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The stress and deformation fields in a SMA ring or a thick-walled cylinder loaded by internal pressure
at constant temperature (over the start temperature of the martensitic transformation) are determined
in closed form under plane stress loading conditions. The phenomenological SMA constitutive model in-
corporates the volume fractions of multi-variants Martensite, which are assumed to evolve linearly with
the Tresca effective stress, according to the associative flow rule and the corner flow rule. Initially, the
Analytical solutions cylinder is everywhere in a state of Austenite. The application of an internal pressure then triggers the
Axisymmetric martensitic transformation starting from the inner radius of the cylinder wall and extending towards the
Rings outer radius. If the wall thickness is large enough, the tangential stress may vanish at the inner radius and
Shape'memow. correspondingly the stress state may reach a corner of the Tresca transformation condition, thus originat-
Thermomechanical ing two different Martensite variants according to the corner transformation rule. The admissible phase
Cylinder .. s . s . . . .

) partitions within the wall thickness originating during the loading process have been systematically in-
Phase transformation . . . . .. .

vestigated according to the ratio between the outer and inner radii. The results obtained here suggest that

the loading process should be interrupted soon after the complete martensitic transformation is achieved
at the inner radius of the cylinder to avoid permanent plastic deformations.
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1. Introduction

Due to their reliable performance and convenient installation,
SMA couplings, fasteners and joints have been widely used for
pneumatic and hydraulic connectors in aircraft and piping systems
(Kapgan and Melton, 1990; Borden, 1990, 1991; Brinson and Lam-
mering, 1993; Wang et al., 2005; Jee et al., 2006), as well as for
electrical connectors (Harrison and Hodgson, 1976). They indeed
provide joints of the greatest mechanical and electrical reliabil-
ity and integrity, which can be quickly applied or removed. Re-
cently, an experimental and numerical study has been carried out
to assess the use of SMA rings as pipe couplers in radioactive ar-
eas of high-energy particle accelerators, where thermally induced
mounting and dismounting operations can be operated remotely
(Niccoli et al., 2017).

In order to exploit the full potential of SMA coupling systems, it
becomes essential to estimate the stress distribution within these
components accurately. Severe stresses may develop during the
production stage or the installation of SMA coupling and may
cause unexpected mechanical deformation, damage and failure or
just loss of efficiency (Tabesh et al., 2013, 2017). To avoid such
technological problems, it becomes necessary to predict the me-
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chanical stresses originated in SMA connections during each step
of their production and installation. A complete and detailed un-
derstanding of their stress and deformation history will be also
useful for improving their design, production and usage conditions.

SMA pipe couplings displaying cylindrical geometries are usu-
ally predeformed, so that they must be stored and transported
at low temperature and then installed by induction heating
(Brook, 1983). They are previously expanded by applying an inter-
nal pressure at temperature Ty over the start Martensite temper-
ature M;, thus inducing the martensitic transformation. After the
coupling is mounted on the pipe the temperature is increased to
recover the residual deformation, taking advantage of the reversal
austenitic transformation. As a consequence, the coupling diame-
ter decreases and a contact pressure originates between pipe and
coupling. In the alternative method proposed by Jee et al. (2006),
SMA coupling and pipe are deformed simultaneously and then the
coupling is contracted on heating in order to get the tightness also
with a poor shape memory effect.

The problem of a SMA ring used as a pipe connector was ini-
tially investigated by Brinson and Lammering (1993) by introduc-
ing the simplifying assumption of purely elastic behavior along the
radial direction. Later, Birman (1999) considered an infinite SMA
plate with a circular hole and obtained a closed form approximate
solution by assuming a constant ratio between the radial and tan-
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gential stresses. Chi et al., (2003, 2005) provided a detailed exam-
ination of the axisymmetric stress, strain and phase fraction fields
in an annular SMA plate. These analyses were restricted to isother-
mal loadings and assumed single variant Martensite, so that no
unloading process nor reverse transformation to Austenite or neg-
ative variant Martensite were taken into consideration. Moreover,
the assumption of an effective stress of von Mises type made in
those papers necessarily required a numerical approach. In a fur-
ther paper (Chi et al., 2007), the same authors proposed numerical
algorithms for treating cyclic loading histories and applied them
to investigate the loading and unloading process of a SMA annular
plate.

The study of the process of constrained recovery has been ini-
tially limited to uniaxial examples (Liang and Rogers, 1990; Brin-
son, 1993; Leclercq and Lexcellent, 1996; Kosel and Videnic, 2007).
Nagaya and Hirata (1992) developed a simplified model of con-
strained recovery in SMA rings that considers only the tangential
stress and neglects the contribution of radial stresses to the effec-
tive stress. Such an extreme simplification allowed these authors
to use a uniaxial constitutive model, though it is reasonably ac-
curate only for thin-walled SMA rings. Wang et al. (2005) investi-
gated experimentally the effects of the wall thickness and temper-
ature range on the reverse transformation behavior of SMA pipe
joints. Videnic et al. (2008) presented a mathematical model of bi-
axial constrained recovery in a SMA ring. These authors adopted
a generalized effective stress of Tresca type, which allows to con-
sider unequal response in tension and compression. For the sake of
simplicity, they assumed a vanishing stress state in the deformed
ring after unloading. Such a supposition is not properly correct,
since residual stresses are always present in the SMA material after
loading-unloading cycle. Piotrowski et al. (2012) performed a com-
bined experimental and finite element analysis of a SMA pipe cou-
pler mounted on an instrumented elastic ring. The coupling pres-
sure predicted by FEA was in excellent agreement with the mea-
sured contact pressure. Mirzaeifar et al. (2012) performed a semi-
analytic study of the pseudoelastic response of a thick-walled SMA
cylinder subject to internal pressure, under plane stress or plane
strain conditions. These authors partitioned the cylinder into a fi-
nite number of annular regions and provided closed-form solutions
for the equilibrium equations in each annulus. Then, a numerical
solution was found by solving the system of nonlinear algebraic
equations obtained by enforcing stress continuity at the interface
between annular regions. Tabesh et al. (2013) provided a closed
form solution for the pseudoelastic response of a SMA thick-walled
cylinder subjected to internal pressure under plane stress or plane
strain loading conditions, for temperature higher than the finish
austenitic transformation Ay. They assumed a simplified 2D consti-
tutive model for SMA that incorporates the Tresca transformation
criterion with associative flow rule and linear transformation law.
Moreover, they considered the simplifying assumption that the ax-
ial strain is constant within the wall thickness and thus the re-
sponse in the axial direction remains elastic. Liu et al. (2013) also
performed a similar investigation by considering the effects of a
radial temperature gradient. Later, Liu and Du (2014) provided the
analytical solution to the problem of isothermal loading of a pseu-
doelastic SMA cylinder under external pressure. In these analyses
the tangential stress is assumed to be always positive, as indeed
it occurs during loading and pseudoelastic unloading if the wall
thickness is sufficiently thin. In this case the effective Tresca stress
is given by the difference between radial and tangential stresses
and, thus, the Martensite transformation occurs with elongation in
the circumferential direction. However, the results of these inves-
tigations show that the tangential stress at the inner radius de-
creases during the loading process, especially for very large wall
thickness. If it becomes null, then a corner of the Tresca trans-
formation condition is attained and transformed Martensite starts

elongating along the axial direction also, according to the cor-
ner flow rule. Namely, two different Martensite variants are pro-
duced within the corner region according to the corner flow rule
by means of two different lattice shearing mechanisms, which may
develop within the planes orthogonal either to the axial direction
or to the tangential direction. Therefore, the latter analyses pro-
vide correct predictions for sufficiently thin-walled cylinders, but
they may be inaccurate for a very thick-walled SMA cylinder under
plane stress loading conditions. In this case, a corner region with
null tangential stress may take place during the loading process
starting from the inner boundary, as it occurs for an elastic-plastic
thick-walled cylinder when the Tresca yield condition is adopted
(Koiter, 1953; Durban and Kubi, 1992; Masri and Durban, 2007).

A complete and detailed analytical study of the shape mem-
ory effect induced by forward transformations of a very thick
SMA cylindrical joint has never been performed by using a con-
stitutive model that incorporates the phase fractions of multiple
Martensite variants as internal variables, whose transformation oc-
curs in agreement with the normality rule on the Tresca sur-
face. Most of the simulation available in the literature are com-
monly performed by using finite element analysis incorporating 3D
constitutive models for the thermomechanical behavior of SMAs
(Popov and Lagoudas, 2007; Piotrowski et al., 2012, Lagoudas et al.,
2012; Zaki, 2012, Niccoli et al., 2017). The purpose of the present
study is to develop a rigorous analytical model with closed-form
solutions to predict the stress and displacement fields in a SMA
ring or thick-walled cylinder composed of several phases, namely
Austenite and two different Martensitic variants, subject to internal
pressure at constant temperature over the start temperature of the
martensitic transformation M;. In particular, the forward marten-
sitic transformation occurring under proportional axisymmetric
loading and plane stress conditions is investigated systematically.
The phenomenological SMA constitutive model adopted here as-
sumes that the Martensite fractions evolve as linear functions of
the Tresca effective stress, in agreement with the constitutive mod-
els proposed by Govindjee and Kasper (1997, 1999), Arghavani
et al. (2010), Marfia and Rizzoni (2013) for multi-variants Marten-
site and by Videnic et al. (2008) and Luig and Bruhns (2008) for
single variant Martensite. These models are derived from the the-
ory of generalized plasticity developed by Lubliner and Auric-
chio (1996) and Auricchio and Lubliner (1997). However, the oc-
curring of the Martensite transformation in SMA according to the
corner flow rule of the Tresca criterion has been developed here
for the first time, to allow for obtaining closed form solutions to
complex 2D or 3D thermomechanical problems. The two Marten-
site variants consist in the deformed Martensite shortened in the
radial direction and stretched in the circumferential or the axial di-
rection, respectively. The activation of one or the other mechanism
depends on the stress state according to the normality rule.

Although the general case requires a numerical analysis of two
non-linear ODEs, the simplifying assumptions of effective stress in
a Tresca form and linear phase transformation kinetic allow us to
obtain a closed form solution, also for the regions that are fully
transformed to both Martensite variants. Obtaining an analytical
solution for these regions is one of the main challenges of the
present study. It requires to take into account for the history of
loading and the evolution of the volume fractions of Martensite
variants within these regions. Despite the theoretical difficulties,
analytic solutions have a number of advantages. From them one
can see clearly the role played by constitutive and geometrical pa-
rameters and thus they allow understanding also more complex
problems. Moreover, they provide a reliable evaluation of the resid-
ual stresses and strains in the SMA thick-walled cylinder after the
isothermal loading process, which can be used also for validating
the results of numerical procedures (Auricchio et al., 2014; Bernar-
dini and Pence, 2016).

Please cite this article as: E. Radi, Evolution of multiple Martensite variants in a SMA thick-walled cylinder loaded by internal pressure,
International Journal of Solids and Structures (2018), https://doi.org/10.1016/].ijsolstr.2018.06.034



https://doi.org/10.1016/j.ijsolstr.2018.06.034

JID: SAS

[m5G;August 30, 2018;7:32]

E. Radi/International Journal of Solids and Structures 000 (2018) 1-21 3
Ce A
[o)3) /G 3 e
Om co>0 €
6,<0 :\
4
- L0 Cu
X3 // 1
yan y
0 Vo B
G0 <0 = 1 o/ T
roa
E<_ @ Fig. 2. SMA phase diagram for an isothermal loading process.
o< 0 !
o P
I‘ _
- 1 0. =—0y, foror<aoy<0. (2.4)

Fig. 1. Tresca transformation condition with associative flow rule and corner flow
under plane stress loading conditions (o3 =0).

The present article is divided into six sections. The constitutive
model in the integrated form is briefly reviewed in Section 2. The
model is able to describe several phenomena occurring in the ra-
dial expansion of a SMA thick-walled cylinder, such as phase trans-
formations, Martensite reorientation and multiple lattice shear-
ing mechanisms. It keeps the essence of the approach used in
Videnic et al. (2008) and Tabesh et al. (2013), but extends these
studies by considering corner transformation flow rule, thus al-
lowing for the formation of multi-variant Martensite. Moreover,
in the present analysis the axial strain may vary within the wall
thickness. The general expressions of the stresses, radial displace-
ment and Martensite fraction within all the admissible annular re-
gions that may arise within the cylinder during the loading pro-
cess, composed of Austenite, Martensite variants and a mixture of
such phases, are presented in detail in Section 3. A closed-form
solution for the loading process is developed in Section 4 for each
possible phase partitioning within the wall thickness and for any
value of internal pressure. The solution is obtained by enforcing
full stress and displacement continuity at the interface between
annular regions and imposing the boundary conditions at the outer
and inner radius of the cylinder. Results are presented in Section 5,
where the effects of the wall thickness and material parameters on
the radial distribution of stresses, radial displacement and Marten-
site volume fractions are also discussed. A summary of important
results is given in Section 6.

2. SMA constitutive model

The equilibrium condition for the in-plane stresses o, and oy,
which originate in the cylinder under axisymmetric loading condi-
tions, writes

Oy =T 0+ 0y, (2.1)

where the apex denotes the derivative with respect to the variable
r. In addition, the strain- displacement compatibility conditions re-
quire
u
e =u, &= % (2.2)
The phase transformation between Austenite and Martensite is
assumed to be governed by the effective stress o, given by the
Tresca’s criterion under plane stress conditions (o33 =0). Assuming
that the radial stress is always compressive (o, <0) and o, <0y,
then Tresca’s criterion (Fig. 1) gives

0. =0y — 0y, foro,<0<oy, (2.3)

Two different Martensite variants may originate during the
loading process according to the sign of the tangential stresses o,
as predicted by the Tresca-like transformation condition (2.3) and
(2.4) together with the associative flow rule (Fig. 1). The princi-
pal Martensite variant is produced for oy >0 (side AB in Fig. 1).
It causes shortening in the radial direction, elongation in the tan-
gential direction and has no effect on the axial direction. The sec-
ondary Martensite variant is produced for oy <0 (side BC in Fig. 1).
It causes shortening in the radial direction, elongation in the axial
direction and has no effect on the tangential direction. The volume
fractions of these Martensite variants are denoted by &, and &3,
respectively. Then, the total volume fractions of Martensite is given
by the sum &t =& 9 4 &13.

The threshold stresses o5 and oy for the start and finish
martensitic transformations are determined by the temperature
To according to the simplified phase diagram sketched in Fig. 2,
namely

05=Cy (To —Ms), or=Cy (To—Mf),

being Cy the slope of the martensitic transformation lines.

Although the elastic modulus of the SMA varies during the
phase transformation between the elastic modulus E, of the
austenitic phase and the elastic modulus Ey; of the martensitic
phase, for the sake of simplicity, in the following a constant elas-
tic modulus E is considered for the two phases, equal to the
mean value between the two elastic moduli. Moreover, the as-
sociative flow rule with corner flow is assumed for the trans-
formation strain, according to the experimental observations of
Chirani et al. (2003). Then, the constitutive relations holding for
the isothermal and proportional loading process of the SMA cylin-
der under plane stress conditions are assumed in the integrated
form (Govindjee and Kasper, 1997, 1999; Videnic et al., 2008; Luig
and Bruhns 2008)

(2.5)

& = %(o, —v0p) — &1 (50 + &),

1
&p = E(O'g —voy) + ¢ &y, for oy <0ando;, < oy

%
&3 = —E(O'g +0r)+ €L ‘i:r3~ (2.6)

where ¢; is the maximum residual strain obtained by detwinning
multiple variant Martensite, coinciding with the maximum inelas-
tic strain attained under uniaxial loading when the solid is com-
posed of fully oriented Martensite. Note from Eq. (2.6) that the
martensitic transformation induces no volume change, being of
shearing type.

Egs. (2.6) can be derived by integration of the rate constitutive
equations and thus hold for proportional loading. A similar deriva-
tion has been performed by Panoskaltsis et al. (2004) for a SMA
constitutive model based on an effective stress of von Mises type.
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Table 1 ' where the brackets denote the jump of the function within the
Constitutive parameters for SMA materials BL and TA, brackets. Then from the definition of the effective stress (2.3) and
BL TA (2.4) and conditions (2.10) it follows
To [°K] 298 340 [og] for or <0 <oy
E [GPa] 46.65 85 [oe] = { (2.11)
v 033 0.4 0 for o, <0y <0.
g‘ [[IIC/I/I;’DZ]] ;i; }igg The introduction of (2.10) and (2.11) in the constitutive relations
. 0.067 0,033 (2.6), (2.7) and (2.8), implies

Egs. (2.6) hold also for oy =0, namely when the stress state
lays in the corner of the Tresca transformation condition. In this
case, the transformation strain is not uniquely defined, in agree-
ment with the corner flow theory of elastic- plastic materials
(Durban and Kubi, 1992).

In the following, two different sets of constitutive parame-
ters will be considered. They correspond to those adopted by
Brinson and Lammering (1993) and Tabesh et al. (2013) and are
denoted by BL and TA, respectively. In particular, the temperature
To, the Young’s modulus E and Poisson coefficient v of both phases
(Martensite and Austenite), the threshold stresses os and o for
start and finish martensitic transformations at temperature Ty, and
the maximum residual strain ¢; are reported in Table 1 for both
sets. For the sake of simplicity, the same values of the Young's
modulus and Poisson coefficient are chosen for both phases.

2.1. Martensitic transformation during the loading process

Assuming that the material at the beginning of the loading pro-
cess is fully austenitic, then, Austenite is transformed into Marten-
site variants during the loading process. According to the model
proposed by Govindjee and Kasper, (1997, 1999), the transforma-
tion of the variant Martensite fractions can be expressed in the
following integrated form that holds for o5 < 0. < o ,, with ref-
erence to the phase transformation model sketched in Figs. 1 and
2:

O" —
£p = ;7_?, &3 =0, for o, <0 < 0y and
f S
O = 0p — Oy, (2.7)
Oe — O,
Eg +E3=— S for 0; < 0y =0 and o, = —07, (2.8)
fYs
Oe — O
$r3=ﬁ — &%, &g =§&p, foror <oy <0 and
f_ s
Oe = —O7, (2.9)

where Sr% is the principal Martensite variant at the beginning of
the transformation.

The dependence of the threshold stresses on the Martensite
fraction as depicted in Govindjee and Kasper (1997, 1999) has been
neglected here for the sake of conciseness, but it can be easily con-
sidered in a more refined investigation, as well as the difference
between the elastic moduli of Austenite and Martensite.

2.2. Continuity conditions

Continuity of the radial stress and displacement between two
adjacent annular regions undergoing different process of phase
transformation must be required. Then, by using (2.2), through
the front of separation between two different regions one must re-
quire

[o7] = [ur] = [e4] = O, (2.10)

[og] +EeL [56] =0,

_ [Er@](af - GS)
loel = {[Ero +E&i(of — 03)

If 0y > 0 then £,3=0 and thus Eqgs. (2.11) and (2.12) imply the
continuity of the tangential stress, effective stress and volume frac-
tion of Martensite variants during the loading process, namely

[0g] =[0e] = [&p] = [£:3] = O, (2.13)
whereas if o4=0 then Eqs. (2.11) and (2.12) imply conditions
(2.13) and also [£,3]=0.

Therefore, continuity of the radial stress and displacement
(2.10) also implies continuity of the tangential stress, effective
stress and both Martensite volume fractions. In the following, con-
tinuity of the radial and effective stresses will be imposed between
contiguous annular regions, rather than continuity of the radial
displacement.

for 0, <0 <oy

212
for o, <oy =0. ( )

3. Admissible annular regions within the SMA cylinder

Let r; and r, denote the inner and outer radii of the cylinder
wall, respectively. Initially the cylinder is everywhere in a state of
Austenite, at temperature Ty higher than the start temperature of
the martensitic transformation M; (Fig. 2). A uniform pressure p
is applied at r; and gradually increased at constant temperature
To. Correspondingly, the effective stress o, is a decreasing func-
tion of the radius r whose maximum is attained at r;. Therefore,
the martensitic transformation starts therein when the effective
stress reaches the threshold stress ;. As the internal pressure
is increased, a progressive increase in the volume fraction &, of
Martensite occurs, starting from r;. Correspondingly, the front of
the start of the Martensite transformation, defined by the radius
15, moves towards the outer boundary. When the effective stress
reaches the threshold stress o at r;, then a second front corre-
sponding to the finish of the martensitic transformation originates
therein. If the internal pressure is further increased, then the sec-
ond front propagates within the wall thickness with radius ry.

During the axisymmetric expansion, the wall thickness can be
partitioned into three main kinds of annular regions: a purely
austenitic outer region A whose inner and outer radii are rs and
To, Tespectively; an intermediate transforming region in a mixture
of Austenite and Martensite variants with inner radius r; and outer
radius rs; and a purely martensitic inner region M with inner ra-
dius r; and outer radius ry. The intermediate transforming region
may be divided in correspondence of the radius r. into an outer
AM region where only the principal Martensite variant & is pro-
duced and an inner corner region C where both Martensite variants
&, and &3 are produced. If no corner region takes place within
the wall thickness, then, the martensitic inner region M contains
the principal variant &, alone. If a corner region has instead de-
veloped, then the martensitic inner region M* contains a mixture
of both Martensite variants. The number of annular regions within
the wall thickness depends on its geometry and internal pressure.

In the following, the general expressions of the stress and dis-
placement fields in the admissible annular regions that take place
during each step of the isothermal loading process, are obtained in
terms of the internal pressure p and radii rs, 1c and ry separating
the different annular regions.
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3.1. Fully austenitic outer region A " X
aM(r T
o . % () _s_pp 0, (3.11)
The austenitic region A occupies the outer part of the SMA O r2
cylinder wall where the martensitic transformation has not started
yet, being o, <os. Therefore, the SMA within this annular region
behaves elastically, being &,y =&,3=0, and the stress field within uM(r) o To 1+6 r2
‘s N . L =1 (A-V(A-8In=)-A| —=<+Vv |2,
the austenitic region induced by the tractions o /(rs)=—qs o5 €x- r E r 1-6 r2
changed through the front of start martensitic transformation at r; (3.12)

is predicted by the classical Lamé solution of two-dimensional lin-
ear elasticity:

ol (r r2 r2
o _ T (1 _ rg>qs, (3.1)

O 13 —r?

oy () r2 o
25 (143
o5 e — T r

By using Eqs. (3.1) and (3.2) and noting that oy > o, the effec-
tive stress (2.3) in the cylinder wall turns out to be:

of() _ 21 1
= 24
O r2—r? r?

(3.2)

(3.3)

Under plane stress loading conditions, the radial displacement
writes

ulny 1-v 1?2 1+v r?
= 1 To ) gsos.
r E 1212 1oy )%

Egs. (3.1)-(3.4) hold for ry<r<r,.

(3.4)

3.2. Intermediate region AM in a mixture of austenite and principal
Martensite variant

Within the region AM undergoing phase transformation to the
principal Martensite variant, the volume fraction &, increases lin-
early with the effective stress according to relations (2.7). A sub-
stitution of Eqs. (2.1) and (2.3) in the constitutive relations (2.6),
by using the strain-displacement relations (2.2) and the integrated
form of the transformation laws (2.7) to the principal Martensite
variant, yields:

/_‘l 8 4 8
ur—E|:(1U)Ur(V+18>ro—r+laas B (35)
ur 1 ro/ )
r_E[(l_v)0r+l—5 _1—80{|’ (3.6)
where:

Fe 4, (3.7)

- of—os+Ee

is a non-dimensional parameter close to 1, being E&; > o;—0s.
The introduction of Eq. (3.6) for u, in (3.5) provides the following
linear ODE for the function o (r):

o, +3ro0/—28 0;=0. (3.8)

The analytic solution of the linear ODE (3.8) for the radial stress
in the annular region AM in a mixture of Austenite and principal
variant Martensite (£,3 =0) is:

oM (r)

2
T, To
=A+A;2-8In—=,

X 2 15

(3.9)
where A; and A, are constants of integration. The introduction of
(3.9) in Egs. (2.1), (2.3) and (3.6) provides the following tangential
and effective stresses and the radial displacement

oM(r)
S

r2 To
=A2—A1r—2+6(l—ln?>, (3.10)

in terms of the constants A; and A,. Moreover, from (3.11) and
(2.7), the volume fraction of transformed Martensite turns out to
be:

1-6 2A 12
AM _ 1 'o
& (1) = y1<1+18 rz), (3.13)
where
_9r
Y= o, (3.14)

is a non-dimensional material parameter greater than 1.

3.3. Corner region C in a mixture of Austenite and both Martensite
variants

If the wall thickness is large enough, then, the tangential stress
0y may vanish at r; during the Martensitic transformation. In this
case, an annular corner region C appears starting from r;, where
the stress state lays within a corner of the Tresca transformation
condition (Fig. 1), in agreement with the problem of a pressurized
elastoplastic tube studied by Durban and Kubi (1992). According to
(2.1), vanishing of oy within this region leads to the radial stress

G _ T

~ 2. (3.15)

where C is a constant. Then, the constitutive Eqs. (2.6), (2.8) and
the strain compatibility Eqs. (2.2) imply

U O To 1)

r_E[VCr+1—8 (V—l)ére], (3.16)
1-6§ Cr,

(r ér&)/+§r0+§r3+ﬁ 871‘0 =0 (3.17)

Considering that o, =—o for 0y =0, the transformation law (2.8)
for the total Martensitic fraction, namely the sum of &4 and &3,
then yields

1 y
§o+6n= ﬁ(ci - 1>,

- (3.18)

Egs. (3.17) and (3.18) provide the following distribution of the
Martensite volume fractions &,y and &3 in the corner region in a
mixture of Austenite and both Martensite variants

Cr,

1 r T,
Ciry=—(1- I _ph
“"(r)_y—1<1 3T lnrO+Dr), (3.19)
C _;K p. € L)LO_ ]
~>§r3(r)—y_1 C-Dtgin-)--2|. (3.20)

where D is a constant of integration. The radial displacement then
follows from (3.16),, (2.2), and (3.19) as

ut(ry oy f 8 To To 1 r
s e { () Rie U SLES I RCED

Note that a corner region cannot extend till the outer radius
of the cylinder wall because the condition o (r,) =0 necessarily
implies C=0, so that the stress field should be null therein.
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3.4. Fully martensitic inner region M

If the loading process is continued after that the complete
transformation to both Martensite variants is achieved at r;, then
a fully martensitic region with &, +&,3=1 appears, starting from
r;. The introduction of Eqs. (2.1) and (2.2) in the constitutive
Egs. (2.6) gives:

1
u = E[(1 —vy o —vro/]-eL (3.22)
u 1
?’:E[(l —v) oy +10]| + &1 &g (3.23)

where £,9 < 1, Two different situations can be envisaged according
to the amount of secondary martensitic variant, namely for &£,3 =0
or £,3 > 0.

3.4.1. Fully martensitic region M containing only the principal variant
If no corner region takes place within the cylinder wall then

&p=1 and £,53=0. In this case, the substitution of Eq. (3.23) for

ur in Eq. (3.22) yields the following linear ODE for the function

o(r):

2o, +3ro/ +2E ¢ =0. (3.24)

The linear ODE (3.24) admits the following solution for o,
which holds in the fully martensitic region M containing the prin-
cipal Martensite variant only:

oM (r)

S

——1In
§ r’
where By and B, are constants of integration, being from (3.7) and
(3.14)

E EL -5 Y — 1
o, 1-48
The corresponding equations for the tangential and effec-

tive stresses and radial displacement are derived by substituting
Eq. (3.25) in (2.1), (2.3) and (3.23) as:

_ Gg¥ =1l
=B, + B, 2 +46 1= (325)

(3.26)

op(r) o _ ¥ —1 To

A =B s (1om ). 20

o) _ 55T gy -1

= 2B 5 - 85— (3.28)

o _ 2

urr(r):?[(1_V)(Bz+5)]’_;lnrr")—Bl(l+v):‘§]
(3.29)

which hold for r; <r<ry.

3.4.2. Fully martensitic region M* containing both variants

If a corner region C takes place within the cylinder wall, then,
both Martensite variants originates therein due to corner flow. In
this case, the inner martensitic region M* is formed by both vari-
ants, namely &, + &3 =1. The substitution of Eq. (3.23) for u, in
Eq. (3.22) then yields the following linear ODE for the function

o(r):
P o, +3ro/ +Ee [1+(r&g)]=0. (3.30)

By using (2.1) and (3.26), the general solution for the stress field
satisfying the ODE (3.30) is

oMy  S(y-1) 7\ (1
o 2(1-9) [(1_ r2)<2+$flg(rf))

r r /1 t C
+ 1n7f+/ (?*72) Mt) dti| e _rg, (3.31)

2

a)(r) S(y -1 r 1
o = 2(()1/ - 5)) [1 +29(0 - (1 * r£> (3 +840v))

Iy Tt 1 t G
~In —/r <? - rz)spg(t)dt} —G+ 3

where the function Er"g (r) denotes the radial distribution of the
principal Martensite variant within the M* region. Since no evolu-
tion of the Martensite variants is expected within this region, then
the function Sr’g (r) is defined by the volume fraction of the princi-
pal Martensite variant already formed at radius r when the front of
the finish martensitic transformation r¢ was coinciding with r. The
corresponding radial displacement in the fully martensitic region
M* follows from the substitution of Eq. (3.31) in (3.23) as:

: 8y -1 7
”fr) :% (17/_8){—1—§;g(r)+[1—v+(1+v) rg}

(3.32)

(% +$r"g(rf)) +(1-v) ln%f

. /rrf<1;v B 1:rzvt>grpg(t) dt}

~Zla-wa-a+nZ]

The integration constants C; and C, as well as the function
Sr"g(r) must be determined by using the boundary conditions and
continuity conditions between adjacent annular regions.

(3.33)

4. Axisymmetric loading process

The unknown parameters introduced in the analytical results
for the stresses and radial displacement in the various annular re-
gions obtained in the previous section can be calculated by impos-
ing the boundary conditions at r; and r, and the continuity condi-
tions between adjacent annular regions. Depending on the cylinder
geometry and the internal pressure, eleven types of phase parti-
tioning of the cylinder wall may occur during the loading process,
namely (A), (AM,A), (CAM,A), (M*,CAM,A), (CAM), (AM), (M*,CAM),
(M,AM), (M, AM,A), (M*,M,AM,) and (M). The distribution of the ad-
missible configurations is sketched in Fig. 3 and preliminary plot-
ted in Fig. 4 as function of the ratio r;/r, and normalized internal
pressure q=p/os for both sets of constitutive parameters BL and
TA. The stress and displacement distribution within the wall thick-
ness for a fully austenitic (A) cylinder wall may be obtained from
the classical linear elastic solution (3.1)-(3.4) for gs=q and rs=r;.
The other ten admissible configurations are systematically exam-
ined in Sections 4.1-4.10.

4.1. Thick-walled cylinder composed of two regions (AM, A)

Let us study first the case of a cylinder wall partitioned in
an outer austenitic region A and an inner region AM in a mix-
ture of Austenite and principal variant Martensite, with 0 <&,y <1
(Fig. 3a). Such a phase distribution occurs for relatively small val-
ues of the internal pressure that are not large enough to originate
a complete martensitic transformation within the wall thickness.
The unknown constants for regions A and AM are A;, A;, ¢s and
the radius rs of the front separating the two regions. In order to
define these unknown parameters, the following conditions can be
imposed at r5 and r;:

GrAM(rS) = o*;“(rs), a:‘(rs) = Os, U?M(TS) = Os,
oM(ry) = —q os. (41)
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As discussed in Section 2.1, continuity of the radial displace-
M* M AM ment across the interface between two different regions is equiv-
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II ,,I ,I, rI within conditions (4.1),.3.
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Eot+tEn=1 Ep=1 £ rg 0 ing relation between the parameters gs and rs
B3
1 ( r2
gs==[1- ‘). (4.2)
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h) [ | [ [ A substitution of (4.2) in (3.2)-(3.4) thus yields the following
v rr I Vo stress and displacement fields in the outer austenitic region A in
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Fig. 3. Sketch of the seven admissible distributions of regions A, AM, C, M and M*
within the wall thickness.
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oy r? According to (4.6), condition (4.11) is achieved under the inter-
o 12 nal pressure
A 2 2 1 T

u(r) _os 15 |4 _ o =7< +omp2- 2). 412
T 21 T-v+(d+v)3 |, (43)  dm=5|\V U (412)

which hold for rs <r<r,. The introduction of Egs. (3.2), (3.9) and
(3.11) in conditions (4.1);,3 then gives

—8 12 2 2
A= 170, _1<r‘2—8—81nr52>. (44)
T,

Is y= =
2 ¥ 2\ r? 2

Therefore, Eqs. (3.9)-(3.13) provide the following stresses, dis-
placement and volume fraction of primary Martensite within the
inner region AM’

oM@y 1|2 B r2 o r2
o =zl ) a9 5.
o 1] 2
~ _2[@” -3 )+ -8 5|,

ogM(r)

s

uM@)y  os 1-v(r? 1+v r r2
rTF 2 E+<1—v+8)r7_81+lnr7 :

g = 120 ( L1 ) el

=6+ (1-9) =

Y r
for r; <r <rs. The introduction of (4.5); in the condition (4.1), then
yields the following relation between the normalized internal pres-
sure q and the radius rs:

1 2 2 r2
—|l1-5ysmis _—a-s(1-5)]
q 2[ r§+ nr? ( )< r?>i|

1 1

(4.6)

which hold for r; <rs <r,. The martensitic transformation starts at
r; when ry=r;, namely when the normalized pressure (4.6) attains
the value

1 r2
o = 2(1 - r;). (4.7)

If the cylinder wall is sufficiently thin, then relation (4.6) holds
true until the martensitic transformation starts at r, while the tan-
gential stress is tensile within the AM region. The corresponding
internal pressure is p=q; o, where q; is given by (4.6) for rs=r5,,
namely

1 r2 s
qlzz[(1—5)<r2—1)+alnrz]. (4.8)

1 1
The normalized pressure q; separates the wall partitions (AM,A)
and (AM) under the further condition agw’ (r;) > 0, namely for
2 12
1+8—81nr—‘;+(1 —8)7‘;

1 1

>0, (4.9)

according to (4.5), or equivalently for r; > r3, where
2 a-8r
3 = - _ ’
(= 5 )
being W, the principal branch of the Lambert function

(Corless et al, 1996), namely the solution of the equation
Wo(x) eWo® = x, with Wy(x)>—1 for x> —1/e.

(4.10)

4.1.1. Complete martensitic transformation along the inner edge of
the ring

The complete martensitic transformation is achieved at r; when
the condition o/M(r;) = o is met, namely for rs=1 r; where

n = {:g -1, (4.11)

The result (4.12) holds only if the tangential stress is posi-
tive everywhere and the martensitic transformation did not start
at r, yet, namely for Gg‘M(r,’) >0 and rs<r, or equivalently for
rq <1; <13, Where

g = %\/8111772 -y, Ip= %

Note that for rings whose geometric ratios satisfy r,=nr; the
martensitic transformation starts at r, just when the complete
martensitic transformation is achieved at r;.

(413)

4.1.2. Appearing of a corner region C at r;

If the cylinder wall is thick enough, however, the tangential
stress (4.5), may vanish at r;. In this case, the corner region C ap-
pears at r; before the martensitic transformation starts at r,. This

condition occurs for o/ (r;) = 0, namely for

2 2 2
SIn=S —(1-8)= =8+ =, (4.14)
r2 r2 r2
or equivalently
2 5r? 1-8) r2+r?
T _ R BN CRr R (415)
r2 (1—-8) r3+r1? 812

According to (4.6), the corresponding normalized pressure is
then

QC=8—

(1-8)8r2 Wo(—(l —-98) r§+r,.2€). (4.16)

A=8)r2+r? 5r2

The corner region C may disappear for r3 <r; <r4, wWhere r3 is
given by (4.10) and

1)
13 = (5 -1+ ez>r§, (4.17)
when the normalized pressure reaches the value
(1-8)6r? (1-8)r2+r?
=4 - o W_q[ - Le |, 418
Qa1 (1=8)rg+r? ! 8 12 (4.18)

where W_; is the secondary branch of the Lambert function,
namely the solution of the equation W_;(x) eW-1® =x, with
W_1(x)<—1 for x>—1/e. Indeed, condition (4.14) is satisfied both
for the internal pressures q. and q4q, where ¢c <q41, SO that un-
der both pressures the AM region extends till the inner radius
r;. Therefore, the cylinder wall is formed by an inner region AM
in a mixture of phases and an outer austenitic region A both
for qo <q<min{qq, qc} and also for q41 <q<qq if r3 <r<ry (see
Figs. 4 and 5).

4.2. Thick-walled cylinder composed of three regions (M, AM, A)

For thick rings obeying the condition r, > hr; a fully marten-
sitic region appears at r; for g=qm before the outer Austenitic
region has disappeared (Fig. 3h), where g, has been defined in
(4.12). The fields (4.3) and (4.5) defined in terms of rs hold true in
the outer austenitic region A where rs <71 <T1,, and in the interme-
diate region AM where rp<r <Ts, respectively. According to (4.5)3,
the achievement of the condition UEAM(rf)zaf occurs for

rs=nr}. (4.19)

Therefore, by using (4.19) the stress and displacement fields
(4.3) and (4.5) in regions A and AM can be written in terms of
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Fig. 5. Variation of the normalized internal pressures separating the admissible
phase distributions within the wall thickness with the ratio between inner and
outer radii, during the axisymmetric loading process, both for SMA material TA (a)
and corresponding detail (b).

Iy instead of r;. Then, the radial stress and Martensite volume frac-
tion at the inner radius ry of the AM region follow from Egs. (4.5)1,5

as

o) _1(n_ y =38 Inn?
o 2\r? ’

ofM(r)  1(r

0 f) _ 1 rfs _ 2
05 _2(r§+y 81“”)'

uM(ry) oy 1—v (12 1+4v
r T F 2 \2T1
(1)

By using Egs. (3.25), (3.27) and (4.20), continuity of the radial and
tangential stresses across the interface at T namely a;‘W’ (rf) =
oM(rp) and oM(ry) = o} (rp), yields

" +8n*-4 lnn2>,

Il
)

(4.20)

i

212

By n?,

117 i
B, 2|:§ n* -8 1Inn? + S(nz—l)(1+1n£)}.
rO rU

The introduction of constants By and B, in Eqs. (3.25), (3.27)-
(3.29) then provides also the distributions of radial stress and dis-
placement within the fully martensitic region M, as functions of
17 Finally, the relation between the normalized internal pressure
q=-0oM(r;)/os and the radius 1y follows from (3.27) and (4.21)
as

1 2 r_% r]% 2 r.% 2
o= (- B) a0 (end) o]

(4.22)

(4.21)

4.2.1. Disappearing of the outer austenitic region A

The outer austenitic region A disappears from the outer part of
the wall thickness when rs=r,, namely for ry=r,/n according to
(4.19). Then, Eq. (4.22) provides the normalized internal pressure
qp that makes the outer austenitic region A disappear

e 28 emp— 2~ 1) (14m ™ 423
=35 ?— +§77n77—(77—) +nr7 . (423)

which holds for r; _ 1, namely for o/M(r;) > o according to (4.5)s
for ry=r,.

4.3. Thick-walled cylinder composed of three regions (C, AM, A)

For thick rings with r;<r, a corner region appears at r; for
q=q. before the outer Austenitic region has disappeared (Fig. 3e),
where q. has been defined in (4.16). The fields (4.3) and (4.5)
defined in terms of rg hold true in the outer austenitic region
A, where rg<r<r, and in the intermediate region AM, where
re <1 <Trs, respectively. The vanishing of the tangential stress at
the outer radius of the corner region r., namely UQM(rC):O, then
yields the following relation between the radii rs and r,
r2oor?

2 r?

2
8 111%2 —(1-9) _s, (4.24)
Cc

or equivalently

rsz_ 8 1-§ l+%
7o 1_3‘”’0(56 -

Correspondingly, the radial stress and Martensite volume frac-
tion at the inner radius of the AM region r. follow from the intro-
duction of (4.24) and (4.25) in Eqgs. (4.5);,5 written for r=r:

AM 2 2
ofM(re) T 1-8 145
L == (1-8)-06=06|Wo[—-——F—19€ *7|-1],
- (=05 [ 0( 5

S

(4.25)

(4.26)
S;%M () = ——~

_ 1 1=8 (s 1)
_—y|:1—8+8 Wo(—ae . (4.27)

According to (4.25)-(4.26), the corner region C appears under
the internal pressure q. defined in (4.16), namely for rc =r;. By us-
ing Egs. (3.15) and (4.26), continuity of the radial stress across the
interface at r¢, namely oM (r) = o (r¢), allows to obtain the con-

stant
2
et n ) j| .

Tc 152 Sre 1-6
C= —ru 5—|—(l—5)—rg = —ro 1 —VV()(—5
(4.28)

|
| =
| ]!
—_| >
N
ﬁﬁw‘mﬁm

|

P
\—/

Please cite this article as: E. Radi, Evolution of multiple Martensite variants in a SMA thick-walled cylinder loaded by internal pressure,
International Journal of Solids and Structures (2018), https://doi.org/10.1016/].ijsolstr.2018.06.034



https://doi.org/10.1016/j.ijsolstr.2018.06.034

JID: SAS

[m5G;August 30, 2018;7:32]

10 E. Radi/International Journal of Solids and Structures 000 (2018) 1-21

Then, continuity of the distribution of the principal Martensite
across the interface at r¢, namely £4M (rc) = £, (rc), by using (3.19),
(4.27) and (4.28), yields:

T re 1-8 12
D_ro[(mmro)(u(s 5 )2

_Tc I'e 1-4 1+12/(8 12
_ro{<8+lnro>|:1—wo<—8e G ) 2! (429

Note that the condition %‘r% (re)=0 is also met by
Egs. (4.28) and (4.29). The introduction of the constants C and D in
Egs. (3.15), (3.19), (3.20) and (3.21) then provides the distributions
of radial stress, displacement and Martensite fractions within the
corner region. In particular, from (3.15), (3.21) and (4.28), (4.29)
the radial stress and displacement at r; turn out to be

ofr) __refs,
r VY ri|:8+(1 8)r§

o
=5 l1-w 1= et/ (5 10)
I 0 5 P

uf(r) _ oy 8 e Te 1-812
e e

x(v—8v+8+ln %)]

1

(4.30)

where 1. is given by (4.25) as a function of r;. Therefore, the rela-
tion between the normalized internal pressure q=— o (r;)/0s and
the radius rs for gc <q <y follows from (4.30); and (4.25) as

1-8 ,1+12/(8 12
1= W15 et )

q== V(A=8)6.
i \/ Wo(*la;s e1+13/(8 rg))

4.3.1. Start of the martensitic transformation at r,
The outer austenitic region A disappears when rs=r,, namely
from (4.24)

(4.31)

5in'e 5% 5
In2 - (1-§)2=1+9, 4.32

5 (-0g=1+ (432)
i.e. for rc=r3, where r3 has been defined in (4.10). Then, by using
Eq. (4.25) for ry=r,, from (4.31) one obtains the pressure g9 that
makes the outer austenitic region A disappear

_ %Ll
qio = |:(] —5)@ +5i| .

Therefore, under the pressure qio the cylinder wall is parti-
tioned into an outer region AM in a mixture of phases and an inner
corner region C, as it may be observed in Fig. 4.

(4.33)

i

4.3.2. Complete martensitic transformation achieved at r;

The complete Martensitic transformation is attained at r; when
o0& (1) = —of (1;) = oy, namely for g=y . The constant C is then
given by Eq. (3.15) evaluated at r;
Ti

C=y—. (4.34)
To
Then, by using (4.30) and definition (3.14), the condition
of(r) = -y oy yields the following relation between the radii rs
and r¢
) y T
2 _ LA 2
TS‘1—5<5 ! )rc, (4.35)

The constant D follows from (4.29) and (4.35) in terms of r¢
as

Dey(1+imE)i_or
To

5 s (4.36)

Finally, the size r. of the corner region can be found by solv-
ing the transcendental equation obtained from the introduction of

(4.35) in (4.24):
Y\ _(Yh_ BRI/ N el
(55 1) - (55 1)(1+1—8r2) = 1HinTy (437)
Eq (4.37) admits multiple solutions for the radius r. for the

same value of r. However, only the solution satisfying r; < rc <
r4 must be retained, i.e.:

8 (1-8) r? (1-8) r2+r?
y[l_(l—a)r§+r§ Wol = 512 ¢

for r; < 1jim.s

Iri=

[, a-8r (=8 ri+r?

y[l a-or+e ' s o))"

forri >y and r3 <r. <r14.
(4.38)

where

To
Tlim = W[(S +(1-8)e’]/8 - (1-38)e2. (4.39)

The corresponding stress and displacement fields and the dis-
tribution of both Martensite variants within the corner region can
be found by introducing in (3.15), (3.19), (3.20) and (3.21) the con-
stants C and D found in (4.34) and (4.36), where the radii r is
defined by Eq. (4.38). In particular, from Egs. (3.19) and (3.20) the
following volume fractions of both Martensite variants are found
atr:

1 T y T
C(r) = _2£ 7 <
re(rl)_y_1<y+l 2ri+5 In )

Ti

1 T, y T
Cory = —— L _H_ <
§r3(rl) - )/—1 <2ri 2 5 lnr>’

i

(4.40)

namely where the complete martensitic transformation has been
achieved, so that £5(r;) + £ () = 1.

4.4. Thick-walled cylinder composed of four regions (M*, C, AM, A)

For very thick rings a Martensite region M may appear at r;
while an Austenite region A is still present at r, (Fig. 3f). In this
case, Egs. (4.3) and (4.5) define the radial distributions of the
various fields in the outer region A, namely for rg<r<r, and
in the intermediate region AM, namely for r. <r<rs. Moreover,
Eq. (4.25) provides a relation between the radii rs and r.

In the adjacent corner region C occurring for rp<r<re, the
fields are defined by means of the constants C and D according to
Egs. (3.15), (3.19)-(3.21). By using Eq. (3.15), the constant C follows
from the condition Urc(rf) = —oyas
c=y L. (4.41)

To

By replacing the radius r; with ry in Eq. (4.38), then, the radius
rc follows as an implicit function of r, namely by inverting the fol-
lowing relation

5 (1-98) r? 1—-8412/r?
211= whl —
}/[ A-8)r2+r2 ° 5 €)'

for rp < rjjm and ry <rc <ry,

s (1-98) r? 18 +712/r
)/|:l (1-8)r2 412 W 5 €)'

for ry > 1y, and r3 <1 <1y,

Tf=

(4.42)
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Fig. 6. Relation between ry and r. provided by Eq. (4.35) (solid lines) and by
Eq. (4.60) (dash-dotted line).

where 1; < 1y < rp and 1; < 1c < 14, where the radius ry is de-
fined as the radius Tf when rs coincides with r, (see Section 4.4.1).
The relation between ry and rc defined in (4.42) has been plot-
ted in Fig. 6 by solid lines. Then, continuity of the distribution of
the principal Martensite volume fraction across the interface at r,
namely &4V (rc) = £C (rc), by using (3.19), (4.27), (4.41) and (4.42),
yields:

r

D= —[ 242 <8+1an) —f].
To 1) o) Tc

The introduction of the constants C and D in (3.15), (3.19)-(3.21)

then provides the following fields within the corner region C in
terms of the radii rc and ry.

(4.43)

g0 = [1-2%+ L (s4m )],

S0 == (f— —%rf in ).

C

WO _ % P12 (5ev v e )] asa

The constants C; and C, defining the stress and displacement
fields (3.31)-(3.33) in the martensitic region M* surrounded by the
corner region C can be calculated by imposing stress continuity be-
tween the martensitic region M* and the adjacent corner region C
at r, namely oM(ry) = ~o; and oM (rp) = 0. By using (3.31) and
(3.32), the latter conditions provide

)4 14
-t o-Ln (4.45)

Therefore, the following stress and displacement fields take
place in the martensitic region M*:

oM(r)

2_1 r2
o )0 en)
r r2
+1nr7f+/rf( )s (t)dti|2(1+ r’;)
o (r) 21 7\ /1
905 Y - [1—1—25 (r)—( r% (i—i—ér"g(rf))

nt T tN\em Y r?
RO [T

"r1—v 1+4v
+ (t)dt}
[ (-
%Yiq 1 Ui
) -V —( +v)r—2.

namely for r; <r<ry.

In order to define the distribution of the principal Martensite
variant *;‘ (r) within the region M*, let us denote with r} the
outer radlus of the corner region C under the normalized inter-
nal pressure g* acting when the finish martensitic transformation
occurred at radius r as sketched in Fig. 7, where y <q*<gq. Then,
the stress and displacement fields within the region M* follow
from Eqs. (4.46) where the function Er"g(r) is defined by condition
(4.40)y written for rj=r < 1y and rc = 1, namely

_ L (e 5 Yk
g0 =1- = 1(27 2 §1n7),

and r} is defined as an implicit function of r by relation (4.42)
written for rp=r and rc=r%, namely

S, 1-8) 12 _(1—8)r§+r§2 .
y[l -8y rz+r2 s )"

forr <rypandr <1} <rq4,

) (1-3) 12 ( (1=8)r2+r? )}
. ]_ [ W, _ o C e r*’
y[ A=8) r2+r ! 512 ¢

forr > rypandrs <rf <ry,

(4.46)

(4.47)

(4.48)

for r; < r < rr. Moreover, by requiring that the radial stress at r; must
coincide with the internal pressure, namely oM (r;) = —q o5, then
from (4.46); it follows q=Q(ry), where

2 2
Q(r)=—8’721[<1— ;)( +E4m)

1
r "1 y 12

+Ing +/r.- ( )g ) dti| 2<l+f,-2>' (4.49)

The radius ry thus follows as an implicit function of the normal-
ized internal pressure q. Finally, the radii r. and rs follow from re-
lations (4.42) and (4.24), respectively. Note that relation (4.24) can
be explicitly solved for ry as a function of r. under the restriction
Te<Ts<To, ie.

3r2r? (1-8) r2+r?
0l (L= lete,) g ,
2 (1-8)r2+r2 0 512 ) 1ora=4a
s Srir? (1=8) r24r?
-t ° W [-—-2 Cel, f .
a-&r2+rz ! 812 €) ora=aa

(4.50)
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where

qs=Q([8 + (1 - 8)e]ra/y), (4.51)

is the normalized pressure under which the corner region C attains
the maximum extension r.=ry.

4.4.1. Start of the martensitic transformation at r,

The outer austenitic region A disappears when rs =r,, namely
for rc =r3, where r3 is given by (4.10). Then, from (4.42) for rc=r3,
by using (4.9) one gets ry=rq, where

_1 3
= ]/I:(l —8)E +(S}T3,

being rj, < r; < r3. The normalized pressure q;; that makes the
outer austenitic region A disappear then follows from the introduc-
tion of (4.10) and (4.52) in the condition gq; =Q(r;) and Sr’g(r) has
been defined in (4.47) and (4.48). Moreover, from (4.40); one has

=85 = =g (v+1-22+ 5 m2)

Under the pressure qq; =Q(rq) the cylinder wall is partitioned into
an outer region AM in a mixture of phases an intermediate corner
region C and an inner martensitic region M*

(4.52)

(4.53)

4.4.2. Vanishing of the corner region C

As the internal pressure increases, the corner region C may dis-
appear if the condition rc=ry=r, is attained according to (4.42),
where r; has been defined in (4.13). The corresponding internal
pressure g, that makes the corner region C disappear is then given
by

da = Q(ra). (4.54)

4.5. Thick-walled cylinder composed of two regions (C, AM)

After the corner region C appeared at r; and the austenitic re-
gion A disappeared under the normalized pressure qqg, then for
slightly higher pressure the cylinder wall is partitioned into an
outer region AM in a mixture of phases for r.<r<r, and an in-
ner corner region C for r; <r<r. (Fig. 3b), where the radius r¢ is
defined by the condition of™(r;)=0. In this case, the conditions

ofM(r,) = 0 and o/M(r:)=0 provide the following constants

512 To
5 5 1—-In—),
12 412 Te

which define the fields (3.9)-(3.13) in the outer AM region in
terms of the radius r.. The corresponding stress and displacement
fields and the distribution of the volume fraction of the principal
Martensite variant within the AM region are given by (3.9)-(3.13)
as

Ay =—A; = (4.55)

o __ 8 (1-m7) 1-1) s’

O 124 12 re

O—AMr 2 2

e 0 _ 8 rc2(1—1nr°)<1+r3)+3(1—1nr°),
O g+ T1¢ T'c T r

Os

ofM(r) _ 5[1 _

72@ (1—lnﬁ> ﬁ ,

r2 4+ r? re) 12

uM@ry o r2 1+6 r2
- _—f(S r2+7r2<1—ln ) 1-v+ ﬁ—kv =

+(1-v) ln?"},

1 28 r? ro\ 12

(4.56)

The radial stress and Martensite volume fraction at the inner
radius of the AM region r. are

oM 82 (l_r?+lnr§)
-

O 12+ r? r2

2
[
1 § r? r2
AMry=——"-[1-6 ° (2+In-¢)|,
o (Tc) Y |: + 24+ r? + “rg

-1
respectively. As the load is increased, the corner region C takes
place for ¢>q. and r; < r4. For r3 < r; < ry4 the corner region then
disappears under the normalized pressure

812 r? r2
qq = — 1-L+In5 ) <qy,
d 24 r? r2 r2 f

(4.57)

(4.58)

as it follows from (4.57); for r.=r;. The variation of q; with the
wall thickness is plotted in Fig. 4 and detailed in Fig. 5.

The unknown constants C and D can be obtained in terms of r.
by imposing continuity of the radial stress and volume fraction of
the principal Martensite variant across the interface at r., namely
ofM(re) = of (rc) and &AM (rc) = £ (1), by using (3.15), (3.19), and
(4.57):

812 r2 2\
C=—5 5 (1-5+Ih—) =
24+ 12 r2 r2 | 1

2 2 2
p=-Tt|2p To 1—L+1nL (s+m¥)]. 459
To T+ 1¢ 2 To

Note that these constants C and D also satisfy the continuity
condition Sr%(rc) =0 according to (3.20). Then, the introduction
of constants C and D in Egs. (3.15), (3.19), (3.20) and (3.21) pro-
vides the following distributions of radial stress, displacement and
Martensite fractions within the corner region

of(r) _ 312 1_f+1 r re

Os 24+ 12 r2 ) or’
u(r) o, & Te r2 re r r2
- sttt (1 e
r E1-6 o+ rir + n r

<v+8(1 —v)+ln7c>].

1 12 r2 r?
C _ 0 _lc 'c
ére(r)_yl{l |:2+r§+r§<l r2+ln rﬁ)

(3+m)] )

r)lr

1 r2 12 r T
C _ _ ¢ _c < _
r3(r)_y—l{|:2+r§+rc<l +lnro>lnri|r 2}.

(4.60)

According to (4.60);, the following relation holds between the
normalized internal pressure g and the outer radius of the corner
region r¢

5r2 12 r2\

=S (-5t )=

5+ 18 s 2 )i’
4.5.1. Complete martensitic transformation achieved at r;
The complete Martensitic transformation is achieved at r; for

q=1y. Correspondingly, the radius r. is defined by the condition
of(rj) = —oy, namely

r2 P\rc. vy r2
1-<+n<t)—-+L1+5)=0.
( r§+ rﬁ)ri+8 +r§

Note that Eq. (4.62) admits two solutions for the radius re.
However, only the solution satisfying r; <r. <1, must be retained,
namely the largest. By using (4.62), Eqs. (4.59) provide the same

(4.61)

R}

(4.62)
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constants C and D obtained in (4.34) and (4.36) and, thus, the same
fields within the corner region found in Section 4.3.2.

Once the radius r. has been calculated from condition (4.62),
then from (4.60)4 one obtains the distributions of both Martensite
variants in the AM region and in the corner region C as the com-
plete Martensitic transformation is achieved at r;

1 T, Yy T, T;
C(ry— _2 47 < 0
rg(r)_y_l[l 2r+8<1nr+3>r],

<(r) = 1(%-2-%51 )

In partlcular, the volume fractions of both Martensite variants
at r; coincide with those obtained in (4.40).

(4.63)

(4.64)

4.5.2. Start of the martensitic transformation at r,

The outer austenitic region A vanishes off when o/M(ro)=0
namely for rc=r3 where r; has been defined in (4.10). Accord-
ing to (4.61) and using (4.32) and (4.10), this situation occurs for
q=(qy0 Where g9 has been defined in (4.33). Therefore, the outer
austenitic region A disappears for q > g9, whereas a fully marten-
sitic region M appears at r; for g=y. Note from 4 that the solu-
tion found in Section 4.5 holds true for g9 <q <min{y, q;} and
if the wall thickness obeys the condition r; <r; <r3, where r; has
been defined in (4.52) and corresponds to the condition qi9=1y.
For q < g9 an outer austenitic region is still present when the cor-
ner region takes place at r;, thus recovering the case examined in
Section 3.4.

4.6. Thick-walled cylinder made of a single region (AM)

If 0y(r;)>0 and the internal pressure p is larger than q; o
then the outer austenitic region A vanishes before the complete
martensitic transformation is achieved at r;. In this case, the cylin-
der wall is formed by a single region AM in a mixture of phases.
The unknown constants A; and A, that appear in the fields (3.9)-
(3.13) within the region AM, then follow from the introduction of
(3.9) in the conditions oM (r;) = —q o5 and o/M(r,) = 0 as

r? To
= ~$In f)l
re—r? (q Ti

The introduction of these constants in Egs. (3.9)-(3.13) provides
the following stress and displacement fields and volume fraction of
principal Martensite variant in the region AM

Ay = —A; (4.65)

AM 2
=g rZ(q Snk)(1-%)+8InL,

Lt = rz(q Sin%)(1+%)+8(1+In L),
(g~ 51nra) z,

™) _
Os

,<r) as(l v){
é (r) = L1|:r2 rz(q Slnr")rf"—‘l-l—SiI

(4.66)

The fields (4.66) hold for max{qi, q4}<q<¢q, and r, <r<r,,
where r, will be defined in Eq. (4.69) and g, is the normalized
pressure that induces a complete martensitic transformation at r;,
i.e. S M(r) = 1, namely

_v=8(,.%
qz_ 2 (1 ro>+8lnrl

according to (4.66)s. If max{qi, q4} <q <y, then the cylinder wall
is formed by a single region AM in a mixture of phases (Fig. 4).

(4.67)

- 14+v+(1-v)8 12
ala-omp)[1+ e B womy ]

4.6.1. Complete martensitic transformation achieved at r;

The introduction of (4.67) in Eqs. (4.66) gives the following
stress and displacement fields, corresponding to the achievement
of the complete martensitic transformation at r;:

oMy _ y=8 (12 1 T
= Bt -5 ) -48Ink,

Os 2 r2
oM (r) -8 (1? r2 3
WO =2 (L4 h)+s1-nk),
odM(r)

7
o S+ (-9 L

M _ o Lvi(1-v)d 1 | 1} 2
20— ga-nfo-o[1+ e 4] §remg),
2
g =12 (5 -).
(4.68)

which hold only for r;<r<r, and o4 >0. To ensure that the lat-
ter condition is met everywhere in the cylinder, it is sufficient to
check that the condition ‘79 M(1) > 0 holds true, namely that r; > 1,
where

31‘2 —8__1
r%:y_"(S Wo(y(S e’! o‘).

4.7. Thick-walled cylinder composed of three regions (M*, C, AM)

(4.69)

For thick rings, a Martensite region M* containing both variants
may appear at the inner boundary after the outer Austenite region
A disappeared. In this case, the cylinder wall is partitioned into
an outer region AM in a mixture of phases for r. <r<r,, a cor-
ner region C for ry<r<rc, and a Martensite region M* for r; <r <1y
(Fig. 3d). The radial variation of the stress and displacement fields
and Martensite volume fractions within the outer AM region are
given by (4.56) in terms of rc. The relation between the radii ry
and rc follows from (4.62) by replacing r; with r;, namely

(4.70)

where 17 > 1y and r¢ < r3. Note that for r. =r3 Eqs. (4.70) and (4.10)
provide ry=ry. This relation has been plotted in Fig. 6 by dash-
dotted line.

The constant C entering the definition of the fields in the in-
termediate corner region C is given by Eq. (4.41) obtained from
the condition of (rf) = —oy. Continuity of the volume fraction
of the principal Martensite variant across the interface at r,
namely S M(r.) = %(rc), by using (3.19), (4.56)s, (4.41) and (4.70),
yields:

2 2
D=5 (641 f )(1—r+1nr>—2“.
Té+ 1% To r2 To

The introduction of constants C and D in Egs. (3.15), (3.19)-
(3.21) then provides the radial variation of the fields within the
corner region C in terms of the radii r. and If.

0 ()
3

os 12+ 12

1 T r2 r2
fg(r)zy_l[1—2rf_(1—r;+1nr;)
21
<8+ln >r2+ rzr}
1 r2 12 2 re T
C _c_ _c c [ _c e
() = y—l[z 2+<1 ro+]nr2) e lnr],

uc(ry o5 8 Te r2 r’
r  E1-36 1_2r 1_7+lnr

0 0

(4.71)
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Vo

(5)

Fig. 8. Sketch and definition of radii r¢*, rc* and rs* as functions of r, for r; <r<n
(a) and ry <r <75 (b), for the (M*,C, AM) phase partitioning.

r 2T
n—)—2——|
re)ri4+ 12T

The stress and displacement fields in the inner Martensite re-
gion M* then follow from Eqs. (4.46), where the function Er“g(r) has
been defined in (4.47) in terms of the parameter r}. The latter pa-
rameter is defined as an implicit function of r according to two dif-
ferent situations concerning the cylinder wall partition sketched in
Fig. 8. Indeed, for r; <r<r; then the outer austenitic region A was
still present in the outer part of the cylinder wall when the fin-
ish martensitic transformation occurred at r under the normalized
pressure g* (Fig. 8a), namely for r;: =r. Then rf <1, and 1¥ <13
and ry;,, <r=r%, so that r¥ is given by Eq. (4.48),. Otherwise, for
r1 <r<ry the outer region A has already disappeared when the fin-
ish martensitic transformation occurred at r (Fig. 8b). In this case,
r¥>r3 and r¥ is given by Eq. (4.62) written for r;=r and rc =17,
namely

r= —ﬁ 2rj_f r§2 (l - rc*z2+lnr6*22>,
Y ri4r: 15 T,
for ry < r < ry. The radii rq, r, and r3 have been defined in (4.52),
(4.69) and (4.10), respectively.
Once the distribution of Martensite variants inside the marten-
sitic region M* has been defined by the functions S’V’ (r) and
(r) =1 —5 (r), then the radius ry can be obtained from the re-
latlon q= Q(rf) as an implicit function of the normalized pressure
g. Finally, the radius r, can be found from relation (4.70).

(3 NIRTRYS (4.72)

(4.73)

4.7.1. Disappearing of the corner region c between M* and AM
regions

For very thick rings with r; < ry, the corner region C may disap-
pear when ry=r¢, namely for ry=r, according to (4.69) and (4.70).
The corresponding pressure q,, follows from the condition

da2 = Q(r2), (4.74)

where the function Q(r) has been defined in Section 4.4 and the
condition Sr"g(rz) =1 must be considered.

4.8. Thick-walled cylinder composed of two regions (M, AM)

Let us first consider the case of the wall thickness partitioned in
an outer region AM in a mixture of phases and in a fully marten-
sitic inner region M containing only the principal Martensite vari-
ant (Fig. 3c). This situation occurs for r; > rp, where r, has been de-
fined in (4.69) as the radius of the front of finish martensitic trans-
formation when the martensitic transformation starts at r,. Then,
the unknown constants entering the stress and displacement fields
are A1, Ay, B; and B,. These unknowns can be found by imposing
the conditions

oM (1) =0, U?M(rf) = oy, arM(rf) = ar’*"”(rf), Ue""(rf) = oy,
(4.75)

requiring the vanishing of radial stress at r, and the continuity

of the radial and effective stresses through the fronts of start and

finish martensitic transformations at ry. By using Egs. (3.9), (3.11),
(3.25) and (3.28), conditions (4.75) provide the following constants

2 2
__y=87 _r=987
- T =2 (4.76)
2 2 2
__y=8 T p_y-8 ¢ AV
bi=—si—s 2="7 |15 1+lng Tz
(4.77)

The introduction of the constants A; and A, in (3.9)-(3.13)
yields the following fields within the outer region AM in a mixture
of phases in terms of ry:

oMy _ y=8 1]
= g (1-5)+8ng
oM _ y=8

- _Ti(1+i)+8(1+lnrf),
G?fo) 8+(y 5)r2,
g M () = [(y 5) 1+6],
(4.78)

which hold for ry<r<r,. Moreover, the introduction of By and B,
n (3.25)-(3.29) gives the stress and displacement fields within the
inner martensitic region M in terms of ry:

M 2 o2 r2 2
Jra(r) 8[n2(1+lnr£+186r’;—rf2>+(nz—1)ln;‘;],
N 0 [

1) i i i

L0 ifp (3 L b oremd) e2omg]

M

o (1) + o

%
WO ol (TB%Jr%B—f 1+ln———ln )

T

which hold for r; <r<ry. Finally, by using (4.79); the boundary
condition on the internal pressure oM (r;) = —q o5 provides the fol-
lowing relation between the normalized pressure q and the radius

Ty

272 2 12 12 r2
M _ s L_1_mL 71117
1 2|:ri2 r§+ (rg r,2+77 r2

which hold for max{r;, r} <ry<r,.

(4.80)

4.9. Thick-walled cylinder composed of three regions (M*, M, AM)

Let us now consider the case of the wall thickness partitioned
in an outer region AM in a mixture of phases for If<T<To, an in-
termediate martensitic region M containing the principal Marten-
site variant for r; <r<ry, and a fully martensitic inner region M*
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containing both Martensite variants for r; <r<r, (Fig. 3g). Such a
configuration occurs for r; ( r, and q ) gy, after that a corner re-
gion took place for g=gq. and then disappeared from the cylinder
wall for q=qq; and ry=r,, leaving a definite amount of secondary
Martensite variant within the M* region. The corresponding stress
and displacement fields in the AM and M regions are given by re-
lation (4.78) and (4.79), respectively, in terms of ry.

The constants C; and C, defining the stress and displacement
fields (3.31)-(3.33) within the inner martensitic region M* can be
found by imposing the continuity of the stress components oM and
cré"’ at r=r, between the martensitic region M* and the surround-
ing region M. By using Eqs. (3.31), (3.32) and (4.79);,3, the latter
conditions provide

¢ = (4.81)

2 2
y-8T ¢ i Y 2
4 =—=(1+In=5 ), G=%Tr1%
2 12 2 * r2 2T 2
Then, the stress and displacement fields within the martensitic
region M* are derived from Eqs. (3.31)-(3.33) and the condition
%(r):l for ry<r<r;, namely
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The function Sr"g(r) is given by relation (4.47) for ri<r<r,,
where the parameter r} is defined as an implicit function of r ac-
cording to two different situations sketched in Fig. 9. For r; <r; the
outer austenitic region A disappeared from the cylinder wall before
the finish martensitic transformation occurred at r; (Fig. 9a). In this
case, the radius r is defined by Eq. (4.73) as an implicit function of
r. In the other case, namely for r; <rq, the outer austenitic region
A was still present in the cylinder wall when the finish martensitic
transformation occurred at r; for g=1y (Fig. 9b). In this case, r} is
defined as an implicit function of r by Eq. (4.48), for rj<r<r; or
by Eq. (4.73) for ry <r<ry.

Moreover, by requiring that the radial stress at r; must coin-
cide with the internal pressure, namely oM(r;) = —q o5, then from
(4.82); it follows

_ ) 3.1 i K t
q—_z{(n _1)|:2_2r,-2+lnr2ri+/1; - ? g (t) dt

2 2 22
B QU S T S
+ ]+lnr§} 3 |:(1 S)rz r?:|’

(4.83)

()

Fig. 9. Sketch and definition of radii ry*, r.* and rs* as functions of r, for ry <r;j <1,
(a) and for r; <ry (b), for the (M*,M, AM) phase partitioning.

for g > qo4.

4.10. Complete martensitic transformation achieved at r,

The complete martensitic transformation is achieved at r, when
ry=To. In this case, the cylinder wall is entirely formed by a purely
martensitic region M and Eq. (4.79) provide the corresponding
stress and displacement fields:

UrM(r)_l 2 ry 2 ry
2 ‘2[’7 (1_r2 HO( =) Incs .
oy (r) R r 2 r
2

Uy(r) 2 1o 8(2

P A 0 _ n_‘l)’

o5 2

wi(r)y o5 1-v| , 14+v 12 ) r2
= 2 |T Mty ) g

(4.84)

which hold for r; <r<r,. This condition occurs for the pressure
p=gqs o5, where g3 is given by relation (4.80) written for rp=r,,
namely

1| (12 ) r2
CI3=2[77 (é—1>—8(n —1)lné .

Then, the stress and displacement increments Ao, Aoy and
Au, corresponding to a further pressure increment Ap=Aq
os can be obtained from the classical Lamé solution of two-
dimensional linear elasticity, namely:

Aoy _ T <1r2>Aq

Os r2 —r?

(4.85)

Aoy (1) r? r2
29080 1+2)A
O 2 —r? T )Rt

Au(r) 1+v 17 1-v
E -2 \1+v

o
+2)Aq o (4.86)
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Fig. 10. Variation of stresses, Martensite fractions and radial displacement within the thickness in thick-walled cylinders as the complete martensitic transformation is

achieved at the inner radius, namely for g=y.

Table 2
Non-dimensional parameters for SMA materials BL and TA.
BL TA
§ 0.9781 0.9334
y 1.4575 11667
n 4.6782 1.8719
r1/ro 0.2658 -
1y[To 0.2823 -
3/l 0.3278 -
T4/To 0.3324 -
Tiim[To 0.2599 -
TalTo - 0.0331
Tp[To - 0.5342
5. Results

The variations of the pressure delimiting the admissible par-
titions of the cylinder wall with the ratio r; [r, are plotted in
Figs. 4 and 5 for the sets BL and TA of the constitutive parameters,
respectively. These curves single out the regions in the plane q vs
r;/To where the different types of partitioning take place during the
loading process. These figures provide simple maps for finding the
internal pressure required to produce a desired phase partitioning
for every assigned cylinder geometry, that may be useful for the
design of device control systems realized by means of SMA cylin-
ders and tubes.

The material parameters defined in (3.7), (3.14) and (4.11) for
the SMA materials BL and TA are reported in Table 2, together with
the normalized values of the radii rq, 1y, 13, 4, Tjim, Ta and 1, sepa-
rating the admissible phase partitioning within the wall thickness

reported in Figs. 4 and 5 and defined by Eqs. (4.52), (4.69), (4.10),
(4.17), (4.39) and (4.13), respectively.

For the BL set of constitutive parameters, the curve denoted
with g, in Figs. 4a and 5a provides the normalized internal pres-
sure required for the achievement of a complete martensitic trans-
formation at r; for a relatively thin cylinder wall with r; > r,. From
Fig. 4a it can be observed that the pressure q, increases with the
wall thickness, namely as the ratio r; [r, decreases, and it reaches
the value y for r;=r,. The same pressure q=y is required to com-
plete the martensitic transformation at r; also for thicker cylinder
walls.

The curves denoted with qq, q19 and qq; in F define the normal-
ized pressure required for starting the martensitic transformation
at r,. Therefore, the outer austenitic region A disappears for larger
pressure. The curves denoted with qc, q41, G4, and g4, in the same
figures delimit the region in the plane q vs r;/r, where the cor-
ner region C takes place within the cylinder wall. The secondary
Martensite variant is produced within this region only, whose max-
imum extension is r4.

The curves plotted in Fig. 5 for the TA set of constitutive pa-
rameters show that the pressures q; and g, become coincident for
r=rp, so that the special partition with the cylinder wall made of
the single region (AM) may occur only for r;>r,. It may be ob-
served in Fig. 5b that the secondary Martensite variant is produced
only for very thick-walled cylinders satisfying r; (< rq, for q) > qc.
Therefore, the results provided by Tabesh et al. (2013) by neglect-
ing the formation of the secondary Martensite variant are accurate
for r; > rg, for the particular TA set considered there.

The results plotted in Figs. 10-16 concern only the BL set of
constitutive parameters. In particular, the variations of the stress
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Fig. 11. Variation of stresses and volume fractions of Martensite variants within the thickness in a thin-walled cylinders (a) and in a relatively thick-walled cylinders (b) as
the complete martensitic transformation is achieved at r;, namely for g=g,. In both cases, the cylinder wall is made entirely of a region AM in a mixture of phases.
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Fig. 12. Distribution of stresses, volume fractions of Martensite variants and radial displacement within the thickness in very thick-walled cylinders a bit after the complete

martensitic transformation is achieved at the inner radius.

field, volume fraction of Martensite variants and radial displace-
ment within the wall thickness, corresponding to the achievement
of the complete martensitic transformation at r; under the nor-
malized internal pressure q=y, are plotted in Fig. 10 for the ge-
ometric ratio r; /r, equal to 0.2 and 0.25, both values correspond
to very thick wall. From these figures it may be observed that the
tangential stress attains a maximum at the front of start Marten-
site transformation rs and tends to vanish at the inner radius r¢
of the mixed region AM, due to the constraint effect induced by
the surrounding austenitic region A, which behaves elastically. As
a consequence, a corner region takes place for r; <r<r., where the

secondary Martensite variant starts forming, till the volume frac-
tions of the two variants become comparable. Note that the varia-
tion of &3 within the wall thickness is proportional to the inelas-
tic axial elongation, according to the constitutive relation (2.6)3. As
expected, the magnitude of radial displacement decreases as the
wall thickness increases. The variations of the stress field and vol-
ume fraction of principal Martensite variant are plotted in Figs. 11a
and 11b for thinner cylinder walls, namely for the ratio r; /r, equal
to 0.3 and 0.8, respectively. In both cases, no secondary Marten-
site variant is present when the front of finish Martensite trans-
formation reaches the inner radius r;. It can be observed that for
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Fig. 13. Variation of stresses, volume fractions of Martensite variants and radial displacement within the thickness in very thick-walled cylinders a bit after the complete
martensitic transformation is achieved at the inner radius.
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Fig. 15. Variation of the normalized radius r, with the material parameter §.

1; /1o =0.3, the tangential stress is near to vanish at the inner ra-
dius and a corner region already took place for q > q. and then dis-
appeared for q > g4, according to the diagram in Fig. 5.

Similar variations are plotted in Figs. 12 and 13 for a small in-
crement of the internal pressure that allows the finish transfor-
mation front propagating within the wall thickness, namely for g
equal to 1.5 and 1.6, both values being greater than y. It can be
observed that both the tangential stress and the effective Tresca
stress increase considerably within the fully martensitic region M*,
so that the yield condition of the SMA could be reached quickly.
A similar trend was observed by Mirzaeifar et al. (2012) in their
semi-analytical investigations and it must be carefully considered
in the design of SMA thick-walled pipe joints. Therefore, in order
to avoid severe plastic deformations, the loading process should be
interrupted soon after the complete martensitic transformation is
achieved at r;, namely when the internal pressure p attains the
threshold value o7.

The total Martensite volume fraction is 1 in the inner fully
martensitic region M*. It ranges between 0 and 1 within the corner

Y
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region C and the region AM in a mixture of phases and it vanishes
in the fully austenitic outer region A, which is still present at the
end of the loading process only if the wall is very thick.

The variations of the fronts of start and finish martensitic trans-
formations, defined by the radii rs, rc and r;, with the normal-
ized internal pressure q=p/os are plotted in Fig. 14 for relatively
small and large wall thickness. These plots provide the actual vari-
ations of the radii separating the different annular region that are
sketched in Figs. 7-9 in a preliminary form.

The curves plotted in Fig. 14a,b,c concern three cases with r;
(< r4 where the corner region takes place. These re-
sults provide a correction to the predictions obtained by
Mirzaeifar et al. (2012) and Tabesh et al. (2013) by neglecting
the formation of the secondary Martensite variant. If the wall
thickness is very large, e. g. for r;=0.25r, <1y, Fig. 14a shows that
the corner region C and the fully martensitic region M* take place
when the outer austenitic region A is still present within the wall
thickness. For smaller wall thickness, instead, the fully martensitic
region M* takes place after that the outer austenitic region A has
disappeared (see Figs. 14b,c for r;=0.27 1o <1, and r;=0.3 1, <713,
respectively). Note that for large wall thickness, namely for r; <14,
the corner region takes place for a normalized pressure q lower
than g4, and it extends up to the radius r4 for q=q4 Therefore, an
accurate analysis for a pressurized thick-walled SMA cylinder with
r; <r4 must necessarily take into account the formation of the
secondary Martensite variant. The curve plotted in Fig. 14d holds
instead for a relatively thin cylinder wall with r; )> r4 and thus
it recovers the findings of the previous authors, since no corner
region takes place in the cylinder wall in this case.

The variation of the normalized radius r4/r, with the material
parameter § is plotted in Fig. 15. For most of SMA materials the
parameter § is close to 1 and, thus, the corner region may appear
in thick walled SMA cylinders only if r;/r, < 1/e~0.368.

The problem of a hole in an infinite plate investigated by
Birman (1999) is also recovered by the present analysis as a special
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Fig. 16. Variations of the normalized radial displacements at the inner and outer radii of the cylinder wall with the internal pressure for a very thick-walled cylinder (a, b,

¢). and a relatively thin-walled cylinder (d).
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Fig. 17. Variation of normalized radial displacements at the inner radius of the cylinder wall with the internal pressure for a thin-walled cylinder (a) and a thick-walled
cylinder (b). The results obtained in the present analysis for plane stress (solid lines) for a TA material are compared to those obtained by Tabesh et al. (2013) for plane

strain (dashed lines).

case for r, — oo. In this limit case, from (4.7) and (4.16) it follows

1 1-6
QO=js qC=8[1W0< 8 e)}

If the plate is initially fully austenitic, then a mixed annular re-
gion AM appears around the hole for ¢ =qq and it extends outward.
Then, a corner region C originates inside the mixed region AM for
q=(c. Finally, for g >y a fully martensitic annular region M* origi-
nates starting from r;. During this loading process the outer purely
austenitic region is always present at increasing distance to the
hole.

The variations of the radial displacement u, normalized by r,
with the normalized internal pressure q are shown in Figs. 16 for
the same radii considered in Fig. 14. It can be observed that the ra-
dial displacement is always larger at r; than at r,, being the pres-
sure applied at r;. Moreover, the larger displacement rate occurs
for g < q <y, namely when the transformation to both Martensite
variants is active. In this case, a significant amount of transforma-
tion strain occurs in the axial direction. For ¢ >y most of the in-
ner part of the wall has been transformed to Martensite and is no
more available to elongate in the tangential direction by marten-
sitic transformation and thus it displays elastic behavior, whereas
in the inner part of the wall thickness the martensitic transforma-
tion is still in progress. Therefore, a further increment in the in-
ternal pressure will produce a high tensile tangential stress at the
inner radius, as detected in Figs. 12 and 13. Moreover, the elastic
behavior of the inner Martensite region results in a stiffening effect
as the internal pressure is further increased, as it can be observed
in Fig. 16 for large internal pressure. Note also that the response is
linear between the normalized pressures q; and ¢, in Fig. 16¢ and
between q; and g, in Fig. 16d, being the wall composed of a single
region AM in a mixture of phases within these ranges of pressure,
in agreement with the observations of Tabesh et al. (2013).

It must be remarked that the present results hold for plane
stress loading condition. They are expected to hold qualitatively
for the radial and tangential stress components also under plane
strain loading condition if the condition o, <03 <0 is attained.
In this case, indeed, no significant difference should occur in the
radial and tangential stress components under plane stress and
plane strain loading conditions, being the Tresca transformation
condition independent of the intermediate stress o 3. However, un-
der plane strain loading conditions the constitutive relations are
affected by the axial stress component o3 and, thus, the radial
displacement u; and the Martensite fractions &4 and &3 are ex-
pected to differ from the corresponding results under plane stress.

In order to validate the present analysis, a comparison with
the few results available in the Literature is provided in Fig. 17.
In particular, the variations of normalized radial displacements

(5.1)

at the inner radius of the cylinder wall with the internal pres-
sure for a thin-walled cylinder (Fig. 17a) and a thick-walled cylin-
der (Fig. 17b) obtained by the present analysis for plane stress
(solid lines) for a TA material are compared to those obtained by
Tabesh et al. (2013) for plane strain (dashed lines). The curves are
very close, except that the radial displacement predicted by the
present analyses under plane stress loading condition is a bit larger
than that obtained by Tabesh et al. (2013) for plane strain, as rea-
sonably expected. Unfortunately, no results are available in the Lit-
erature for plane stress obtained by adopting the Tresca transfor-
mation condition for SMA.

6. Conclusions

A simple constitutive model has been used for the description
of the axisymmetric loading of a pressurized SMA thick-walled
cylinder at constant temperature, under plane stress conditions.
The model is based on two variants of the Martensite phase frac-
tion, which linearly evolve with the Tresca effective stress, in anal-
ogy with the associative flow rule and corner flow theory of plas-
ticity. The rate constitutive model has been integrated under the
assumption of proportional loadings. Moreover, the elastic mod-
uli of Austenite and Martensite are assumed to be identical. These
simplifying assumptions allowed us to obtain a closed form solu-
tion for the stress and displacement fields and the distribution of
the Martensite fractions within the cylinder wall during each step
of the loading process. The results show that a significant extent
of Martensitic transformation occurs in the axial direction for very
thick cylinder wall, and thus it can not be recovered during the
successive unloading process.

Due to the widespread applications of SMA, the present ana-
lytical results are of great importance for the design of innovative
mechanical devices such as connectors, seals and clamping com-
ponents realized by means of SMA rings and tubes. They can be
efficiently used also for validating the accuracy of numerical meth-
ods usually employed in the modeling of SMA junctions and they
are essential for an accurate modeling of the successive unloading
process, which will be investigated in a forthcoming paper.
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