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a b s t r a c t 

The stress and deformation fields in a SMA ring or a thick-walled cylinder loaded by internal pressure 

at constant temperature (over the start temperature of the martensitic transformation) are determined 

in closed form under plane stress loading conditions. The phenomenological SMA constitutive model in- 

corporates the volume fractions of multi-variants Martensite, which are assumed to evolve linearly with 

the Tresca effective stress, according to the associative flow rule and the corner flow rule. Initially, the 

cylinder is everywhere in a state of Austenite. The application of an internal pressure then triggers the 

martensitic transformation starting from the inner radius of the cylinder wall and extending towards the 

outer radius. If the wall thickness is large enough, the tangential stress may vanish at the inner radius and 

correspondingly the stress state may reach a corner of the Tresca transformation condition, thus originat- 

ing two different Martensite variants according to the corner transformation rule. The admissible phase 

partitions within the wall thickness originating during the loading process have been systematically in- 

vestigated according to the ratio between the outer and inner radii. The results obtained here suggest that 

the loading process should be interrupted soon after the complete martensitic transformation is achieved 

at the inner radius of the cylinder to avoid permanent plastic deformations. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Due to their reliable performance and convenient installation,

MA couplings, fasteners and joints have been widely used for

neumatic and hydraulic connectors in aircraft and piping systems

 Kapgan and Melton, 1990; Borden, 1990, 1991; Brinson and Lam-

ering, 1993; Wang et al., 2005; Jee et al., 2006 ), as well as for

lectrical connectors ( Harrison and Hodgson, 1976 ). They indeed

rovide joints of the greatest mechanical and electrical reliabil-

ty and integrity, which can be quickly applied or removed. Re-

ently, an experimental and numerical study has been carried out

o assess the use of SMA rings as pipe couplers in radioactive ar-

as of high-energy particle accelerators, where thermally induced

ounting and dismounting operations can be operated remotely

 Niccoli et al., 2017 ). 

In order to exploit the full potential of SMA coupling systems, it

ecomes essential to estimate the stress distribution within these

omponents accurately. Severe stresses may develop during the

roduction stage or the installation of SMA coupling and may

ause unexpected mechanical deformation, damage and failure or

ust loss of efficiency ( Tabesh et al., 2013, 2017 ). To avoid such

echnological problems, it becomes necessary to predict the me-
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hanical stresses originated in SMA connections during each step

f their production and installation. A complete and detailed un-

erstanding of their stress and deformation history will be also

seful for improving their design, production and usage conditions.

SMA pipe couplings displaying cylindrical geometries are usu-

lly predeformed, so that they must be stored and transported

t low temperature and then installed by induction heating

 Brook, 1983 ). They are previously expanded by applying an inter-

al pressure at temperature T 0 over the start Martensite temper-

ture M s , thus inducing the martensitic transformation. After the

oupling is mounted on the pipe the temperature is increased to

ecover the residual deformation, taking advantage of the reversal

ustenitic transformation. As a consequence, the coupling diame-

er decreases and a contact pressure originates between pipe and

oupling. In the alternative method proposed by Jee et al. (2006) ,

MA coupling and pipe are deformed simultaneously and then the

oupling is contracted on heating in order to get the tightness also

ith a poor shape memory effect. 

The problem of a SMA ring used as a pipe connector was ini-

ially investigated by Brinson and Lammering (1993) by introduc-

ng the simplifying assumption of purely elastic behavior along the

adial direction. Later, Birman (1999) considered an infinite SMA

late with a circular hole and obtained a closed form approximate

olution by assuming a constant ratio between the radial and tan-
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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gential stresses. Chi et al., (20 03, 20 05 ) provided a detailed exam-

ination of the axisymmetric stress, strain and phase fraction fields

in an annular SMA plate. These analyses were restricted to isother-

mal loadings and assumed single variant Martensite, so that no

unloading process nor reverse transformation to Austenite or neg-

ative variant Martensite were taken into consideration. Moreover,

the assumption of an effective stress of von Mises type made in

those papers necessarily required a numerical approach. In a fur-

ther paper ( Chi et al., 2007 ), the same authors proposed numerical

algorithms for treating cyclic loading histories and applied them

to investigate the loading and unloading process of a SMA annular

plate. 

The study of the process of constrained recovery has been ini-

tially limited to uniaxial examples ( Liang and Rogers, 1990; Brin-

son, 1993; Leclercq and Lexcellent, 1996; Kosel and Videnic, 2007 ).

Nagaya and Hirata (1992) developed a simplified model of con-

strained recovery in SMA rings that considers only the tangential

stress and neglects the contribution of radial stresses to the effec-

tive stress. Such an extreme simplification allowed these authors

to use a uniaxial constitutive model, though it is reasonably ac-

curate only for thin-walled SMA rings. Wang et al. (2005) investi-

gated experimentally the effects of the wall thickness and temper-

ature range on the reverse transformation behavior of SMA pipe

joints. Videnic et al. (2008) presented a mathematical model of bi-

axial constrained recovery in a SMA ring. These authors adopted

a generalized effective stress of Tresca type, which allows to con-

sider unequal response in tension and compression. For the sake of

simplicity, they assumed a vanishing stress state in the deformed

ring after unloading. Such a supposition is not properly correct,

since residual stresses are always present in the SMA material after

loading-unloading cycle. Piotrowski et al. (2012) performed a com-

bined experimental and finite element analysis of a SMA pipe cou-

pler mounted on an instrumented elastic ring. The coupling pres-

sure predicted by FEA was in excellent agreement with the mea-

sured contact pressure. Mirzaeifar et al. (2012) performed a semi-

analytic study of the pseudoelastic response of a thick-walled SMA

cylinder subject to internal pressure, under plane stress or plane

strain conditions. These authors partitioned the cylinder into a fi-

nite number of annular regions and provided closed-form solutions

for the equilibrium equations in each annulus. Then, a numerical

solution was found by solving the system of nonlinear algebraic

equations obtained by enforcing stress continuity at the interface

between annular regions. Tabesh et al. (2013) provided a closed

form solution for the pseudoelastic response of a SMA thick-walled

cylinder subjected to internal pressure under plane stress or plane

strain loading conditions, for temperature higher than the finish

austenitic transformation A f . They assumed a simplified 2D consti-

tutive model for SMA that incorporates the Tresca transformation

criterion with associative flow rule and linear transformation law.

Moreover, they considered the simplifying assumption that the ax-

ial strain is constant within the wall thickness and thus the re-

sponse in the axial direction remains elastic. Liu et al. (2013) also

performed a similar investigation by considering the effects of a

radial temperature gradient. Later, Liu and Du (2014) provided the

analytical solution to the problem of isothermal loading of a pseu-

doelastic SMA cylinder under external pressure. In these analyses

the tangential stress is assumed to be always positive, as indeed

it occurs during loading and pseudoelastic unloading if the wall

thickness is sufficiently thin. In this case the effective Tresca stress

is given by the difference between radial and tangential stresses

and, thus, the Martensite transformation occurs with elongation in

the circumferential direction. However, the results of these inves-

tigations show that the tangential stress at the inner radius de-

creases during the loading process, especially for very large wall

thickness. If it becomes null, then a corner of the Tresca trans-

formation condition is attained and transformed Martensite starts
Please cite this article as: E. Radi, Evolution of multiple Martensite var
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longating along the axial direction also, according to the cor-

er flow rule. Namely, two different Martensite variants are pro-

uced within the corner region according to the corner flow rule

y means of two different lattice shearing mechanisms, which may

evelop within the planes orthogonal either to the axial direction

r to the tangential direction. Therefore, the latter analyses pro-

ide correct predictions for sufficiently thin-walled cylinders, but

hey may be inaccurate for a very thick-walled SMA cylinder under

lane stress loading conditions. In this case, a corner region with

ull tangential stress may take place during the loading process

tarting from the inner boundary, as it occurs for an elastic-plastic

hick-walled cylinder when the Tresca yield condition is adopted

 Koiter, 1953; Durban and Kubi, 1992; Masri and Durban, 2007 ). 

A complete and detailed analytical study of the shape mem-

ry effect induced by forward transformations of a very thick

MA cylindrical joint has never been performed by using a con-

titutive model that incorporates the phase fractions of multiple

artensite variants as internal variables, whose transformation oc-

urs in agreement with the normality rule on the Tresca sur-

ace. Most of the simulation available in the literature are com-

only performed by using finite element analysis incorporating 3D

onstitutive models for the thermomechanical behavior of SMAs

 Popov and Lagoudas, 2007; Piotrowski et al., 2012, Lagoudas et al.,

012; Zaki, 2012, Niccoli et al., 2017 ). The purpose of the present

tudy is to develop a rigorous analytical model with closed-form

olutions to predict the stress and displacement fields in a SMA

ing or thick-walled cylinder composed of several phases, namely

ustenite and two different Martensitic variants, subject to internal

ressure at constant temperature over the start temperature of the

artensitic transformation M s . In particular, the forward marten-

itic transformation occurring under proportional axisymmetric

oading and plane stress conditions is investigated systematically.

he phenomenological SMA constitutive model adopted here as-

umes that the Martensite fractions evolve as linear functions of

he Tresca effective stress, in agreement with the constitutive mod-

ls proposed by Govindjee and Kasper (1997, 1999 ), Arghavani

t al. (2010), Marfia and Rizzoni (2013) for multi-variants Marten-

ite and by Videnic et al. (2008) and Luig and Bruhns (2008) for

ingle variant Martensite. These models are derived from the the-

ry of generalized plasticity developed by Lubliner and Auric-

hio (1996) and Auricchio and Lubliner (1997) . However, the oc-

urring of the Martensite transformation in SMA according to the

orner flow rule of the Tresca criterion has been developed here

or the first time, to allow for obtaining closed form solutions to

omplex 2D or 3D thermomechanical problems. The two Marten-

ite variants consist in the deformed Martensite shortened in the

adial direction and stretched in the circumferential or the axial di-

ection, respectively. The activation of one or the other mechanism

epends on the stress state according to the normality rule. 

Although the general case requires a numerical analysis of two

on-linear ODEs, the simplifying assumptions of effective stress in

 Tresca form and linear phase transformation kinetic allow us to

btain a closed form solution, also for the regions that are fully

ransformed to both Martensite variants. Obtaining an analytical

olution for these regions is one of the main challenges of the

resent study. It requires to take into account for the history of

oading and the evolution of the volume fractions of Martensite

ariants within these regions. Despite the theoretical difficulties,

nalytic solutions have a number of advantages. From them one

an see clearly the role played by constitutive and geometrical pa-

ameters and thus they allow understanding also more complex

roblems. Moreover, they provide a reliable evaluation of the resid-

al stresses and strains in the SMA thick-walled cylinder after the

sothermal loading process, which can be used also for validating

he results of numerical procedures ( Auricchio et al., 2014; Bernar-

ini and Pence, 2016 ). 
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 1. Tresca transformation condition with associative flow rule and corner flow 

under plane stress loading conditions ( σ 3 = 0). 
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Fig. 2. SMA phase diagram for an isothermal loading process. 
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The present article is divided into six sections. The constitutive

odel in the integrated form is briefly reviewed in Section 2 . The

odel is able to describe several phenomena occurring in the ra-

ial expansion of a SMA thick-walled cylinder, such as phase trans-

ormations, Martensite reorientation and multiple lattice shear-

ng mechanisms. It keeps the essence of the approach used in

idenic et al. (2008) and Tabesh et al. (2013) , but extends these

tudies by considering corner transformation flow rule, thus al-

owing for the formation of multi-variant Martensite. Moreover,

n the present analysis the axial strain may vary within the wall

hickness. The general expressions of the stresses, radial displace-

ent and Martensite fraction within all the admissible annular re-

ions that may arise within the cylinder during the loading pro-

ess, composed of Austenite, Martensite variants and a mixture of

uch phases, are presented in detail in Section 3 . A closed-form

olution for the loading process is developed in Section 4 for each

ossible phase partitioning within the wall thickness and for any

alue of internal pressure. The solution is obtained by enforcing

ull stress and displacement continuity at the interface between

nnular regions and imposing the boundary conditions at the outer

nd inner radius of the cylinder. Results are presented in Section 5 ,

here the effects of the wall thickness and material parameters on

he radial distribution of stresses, radial displacement and Marten-

ite volume fractions are also discussed. A summary of important

esults is given in Section 6 . 

. SMA constitutive model 

The equilibrium condition for the in-plane stresses σ r and σθ ,

hich originate in the cylinder under axisymmetric loading condi-

ions, writes 

θ = r σ ′ 
r + σr , (2.1) 

here the apex denotes the derivative with respect to the variable

 . In addition, the strain- displacement compatibility conditions re-

uire 

 r = u 

′ 
r , ε θ = 

u r 

r 
. (2.2) 

The phase transformation between Austenite and Martensite is

ssumed to be governed by the effective stress σ e given by the

resca’s criterion under plane stress conditions ( σ 33 = 0). Assuming

hat the radial stress is always compressive ( σ r < 0) and σ r ≤σθ ,

hen Tresca’s criterion ( Fig. 1 ) gives 

e = σ − σr , for σr ≤ 0 ≤ σ , (2.3) 
θ θ

Please cite this article as: E. Radi, Evolution of multiple Martensite var
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e = −σr , for σr ≤ σθ ≤ 0 . (2.4) 

Two different Martensite variants may originate during the

oading process according to the sign of the tangential stresses σ θ ,

s predicted by the Tresca-like transformation condition ( 2.3 ) and

 2.4 ) together with the associative flow rule ( Fig. 1 ). The princi-

al Martensite variant is produced for σ θ ≥ 0 (side AB in Fig. 1 ).

t causes shortening in the radial direction, elongation in the tan-

ential direction and has no effect on the axial direction. The sec-

ndary Martensite variant is produced for σ θ ≤ 0 (side BC in Fig. 1 ).

t causes shortening in the radial direction, elongation in the axial

irection and has no effect on the tangential direction. The volume

ractions of these Martensite variants are denoted by ξ r θ and ξ r 3 ,

espectively. Then, the total volume fractions of Martensite is given

y the sum ξ tot = ξ r θ + ξ r 3 . 

The threshold stresses σ s and σ f for the start and finish

artensitic transformations are determined by the temperature

 0 according to the simplified phase diagram sketched in Fig. 2 ,

amely 

s = C M 

( T 0 − M s ) , σ f = C M 

(
T 0 − M f 

)
, (2.5) 

eing C M 

the slope of the martensitic transformation lines. 

Although the elastic modulus of the SMA varies during the

hase transformation between the elastic modulus E A of the

ustenitic phase and the elastic modulus E M 

of the martensitic

hase, for the sake of simplicity, in the following a constant elas-

ic modulus E is considered for the two phases, equal to the

ean value between the two elastic moduli. Moreover, the as-

ociative flow rule with corner flow is assumed for the trans-

ormation strain, according to the experimental observations of

hirani et al. (2003) . Then, the constitutive relations holding for

he isothermal and proportional loading process of the SMA cylin-

er under plane stress conditions are assumed in the integrated

orm ( Govindjee and Kasper, 1997, 1999; Videnic et al., 2008; Luig

nd Bruhns 2008 ) 

ε r = 

1 

E 
( σr − νσθ ) − ε L ( ξrθ + ξr3 ) , 

 θ = 

1 

E 
( σθ − νσr ) + ε L ξrθ , for σr ≤ 0 and σr < σθ

ε 3 = −ν

E 
( σθ + σr ) + ε L ξr3 . (2.6) 

here εL is the maximum residual strain obtained by detwinning

ultiple variant Martensite, coinciding with the maximum inelas-

ic strain attained under uniaxial loading when the solid is com-

osed of fully oriented Martensite. Note from Eq. (2.6) that the

artensitic transformation induces no volume change, being of

hearing type. 

Eqs. (2.6) can be derived by integration of the rate constitutive

quations and thus hold for proportional loading. A similar deriva-

ion has been performed by Panoskaltsis et al. (2004) for a SMA

onstitutive model based on an effective stress of von Mises type. 
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Table 1 

Constitutive parameters for SMA materials BL and TA. 

BL TA 

T 0 [ °K ] 298 340 

E [ GPa ] 46.65 85 

ν 0.33 0.4 

σ s [ MPa ] 153 1200 

σ f [ MPa ] 223 1400 

εL 0.067 0.033 
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Eqs. (2.6) hold also for σ θ = 0, namely when the stress state

lays in the corner of the Tresca transformation condition. In this

case, the transformation strain is not uniquely defined, in agree-

ment with the corner flow theory of elastic- plastic materials

( Durban and Kubi, 1992 ). 

In the following, two different sets of constitutive parame-

ters will be considered. They correspond to those adopted by

Brinson and Lammering (1993) and Tabesh et al. (2013) and are

denoted by BL and TA, respectively. In particular, the temperature

T 0 , the Young’s modulus E and Poisson coefficient ν of both phases

(Martensite and Austenite), the threshold stresses σ s and σ f for

start and finish martensitic transformations at temperature T 0 , and

the maximum residual strain εL are reported in Table 1 for both

sets. For the sake of simplicity, the same values of the Young’s

modulus and Poisson coefficient are chosen for both phases. 

2.1. Martensitic transformation during the loading process 

Assuming that the material at the beginning of the loading pro-

cess is fully austenitic, then, Austenite is transformed into Marten-

site variants during the loading process. According to the model

proposed by Govindjee and Kasper, (1997, 1999 ), the transforma-

tion of the variant Martensite fractions can be expressed in the

following integrated form that holds for σs ≤ σe ≤ σ
f 
, with ref-

erence to the phase transformation model sketched in Figs. 1 and

2: 

ξrθ = 

σe − σs 

σ
f 
− σ s 

, ξr3 = 0 , for σr < 0 < σθ and 

σe = σθ − σr , (2.7)

ξrθ + ξr3 = 

σe − σs 

σ
f 
− σs 

, for σr < σθ = 0 and σe = −σr , (2.8)

ξr3 = 

σe − σs 

σ
f 
− σs 

− ξ 0 
rθ , ξrθ = ξ 0 

rθ , for σr < σθ < 0 and 

σe = −σr , (2.9)

where ξ 0 
rθ

is the principal Martensite variant at the beginning of

the transformation. 

The dependence of the threshold stresses on the Martensite

fraction as depicted in Govindjee and Kasper (1997, 1999 ) has been

neglected here for the sake of conciseness, but it can be easily con-

sidered in a more refined investigation, as well as the difference

between the elastic moduli of Austenite and Martensite. 

2.2. Continuity conditions 

Continuity of the radial stress and displacement between two

adjacent annular regions undergoing different process of phase

transformation must be required. Then, by using ( 2.2 ) 2 through

the front of separation between two different regions one must re-

quire 

[ σr ] = [ u r ] = [ ε θ ] = 0 , (2.10)
Please cite this article as: E. Radi, Evolution of multiple Martensite var
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here the brackets denote the jump of the function within the

rackets. Then from the definition of the effective stress ( 2.3 ) and

 2.4 ) and conditions ( 2.10 ) it follows 

 

σe ] = 

{
[ σθ ] 

0 

for σr < 0 < σθ

for σr < σθ ≤ 0 . 
(2.11)

The introduction of ( 2.10 ) and ( 2.11 ) in the constitutive relations

 2.6 ) 2 , ( 2.7 ) and ( 2.8 ), implies 

[ σθ ] + Eε L [ ξrθ ] = 0 , 

[ σe ] = 

{
[ ξrθ ] 

(
σ f − σs 

)
for σr < 0 < σθ

[ ξrθ + ξr3 ] 
(
σ f − σs 

)
for σr < σθ = 0 . 

(2.12)

f σθ > 0 then ξ r 3 = 0 and thus Eqs. (2.11) and ( 2.12 ) imply the

ontinuity of the tangential stress, effective stress and volume frac-

ion of Martensite variants during the loading process, namely 

 

σθ ] = [ σe ] = [ ξrθ ] = [ ξr3 ] = 0 , (2.13)

hereas if σ θ = 0 then Eqs. (2.11) and ( 2.12 ) imply conditions

 2.13 ) and also [ ξ r 3 ] = 0. 

Therefore, continuity of the radial stress and displacement

 2.10 ) also implies continuity of the tangential stress, effective

tress and both Martensite volume fractions. In the following, con-

inuity of the radial and effective stresses will be imposed between

ontiguous annular regions, rather than continuity of the radial

isplacement. 

. Admissible annular regions within the SMA cylinder 

Let r i and r o denote the inner and outer radii of the cylinder

all, respectively. Initially the cylinder is everywhere in a state of

ustenite, at temperature T 0 higher than the start temperature of

he martensitic transformation M s ( Fig. 2 ). A uniform pressure p

s applied at r i and gradually increased at constant temperature

 0 . Correspondingly, the effective stress σ e is a decreasing func-

ion of the radius r whose maximum is attained at r i . Therefore,

he martensitic transformation starts therein when the effective

tress reaches the threshold stress σ s . As the internal pressure

s increased, a progressive increase in the volume fraction ξ r θ of

artensite occurs, starting from r i . Correspondingly, the front of

he start of the Martensite transformation, defined by the radius

 s , moves towards the outer boundary. When the effective stress

eaches the threshold stress σ f at r i , then a second front corre-

ponding to the finish of the martensitic transformation originates

herein. If the internal pressure is further increased, then the sec-

nd front propagates within the wall thickness with radius r f . 

During the axisymmetric expansion, the wall thickness can be

artitioned into three main kinds of annular regions: a purely

ustenitic outer region A whose inner and outer radii are r s and

 o , respectively; an intermediate transforming region in a mixture

f Austenite and Martensite variants with inner radius r f and outer

adius r s ; and a purely martensitic inner region M with inner ra-

ius r i and outer radius r f . The intermediate transforming region

ay be divided in correspondence of the radius r c into an outer

M region where only the principal Martensite variant ξ r θ is pro-

uced and an inner corner region C where both Martensite variants

r θ and ξ r 3 are produced. If no corner region takes place within

he wall thickness, then, the martensitic inner region M contains

he principal variant ξ r θ alone. If a corner region has instead de-

eloped, then the martensitic inner region M 

∗ contains a mixture

f both Martensite variants. The number of annular regions within

he wall thickness depends on its geometry and internal pressure. 

In the following, the general expressions of the stress and dis-

lacement fields in the admissible annular regions that take place

uring each step of the isothermal loading process, are obtained in

erms of the internal pressure p and radii r s , r c and r f separating

he different annular regions. 
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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.1. Fully austenitic outer region A 

The austenitic region A occupies the outer part of the SMA

ylinder wall where the martensitic transformation has not started

et, being σ e < σ s . Therefore, the SMA within this annular region

ehaves elastically, being ξ r θ = ξ r 3 = 0, and the stress field within

he austenitic region induced by the tractions σ r ( r s ) = −q s σ s ex-

hanged through the front of start martensitic transformation at r s 
s predicted by the classical Lamé solution of two-dimensional lin-

ar elasticity: 

σ A 
r ( r ) 

σs 
= 

r 2 s 

r 2 o − r 2 s 

(
1 − r 2 o 

r 2 

)
q s , (3.1) 

σ A 
θ ( r ) 

σs 
= 

r 2 s 

r 2 o − r 2 
Ms 

(
1 + 

r 2 o 

r 2 

)
q s . (3.2) 

By using Eqs. (3.1) and ( 3.2 ) and noting that σ θ > σ r , the effec-

ive stress ( 2.3 ) in the cylinder wall turns out to be: 

σ A 
e ( r ) 

σs 
= 

2 r 2 s 

r 2 o − r 2 s 

r 2 o 

r 2 
q s . (3.3) 

Under plane stress loading conditions, the radial displacement

rites 

u 

A 
r ( r ) 

r 
= 

1 − ν

E 

r 2 s 

r 2 o − r 2 s 

(
1 + 

1 + ν

1 − ν

r 2 o 

r 2 

)
q s σs . (3.4) 

Eqs. (3.1) -( 3.4 ) hold for r s ≤ r ≤ r o . 

.2. Intermediate region AM in a mixture of austenite and principal 

artensite variant 

Within the region AM undergoing phase transformation to the

rincipal Martensite variant, the volume fraction ξ r θ increases lin-

arly with the effective stress according to relations ( 2.7 ). A sub-

titution of Eqs. (2.1) and ( 2.3 ) in the constitutive relations ( 2.6 ),

y using the strain-displacement relations ( 2.2 ) and the integrated

orm of the transformation laws ( 2.7 ) to the principal Martensite

ariant, yields: 

 

′ 
r = 

1 

E 

[
( 1 − ν) σr −

(
ν + 

δ

1 − δ

)
r σ ′ 

r + 

δ

1 − δ
σs 

]
, (3.5) 

u r 

r 
= 

1 

E 

[
( 1 − ν) σr + 

r σ ′ 
r 

1 − δ
− δ

1 − δ
σs 

]
, (3.6) 

here: 

= 

E ε L 
σ f − σs + E ε L 

< 1 , (3.7) 

s a non-dimensional parameter close to 1, being E εL � σ f −σ s .

he introduction of Eq. (3.6) for u r in ( 3.5 ) provides the following

inear ODE for the function σ r ( r ): 

 

2 σ
′′ 
r + 3 r σ ′ 

r − 2 δ σs = 0 . (3.8)

The analytic solution of the linear ODE ( 3.8 ) for the radial stress

n the annular region AM in a mixture of Austenite and principal

ariant Martensite ( ξ r 3 = 0) is: 

σ AM 

r ( r ) 

σs 
= A 2 + A 1 

r 2 o 

r 2 
− δ ln 

r o 

r 
, (3.9) 

here A 1 and A 2 are constants of integration. The introduction of

 3.9 ) in Eqs. (2.1) , ( 2.3 ) and ( 3.6 ) provides the following tangential

nd effective stresses and the radial displacement 

σ AM 

θ ( r ) 

σs 
= A 2 − A 1 

r 2 o 

r 2 
+ δ

(
1 − ln 

r o 

r 

)
, (3.10) 
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σ AM 

e ( r ) 

σs 
= δ − 2 A 1 

r 2 o 

r 2 
, (3.11) 

u 

AM 

r ( r ) 

r 
= 

σs 

E 

[
( 1 − ν) 

(
A 2 − δ ln 

r o 

r 

)
− A 1 

(
1 + δ

1 − δ
+ ν

)
r 2 o 

r 2 

]
, 

(3.12) 

n terms of the constants A 1 and A 2 . Moreover, from ( 3.11 ) and

 2.7 ), the volume fraction of transformed Martensite turns out to

e: 

AM 

rθ ( r ) = − 1 − δ

γ − 1 

(
1 + 

2 A 1 

1 − δ

r 2 o 

r 2 

)
, (3.13) 

here 

= 

σ f 

σs 
, (3.14) 

s a non-dimensional material parameter greater than 1. 

.3. Corner region C in a mixture of Austenite and both Martensite 

ariants 

If the wall thickness is large enough, then, the tangential stress

θ may vanish at r i during the Martensitic transformation. In this

ase, an annular corner region C appears starting from r i , where

he stress state lays within a corner of the Tresca transformation

ondition ( Fig. 1 ), in agreement with the problem of a pressurized

lastoplastic tube studied by Durban and Kubi (1992) . According to

 2.1 ), vanishing of σ θ within this region leads to the radial stress

σC 
r ( r ) 

σs 
= −C 

r o 

r 
, (3.15) 

here C is a constant. Then, the constitutive Eqs. (2.6) , ( 2.8 ) and

he strain compatibility Eqs. (2.2) imply 

u r 

r 
= 

σs 

E 

[
ν C 

r o 

r 
+ 

δ

1 − δ
( γ − 1 ) ξrθ

]
, (3.16) 

( r ξrθ ) 
′ + ξrθ + ξr3 + 

1 − δ

γ − 1 

C r o 

δ r 
= 0 . (3.17)

onsidering that σ e = −σ r for σθ = 0, the transformation law ( 2.8 )

or the total Martensitic fraction, namely the sum of ξ r θ and ξ r 3 ,

hen yields 

rθ + ξr3 = 

1 

γ − 1 

(
C 

r o 

r 
− 1 

)
, (3.18) 

Eqs. (3.17) and ( 3.18 ) provide the following distribution of the

artensite volume fractions ξ r θ and ξ r 3 in the corner region in a

ixture of Austenite and both Martensite variants 

C 
rθ ( r ) = 

1 

γ − 1 

(
1 − C r o 

δ r 
ln 

r 

r o 
+ D 

r o 

r 

)
, (3.19) 

C 
r3 ( r ) = 

1 

γ − 1 

[ (
C − D + 

C 

δ
ln 

r 

r o 

)
r o 

r 
− 2 

] 
, (3.20) 

here D is a constant of integration. The radial displacement then

ollows from ( 3.16 ) 2 , ( 2.2 ) 2 and ( 3.19 ) as 

u 

C 
r ( r ) 

r 
= 

σ s 

E 

[
δ

1 − δ

(
1 + D 

r o 

r 

)
+ C 

r o 

r 

(
η − 1 

1 − δ
ln 

r 

r o 

)]
. (3.21) 

Note that a corner region cannot extend till the outer radius

f the cylinder wall because the condition σC 
r ( r o ) = 0 necessarily

mplies C = 0, so that the stress field should be null therein. 
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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3.4. Fully martensitic inner region M 

If the loading process is continued after that the complete

transformation to both Martensite variants is achieved at r i , then

a fully martensitic region with ξ r θ + ξ r 3 = 1 appears, starting from

r i . The introduction of Eqs. (2.1) and ( 2.2 ) in the constitutive

Eqs. (2.6) gives: 

u 

′ 
r = 

1 

E 

[
( 1 − ν) σr − ν r σ ′ 

r 

]
− ε L , (3.22)

u r 

r 
= 

1 

E 

[
( 1 − ν) σr + r σ ′ 

r 

]
+ ε L ξrθ . (3.23)

where ξ r θ ≤ 1, Two different situations can be envisaged according

to the amount of secondary martensitic variant, namely for ξ r 3 = 0

or ξ r 3 > 0. 

3.4.1. Fully martensitic region M containing only the principal variant

If no corner region takes place within the cylinder wall then

ξ r θ = 1 and ξ r 3 = 0. In this case, the substitution of Eq. (3.23) for

u r in Eq. (3.22) yields the following linear ODE for the function

σ r ( r ): 

r 2 σ
′′ 
r + 3 r σ ′ 

r + 2 E ε L = 0 . (3.24)

The linear ODE ( 3.24 ) admits the following solution for σ r ,

which holds in the fully martensitic region M containing the prin-

cipal Martensite variant only: 

σ M 

r ( r ) 

σs 
= B 2 + B 1 

r 2 o 

r 2 
+ δ

γ − 1 

1 − δ
ln 

r o 

r 
, (3.25)

where B 1 and B 2 are constants of integration, being from ( 3.7 ) and

( 3.14 ) 

E ε L 
σs 

= δ
γ − 1 

1 − δ
. (3.26)

The corresponding equations for the tangential and effec-

tive stresses and radial displacement are derived by substituting

Eq. (3.25) in ( 2.1 ), ( 2.3 ) and ( 3.23 ) as: 

σ M 

θ ( r ) 

σs 
= B 2 − B 1 

r 2 o 

r 2 
− δ

γ − 1 

1 − δ

(
1 − ln 

r o 

r 

)
, (3.27)

σ M 

e ( r ) 

σs 
= −2 B 1 

r 2 o 

r 2 
− δ

γ − 1 

1 − δ
, (3.28)

u 

M 

r ( r ) 

r 
= 

σs 

E 

[
( 1 − ν) 

(
B 2 + δ

γ − 1 

1 − δ
ln 

r o 

r 

)
− B 1 ( 1 + ν) 

r 2 o 

r 2 

]
, 

(3.29)

which hold for r i ≤ r ≤ r f . 

3.4.2. Fully martensitic region M 

∗ containing both variants 

If a corner region C takes place within the cylinder wall, then,

both Martensite variants originates therein due to corner flow. In

this case, the inner martensitic region M 

∗ is formed by both vari-

ants, namely ξ r θ + ξ r 3 = 1. The substitution of Eq. (3.23) for u r in

Eq. (3.22) then yields the following linear ODE for the function

σ r ( r ): 

r 2 σ
′′ 
r + 3 r σ ′ 

r + Eε L 
[
1 + ( r ξrθ ) 

′ ] = 0 . (3.30)

By using ( 2.1 ) and ( 3.26 ), the general solution for the stress field

satisfying the ODE ( 3.30 ) is 

σ M 

r ( r ) 

σs 
= 

δ( γ − 1 ) 

2 ( 1 − δ) 

[(
1 −

r 2 
f 

r 2 

)(
1 

2 

+ ξM 

rθ

(
r f 

))
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+ ln 

r f 

r 
+ 

∫ r f 

r 

(
1 

t 
+ 

t 

r 2 

)
ξM 

rθ ( t ) dt 

]
− C 1 − C 2 

r 2 
, (3.31)

σ M 

θ ( r ) 

σs 
= −δ( γ − 1 ) 

2 ( 1 − δ) 

[
1 + 2 ξM 

rθ ( r ) −
(

1 + 

r 2 
f 

r 2 

)(
1 

2 

+ ξM 

rθ

(
r f 

))

− ln 

r f 

r 
−

∫ r f 

r 

(
1 

t 
− t 

r 2 

)
ξM 

rθ ( t ) dt 

]
− C 1 + 

C 2 
r 2 

, (3.32)

here the function ξM 

rθ
(r) denotes the radial distribution of the

rincipal Martensite variant within the M 

∗ region. Since no evolu-

ion of the Martensite variants is expected within this region, then

he function ξM 

rθ
(r) is defined by the volume fraction of the princi-

al Martensite variant already formed at radius r when the front of

he finish martensitic transformation r f was coinciding with r . The

orresponding radial displacement in the fully martensitic region

 

∗ follows from the substitution of Eq. (3.31) in ( 3.23 ) as: 

u r ( r ) 

r 
= 

σs 

E 

δ( γ − 1 ) 

1 − δ

{
−1 − ξM 

rθ ( r ) + 

[
1 − ν + ( 1 + ν) 

r 2 
f 

r 2 

]
(

1 

2 

+ ξM 

rθ

(
r f 

))
+ ( 1 − ν) ln 

r f 

r 

+ 

∫ r f 

r 

(
1 − ν

t 
− 1 + ν

r 2 
t 

)
ξM 

rθ ( t ) dt 

}

− σs 

E 

[ 
(1 − ν) C 1 − ( 1 + ν) 

C 2 
r 2 

] 
. (3.33)

The integration constants C 1 and C 2 as well as the function
M 

rθ
(r) must be determined by using the boundary conditions and

ontinuity conditions between adjacent annular regions. 

. Axisymmetric loading process 

The unknown parameters introduced in the analytical results

or the stresses and radial displacement in the various annular re-

ions obtained in the previous section can be calculated by impos-

ng the boundary conditions at r i and r o and the continuity condi-

ions between adjacent annular regions. Depending on the cylinder

eometry and the internal pressure, eleven types of phase parti-

ioning of the cylinder wall may occur during the loading process,

amely ( A ), ( AM,A ), ( C,AM,A ), ( M 

∗,C,AM,A ), ( C,AM ), ( AM ), ( M 

∗,C,AM ),

 M,AM ), ( M,AM,A ), ( M 

∗,M,AM ,) and ( M ). The distribution of the ad-

issible configurations is sketched in Fig. 3 and preliminary plot-

ed in Fig. 4 as function of the ratio r i / r o and normalized internal

ressure q = p / σ s for both sets of constitutive parameters BL and

A. The stress and displacement distribution within the wall thick-

ess for a fully austenitic ( A ) cylinder wall may be obtained from

he classical linear elastic solution ( 3.1 )-( 3.4 ) for q s = q and r s = r i .

he other ten admissible configurations are systematically exam-

ned in Sections 4.1 - 4.10 . 

.1. Thick-walled cylinder composed of two regions (AM, A) 

Let us study first the case of a cylinder wall partitioned in

n outer austenitic region A and an inner region AM in a mix-

ure of Austenite and principal variant Martensite, with 0 < ξ r θ < 1

 Fig. 3 a ). Such a phase distribution occurs for relatively small val-

es of the internal pressure that are not large enough to originate

 complete martensitic transformation within the wall thickness.

he unknown constants for regions A and AM are A 1 , A 2 , q s and

he radius r s of the front separating the two regions. In order to

efine these unknown parameters, the following conditions can be

mposed at r s and r i : 

AM 

r ( r s ) = σ A 
r ( r s ) , σ A 

e ( r s ) = σs , σ AM 

e ( r s ) = σs , 

σ AM 

r ( r i ) = −q σs . (4.1)
iants in a SMA thick-walled cylinder loaded by internal pressure, 

1016/j.ijsolstr.2018.06.034 

https://doi.org/10.1016/j.ijsolstr.2018.06.034


E. Radi / International Journal of Solids and Structures 0 0 0 (2018) 1–21 7 

ARTICLE IN PRESS 

JID: SAS [m5G; August 30, 2018;7:32 ] 

Fig. 3. Sketch of the seven admissible distributions of regions A, AM, C, M and M 

∗

within the wall thickness. 

Fig. 4. Variation of the normalized internal pressures separating the admissible 

phase distributions within the wall thickness with the ratio between inner and 

outer radii, during the axisymmetric loading process, for SMA material BL ( a ) and 

corresponding detail ( b ). 
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As discussed in Section 2.1 , continuity of the radial displace-

ent across the interface between two different regions is equiv-

lent to continuity of the effective stress and, thus, it is included

ithin conditions ( 4.1 ) 2 , 3 . 

The introduction of ( 3.3 ) in condition ( 4.1 ) 2 provides the follow-

ng relation between the parameters q s and r s 

 s = 

1 

2 

(
1 − r 2 s 

r 2 o 

)
. (4.2) 

A substitution of ( 4.2 ) in ( 3.2 )-( 3.4 ) thus yields the following

tress and displacement fields in the outer austenitic region A in

erms of r s 

σ A 
r ( r ) 

σs 
= 

r 2 s 

2 r 2 o 

(
1 − r 2 o 

r 2 

)
, 

σ A 
θ ( r ) 

σs 
= 

r 2 s 

2 r 2 o 

(
1 + 

r 2 o 

r 2 

)
, 
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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(  
σ A 
e ( r ) 

σs 
= 

r 2 s 

r 2 
, 

u 

A 
r ( r ) 

r 
= 

σs 

E 

r 2 s 

2 r 2 o 

[
1 − ν + ( 1 + ν) 

r 2 o 

r 2 

]
, (4.3)

which hold for r s ≤ r ≤ r o . The introduction of Eqs. (3.2) , ( 3.9 ) and

( 3.11 ) in conditions ( 4.1 ) 1 , 3 then gives 

A 1 = −1 − δ

2 

r 2 s 

r 2 o 

, A 2 = 

1 

2 

(
r 2 s 

r 2 o 

− δ − δ ln 

r 2 s 

r 2 o 

)
. (4.4)

Therefore, Eqs. (3.9) –( 3.13 ) provide the following stresses, dis-

placement and volume fraction of primary Martensite within the

inner region AM 

: 

σ AM 

r ( r ) 

σs 
= 

1 

2 

[
r 2 s 

r 2 o 

− δ

(
1 + ln 

r 2 s 

r 2 

)
− ( 1 − δ) 

r 2 s 

r 2 

]
, 

σ AM 

θ ( r ) 

σs 
= 

1 

2 

[
r 2 s 

r 2 o 

+ δ

(
1 − ln 

r 2 s 

r 2 

)
+ ( 1 − δ) 

r 2 s 

r 2 

]
, 

σ AM 

e ( r ) 

σs 
= δ + ( 1 − δ) 

r 2 s 

r 2 
, 

u 

AM 

r ( r ) 

r 
= 

σs 

E 

1 − ν

2 

[
r 2 s 

r 2 o 

+ 

(
1 + ν

1 − ν
+ δ

)
r 2 s 

r 2 
− δ

(
1 + ln 

r 2 s 

r 2 

)]
, 

ξ AM 

rθ ( r ) = 

1 − δ

γ − 1 

(
r 2 s 

r 2 
− 1 

)
. (4.5)

for r i ≤ r ≤ r s . The introduction of ( 4.5 ) 1 in the condition ( 4.1 ) 4 then

yields the following relation between the normalized internal pres-

sure q and the radius r s : 

q = 

1 

2 

[
1 − r 2 s 

r 2 o 

+ δ ln 

r 2 s 

r 2 
i 

− ( 1 − δ) 

(
1 − r 2 s 

r 2 
i 

)]
, (4.6)

which hold for r i ≤ r s ≤ r o . The martensitic transformation starts at

r i when r s = r i , namely when the normalized pressure ( 4.6 ) attains

the value 

q 0 = 

1 

2 

(
1 − r 2 

i 

r 2 o 

)
. (4.7)

If the cylinder wall is sufficiently thin, then relation ( 4.6 ) holds

true until the martensitic transformation starts at r o while the tan-

gential stress is tensile within the AM region. . The corresponding

internal pressure is p = q 1 σ s , where q 1 is given by ( 4.6 ) for r s = r o ,

namely 

q 1 = 

1 

2 

[
( 1 − δ) 

(
r 2 o 

r 2 
i 

− 1 

)
+ δ ln 

r 2 o 

r 2 
i 

]
. (4.8)

The normalized pressure q 1 separates the wall partitions ( AM,A )

and ( AM ) under the further condition σ AM 

θ
( r i ) ≥ 0 , namely for 

1 + δ − δ ln 

r 2 o 

r 2 
i 

+ ( 1 − δ) 
r 2 o 

r 2 
i 

≥ 0 , (4.9)

according to ( 4.5 ) 2 , or equivalently for r i ≥ r 3 , where 

r 2 3 = − ( 1 − δ) r 2 o 

δ W 0 

(
− 1 −δ

δ
e 1+1 /δ

) , (4.10)

being W 0 the principal branch of the Lambert function

( Corless et al., 1996 ), namely the solution of the equation

 0 (x ) e W 0 (x ) = x , with W 0 ( x ) ≥ −1 for x ≥ −1/ e. 

4.1.1. Complete martensitic transformation along the inner edge of 

the ring 

The complete martensitic transformation is achieved at r i when

the condition σ AM 

e ( r i ) = σ f is met, namely for r s = η r i where 

η = 

√ 

γ − δ

1 − δ
> 1 . (4.11)
Please cite this article as: E. Radi, Evolution of multiple Martensite var
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According to ( 4.6 ), condition ( 4.11 ) is achieved under the inter-

al pressure 

 m 

= 

1 

2 

(
γ + δ ln η2 − r i 

r o 
η2 

)
. (4.12)

The result ( 4.12 ) holds only if the tangential stress is posi-

ive everywhere and the martensitic transformation did not start

t r o yet, namely for σ AM 

θ
( r i ) ≥ 0 and r s ≤ r o or equivalently for

 a ≤ r i ≤ r b , where 

 a = 

r o 

η

√ 

δ ln η2 − γ , r b = 

r o 

η
. (4.13)

Note that for rings whose geometric ratios satisfy r o = η r i the

artensitic transformation starts at r o just when the complete

artensitic transformation is achieved at r i . 

.1.2. Appearing of a corner region C at r i 
If the cylinder wall is thick enough, however, the tangential

tress ( 4.5 ) 2 may vanish at r i . In this case, the corner region C ap-

ears at r i before the martensitic transformation starts at r o . This

ondition occurs for σ AM 

θ
( r i ) = 0 , namely for 

ln 

r 2 s 

r 2 
i 

− ( 1 − δ) 
r 2 s 

r 2 
i 

= δ + 

r 2 s 

r 2 o 

, (4.14)

r equivalently 

r 2 s 

r 2 o 

= − δ r 2 
i 

( 1 − δ) r 2 o + r 2 
i 

W 0 

(
− ( 1 − δ) r 2 o + r 2 

i 

δ r 2 o 

e 

)
. (4.15)

According to ( 4.6 ), the corresponding normalized pressure is

hen 

 c = δ − ( 1 − δ) δ r 2 o 

( 1 − δ) r 2 o + r 2 
i 

W 0 

(
− ( 1 − δ) r 2 o + r 2 

i 

δ r 2 o 

e 

)
. (4.16)

The corner region C may disappear for r 3 < r i < r 4 , where r 3 is

iven by ( 4.10 ) and 

 

2 
4 = 

(
δ − 1 + 

δ

e 2 

)
r 2 o , (4.17)

hen the normalized pressure reaches the value 

 d1 = δ − ( 1 − δ) δ r 2 o 

( 1 − δ) r 2 o + r 2 
i 

W −1 

(
− ( 1 − δ) r 2 o + r 2 

i 

δ r 2 o 

e 

)
, (4.18)

here W −1 is the secondary branch of the Lambert function,

amely the solution of the equation W −1 (x ) e W −1 (x ) = x , with

 −1 ( x ) < −1 for x ≥−1/ e. Indeed, condition ( 4.14 ) is satisfied both

or the internal pressures q c and q d 1 , where q c < q d 1 , so that un-

er both pressures the AM region extends till the inner radius

 i . Therefore, the cylinder wall is formed by an inner region AM

n a mixture of phases and an outer austenitic region A both

or q 0 < q < min{ q 1 , q c } and also for q d 1 < q < q 1 if r 3 < r < r 4 (see

igs. 4 and 5 ). 

.2. Thick-walled cylinder composed of three regions (M, AM, A) 

For thick rings obeying the condition r o > h r i a fully marten-

itic region appears at r i for q = q m 

before the outer Austenitic

egion has disappeared ( Fig. 3 h ), where q m 

has been defined in

 4.12 ). The fields ( 4.3 ) and ( 4.5 ) defined in terms of r s hold true in

he outer austenitic region A where r s < r < r o , and in the interme-

iate region AM where r f < r < r s , respectively. According to ( 4.5 ) 3 ,

he achievement of the condition σ AM 

e ( r f ) = σ f occurs for 

 s = η r f . (4.19)

Therefore, by using ( 4.19 ) the stress and displacement fields

 4.3 ) and ( 4.5 ) in regions A and AM can be written in terms of
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 5. Variation of the normalized internal pressures separating the admissible 

phase distributions within the wall thickness with the ratio between inner and 

outer radii, during the axisymmetric loading process, both for SMA material TA ( a ) 

and corresponding detail ( b ). 
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C

 f instead of r s . Then, the radial stress and Martensite volume frac-

ion at the inner radius r f of the AM region follow from Eqs. (4.5) 1 , 5 
s 

σ AM 

r 

(
r f 

)
σs 

= 

1 

2 

(
r 2 s 

r 2 o 

− γ − δ ln η2 

)
, 

σ AM 

θ

(
r f 

)
σs 

= 

1 

2 

(
r 2 s 

r 2 o 

+ γ − δ ln η2 

)
, 

u 

AM 

r 

(
r f 

)
r 

= 

σs 

E 

1 − ν

2 

(
r 2 s 

r 2 o 

+ 

1 + ν

1 − ν
η2 + δ η2 − δ ln η2 

)
, 

ξ AM 

rθ

(
r f 

)
= 1 . (4.20) 

y using Eqs. (3.25) , ( 3.27 ) and ( 4.20 ), continuity of the radial and

angential stresses across the interface at r f , namely σ AM 

r ( r f ) =
M 

r ( r f ) and σ AM 

θ
( r f ) = σ M 

θ
( r f ) , yields 
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 1 = −
r 2 

f 

2 r 2 o 

η2 , 

 2 = 

1 

2 

[
r 2 

f 

r 2 o 

η2 − δ ln η2 + δ
(
η2 − 1 

)(
1 + ln 

r 2 
f 

r 2 o 

)]
. (4.21) 

The introduction of constants B 1 and B 2 in Eqs. (3.25) , ( 3.27 )-

 3.29 ) then provides also the distributions of radial stress and dis-

lacement within the fully martensitic region M, as functions of

 f . Finally, the relation between the normalized internal pressure

 = −σ M 

r ( r i ) / σs and the radius r f follows from ( 3.27 ) and ( 4.21 )

s 

 = −1 

2 

[
η2 

(
r 2 

f 

r 2 o 

−
r 2 

f 

r 2 
i 

)
+ δ

(
η2 − 1 

)(
1 + ln 

r 2 
f 

r 2 
i 

)
− δ ln η2 

]
. 

(4.22) 

.2.1. Disappearing of the outer austenitic region A 

The outer austenitic region A disappears from the outer part of

he wall thickness when r s = r o , namely for r f = r o / η according to

 4.19 ). Then, Eq. (4.22) provides the normalized internal pressure

 b that makes the outer austenitic region A disappear 

 b = 

1 

2 

(
r 2 o 

r 2 
i 

− 1 

)
+ 

δ

2 

[
η2 ln η2 −

(
η2 − 1 

)(
1 + ln 

r 2 o 

r 2 
i 

)]
, (4.23) 

hich holds for r i ≤ r b , namely for σ AM 

e ( r i ) ≥ σ f according to ( 4.5 ) 3 
or r s = r o . 

.3. Thick-walled cylinder composed of three regions (C, AM, A) 

For thick rings with r i < r 4 a corner region appears at r i for

 = q c before the outer Austenitic region has disappeared ( Fig. 3 e ),

here q c has been defined in ( 4.16 ). The fields ( 4.3 ) and ( 4.5 )

efined in terms of r s hold true in the outer austenitic region

 , where r s < r < r o , and in the intermediate region AM , where

 c < r < r s , respectively. The vanishing of the tangential stress at

he outer radius of the corner region r c , namely σ AM 

θ
( r c ) = 0, then

ields the following relation between the radii r s and r c 

ln 

r 2 s 

r 2 c 

− ( 1 − δ) 
r 2 s 

r 2 c 

− r 2 s 

r 2 o 

= δ, (4.24) 

r equivalently 

r 2 s 

r 2 c 

= − δ

1 − δ
W 0 

(
−1 − δ

δ
e 

1+ r 2 s 

δ r 2 o 

)
. (4.25) 

Correspondingly, the radial stress and Martensite volume frac-

ion at the inner radius of the AM region r c follow from the intro-

uction of ( 4.24 ) and ( 4.25 ) in Eqs. (4.5) 1 , 5 written for r = r c : 

σ AM 

r ( r c ) 

σs 
= −( 1 − δ) 

r 2 s 

r 2 c 

− δ = δ

[
W 0 

(
−1 − δ

δ
e 

1+ r 2 s 

δ r 2 o 

)
− 1 

]
, 

(4.26) 

AM 

rθ ( r c ) = 

1 − δ

γ − 1 

(
r 2 s 

r 2 c 

− 1 

)

= − 1 

γ − 1 

[
1 − δ + δ W 0 

(
−1 − δ

δ
e 1+ r 2 s / ( δ r 2 o ) 

)]
. (4.27) 

According to ( 4.25 )–( 4.26 ), the corner region C appears under

he internal pressure q c defined in ( 4.16 ), namely for r c = r i . By us-

ng Eqs. (3.15) and ( 4.26 ), continuity of the radial stress across the

nterface at r c , namely σ AM 

r ( r c ) = σC 
r ( r c ) , allows to obtain the con-

tant 

 = 

r c 

r o 

[
δ + ( 1 − δ) 

r 2 s 

r 2 c 

]
= 

δ r c 

r o 

[
1 − W 0 

(
−1 − δ

δ
e 

1+ r 2 s 

δ r 2 o 

)]
. 

(4.28) 
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Then, continuity of the distribution of the principal Martensite

across the interface at r c , namely ξAM 

rθ
( r c ) = ξC 

rθ
( r c ) , by using ( 3.19 ),

( 4.27 ) and ( 4.28 ), yields: 

D = 

r c 

r o 

[(
δ + ln 

r c 

r o 

)(
1 + 

1 − δ

δ

r 2 s 

r 2 c 

)
− 2 

]

= 

r c 

r o 

{(
δ + ln 

r c 

r o 

)[
1 − W 0 

(
−1 − δ

δ
e 1+ r 2 s / ( δ r 2 o ) 

)]
− 2 

}
. (4.29)

Note that the condition ξC 
r3 

( r c ) = 0 is also met by

Eqs. (4.28) and ( 4.29 ). The introduction of the constants C and D in

Eqs. (3.15) , ( 3.19 ), ( 3.20 ) and ( 3.21 ) then provides the distributions

of radial stress, displacement and Martensite fractions within the

corner region. In particular, from ( 3.15 ), ( 3.21 ) and ( 4.28 ), ( 4.29 )

the radial stress and displacement at r i turn out to be 

σC 
r ( r i ) 

σs 
= − r c 

r i 

[
δ+ ( 1 −δ) 

r 2 s 

r 2 c 

]

= −δ
r c 

r i 

[
1 − W 0 

(
−1 −δ

δ
e 1+ r 2 s / ( δ r 2 o ) 

)]
, 

u 

C 
r ( r i ) 

r i 
= 

σ s 

E 

δ

1 − δ

[
1 − 2 

r c 

r i 
+ 

r c 

r i 

(
1 + 

1 − δ

δ

r 2 s 

r 2 c 

)

×
(
ν − δν + δ + ln 

r c 

r i 

)] 
. (4.30)

where r c is given by ( 4.25 ) as a function of r s . Therefore, the rela-

tion between the normalized internal pressure q = −σC 
r ( r i ) / σs and

the radius r s for q c ≤ q ≤γ follows from ( 4.30 ) 1 and ( 4.25 ) as 

q = 

r s 

r i 

1 − W 0 

(
− 1 −δ

δ
e 1+ r 2 s / ( δ r 2 o ) 

)
√ 

− W 0 

(
− 1 −δ

δ
e 1+ r 2 s / ( δ r 2 o ) 

)
√ 

( 1 − δ) δ . (4.31)

4.3.1. Start of the martensitic transformation at r o 
The outer austenitic region A disappears when r s = r o , namely

from ( 4.24 ) 

δ ln 

r 2 o 

r 2 c 

− ( 1 − δ) 
r 2 o 

r 2 c 

= 1 + δ, (4.32)

i.e. for r c = r 3 , where r 3 has been defined in ( 4.10 ). Then, by using

Eq. (4.25) for r s = r o , from ( 4.31 ) one obtains the pressure q 10 that

makes the outer austenitic region A disappear 

q 10 = 

[
( 1 − δ) 

r 2 0 

r 2 
3 

+ δ

]
r 3 
r i 

. (4.33)

Therefore, under the pressure q 10 the cylinder wall is parti-

tioned into an outer region AM in a mixture of phases and an inner

corner region C , as it may be observed in Fig. 4 . 

4.3.2. Complete martensitic transformation achieved at r i 
The complete Martensitic transformation is attained at r i when

σC 
e ( r i ) = −σC 

r ( r i ) = σ f , namely for q = γ . The constant C is then

given by Eq. (3.15) evaluated at r i 

 = γ
r i 
r o 

. (4.34)

Then, by using ( 4.30 ) and definition ( 3.14 ), the condition

σC 
r ( r i ) = −γ σ f yields the following relation between the radii r s 

and r c 

r 2 s = 

δ

1 − δ

(
γ

δ

r i 
r c 

− 1 

)
r 2 c . (4.35)

The constant D follows from ( 4.29 ) and ( 4.35 ) in terms of r c 
as 

D = γ
(

1 + 

1 

δ
ln 

r c 

r o 

)
r i 
r o 

− 2 

r c 

r o 
. (4.36)
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Finally, the size r c of the corner region can be found by solv-

ng the transcendental equation obtained from the introduction of

 4.35 ) in ( 4.24 ): 

n 

(
γ

δ

r i 
r c 

− 1 

)
−

(
γ

δ

r i 
r c 

− 1 

)(
1 + 

1 

1 − δ

r 2 c 

r 2 o 

)
= 1 + ln 

1 − δ

δ
. (4.37)

Eq (4.37) admits multiple solutions for the radius r c for the

ame value of r . However, only the solution satisfying r i < r c <

 4 must be retained, i.e.: 

 i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δ

γ

[
1 − ( 1 − δ) r 2 o 

( 1 − δ) r 2 o + r 2 c 

W 0 

(
− ( 1 − δ) r 2 o + r 2 c 

δ r 2 o 

e 

)]
r c , 

for r i ≤ r lim 

, 

δ

γ

[
1 − ( 1 − δ) r 2 o 

( 1 − δ) r 2 o + r 2 c 

W −1 

(
− ( 1 − δ) r 2 o + r 2 c 

δ r 2 o 

e 

)]
r c , 

for r i > r lim 

and r 3 ≤ r c ≤ r 4 . 

(4.38)

here 

 lim 

= 

r o 

e γ

[
δ + ( 1 − δ) e 2 

]√ 

δ − ( 1 − δ) e 2 . (4.39)

The corresponding stress and displacement fields and the dis-

ribution of both Martensite variants within the corner region can

e found by introducing in ( 3.15 ), ( 3.19 ), ( 3.20 ) and ( 3.21 ) the con-

tants C and D found in ( 4.34 ) and ( 4.36 ), where the radii r c is

efined by Eq. ( 4.38 ). In particular, from Eqs. (3.19) and ( 3.20 ) the

ollowing volume fractions of both Martensite variants are found

t r i : 

C 
rθ ( r i ) = 

1 

γ − 1 

(
γ + 1 − 2 

r c 

r i 
+ 

γ

δ
ln 

r c 

r i 

)
, 

ξC 
r3 ( r i ) = 

1 

γ − 1 

(
2 

r c 

r i 
− 2 − γ

δ
ln 

r c 

r i 

)
, (4.40)

amely where the complete martensitic transformation has been

chieved, so that ξC 
r3 

( r i ) + ξC 
rθ ( r i ) = 1 . 

.4. Thick-walled cylinder composed of four regions (M 

∗, C, AM, A) 

For very thick rings a Martensite region M may appear at r i 
hile an Austenite region A is still present at r o ( Fig. 3 f ). In this

ase, Eqs. (4.3) and ( 4.5 ) define the radial distributions of the

arious fields in the outer region A , namely for r s < r < r o , and

n the intermediate region AM , namely for r c < r < r s . Moreover,

q. (4.25) provides a relation between the radii r s and r c . 

In the adjacent corner region C occurring for r f < r < r c , the

elds are defined by means of the constants C and D according to

qs. (3.15) , ( 3.19 )-( 3.21 ). By using Eq. (3.15) , the constant C follows

rom the condition σC 
r ( r f ) = −σ f as 

 = γ
r f 

r o 
. (4.41)

By replacing the radius r i with r f in Eq. (4.38) , then, the radius

 c follows as an implicit function of r f , namely by inverting the fol-

owing relation 

 f = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δ

γ

[
1 − ( 1 − δ) r 2 o 

( 1 − δ) r 2 o + r 2 c 

W 0 

(
− 1 − δ + r 2 c /r 2 o 

δ
e 

)]
r c , 

for r f ≤ r lim 

and r f ≤ r c ≤ r 4 , 

δ

γ

[
1 − ( 1 − δ) r 2 o 

( 1 − δ) r 2 o + r 2 c 

W −1 

(
− 1 − δ + r 2 c /r 2 o 

δ
e 

)]
r c , 

for r f > r lim 

and r 3 ≤ r c ≤ r 4 , 

(4.42)
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 6. Relation between r f and r c provided by Eq. (4.35) (solid lines) and by 

Eq. (4.60) (dash-dotted line). 
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Fig. 7. Sketch and definition of radii r f 
∗ , r c 

∗ and r s 
∗ as functions of r, for r i < r < r f 

for the ( M 

∗ , C, AM,A ) phase partitioning. 
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here r i ≤ r f ≤ r 1 and r f ≤ r c ≤ r 4 , where the radius r 1 is de-

ned as the radius r f when r s coincides with r o (see Section 4.4.1 ).

he relation between r f and r c defined in ( 4.42 ) has been plot-

ed in Fig. 6 by solid lines. Then, continuity of the distribution of

he principal Martensite volume fraction across the interface at r c ,

amely ξAM 

rθ
( r c ) = ξC 

rθ
( r c ) , by using ( 3.19 ), ( 4.27 ), ( 4.41 ) and ( 4.42 ),

ields: 

 = 

r c 

r o 

[ 
−2 + 

γ

δ

(
δ + ln 

r c 

r o 

)
r f 

r c 

] 
. (4.43) 

The introduction of the constants C and D in (3.15) , (3.19) - (3.21)

hen provides the following fields within the corner region C in

erms of the radii r c and r f . 

σC 
r ( r ) 

σs 
= −γ

r f 

r 
, 

ξC 
rθ ( r ) = 

1 

γ − 1 

[ 
1 − 2 

r c 

r 
+ 

γ

δ

(
δ + ln 

r c 

r 

)
r f 

r 

] 
, 

ξC 
r3 ( r ) = 

1 

γ − 1 

(
2 

r c 

r 
− 2 − γ

δ

r f 

r 
ln 

r c 

r 

)
, 

u 

C 
r ( r ) 

r 
= 

σs 

E 

δ

1 − δ

[ 
1 − 2 

r c 

r 
+ 

γ

δ

(
δ + ν − νδ + ln 

r c 

r 

)
r f 

r 

] 
. (4.44) 

The constants C 1 and C 2 defining the stress and displacement

elds ( 3.31 )–( 3.33 ) in the martensitic region M 

∗ surrounded by the

orner region C can be calculated by imposing stress continuity be-

ween the martensitic region M 

∗ and the adjacent corner region C

t r f , namely σ M 

r ( r f ) = −σ
f 

and σ M 

θ
( r f ) = 0 . By using ( 3.31 ) and

 3.32 ), the latter conditions provide 

 1 = 

γ

2 

, C 2 = 

γ

2 

r 2 f , (4.45)

Therefore, the following stress and displacement fields take

lace in the martensitic region M 

∗: 

σ M 

r ( r ) 

σs 
= δ

η2 − 1 

2 

[(
1 −

r 2 
f 

r 2 

)(
1 

2 

+ ξM 

rθ

(
r f 

))

+ ln 

r f 

r 
+ 

∫ r f 

r 

(
1 

t 
+ 

t 

r 2 

)
ξM 

rθ ( t ) dt 

]
− γ

2 

(
1 + 

r 2 
f 

r 2 

)
, 

σ M 

θ ( r ) 

σs 
= −δ

η2 − 1 

2 

[
1 + 2 ξM 

rθ ( r ) −
(

1 + 

r 2 
f 

r 2 

)(
1 

2 

+ ξM 

rθ

(
r f 

))

− ln 

r f 

r 
−

∫ r f 

r 

(
1 

t 
− t 

r 2 

)
ξM 

rθ ( t ) dt 

]
− γ

2 

(
1 −

r 2 
f 

r 2 

)
, 
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u r ( r ) 

r 
= −σs 

E 
δ

η2 − 1 

2 

{
1 + ξM 

rθ ( r ) −
[

1 − ν + ( 1 + ν) 
r 2 

f 

r 2 

]
(

1 

2 

+ ξM 

rθ

(
r f 

))
− ( 1 − ν) ln 

r f 

r 

+ 

∫ r 

r f 

(
1 − ν

t 
− 1 + ν

r 2 
t 

)
ξM 

rθ ( t ) dt 

}

− σs 

E 

γ

2 

[
1 − ν − ( 1 + ν) 

r 2 
f 

r 2 

]
. (4.46) 

amely for r i < r < r f . 

In order to define the distribution of the principal Martensite

ariant ξM 

rθ
(r) within the region M 

∗, let us denote with r ∗c the

uter radius of the corner region C under the normalized inter-

al pressure q ∗ acting when the finish martensitic transformation

ccurred at radius r as sketched in Fig. 7 , where γ ≤ q ∗≤ q . Then,

he stress and displacement fields within the region M 

∗ follow

rom Eqs. (4.46) where the function ξM 

rθ
(r) is defined by condition

 4.40 ) 1 written for r i = r ≤ r f and r c = r ∗c , namely 

M 

rθ ( r ) = 1 − 1 

γ − 1 

(
2 

r ∗c 
r 

− 2 − γ

δ
ln 

r ∗c 
r 

)
, (4.47) 

nd r ∗c is defined as an implicit function of r by relation ( 4.42 )

ritten for r f = r and r c = r ∗c , namely 

 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δ

γ

[
1 − ( 1 − δ) r 2 o 

( 1 − δ) r 2 o + r ∗2 
c 

W 0 

(
− ( 1 − δ) r 2 o + r ∗2 

c 

δ r 2 o 

e 

)]
r ∗c , 

for r ≤ r lim 

and r ≤ r ∗c ≤ r 4 , 

δ

γ

[
1 − ( 1 − δ) r 2 o 

( 1 − δ) r 2 o + r ∗2 
c 

W −1 

(
− ( 1 − δ) r 2 o + r ∗2 

c 

δ r 2 o 

e 

)]
r ∗c , 

for r > r lim 

and r 3 ≤ r ∗c ≤ r 4 , 

(4.48) 

or r i < r < r f . Moreover, by requiring that the radial stress at r i must

oincide with the internal pressure, namely σ M 

r ( r i ) = −q σs , then

rom ( 4.46 ) 1 it follows q = Q ( r f ), where 

 ( r ) = −δ
η2 − 1 

2 

[(
1 − r 2 

r 2 
i 

)(
1 

2 

+ ξM 

rθ ( r ) 

)

+ ln 

r 

r i 
+ 

∫ r 

r i 

(
1 

t 
+ 

t 

r 2 
i 

)
ξM 

rθ ( t ) dt 

]
+ 

γ

2 

(
1 + 

r 2 

r 2 
i 

)
. (4.49) 

The radius r f thus follows as an implicit function of the normal-

zed internal pressure q . Finally, the radii r c and r s follow from re-

ations ( 4.42 ) and ( 4.24 ), respectively. Note that relation ( 4.24 ) can

e explicitly solved for r s as a function of r c under the restriction

 c < r s < r o , i.e. 

 

2 
s = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

− δ r 2 c r 2 o 

(1 − δ) r 2 o + r 2 c 

W 0 

(
− (1 − δ) r 2 o + r 2 c 

δ r 2 o 

e 

)
, for q ≤ q 4 , 

− δ r 2 c r 2 o 

(1 − δ) r 2 o + r 2 c 

W −1 

(
− (1 − δ) r 2 o + r 2 c 

δ r 2 o 

e 

)
, for q > q 4 . 

(4.50) 
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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H  
where 

q 4 = Q 

([
δ + ( 1 − δ) e 2 

]
r 4 /γ

)
, (4.51)

is the normalized pressure under which the corner region C attains

the maximum extension r c = r 4 . 

4.4.1. Start of the martensitic transformation at r o 
The outer austenitic region A disappears when r s = r o , namely

for r c = r 3 , where r 3 is given by ( 4.10 ). Then, from ( 4.42 ) for r c = r 3 ,

by using ( 4.9 ) one gets r f = r 1 , where 

r 1 = 

1 

γ

[
( 1 − δ) 

r 2 0 

r 2 
3 

+ δ

]
r 3 , (4.52)

being r lim 

≤ r 1 ≤ r 3 . The normalized pressure q 11 that makes the

outer austenitic region A disappear then follows from the introduc-

tion of ( 4.10 ) and ( 4.52 ) in the condition q 11 = Q ( r 1 ) and ξM 

rθ
(r) has

been defined in ( 4.47 ) and ( 4.48 ). Moreover, from ( 4.40 ) 1 one has 

ξM 

rθ ( r 1 ) = ξC 
rθ ( r 1 ) = 

1 

γ − 1 

(
γ + 1 − 2 

r 3 
r 1 

+ 

γ

δ
ln 

r 3 
r 1 

)
. (4.53)

Under the pressure q 11 = Q ( r 1 ) the cylinder wall is partitioned into

an outer region AM in a mixture of phases an intermediate corner

region C and an inner martensitic region M 

∗

4.4.2. Vanishing of the corner region C 

As the internal pressure increases, the corner region C may dis-

appear if the condition r c = r f = r a is attained according to ( 4.42 ),

where r a has been defined in ( 4.13 ). The corresponding internal

pressure q b that makes the corner region C disappear is then given

by 

q a = Q ( r a ) . (4.54)

4.5. Thick-walled cylinder composed of two regions (C, AM) 

After the corner region C appeared at r i and the austenitic re-

gion A disappeared under the normalized pressure q 10 , then for

slightly higher pressure the cylinder wall is partitioned into an

outer region AM in a mixture of phases for r c < r < r o and an in-

ner corner region C for r i < r < r c ( Fig. 3 b ), where the radius r c is

defined by the condition σ AM 

θ
( r c ) = 0. In this case, the conditions

σ AM 

r ( r o ) = 0 and σ AM 

θ
( r c ) = 0 provide the following constants 

A 1 = −A 2 = 

δ r 2 c 

r 2 o + r 2 c 

(
1 − ln 

r o 

r c 

)
, (4.55)

which define the fields ( 3.9 )–( 3.13 ) in the outer AM region in

terms of the radius r c . The corresponding stress and displacement

fields and the distribution of the volume fraction of the principal

Martensite variant within the AM region are given by ( 3.9 )–( 3.13 )

as 

σ AM 

r ( r ) 

σs 
= − δ r 2 c 

r 2 o + r 2 c 

(
1 − ln 

r o 

r c 

)(
1 − r 2 o 

r 2 

)
− δ ln 

r o 

r 
, 

σ AM 

θ ( r ) 

σs 
= − δ r 2 c 

r 2 o + r 2 c 

(
1 − ln 

r o 

r c 

)(
1 + 

r 2 o 

r 2 

)
+ δ

(
1 − ln 

r o 

r 

)
, 

σ AM 

e ( r ) 

σs 
= δ

[
1 − 2 r 2 c 

r 2 o + r 2 c 

(
1 − ln 

r o 

r c 

)
r 2 o 

r 2 

]
, 

u 

AM 

r ( r ) 

r 
= −σs 

E 
δ

{
r 2 c 

r 2 o + r 2 c 

(
1 − ln 

r o 

r c 

)[
1 − ν + 

(
1 + δ

1 − δ
+ ν

)
r 2 o 

r 2 

]

+ ( 1 − ν) ln 

r o 

r 

} 

, 

ξ AM 

rθ ( r ) = − 1 

γ − 1 

[
1 − δ + 

2 δ r 2 c 

r 2 o + r 2 c 

(
1 − ln 

r o 

r c 

)
r 2 o 

r 2 

]
. (4.56)
n  
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The radial stress and Martensite volume fraction at the inner

adius of the AM region r c are 

σ AM 

r ( r c ) 

σs 
= 

δ r 2 o 

r 2 o + r 2 c 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
, 

ξ AM 

rθ ( r c ) = − 1 

γ − 1 

[
1 − δ + 

δ r 2 o 

r 2 o + r 2 c 

(
2 + ln 

r 2 c 

r 2 o 

)]
, (4.57)

espectively. As the load is increased, the corner region C takes

lace for q ≥ q c and r i ≤ r 4 . For r 3 ≤ r i ≤ r 4 the corner region then

isappears under the normalized pressure 

 d = − δ r 2 o 

r 2 o + r 2 
i 

(
1 − r 2 

i 

r 2 o 

+ ln 

r 2 
i 

r 2 o 

)
≤ q f , (4.58)

s it follows from ( 4.57 ) 1 for r c = r i . The variation of q d with the

all thickness is plotted in Fig. 4 and detailed in Fig. 5 . 

The unknown constants C and D can be obtained in terms of r c 
y imposing continuity of the radial stress and volume fraction of

he principal Martensite variant across the interface at r c , namely
AM 

r ( r c ) = σC 
r ( r c ) and ξAM 

rθ
( r c ) = ξC 

rθ
( r c ) , by using ( 3.15 ), ( 3.19 ), and

 4.57 ): 

C = − δ r 2 o 

r 2 o + r 2 c 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
r c 

r o 
, 

 = − r c 

r o 

[
2 + 

r 2 o 

r 2 o + r 2 c 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)(
δ + ln 

r c 

r o 

)]
. (4.59)

Note that these constants C and D also satisfy the continuity

ondition ξC 
r3 

( r c ) = 0 according to ( 3.20 ). Then, the introduction

f constants C and D in Eqs. (3.15) , ( 3.19 ), ( 3.20 ) and ( 3.21 ) pro-

ides the following distributions of radial stress, displacement and

artensite fractions within the corner region 

σC 
r ( r ) 

σs 
= 

δ r 2 o 

r 2 o + r 2 c 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
r c 

r 
, 

u 

C 
r ( r ) 

r 
= 

σ s 

E 

δ

1 − δ

[
1 − 2 

r c 

r 
− r 2 o 

r 2 o + r 2 c 

r c 

r 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
(
ν + δ( 1 − ν) + ln 

r c 

r 

)] 
. 

ξC 
rθ ( r ) = 

1 

γ − 1 

{
1 −

[
2 + 

r 2 o 

r 2 o + r 2 c 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
(
δ + ln 

r c 

r 

)] 
r c 

r 

} 

, 

ξC 
r3 ( r ) = 

1 

γ − 1 

{[
2 + 

r 2 o 

r 2 o + r 2 c 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
ln 

r c 

r 

]
r c 

r 
− 2 

}
. 

(4.60)

According to ( 4.60 ) 1 , the following relation holds between the

ormalized internal pressure q and the outer radius of the corner

egion r c 

 = − δ r 2 o 

r 2 o + r 2 c 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
r c 

r i 
. (4.61)

.5.1. Complete martensitic transformation achieved at r i 
The complete Martensitic transformation is achieved at r i for

 = γ . Correspondingly, the radius r c is defined by the condition
C 
r ( r i ) = −σ f , namely 

1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
r c 

r i 
+ 

γ

δ

(
1 + 

r 2 c 

r 2 o 

)
= 0 . (4.62)

Note that Eq. (4.62) admits two solutions for the radius r c .

owever, only the solution satisfying r i ≤ r c ≤ r o must be retained,

amely the largest. By using ( 4.62 ), Eqs. (4.59) provide the same
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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onstants C and D obtained in ( 4.34 ) and ( 4.36 ) and, thus, the same

elds within the corner region found in Section 4.3.2 . 

Once the radius r c has been calculated from condition ( 4.62 ),

hen from ( 4.60 ) 4 one obtains the distributions of both Martensite

ariants in the AM region and in the corner region C as the com-

lete Martensitic transformation is achieved at r i 

C 
rθ ( r ) = 

1 

γ − 1 

[ 
1 − 2 

r c 

r 
+ 

γ

δ

(
ln 

r c 

r 
+ δ

)
r i 
r 

] 
, (4.63) 

C 
r3 ( r ) = 

1 

γ − 1 

(
2 

r c 

r 
− 2 − γ

δ

r i 
r 

ln 

r c 

r 

)
. (4.64) 

In particular, the volume fractions of both Martensite variants

t r i coincide with those obtained in ( 4.40 ). 

.5.2. Start of the martensitic transformation at r o 
The outer austenitic region A vanishes off when σ AM 

e ( r o )= σ s 

amely for r c = r 3 where r 3 has been defined in ( 4.10 ). Accord-

ng to ( 4.61 ) and using ( 4.32 ) and ( 4.10 ), this situation occurs for

 = q 10 where q 10 has been defined in ( 4.33 ). Therefore, the outer

ustenitic region A disappears for q > q 10 , whereas a fully marten-

itic region M appears at r i for q = γ . Note from 4 that the solu-

ion found in Section 4.5 holds true for q 10 ≤ q ≤ min{ γ , q d } and

f the wall thickness obeys the condition r 1 ≤ r i ≤ r 3 , where r 1 has

een defined in ( 4.52 ) and corresponds to the condition q 10 = γ .

or q < q 10 an outer austenitic region is still present when the cor-

er region takes place at r i , thus recovering the case examined in

ection 3.4 . 

.6. Thick-walled cylinder made of a single region (AM) 

If σθ ( r i ) > 0 and the internal pressure p is larger than q 1 σ s 

hen the outer austenitic region A vanishes before the complete

artensitic transformation is achieved at r i . In this case, the cylin-

er wall is formed by a single region AM in a mixture of phases.

he unknown constants A 1 and A 2 that appear in the fields ( 3.9 )–

 3.13 ) within the region AM , then follow from the introduction of

 3.9 ) in the conditions σ AM 

r ( r i ) = −q σs and σ AM 

r ( r o ) = 0 as 

 2 = −A 1 = 

r 2 
i 

r 2 o − r 2 
i 

(
q − δ ln 

r o 

r i 

)
. (4.65) 

The introduction of these constants in Eqs. (3.9) –( 3.13 ) provides

he following stress and displacement fields and volume fraction of

rincipal Martensite variant in the region AM 

σ AM 
r ( r ) 
σs 

= 

r 2 
i 

r 2 o −r 2 
i 

(
q − δ ln 

r o 
r i 

)(
1 − r 2 o 

r 2 

)
+ δ ln 

r 
r o 

, 

σ AM 
θ ( r ) 

σs 
= 

r 2 
i 

r 2 o −r 2 
i 

(
q − δ ln 

r o 
r i 

)(
1 + 

r 2 o 

r 2 

)
+ δ

(
1 + ln 

r 
r o 

)
, 

σ AM 
e ( r ) 
σs 

= δ + 

2 r 2 
i 

r 2 o −r 2 
i 

(
q − δ ln 

r o 
r i 

)
r 2 o 

r 2 
, 

u AM 
r ( r ) 

r 
= 

σs 

E ( 1 − ν) 

{ 

r 2 
i 

r 2 o −r 2 
i 

(
q − δ ln 

r o 
r i 

)[ 
1 + 

1+ ν+ ( 1 −ν) δ
( 1 −δ) ( 1 −ν) 

r 2 o 

r 2 

] 
+ δ ln 

r 
r o 

}
AM 

rθ ( r ) = 

1 
γ −1 

[ 
2 r 2 

i 

r 2 o −r 2 
i 

(
q − δ ln 

r o 
r i 

)
r 2 o 

r 2 
− 1 + δ

] 
. 

(4.66) 

The fields ( 4.66 ) hold for max{ q 1 , q d } ≤ q ≤ q 2 and r 2 ≤ r ≤ r o ,

here r 2 will be defined in Eq. (4.69) and q 2 is the normalized

ressure that induces a complete martensitic transformation at r i ,

.e. ξAM 

rθ
( r i ) = 1 , namely 

 2 = 

γ − δ

2 

(
1 − r 2 

i 

r 2 o 

)
+ δ ln 

r o 

r i 
, (4.67) 

ccording to ( 4.66 ) 5 . If max{ q 1 , q d } ≤ q ≤ q 2 , then the cylinder wall

s formed by a single region AM in a mixture of phases ( Fig. 4 ). 
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.6.1. Complete martensitic transformation achieved at r i 
The introduction of ( 4.67 ) in Eqs. (4.66) gives the following

tress and displacement fields, corresponding to the achievement

f the complete martensitic transformation at r i : 

σ AM 
r ( r ) 
σs 

= 

γ −δ
2 

(
r 2 

i 

r 2 o 
− r 2 

i 

r 2 

)
− δ ln 

r o 
r 
, 

σ AM 
θ ( r ) 

σs 
= 

γ −δ
2 

(
r 2 

i 

r 2 o 
+ 

r 2 
i 

r 2 

)
+ δ(1 − ln 

r o 
r 
) , 

σ AM 
e ( r ) 
σs 

= δ + ( γ − δ) 
r 2 

i 

r 2 
, 

u AM 
r ( r ) 

r 
= 

σs 

2 E ( 1 − ν) 

{ 

( γ − δ) 

[ 
1 + 

1+ ν+ ( 1 −ν) δ
( 1 −ν) ( 1 −δ) 

r 2 o 

r 2 

] 
r 2 

i 

r 2 o 
+ δ ln 

r 2 

r 2 o 

} 

, 

AM 

rθ ( r ) = 

1 −δ
γ −1 

(
r 2 

i 

r 2 
− η2 

)
, 

(4.68) 

hich hold only for r i ≤ r ≤ r o and σθ > 0. To ensure that the lat-

er condition is met everywhere in the cylinder, it is sufficient to

heck that the condition σ AM 

θ
( r i ) > 0 holds true, namely that r i > r 2 ,

here 

 

2 
2 = 

δ r 2 o 

γ − δ
W 0 

(
γ − δ

δ
e −1 − γ

δ

)
. (4.69) 

.7. Thick-walled cylinder composed of three regions (M 

∗, C, AM) 

For thick rings, a Martensite region M 

∗ containing both variants

ay appear at the inner boundary after the outer Austenite region

 disappeared. In this case, the cylinder wall is partitioned into

n outer region AM in a mixture of phases for r c < r < r o , a cor-

er region C for r f < r < r c , and a Martensite region M 

∗ for r i < r < r f 
 Fig. 3 d ). The radial variation of the stress and displacement fields

nd Martensite volume fractions within the outer AM region are

iven by ( 4.56 ) in terms of r c . The relation between the radii r f 
nd r c follows from ( 4.62 ) by replacing r i with r f , namely 

 f = − δ

γ

r c r 
2 
o 

r 2 o + r 2 c 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
, (4.70) 

here r f ≥ r 1 and r c ≤ r 3 . Note that for r c = r 3 Eqs. (4.70) and ( 4.10 )

rovide r f = r 1 . This relation has been plotted in Fig. 6 by dash-

otted line. 

The constant C entering the definition of the fields in the in-

ermediate corner region C is given by Eq. (4.41) obtained from

he condition σC 
r ( r f ) = −σ f . Continuity of the volume fraction

f the principal Martensite variant across the interface at r c ,

amely ξAM 

rθ
( r c ) = ξC 

rθ
( r c ) , by using ( 3.19 ), ( 4.56 ) 5 , ( 4.41 ) and ( 4.70 ),

ields: 

 = − r c r o 

r 2 c + r 2 o 

(
δ + ln 

r c 

r o 

)(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
− 2 

r c 

r o 
. (4.71) 

The introduction of constants C and D in Eqs. (3.15) , ( 3.19 )–

 3.21 ) then provides the radial variation of the fields within the

orner region C in terms of the radii r c and r f . 

σC 
r ( r ) 

σs 
= 

δ r 2 o 

r 2 c + r 2 o 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
r c 

r 
, 

ξC 
rθ ( r ) = 

1 

γ − 1 

[
1 − 2 

r c 

r 
−

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)

(
δ + ln 

r c 

r 

)
r 2 o 

r 2 c + r 2 o 

r c 

r 

]
, 

ξC 
r3 ( r ) = 

1 

γ − 1 

[
2 

r c 

r 
− 2 + 

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)
r 2 o 

r 2 c + r 2 o 

r c 

r 
ln 

r c 

r 

]
, 

u 

C 
r ( r ) 

r 
= 

σs 

E 

δ

1 − δ

[
1 − 2 

r c 

r 
−

(
1 − r 2 c 

r 2 o 

+ ln 

r 2 c 

r 2 o 

)

iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 8. Sketch and definition of radii r f 
∗ , r c 

∗ and r s 
∗ as functions of r, for r i < r < r 1 

( a ) and r 1 < r < r f ( b ), for the ( M 

∗ , C, AM ) phase partitioning. 
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(
δ + ν − νδ − ln 

r 

r c 
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r 2 o 

r 2 c + r 2 o 

r c 

r 

]
. (4.72)

The stress and displacement fields in the inner Martensite re-

gion M 

∗ then follow from Eqs. (4.46) , where the function ξM 

rθ
(r) has

been defined in ( 4.47 ) in terms of the parameter r ∗c . The latter pa-

rameter is defined as an implicit function of r according to two dif-

ferent situations concerning the cylinder wall partition sketched in

Fig. 8 . Indeed, for r i ≤ r ≤ r 1 then the outer austenitic region A was

still present in the outer part of the cylinder wall when the fin-

ish martensitic transformation occurred at r under the normalized

pressure q ∗ ( Fig. 8 a ), namely for r ∗
f 

= r. Then r ∗s < r o and r ∗c < r 3

and r lim 

< r = r ∗
f 
, so that r ∗c is given by Eq. (4.48) 2 . Otherwise, for

r 1 ≤ r ≤ r f the outer region A has already disappeared when the fin-

ish martensitic transformation occurred at r ( Fig. 8 b ). In this case,

r ∗c > r 3 and r ∗c is given by Eq. (4.62) written for r i = r and r c = r ∗c ,
namely 

r = − δ

γ

r ∗c r 
2 
o 

r 2 o + r ∗2 
c 

(
1 − r ∗2 

c 

r 2 o 

+ ln 

r ∗2 
c 

r 2 o 

)
, (4.73)

for r 1 < r < r 2 . The radii r 1 , r 2 and r 3 have been defined in ( 4.52 ),

( 4.69 ) and ( 4.10 ), respectively. 

Once the distribution of Martensite variants inside the marten-

sitic region M 

∗ has been defined by the functions ξM 

rθ
(r) and

ξM 

r3 (r) = 1 − ξM 

rθ
(r) , then the radius r f can be obtained from the re-

lation q = Q ( r f ) as an implicit function of the normalized pressure

q . Finally, the radius r c can be found from relation ( 4.70 ). 

4.7.1. Disappearing of the corner region c between M 

∗ and AM 

regions 

For very thick rings with r i ≤ r 2 , the corner region C may disap-

pear when r f = r c , namely for r f = r 2 according to ( 4.69 ) and ( 4.70 ).

The corresponding pressure q d 2 follows from the condition 

q d2 = Q ( r 2 ) , (4.74)

where the function Q ( r ) has been defined in Section 4.4 and the

condition ξM 

rθ
( r 2 ) = 1 must be considered. 
Please cite this article as: E. Radi, Evolution of multiple Martensite var
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.8. Thick-walled cylinder composed of two regions (M, AM) 

Let us first consider the case of the wall thickness partitioned in

n outer region AM in a mixture of phases and in a fully marten-

itic inner region M containing only the principal Martensite vari-

nt ( Fig. 3 c ). This situation occurs for r i > r 2 , where r 2 has been de-

ned in ( 4.69 ) as the radius of the front of finish martensitic trans-

ormation when the martensitic transformation starts at r o . Then,

he unknown constants entering the stress and displacement fields

re A 1 , A 2 , B 1 and B 2 . These unknowns can be found by imposing

he conditions 

AM 

r ( r o ) = 0 , σ AM 

e 

(
r f 

)
= σ f , σ M 

r 

(
r f 

)
= σ AM 

r 

(
r f 

)
, σ M 

e 

(
r f 

)
= σ f , 

(4.75

equiring the vanishing of radial stress at r o and the continuity

f the radial and effective stresses through the fronts of start and

nish martensitic transformations at r f . By using Eqs. (3.9) , ( 3.11 ),

 3.25 ) and ( 3.28 ), conditions ( 4.75 ) provide the following constants

 1 = −γ − δ

2 

r 2 
f 

r 2 o 

, A 2 = 

γ − δ

2 

r 2 
f 

r 2 o 

, (4.76)

 1 = − γ − δ

2 ( 1 − δ) 

r 2 
f 

r 2 o 

, B 2 = 

γ − δ

2 

[
δ

1 − δ

(
1 + ln 

r 2 
f 

r 2 o 

)
+ 

r 2 
f 

r 2 o 

]
. 

(4.77)

The introduction of the constants A 1 and A 2 in ( 3.9 )–( 3.13 )

ields the following fields within the outer region AM in a mixture

f phases in terms of r f : 

σ AM 
r ( r ) 
σs 

= 

γ −δ
2 

r 2 
f 

r 2 o 

(
1 − r 2 o 

r 2 

)
+ δ ln 

r 
r o 

, 

σ AM 
θ ( r ) 

σs 
= 

γ −δ
2 

r 2 
f 

r 2 o 

(
1 + 

r 2 o 

r 2 

)
+ δ

(
1 + ln 

r 
r o 

)
, 

σ AM 
e ( r ) 
σs 

= δ + ( γ − δ) 
r 2 

f 

r 2 
, 

u AM 
r ( r ) 

r 
= 

( 1 −ν) σs 

2 E 

{ 

( γ − δ) 

[ 
r 2 

f 

r 2 o 
+ 

1+ ν+ ( 1 −ν) δ
( 1 −ν) ( 1 −δ) 

r 2 
f 

r 2 

] 
− δ ln 

r 2 o 

r 2 

} 

, 

ξ AM 

rθ ( r ) = 

1 
γ −1 

[ 
( γ − δ) 

r 2 
f 

r 2 
− 1 + δ

] 
, 

(4.78)

hich hold for r f ≤ r ≤ r o . Moreover, the introduction of B 1 and B 2 
n ( 3.25 )–( 3.29 ) gives the stress and displacement fields within the

nner martensitic region M in terms of r f : 

σ M 

r ( r ) 

σs 
= 

δ

2 

[
η2 

(
1 + ln 

r 2 
f 

r 2 o 

+ 

1 − δ

δ

r 2 
f 

r 2 o 

−
r 2 

f 

r 2 

)
+ 

(
η2 − 1 

)
ln 

r 2 o 

r 2 

]
, 

σ M 
θ ( r ) 

σs 
= 

δ
2 

[ 
η2 

(
1 −δ
δ

r 2 
f 

r 2 o 
+ 

r 2 
f 

r 2 
− 1 + ln 

r 2 
f 

r 2 

)
+ 2 − ln 

r 2 o 

r 2 

] 
, 

σ M 
e ( r ) 
σs 

= 

(
1 − η2 

)
δ + 

r 2 
f 

r 2 
η2 , 

u M r ( r ) 
r 

= 

σs 

E 
1 −ν

2 
δη2 

(
1 −δ
δ

r 2 
f 

r 2 o 
+ 

1+ ν
1 −ν

r 2 
f 

δ r 2 
+ 1 + ln 

r 2 
f 

r 2 
− 1 

η2 ln 

r 2 o 

r 2 

)
. 

hich hold for r i ≤ r ≤ r f . Finally, by using ( 4.79 ) 1 the boundary

ondition on the internal pressure σ M 

r ( r i ) = −q σs provides the fol-

owing relation between the normalized pressure q and the radius

 f 

 = 

η2 

2 

[
r 2 

f 

r 2 
i 

−
r 2 

f 

r 2 o 

+ δ

(
r 2 

f 

r 2 o 

− 1 − ln 

r 2 
f 

r 2 
i 

+ 

1 

η2 
ln 

r 2 o 

r 2 
i 

)]
, (4.80)

hich hold for max{ r i , r 2 } ≤ r f ≤ r o . 

.9. Thick-walled cylinder composed of three regions (M 

∗, M, AM) 

Let us now consider the case of the wall thickness partitioned

n an outer region AM in a mixture of phases for r f ≤ r ≤ r o , an in-

ermediate martensitic region M containing the principal Marten-

ite variant for r 2 ≤ r ≤ r f , and a fully martensitic inner region M 

∗

iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 9. Sketch and definition of radii r f 
∗ , r c 

∗ and r s 
∗ as functions of r , for r 1 < r i < r 2 

( a ) and for r i < r 1 ( b ), for the ( M 

∗ , M, AM ) phase partitioning. 
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d
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ontaining both Martensite variants for r i ≤ r ≤ r 2 ( Fig. 3 g ). Such a

onfiguration occurs for r i 〈 r 2 and q 〉 q d 2 after that a corner re-

ion took place for q = q c and then disappeared from the cylinder

all for q = q d 2 and r f = r 2 , leaving a definite amount of secondary

artensite variant within the M 

∗ region. The corresponding stress

nd displacement fields in the AM and M regions are given by re-

ation ( 4.78 ) and ( 4.79 ), respectively, in terms of r f . 

The constants C 1 and C 2 defining the stress and displacement

elds ( 3.31 )-( 3.33 ) within the inner martensitic region M 

∗ can be

ound by imposing the continuity of the stress components σ M 

r and
M 

θ
at r = r 2 between the martensitic region M 

∗ and the surround-

ng region M . By using Eqs. (3.31) , ( 3.32 ) and ( 4.79 ) 1 , 2 , the latter

onditions provide 

 1 = −γ − δ

2 

r 2 
f 

r 2 o 

− δ

2 

(
1 + ln 

r 2 
f 

r 2 o 

)
, C 2 = 

γ

2 

r 2 f . (4.81) 

Then, the stress and displacement fields within the martensitic

egion M 

∗ are derived from Eqs. (3.31) –( 3.33 ) and the condition
M 

rθ
(r)= 1 for r 2 ≤r ≤r f , namely 

σ M 

r ( r ) 

σs 
= 

δ

2 

{(
η2 − 1 

)[3 

2 

−
2 r 2 

f 
+ r 2 2 

2 r 2 
+ ln 

r 2 
f 

r 2 r 

+ 

∫ r 2 

r 

(
1 

t 
+ 

t 

r 2 

)
ξM 

rθ ( t ) dt 

]
+ 1 −

r 2 
f 

r 2 o 

+ ln 

r 2 
f 

r 2 o 

}

+ 

γ

2 

(
r 2 

f 

r 2 o 

−
r 2 

f 

r 2 

)
, 

σ M 

θ ( r ) 

σs 
= 

δ

2 

{(
η2 − 1 

)[1 

2 

− 2 ξM 

rθ ( r ) + 

2 r 2 
f 
+ r 2 2 

2 r 2 
+ ln 

r 2 
f 

r 2 r 

+ 

∫ r 2 

r 

(
1 

t 
− t 

r 2 

)
ξM 

rθ ( t ) dt 

]
+ 1 −

r 2 
f 

r 2 o 

+ ln 

r 2 
f 

r 2 o 

}

+ 

γ

2 

(
r 2 

f 

r 2 o 

+ 

r 2 
f 

r 2 

)
, 

u r ( r ) 

r 
= 

σs 

E 

{
δ
(
η2 − 1 

)[1 − 3 ν

2 

− ξM 

rθ ( r ) + ( 1 + ν) 
2 r 2 

f 
+ r 2 2 

2 r 2 

+ ( 1 − ν) ln 

r 2 
f 

r r 2 
+ 

∫ r 2 

r 

(
1 − ν

t 
− 1 + ν

r 2 
t 

)
ξM 

rθ ( t ) dt 

]

+ 

1 − ν

2 

[
δ

(
1 −

r 2 
f 

r 2 o 

+ ln 

r 2 
f 

r 2 o 

)
+ γ

r 2 
f 

r 2 o 

]
+ γ

1 + ν

2 

r 2 
f 

r 2 

}
. 

(4.82) 

The function ξM 

rθ
(r) is given by relation ( 4.47 ) for r i ≤ r ≤ r 2 ,

here the parameter r ∗c is defined as an implicit function of r ac-

ording to two different situations sketched in Fig. 9 . For r 1 ≤ r i the

uter austenitic region A disappeared from the cylinder wall before

he finish martensitic transformation occurred at r i ( Fig. 9 a ). In this

ase, the radius r ∗c is defined by Eq. (4.73) as an implicit function of

 . In the other case, namely for r i < r 1 , the outer austenitic region

 was still present in the cylinder wall when the finish martensitic

ransformation occurred at r i for q = γ ( Fig. 9 b ). In this case, r ∗c is

efined as an implicit function of r by Eq. (4.48) 2 for r i ≤ r ≤ r 1 or

y Eq. (4.73) for r 1 ≤ r ≤ r 2 . 

Moreover, by requiring that the radial stress at r i must coin-

ide with the internal pressure, namely σ M 

r ( r i ) = −q σs , then from

 4.82 ) 1 it follows 

 = −δ

2 

{(
η2 − 1 

)[3 

2 

− r 2 2 

2 r 2 
i 

+ ln 

r 2 
f 

r 2 r i 
+ 

∫ r 2 

r i 

(
1 

t 
+ 

t 

r 2 
i 

)
ξM 

rθ ( t ) dt 

]

+ 1 + ln 

r 2 
f 

r 2 o 

}
− η2 

2 

[
( 1 − δ) 

r 2 
f 

r 2 o 

−
r 2 

f 

r 2 

]
, (4.83)
i 
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or q ≥ q 2 d . 

.10. Complete martensitic transformation achieved at r o 

The complete martensitic transformation is achieved at r o when

 f = r o . In this case, the cylinder wall is entirely formed by a purely

artensitic region M and Eq. (4.79) provide the corresponding

tress and displacement fields: 

σ M 

r ( r ) 

σs 
= 

1 

2 

[
η2 

(
1 − r 2 o 

r 2 

)
+ δ

(
η2 − 1 

)
ln 

r 2 o 

r 2 

]
, 

σ M 

θ ( r ) 

σs 
= 

1 

2 

[
η2 

(
1 + 

r 2 o 

r 2 

)
− δ

(
η2 − 1 

)(
2 − ln 

r 2 o 

r 2 

)]
, 

σ M 

e ( r ) 

σs 
= η2 r 2 o 

r 2 
− δ

(
η2 − 1 

)
, 

u 

M 

r ( r ) 

r 
= 

σs 

E 

1 − ν

2 

[
η2 

(
1 + 

1 + ν

1 − ν

r 2 o 

r 2 

)
+ δ

(
η2 − 1 

)
ln 

r 2 o 

r 2 

]
, 

(4.84) 

hich hold for r i ≤ r ≤ r o . This condition occurs for the pressure

 = q 3 σ s , where q 3 is given by relation ( 4.80 ) written for r f = r o ,

amely 

 3 = 

1 

2 

[
η2 

(
r 2 o 

r 2 
i 

− 1 

)
− δ

(
η2 − 1 

)
ln 

r 2 o 

r 2 
i 

]
. (4.85) 

Then, the stress and displacement increments 
σ r , 
σθ and

u r corresponding to a further pressure increment 
p = 
q

s can be obtained from the classical Lamé solution of two-

imensional linear elasticity, namely: 


σr ( r ) 

σs 
= 

r 2 
i 

r 2 o − r 2 
i 

(
1 − r 2 o 

r 2 

)

q, 


σθ ( r ) 

σs 
= 

r 2 
i 

r 2 o − r 2 
i 

(
1 + 

r 2 o 

r 2 

)

q, 


u r ( r ) = 

1 + ν r 2 
i 

2 2 

(
1 − ν + 

r 2 o 
2 

)

q σs . (4.86) 
i 

iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 10. Variation of stresses, Martensite fractions and radial displacement within the thickness in thick-walled cylinders as the complete martensitic transformation is 

achieved at the inner radius, namely for q = γ . 

Table 2 

Non-dimensional parameters for SMA materials BL and TA. 

BL TA 

δ 0.9781 0.9334 

γ 1.4575 1.1667 

η 4.6782 1.8719 

r 1 / r o 0.2658 –

r 2 / r o 0.2823 –

r 3 / r o 0.3278 –

r 4 / r o 0.3324 –

r lim / r o 0.2599 –

r a / r o – 0.0331 

r b / r o – 0.5342 
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5. Results 

The variations of the pressure delimiting the admissible par-

titions of the cylinder wall with the ratio r i / r o are plotted in

Figs. 4 and 5 for the sets BL and TA of the constitutive parameters,

respectively. These curves single out the regions in the plane q vs

r i / r o where the different types of partitioning take place during the

loading process. These figures provide simple maps for finding the

internal pressure required to produce a desired phase partitioning

for every assigned cylinder geometry, that may be useful for the

design of device control systems realized by means of SMA cylin-

ders and tubes. 

The material parameters defined in ( 3.7 ), ( 3.14 ) and ( 4.11 ) for

the SMA materials BL and TA are reported in Table 2 , together with

the normalized values of the radii r 1 , r 2 , r 3 , r 4 , r lim 

, r a and r b sepa-

rating the admissible phase partitioning within the wall thickness
Please cite this article as: E. Radi, Evolution of multiple Martensite var
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eported in Figs. 4 and 5 and defined by Eqs. (4.52) , ( 4.69 ), ( 4.10 ),

 4.17 ), ( 4.39 ) and ( 4.13 ), respectively. 

For the BL set of constitutive parameters, the curve denoted

ith q 2 in Figs. 4 a and 5 a provides the normalized internal pres-

ure required for the achievement of a complete martensitic trans-

ormation at r i for a relatively thin cylinder wall with r i ≥ r 2 . From

ig. 4 a it can be observed that the pressure q 2 increases with the

all thickness, namely as the ratio r i / r o decreases, and it reaches

he value γ for r i = r 2 . The same pressure q = γ is required to com-

lete the martensitic transformation at r i also for thicker cylinder

alls. 

The curves denoted with q 1 , q 10 and q 11 in F define the normal-

zed pressure required for starting the martensitic transformation

t r o . Therefore, the outer austenitic region A disappears for larger

ressure. The curves denoted with q c , q d 1 , q d , and q d 2 in the same

gures delimit the region in the plane q vs r i / r o where the cor-

er region C takes place within the cylinder wall. The secondary

artensite variant is produced within this region only, whose max-

mum extension is r 4 . 

The curves plotted in Fig. 5 for the TA set of constitutive pa-

ameters show that the pressures q 1 and q 2 become coincident for

 = r b , so that the special partition with the cylinder wall made of

he single region ( AM ) may occur only for r i > r b . It may be ob-

erved in Fig. 5 b that the secondary Martensite variant is produced

nly for very thick-walled cylinders satisfying r i 〈 < r a , for q 〉 > q c .

herefore, the results provided by Tabesh et al. (2013) by neglect-

ng the formation of the secondary Martensite variant are accurate

or r i > r a , for the particular TA set considered there. 

The results plotted in Figs. 10–16 concern only the BL set of

onstitutive parameters. In particular, the variations of the stress
iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 11. Variation of stresses and volume fractions of Martensite variants within the thickness in a thin-walled cylinders ( a ) and in a relatively thick-walled cylinders ( b ) as 

the complete martensitic transformation is achieved at r i , namely for q = q 2 . In both cases, the cylinder wall is made entirely of a region AM in a mixture of phases. 

Fig. 12. Distribution of stresses, volume fractions of Martensite variants and radial displacement within the thickness in very thick-walled cylinders a bit after the complete 

martensitic transformation is achieved at the inner radius. 

fi  

m  
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a  

s  

t  

t  

t  

e  

w  

u  

a  

t  

s  

f  
eld, volume fraction of Martensite variants and radial displace-

ent within the wall thickness, corresponding to the achievement

f the complete martensitic transformation at r i under the nor-

alized internal pressure q = γ , are plotted in Fig. 10 for the ge-

metric ratio r i /r o equal to 0.2 and 0.25, both values correspond

o very thick wall. From these figures it may be observed that the

angential stress attains a maximum at the front of start Marten-

ite transformation r s and tends to vanish at the inner radius r c 
f the mixed region AM , due to the constraint effect induced by

he surrounding austenitic region A, which behaves elastically. As

 consequence, a corner region takes place for r ≤ r ≤ r c , where the
i 
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econdary Martensite variant starts forming, till the volume frac-

ions of the two variants become comparable. Note that the varia-

ion of ξ r 3 within the wall thickness is proportional to the inelas-

ic axial elongation, according to the constitutive relation ( 2.6 ) 3 . As

xpected, the magnitude of radial displacement decreases as the

all thickness increases. The variations of the stress field and vol-

me fraction of principal Martensite variant are plotted in Figs. 11 a

nd 11 b for thinner cylinder walls, namely for the ratio r i /r o equal

o 0.3 and 0.8, respectively. In both cases, no secondary Marten-

ite variant is present when the front of finish Martensite trans-

ormation reaches the inner radius r . It can be observed that for
i 

iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 13. Variation of stresses, volume fractions of Martensite variants and radial displacement within the thickness in very thick-walled cylinders a bit after the complete 

martensitic transformation is achieved at the inner radius. 

Fig. 14. Variation of the fronts of start and finishing martensitic transformation during the loading process for a very thick-walled cylinder ( a, b, c ). and a relatively thin- 

walled cylinder ( d ). 
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Fig. 15. Variation of the normalized radius r 4 with the material parameter δ. 
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 i /r o = 0.3, the tangential stress is near to vanish at the inner ra-

ius and a corner region already took place for q > q c and then dis-

ppeared for q > q d , according to the diagram in Fig. 5 . 

Similar variations are plotted in Figs. 12 and 13 for a small in-

rement of the internal pressure that allows the finish transfor-

ation front propagating within the wall thickness, namely for q

qual to 1.5 and 1.6, both values being greater than γ . It can be

bserved that both the tangential stress and the effective Tresca

tress increase considerably within the fully martensitic region M 

∗,

o that the yield condition of the SMA could be reached quickly.

 similar trend was observed by Mirzaeifar et al. (2012) in their

emi-analytical investigations and it must be carefully considered

n the design of SMA thick-walled pipe joints. Therefore, in order

o avoid severe plastic deformations, the loading process should be

nterrupted soon after the complete martensitic transformation is

chieved at r i , namely when the internal pressure p attains the

hreshold value σ f . 

The total Martensite volume fraction is 1 in the inner fully

artensitic region M 

∗. It ranges between 0 and 1 within the corner
ig. 16. Variations of the normalized radial displacements at the inner and outer radii of

 ). and a relatively thin-walled cylinder ( d ). 
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egion C and the region AM in a mixture of phases and it vanishes

n the fully austenitic outer region A , which is still present at the

nd of the loading process only if the wall is very thick. 

The variations of the fronts of start and finish martensitic trans-

ormations, defined by the radii r s , r c and r f , with the normal-

zed internal pressure q = p/ σ s are plotted in Fig. 14 for relatively

mall and large wall thickness. These plots provide the actual vari-

tions of the radii separating the different annular region that are

ketched in Figs. 7–9 in a preliminary form. 

The curves plotted in Fig. 14 a,b,c concern three cases with r i 
 < r 4 where the corner region takes place. These re-

ults provide a correction to the predictions obtained by

irzaeifar et al. (2012) and Tabesh et al. (2013) by neglecting

he formation of the secondary Martensite variant. If the wall

hickness is very large, e. g. for r i = 0.25 r o < r 1 , Fig. 14 a shows that

he corner region C and the fully martensitic region M 

∗ take place

hen the outer austenitic region A is still present within the wall

hickness. For smaller wall thickness, instead, the fully martensitic

egion M 

∗ takes place after that the outer austenitic region A has

isappeared (see Figs. 14 b,c for r i = 0.27 r o < r 2 and r i = 0.3 r o < r 3 ,

espectively). Note that for large wall thickness, namely for r i < r 4 ,

he corner region takes place for a normalized pressure q lower

han q d 2 and it extends up to the radius r 4 for q = q 4 Therefore, an

ccurate analysis for a pressurized thick-walled SMA cylinder with

 i < r 4 must necessarily take into account the formation of the

econdary Martensite variant. The curve plotted in Fig. 14 d holds

nstead for a relatively thin cylinder wall with r i 〉 > r 4 and thus

t recovers the findings of the previous authors, since no corner

egion takes place in the cylinder wall in this case. 

The variation of the normalized radius r 4 / r o with the material

arameter δ is plotted in Fig. 15 . For most of SMA materials the

arameter δ is close to 1 and, thus, the corner region may appear

n thick walled SMA cylinders only if r i / r o < 1/ e ≈ 0.368. 

The problem of a hole in an infinite plate investigated by

irman (1999) is also recovered by the present analysis as a special
 the cylinder wall with the internal pressure for a very thick-walled cylinder ( a, b, 

iants in a SMA thick-walled cylinder loaded by internal pressure, 
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Fig. 17. Variation of normalized radial displacements at the inner radius of the cylinder wall with the internal pressure for a thin-walled cylinder ( a ) and a thick-walled 

cylinder ( b ). The results obtained in the present analysis for plane stress (solid lines) for a TA material are compared to those obtained by Tabesh et al. (2013) for plane 

strain (dashed lines). 
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case for r o → ∞ . In this limit case, from ( 4.7 ) and ( 4.16 ) it follows 

q 0 = 

1 

2 

, q c = δ

[
1 − W 0 

(
−1 − δ

δ
e 

)]
. (5.1)

If the plate is initially fully austenitic, then a mixed annular re-

gion AM appears around the hole for q = q 0 and it extends outward.

Then, a corner region C originates inside the mixed region AM for

q = q c . Finally, for q ≥γ a fully martensitic annular region M 

∗ origi-

nates starting from r i . During this loading process the outer purely

austenitic region is always present at increasing distance to the

hole. 

The variations of the radial displacement u r normalized by r o 
with the normalized internal pressure q are shown in Figs. 16 for

the same radii considered in Fig. 14 . It can be observed that the ra-

dial displacement is always larger at r i than at r o , being the pres-

sure applied at r i . Moreover, the larger displacement rate occurs

for q c < q < γ , namely when the transformation to both Martensite

variants is active. In this case, a significant amount of transforma-

tion strain occurs in the axial direction. For q > γ most of the in-

ner part of the wall has been transformed to Martensite and is no

more available to elongate in the tangential direction by marten-

sitic transformation and thus it displays elastic behavior, whereas

in the inner part of the wall thickness the martensitic transforma-

tion is still in progress. Therefore, a further increment in the in-

ternal pressure will produce a high tensile tangential stress at the

inner radius, as detected in Figs. 12 and 13 . Moreover, the elastic

behavior of the inner Martensite region results in a stiffening effect

as the internal pressure is further increased, as it can be observed

in Fig. 16 for large internal pressure. Note also that the response is

linear between the normalized pressures q d and q 2 in Fig. 16 c and

between q 1 and q 2 in Fig. 16 d , being the wall composed of a single

region AM in a mixture of phases within these ranges of pressure,

in agreement with the observations of Tabesh et al. (2013) . 

It must be remarked that the present results hold for plane

stress loading condition. They are expected to hold qualitatively

for the radial and tangential stress components also under plane

strain loading condition if the condition σ r ≤σ 3 ≤σθ is attained.

In this case, indeed, no significant difference should occur in the

radial and tangential stress components under plane stress and

plane strain loading conditions, being the Tresca transformation

condition independent of the intermediate stress σ 3 . However, un-

der plane strain loading conditions the constitutive relations are

affected by the axial stress component σ 3 and, thus, the radial

displacement u r and the Martensite fractions ξ r θ and ξ r 3 are ex-

pected to differ from the corresponding results under plane stress.

In order to validate the present analysis, a comparison with

the few results available in the Literature is provided in Fig. 17 .

In particular, the variations of normalized radial displacements
Please cite this article as: E. Radi, Evolution of multiple Martensite var
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t the inner radius of the cylinder wall with the internal pres-

ure for a thin-walled cylinder ( Fig. 17 a ) and a thick-walled cylin-

er ( Fig. 17 b ) obtained by the present analysis for plane stress

solid lines) for a TA material are compared to those obtained by

abesh et al. (2013) for plane strain (dashed lines). The curves are

ery close, except that the radial displacement predicted by the

resent analyses under plane stress loading condition is a bit larger

han that obtained by Tabesh et al. (2013) for plane strain, as rea-

onably expected. Unfortunately, no results are available in the Lit-

rature for plane stress obtained by adopting the Tresca transfor-

ation condition for SMA. 

. Conclusions 

A simple constitutive model has been used for the description

f the axisymmetric loading of a pressurized SMA thick-walled

ylinder at constant temperature, under plane stress conditions.

he model is based on two variants of the Martensite phase frac-

ion, which linearly evolve with the Tresca effective stress, in anal-

gy with the associative flow rule and corner flow theory of plas-

icity. The rate constitutive model has been integrated under the

ssumption of proportional loadings. Moreover, the elastic mod-

li of Austenite and Martensite are assumed to be identical. These

implifying assumptions allowed us to obtain a closed form solu-

ion for the stress and displacement fields and the distribution of

he Martensite fractions within the cylinder wall during each step

f the loading process. The results show that a significant extent

f Martensitic transformation occurs in the axial direction for very

hick cylinder wall, and thus it can not be recovered during the

uccessive unloading process. 

Due to the widespread applications of SMA, the present ana-

ytical results are of great importance for the design of innovative

echanical devices such as connectors, seals and clamping com-

onents realized by means of SMA rings and tubes. They can be

fficiently used also for validating the accuracy of numerical meth-

ds usually employed in the modeling of SMA junctions and they

re essential for an accurate modeling of the successive unloading

rocess, which will be investigated in a forthcoming paper. 
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