequent viability (i.e. 

regeneration by production of new shoot or root growth within a specified time period) of invasive 

macrophyte vegetative propagules following desiccation can contribute to predicting dispersal ability, 

enhance biosecurity protocols with extended drying times, improve AIS eradication and control 

techniques, and inform correct disposal of weeds following removal from infested sites or 

contaminated equipment (Barnes et al. 2013; Bruckerhoff et al. 2015; Hussner et al. 2017). 

Many invasive aquatic macrophytes predominantly reproduce and spread by vegetative 

propagation, particularly via vegetative fragments (Umetsu et al. 2012; Li et al. 2015; Redekop et al. 

2016). Plant fragmentation within aquatic environments is considered to occur through either self-

induced autofragmentation or allofragmentation, i.e. fragmentation as a result of disturbance, such as 

changes in water velocity, sediment mobility, and animal or anthropogenic activity (Riis et al. 2009; 

Heidbüchel et al. 2016). In particular, foraging herbivores are thought to facilitate fragmentary 

propagule creation and dispersal (Bakker et al. 2016). Although fragments are predominately spread 

within the aquatic medium by water currents (hydrochory), desiccation tolerances of vegetative 

fragments are key to understanding their overland dispersal. Yet, surprisingly, little information exists 

within the literature on how desiccation influences survival and viability of aquatic plant fragments 

(Evans et al. 2011). Although previous studies have attempted to quantify desiccation tolerance for 

some invasive macrophytes, most studies have simply analysed desiccation under ambient laboratory 

or field conditions, while a few have replicated average expected field conditions for a given time of 

year (see Jerde et al. 2012; Barnes et al. 2013; Bruckerhoff et al. 2015). However, zoochorous and 

anthropogenic vectors can provide climatic envelopes that are distinct from the ambient, which may 

either enhance or decrease the dispersal potential of aquatic plant propagules by provision of 

differential desiccation regimes (temperature and humidity; Jerde et al. 2012; Coughlan et al. 2015a), 

which can be expressed in relation vapour-pressure deficit (VPD), i.e. the difference between the actual 

moisture content and the total saturation point for air at a given temperature.  
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In this study, we determined the survivability and subsequent viability of five invasive aquatic 

macrophytes exposed to differential desiccation regimes of selected temperature (20, 27 and 36 °C) 

and relative humidity (18, 38, 60 and 85 % RH) combinations, for up to 6h. Two species with floating 

and three species with fully submersed lifecycles were selected. All selected species can reproduce via 

relatively small vegetative fragments, such as one frond, or a single node stem fragment (see 

Heidbüchel et al. 2016). We hypothesise that floating, rather than submerged, species will better 

tolerate desiccation regimes for longer exposure times (as these species are, at least in part, naturally 

exposed to the air). Similarly, we hypothesised that cooler air temperature and higher air moisture 

content (i.e. high RH; low VDP values) will promote greater propagule survivability and subsequent 

viability.  

 

Methods  

Cultivation of study organisms  

A stock of Azolla filiculoides Lamarck, was cultivated in non-aerated aquaria on half-strength Hutner’s 

growth media, a prepared culture media for provision of nutrients for optimal growth (Brain and 

Solomon 2007). Equally, non-axenic cultures of Lemna minuta Kunth, were maintained on half-

strength Hutner’s growth media in 100 ml magenta vessels within the laboratory under a natural 

daylight and ambient temperature regime (Lahive et al. 2011). Stocks of Elodea canadensis Michx., 

E. nuttallii (Planchon) H. St. John, and Lagarosiphon major (Ridley) Moss, were separately 

maintained in aerated aquaria filled with pond water and containing soil substrate both obtained from 

the research ponds and gardens adjacent to the School of Biological, Earth and Environmental 

Sciences, University College Cork, Ireland. All species displayed excellent survival and sustained 

growth over a three month cultivation period. All species were collected locally during spring and 

summer months from different sites throughout County Cork, Ireland. All waste invasive plant material 

was destroyed by autoclaving.  
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Desiccation Protocol 

To better asses varying environmental scenarios, desiccation regimes consisted of various selected 

temperature (20, 27, 36 °C) and humidity (18, 38, 60, 85 % RH) combinations (Table 1). Temperatures 

were chosen to reflect typical ambient summer conditions across temperate latitudes (20 – 27 °C; e.g. 

Jerde et al. 2012), when decontamination of equipment by drying may be attempted (Anderson et al. 

2014). In addition, the reported temperature range of known zoochorous microclimate envelopes (21 

– 33 °C; Coughlan et al. 2015a) are considered. A broad range of relative humidity condition were 

examined to assess disparity of VPD across selected temperatures. Replication of treatments varied 

with species: floating species n = 9, submerged species n = 18). A chick brooder (Brinsea TLC-40 

Advance Brooder) was used to provide a climatically controlled chamber. Conditions were monitored 

and recorded in real-time using a MSR data-logger with a dual temperature (± 0.5 °C) and humidity 

(± 2 % RH) sensor (MSR145B4A, FT/020, FH/020, FP/020; MSR® data-loggers and measuring 

instruments). The specified temperatures and humidity combinations remained stable throughout the 

experiments, excepting 85 % RH at 36 °C which was excluded from his study. Silica gel beads were 

used to reduce humidity to low levels as required. Desired conditions of temperature and humidity 

were pre-set and established before plants were placed in the chamber. Independent desiccation trials 

were run for each species at all temperature and humidity combinations. At each sampling time point, 

propagules (or propagule groups) were selected and returned to the growth medium in separate 

magentas. All control samples were directly transferred between magenta vessels, without exposure to 

drought. Control n = 9 and 18 for floating and submerged species, respectively. Following a set time 

period for recovery and resumption of growth, propagules were assessed for survival (presence or 

absence of new shoot or root growth) and viability (i.e. generation of biomass over a specific period 

of time). The standard conditions for plant growth were 16 h light and 8 h darkness at a light intensity 

of 50 μmol·m-2·s-1 (cool white fluorescent lamps) and a temperature of 22 ± 2 °C. 

 

Preparation and desiccation sampling 
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Fresh summer growth of A. filiculoides was harvested from the aquaria and excess media gently 

removed using filtration paper. Damp plantlets were weighed and those ranging between 200 – 270 

mg were selected and briefly returned to growth media (circa 30 mins) before experimental 

commencement. All plantlets were then removed from the media and gently dried using filtration 

paper. Damp plantlets were individually placed on inverted petri-dishes. All petri-dishes were 

simultaneously placed within the climate chamber to undergo desiccation. Samples were returned to 

fresh growth medium (150 ml) at regular intervals for up to 4 h to quantify desiccation survivability 

and viability. Plantlets which displayed a resumption of growth after drought stress were considered 

to have survived, and viability was measured as biomass after ten days, under standard growth 

conditions. 

Lemna minuta colonies were extracted from the magenta vessels and excess media was gently 

removed using filtration paper. Damp colonies were then spread out on inverted plastic petri-dishes. 

The petri-dishes were simultaneously loaded with L. minuta and placed within the experimental 

chamber. Samples (i.e. propagule groups, each comprised of four colonies of three fronds) were 

returned to fresh growth medium (100 ml) after having been kept for up to 6 h within the climate 

chamber. Plantlets which displayed a resumption of growth after drought stress were considered to 

have survived, and viability was measured as biomass after seven days, under standard growth 

conditions.  

Fragments of E. canadensis, E. nuttallii and L. major, were harvested from mature plants. 

Fragments were cut from the top sections of unbranched stems, and apical buds were excluded. 

Selected fragment length (mean ± SE) was based on the number of nodes (E. canadensis: 56.8 ± 1.1 

mm, n = 10 nodes; E. nuttallii: 43.5 ± 1.2 mm, n = 8 nodes) or the number of whorls (L. major: 23.1 ± 

0.3 mm, n = 5 whorls). Fragments were cut immediately above the final node/whorl at the upper end 

and immediately below that of the lower. In previous experiments, ≥ 70 % survival was observed at 

these node and whorl counts (Reidy et al. unpublished). Fragments were harvested as required and 

briefly maintained in pond water filled aquaria prior to experimental use (c. 30 mins). Plant fragments 

were then randomly selected from the aquaria, excess media was gently removed using filtration paper, 
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and fragment length and weight was recorded. Damp plant fragments were re-weighed and placed in 

groups of three (one fragment of each species) on inverted plastic petri-dishes within the experimental 

chamber. Samples were returned to pond water (200 ml; sterilised by autoclave in advance) at regular 

intervals for up to 4 h to quantify desiccation survivability and viability. Resumption of growth after 

drought stress was assessed by the presence of new growth and/or roots after 28 days, under standard 

growth conditions. Propagules which displayed new shoot and/or root growth were considered to have 

survived, while the biomass of new shoot growth was used as a measure of viability. New growth was 

removed from the old and weighed separately. 

 

Statistical analysis 

Statistical analyses were performed using R v3.4.4. (R Core Development Team 2018). The effect of 

vapour-pressure deficit (VPD) on overall plant survivability was analysed using a generalised linear 

model (GLM) assuming a binomial error distribution across the ubiquitous 1 h and 2 h exposure 

treatments. A binary classification was used to differentiate between floating and submerged species. 

Then, survivability of floating (A. filiculoides and L. minuta) and submerged (E. canadensis, E. 

nuttallii and L. major) experimental plant groups was analysed separately across their analogous 

exposure treatments (up to 4 h). Azolla filiculoides and L. minuta were additionally assessed 

individually as survivability and viability were considered following different exposure times (up to 6 

h). Here, the effects of desiccation treatment, exposure time and species on overall survivability within 

plant groups were assessed individually using separate GLMs. The generation of new biomass in plant 

groups was analysed non-parametrically using proportional odds logistic regression, again in respect 

to the desiccation treatment, exposure time and species effects. Explanatory terms of non-significance 

were eliminated from all models to achieve parsimony. We employed Tukey’s contrast post hoc tests 

to generate multiple comparisons where an explanatory variable yielded significance at the 95 % 

confidence level. 
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Results 

Vapour-pressure deficit (VPD) related mortality 

Increasing VPD (see Table 1) significantly reduced the survivability of aquatic plants during 

desiccation treatments (χ2 = 80.24, df = 1, P < 0.001), and survivability was significantly lower under 

longer exposure times (χ2 = 64.88, df = 1, P < 0.001). Further, there was a significant ‘VPD × exposure’ 

interaction (χ2 = 17.86, df = 1, P < 0.001), reflecting greater VPD-related mortality under longer 

exposure times. Floating rather than submerged species better survived all desiccation regimes at the 

ubiquitous 1 hr and 2 hr exposure treatments (χ2 = 519.58, df = 1, P < 0.001). Moreover, the effect of 

increasing VPD appears to be driven by RH rather than temperature under the current experimental 

parameters.  

 

Survival and viability of Azolla filiculoides and Lemna minuta 

Azolla filiculoides and L. minuta displayed limited survivability under low RH conditions, and 

desiccation impact tended to increase with temperature (Fig. 1). Desiccation treatments significantly 

reduced the overall survivability of A. filiculoides (χ2 = 129.46, df = 11, P < 0.001) and L. minuta (χ2 

= 155.50, df = 11, P < 0.001) and mortality rates increased under longer desiccation exposure times 

for both species (A. filiculoides, χ2 = 153.55, df = 1, P < 0.001; L. minuta, χ2 = 135.51, df = 1, P < 

0.001).  

Overall, treatment significantly affected viability, i.e. generation of biomass, in both A. 

filiculoides (χ2 = 237.74, df = 11, P < 0.001) and L. minuta (χ2 = 287.27, df = 11, P < 0.001), and 

biomass generation was significantly reduced under longer desiccation exposure times for both species 

(A. filiculoides, χ2 = 120.85, df = 1, P < 0.001; L. minuta, χ2 = 92.42, df = 1, P < 0.001). Desiccation 

treatments under 18 % RH, 38 % RH and 60 % RH reduced A. filiculoides biomass generation 

significantly when compared to control groups irrespective of temperature regime (all P < 0.01), whilst 

only L. minuta exposed to 18 % RH was significantly different to controls across all temperatures (all 

P < 0.01). Temperature increases from 20 °C to 36 °C significantly reduced growth of treated A. 
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filiculoides at 38 % RH (P = 0.04), however, there was no statistically significant effect at other 

humidity levels across corresponding temperatures (all P > 0.05). Contrastingly, for L. minuta, 

temperature increases from 20 °C to 36 °C significantly reduced growth at 60 % RH (P < 0.001) alone. 

Overall, both species retained some viability after 1 h exposure even at low humidity of 18 % RH 

across all temperatures, but in most instances displayed little or no survival after 2 h of exposure under 

lower RH levels (Fig. 1). At 60 % RH, A. filiculoides and L. minuta retained viability for over 2 h and 

between 4 - 5 h, respectively, for all tested temperatures. At 85 % RH, increased temperatures tended 

to reduce viability of A. filiculoides to a greater extent than L. minuta. In general, L. minuta displayed 

greater levels of viability than A. filiculoides across the majority of experimental desiccation regimes 

(Fig. 1). 

 

Survival and viability of Elodea canadensis, E. nuttallii and Lagarosiphon major 

Survival of E. canadensis and E. nuttallii was minimal across all desiccation treatments. Survivability 

of L. major was similarly greatly reduced under longer exposure times and lower humidity levels. Yet, 

L. major demonstrated relatively high survivability through regeneration of both shoots and roots under 

shorter exposure times and higher humidity levels (Table S1). Across all species, survivability 

demonstrated via shoot regrowth was generally more pronounced than root regrowth alone. Overall, 

however, humidity and temperature treatments significantly reduced the survivability of E. canadensis, 

E. nuttallii and L. major (χ2 = 199.14, df = 11, P < 0.001) and mortality increased under longer 

desiccation exposure times (χ2 = 47.50, df = 1, P < 0.001). Survivability was significantly different 

between the three submerged species (χ2 = 92.41, df = 2, P < 0.001), reflecting greater survivability of 

L. major compared to both Elodea species (all P < 0.001). However, this effect was dependent on the 

desiccation treatment given the ‘treatment × species’ interaction yielded significance (χ2 = 42.39, df = 

22, P = 0.006), wherein particularly high survivability was recorded for L. major at higher humidity 

levels relative to the other species. Yet, this effect was nullified under lower humidity levels and longer 

exposure times (Table S1). 

ACCEPTED M
ANUSCRIP

T



 

 

Biomass generation of submerged spp. was significantly affected by desiccation treatment (χ2 = 

198.11, df = 11, P < 0.001) and was reduced significantly under increasing desiccation exposure times 

(χ2 = 49.49, df = 1, P < 0.001). Overall, exposure to 18 % RH, 38 % RH and 60 % RH significantly 

reduced biomass generation irrespective of temperature regime when compared to control groups (all 

P < 0.001). Although biomass generation was substantially reduced overall at 85 % RH treatments 

relative to control groups across all examined temperatures (20 °C and 27 °C) these effects were not 

found to be significant at either temperature  (all P > 0.05). Generally, a decrease biomass production 

under desiccation at low humidity treatments was substantial and sustained regardless of temperature 

(all P < 0.001). However, for L. major, the 60 % RH treatment tended to anomalously drive greater 

biomass generation under increasing temperatures (Fig. 2). Biomass generation was also significantly 

different between species (χ2 = 97.39, df = 2, P < 0.001), with L. major generating significantly more 

biomass overall than both Elodea species following desiccation treatments (all P < 0.001). However, 

a significant ‘treatment × species’ interaction (χ2 = 40.90, df = 22, P = 0.009) indicated that such 

species-level effects were treatment-dependent, reflecting far greater biomass generation by L. major 

at higher RH levels relative to other species (Fig. 2). Indeed, at 85 % RH L. major retained viability 

for 4 h post-removal from the aquatic medium. Overall, although E. canadensis and E. nuttallii 

plantlets exhibited particularly low viability across RH and temperature regimes, substantial mortality 

was observed for all three species under longer desiccation exposure times and lower RH treatments 

(Fig. 2). 

 

 

Discussion 

Differential desiccation resistance between floating and submerged species 

As predicted, floating, rather than submerged, species better tolerated desiccation regimes for longer 

exposure times. Overall, survival and viability, i.e. regeneration by production of new shoot or root 

growth within a specific time, decreased significantly for all species with increased time spent outside 
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the aquatic medium. Similarly, propagules kept under lower VPD displayed greater survivability. 

Although the effects of reduced humidity were particularly profound in decreasing survival and 

viability, increased temperatures and longer exposures were observed to bolster the impact of some 

humidity treatments. This was especially the case for floating species, which displayed relatively 

higher survivability and viability under lower temperature treatments. Submerged species, particularly 

Elodea spp., displayed marked reductions in survival and viability, with little or no biomass 

regeneration observed at short exposure times irrespective of temperature treatment. In general, 

sustained viability post desiccation was most frequently indicated by new shoot growth alone, followed 

by combined shoot and root growth. Little overall root growth may reflect the lack of sediment within 

the magenta vessels. Accordingly, enhance fragmentary survival could possibly occur in the presence 

nutrient-rich sediment (Li et al. 2015).  

The data here present clear, species-specific desiccation tolerances for the examined invasive 

aquatic macrophytes at the specified conditions and exposure times. Better tolerance of desiccation 

exposure by floating aquatic plantlets likely reflects the use of whole plants rather than fragmented 

sections. Accordingly, neither L. minuta nor A. filiculoides were subjected to the added stress of 

fragmentation. The mechanical stress of stem fragmentation may have contributed to the reduced 

desiccation resistance displayed by the examined submerged species. Equally, the cuticle layer of 

submerged aquatic macrophytes may simply be minimised or lacking (Mommer and Visser, 2005), 

making these plants more susceptible to desiccation. Thus, a more substantial cuticle layer will likely 

aid the desiccation resistance of floating and emergent species, and therefore overland dispersal.  

The present study also excluded apical tips for submerged, but not for floating, species. 

Vegetative reproduction of A. filiculoides and L. minuta occurs within meristematic tissue located at 

the centre of plantlet and base of fronds. Submerged fragments with apical tips generally have greater 

colonization and regeneration abilities, and higher growth rates than fragments without apical tips (Riis 

et al. 2009; Umetsu et al. 2012). Therefore, it is reasonable to assume that fragmentary propagules of 

submerged species with an apical tip would likely retain greater post desiccation viability than those 

without. In addition, larger fragments generally have greater colonization and regeneration abilities 
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than smaller ones, due to their higher energy reserves and photosynthetic rates (Riis et al. 2009; Kuntz 

et al. 2014; Li et al. 2015). In an examination of E. nuttallii fragment survival that included the apical 

tip, Hoffmann et al. (2015) observed the percentage mortality of fragments to decrease with a higher 

numbers of initial nodes. However, even relatively small vegetative fragments, such as one frond, or a 

single node stem fragment can retain substantial regeneration capacities (Kuntz et al. 2014; Heidbüchel 

et al. 2016). Therefore, while larger fragments and greater node counts will likely retain a greater 

capacity for survival, the influence of fragment size on plant dispersal and colonization ability requires 

confirmation (Kuntz et al. 2014; Hoffmann et al. 2015; Redekop et al. 2016). Moreover, large clumps 

of plant material, such as stems coiled into several layers, can display increased resistant to desiccation. 

This greater tolerance to desiccation follows general physical principles, as larger clumps should have 

a lower surface area to volume ratio than single stems, and thus lower evaporative loss (Bruckerhoff 

et al. 2015).  

 

Cooler temperature and higher air moisture content will promote survivability and viability. 

Unsurprisingly, lower temperatures and higher relative humidity (i.e. low VPD values) improved 

overall desiccation resistance. Under these conditions water loss rates are reduced as the air becomes 

more saturated. Accordingly, cooler damp conditions will likely promote invader spread. Although 

known microclimatic regimes of zoochorous vectors will vary, propagules entangled within the 

plumage of mallard ducks (Anas platyrhynchos) can experience conditions between 21 – 33 °C and 58 

– 72 % RH depending on the anatomical area (Coughlan et al. 2015a). Therefore assisted overland 

dispersal by waterbirds can provide for suitable conditions for the retention of substantial viability. 

Although daily movements by mallards between sites are often relatively short (3 – 5 km), some ducks 

have been recorded to regularly travel in excess of 20 km (Bengtsson et al. 2014). Moreover, at flight 

speeds of 65 km h-1, mallards can complete a long-distance dispersal movement within a two hour 

period (Coughlan et al. 2015b).  

Microclimatic regimes associated with anthropogenic transport of fragmentary propagules will 

likely vary quite markedly. Plant fragmentary propagule stages adhering to the external surfaces of 
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vectors such as vehicles, trailers and watercraft will likely experience more dramatic and less 

favourable conditions due to direct air and environmental exposure. However, propagules contained 

within equipment items such as kayaks, bait buckets, keep net bags, and propeller flag-bags, are likely 

to experience distinct microclimatic regimes of lower VDP rates. Although anthropogenic vectors can 

display a substantial disparity in frequency of differential river catchment visitation, some watersport 

enthusiasts are known to visits multiple different sites, often several times a week (Anderson et al. 

2014). Moreover, anthropogenic vectors can frequently travel long-distances (260 – 9500 km) between 

sites and across geopolitical borders (Anderson et al. 2014; De Ventura et al 2016). Accordingly, rapid 

long-distance dispersal of IAS may occur. For example, when transported overland, 67 % of all moored 

boats, are subsequently relaunched within less than two days (De Ventura et al 2016).  

Conditions other than temperature and humidity regimes, such as the circulation of air currents 

(i.e. wind speed) can greatly increase desiccation rates resulting in a substantial reduction in 

fragmentary propagule survival (Bickel 2015). Previously, L. minuta exposed to 58 % RH under 

stagnant air conditions (21 – 23 °C) retained viability for up to 4 h (Coughlan et al. 2015b), however, 

the current study suggest that viability beyond 4 h is possible. Despite this, biomass production was 

less than that observed by Coughlan et al. (2015b), including control sample growth. Stagnant versus 

circulated air experimental conditions may have influenced biomass production, as circulated air 

would prevent moist microclimatic shells to persist around damp Lemna colonies (Coughlan et al. 

2015a), thus decreasing subsequent viability. Accordingly, fragmentary propagules exposed to 

increased air currents during transport will likely display reduced survival and viability, dependent on 

exposure time.  

 

Receiving environments and success of dispersal 

After dispersal has occurred, conditions aside from desiccation exposure and initial propagule biomass, 

will also affect survival and viability. Species characteristics and many environmental variables, such 

as sediment nutrients, plant densities, and light intensity, will all affect macrophyte fragment survival 

and viability (Hoffmann et al. 2015; Kuntz et al. 2014; Li et al. 2015). For example, Hoffmann et al. 
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(2015) observed a decrease in the percentage mortality of E. nuttallii fragments with the addition of 

sediment during establishment trials. However, given that both zoochorous (Coughlan et al. 2017a) 

and anthropogenic vectors (Anderson et al. 2014) can frequently and rapidly move between freshwater 

sites, detachment of propagule stages may occur in a suitable receiving environment that is within the 

invaders ecological amplitude. Moreover, vectors such as waterbirds will regularly and purposefully 

remove foreign material from their plumage throughout the day, including while sitting upon the 

surface of waterbodies. Therefore, detachment occurring at a site favourable to establishment is highly 

possible.  

 

Biosecurity implications 

This study cannot predict the likelihood of establishment by dispersed aquatic macrophyte fragmentary 

propagules. Nevertheless, data presented here highlight the ability invasive fragmentary propagules to 

survive and retain viability post desiccation exposure, with some cases of viability after 6 h desiccation 

at relatively warm ambient temperatures (≥ 20 °C). Moreover, it is reasonable to assume that larger 

fragments, damp clumps, propagules with apical tips, would retain a greater capacity for survival and 

subsequent viability. Thus, biosecurity protocols utilising desiccation strategies to mitigate against 

invader spread, should consider prolonged desiccation (> 6 h) at high temperatures and low RH (i.e. at 

high VPD), and even substantially longer desiccation times for inverse conditions as minimum 

requirements. In practice, however, desiccation as a biosecurity tool alone is likely inadequate to 

prevent the spread of invasive macrophyte fragmentary propagule stages, as even small desiccated 

fragments that appear to be dry may still be viable. As compliance with biosecurity practices can be 

low (Anderson et al. 2014), with stakeholders experiencing a lack of clear guidance (Sutcliffe et al. 

2018), increased emphasis should be allocated to inspection and removal of adhering materials. 

However, good practice protocols such as ‘Check, Clean, Dry’ should continue to promote extended 

drying times after initial systematic examination and decontamination has occurred.  
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Figure 1. Biomass generation (mean ± SE) by Azolla filiculoides and Lemna minuta (both n = 9), 10 

and 7 days, respectively, post desiccation at selected temperatures and relative humidity (RH) 

combinations (see Table 1). All control samples were directly transferred between magenta vessels, 

without exposure to drought. 
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Figure 2. Formation of new shoot biomass (mean ± SE) by Elodea canadensis, E. nuttallii and 

Lagarosiphon major non-apical stem fragmentary propagules (all n = 18) 28 days post desiccation, 

and following exposure to selected temperature and relative humidity (RH) combinations (see Table 

1). Desiccation regimes of 18 % RH for all species, and 38 % RH for E. canadensis, omitted as no new 

shoot growth was observed. All control samples were directly transferred between magenta vessels, 

without exposure to drought. 
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Table 1: Experimental exposure of aquatic macrophyte propagule stages to desiccation regimes of selected temperature and relative humidity 

combinations. Calculated specific humidity (SH) and vapour-pressure deficit (VPD) are given.  

Temperature 
°C 

(± SE) 

Relative 
humidity 
 % RH 

Mean % RH 
achieved 
(± SE) 

Specific 
humidity 

g kg-1 

Vapour-
pressure deficit 

kPa 

Exposure time hr 

1 2 3 4 5 6 

20  (± 0.002) 18 18.5 (± 0.01) 2.59 1.92 All spp. All spp. -- -- -- -- 

20  (± 0.002) 38 37.9 (± 0.01) 5.47 1.45 All spp. All spp. -- -- -- -- 

20  (± 0.002) 60 59.9 (± 0.01) 8.65 0.94 All spp. All spp. All spp. All spp. L. minuta L. minuta 

20  (± 0.002) 85 85.1 (± 0.01) 12.28 0.35 All spp. All spp. All spp. All spp. L. minuta L. minuta 

27  (± 0.002) 18 18.5 (± 0.01) 3.95 2.93 All spp. All spp. -- -- -- -- 

27  (± 0.002) 38 37.9 (± 0.01) 8.36 2.21 All spp. All spp. A. filiculoides -- -- -- 

27  (± 0.002) 60 59.9 (± 0.01) 13.23 1.43 All spp. All spp. All spp. All spp. L. minuta L. minuta 

27  (± 0.002) 85 85.1 (± 0.01) 18.81 0.54 All spp. All spp. All spp. All spp. L. minuta L. minuta 

36  (± 0.002) 18 18.5 (± 0.01) 6.59 4.88 All spp. All spp. -- -- -- -- 

36  (± 0.002) 38 37.9 (± 0.01) 13.98 3.69 All spp. All spp. A. filiculoides -- -- -- 

36  (± 0.002) 60 59.9 (± 0.01) 22.18 2.38 All spp. All spp. All spp. All spp. L. minuta L. minuta 

36  (± 0.002) 85 -- 31.60 0.892 -- -- -- --  -- -- 
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