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While MEF2 transcription factors are well known to cooperate in orchestrating cell fate and adaptive responses
during development and adult life, additional studies over the last decade have identified a wide spectrum of
genetic alterations of MEF2 in different cancers. The consequences of these alterations, including triggering and
maintaining the tumorigenic process, are not entirely clear. A deeper knowledge of the molecular pathways that
regulate MEF2 expression and function, as well as the nature and consequences of MEF2 mutations are necessary
to fully understand the many roles of MEF2 in malignant cells. This review discusses the current knowledge of

MEF?2 transcription factors in cancer.

1. Introduction

The discovery of genetic alterations critical for tumor cell growth
and survival in patients promises to revolutionize anti-cancer ap-
proaches and usher in an era of personalized medicine. Large scale and
detailed molecular analyses using multiple omics approaches have
permitted a more precise characterization of tumor subtypes and can be
instrumental in unveiling the Achilles’ heel of individual tumors.
Cancer cells are strictly dependent on deregulated transcriptional pro-
grams for sustaining their survival and impetus for growth. Such tran-
scriptional addiction is a vulnerability that can be exploited to unveil
new therapeutic opportunities [1]. Within the context of transcriptional
addiction, epigenetic therapy is especially promising and has already
begun to yield concrete clinical results [2—4].

The MEF2 (Myocyte Enhancer Factor-2) family of transcription
factors (TFs) includes four members: MEF2A, MEF2B, MEFC and
MEF2D, which play key roles in the regulation of differentiation and
adaptive responses. MEF2 TFs regulate epigenetic modifications and
control gene expression [5-8]. MEF2 can activate or repress tran-
scription through interactions with co-activators or co-repressors, re-
spectively. The four class IIa HDACs: HDAC4, HDAC5, HDAC7 and
HDAC9, are important MEF2 partners. When in complex with class IIa
HDACs, MEF2 are switched into transcriptional repressors and a closed

chromatin conformation is accomplished [9,10]. On the opposite, the
binding of MEF2 to co-activators (e.g. p300, P-TEFf3, GRIP-1, CARM1,
MAML1, ACTN4, Ash2L, EBF-1, CRX) increases the transcription of
MEF2-regulated loci [7-11].

In this review, we discuss evidence of the dysregulation of MEF2 as
reported in the literature. There are some conflicting data about key
roles of MEF2 in different malignancies. In some cases, the results ap-
pear contradictory and the contribution of MEF2 to cancer cannot be
clearly categorized. Frequently the impact of MEF2 dysfunctions to the
multiple protein complexes, which orchestrate epigenetic changes, is
underestimated. For example, the cooperation with class Ila HDACs in
fueling or restraining the transforming potential of these TFs is only
marginally addressed. Understanding these aspects could open the door
to new therapeutic interventions.

1.1. The MEF2 family

The MEF2 family of proteins includes widely expressed TFs con-
trolling pleiotropic responses in adults and different developmental
pathways during embryogenesis.

Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis
elegans possess a single Mef2 gene, whereas in vertebrates there are four
MEF2 genes. MEF2 genes come from a unique progenitor-seeding
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sequence that underwent three rounds of duplication [12]. The first two
events are concomitant with the 2 big duplication events during Gna-
thostomata and Agnatha divergence [13]. In an evolutionary perspective
MEF2B is the most distant member whereas MEF2A and MEF2C are the
closest [12]. In vertebrates MEF2 family members are expressed in
several adult tissues and data indicate that, overall, these TFs are ubi-
quitous. However, distinct but also overlapping expression patterns
among the four family members in different tissues, lineages and dif-
ferentiation stages are frequently observed [8].

In mammals MEF2 TFs play crucial roles in differentiation, cell
survival, proliferation and in various adaptive responses in different
tissues. The central nervous system, skeletal and cardiac muscles, bone,
and bone marrow-derived cells are tissues where their functions have
been investigated in detail. Initially identified as key elements of the
muscle-differentiation program, the activities of MEF2 have now also
been proven to be essential for the development of other lineages [5]. In
the CNS, they influence neuronal differentiation, cell survival, and sy-
napse formation [11]. Different roles are played by MEF2 in the im-
mune system. Mef2c and Mef2d are key components of the transcrip-
tional machinery controlling B cell development [14]. Mef2c activity is
also highly regulated in T cells, where it regulates T-cell development,
differentiation and thymocyte selection [15].

MEF2 TFs are subject to multiple layers of regulation, which include
alternative splicing, different post-translation modifications and the
ability to homo- and heterodimerize with other TFs. Taking into ac-
count this complexity, it is not surprisingly that the transcriptome
under MEF2 supervision exhibits a spectacular heterogeneity and is
highly variable from tissue to tissue [9,16-19].

Mutations in MEF2 have been associated with various diseases in
humans, not limited to cancer. E.g. MEF2C haploinsufficiency is linked
to a syndromic form of intellectual disability with autistic features, thus
further proving the pleiotropic nature of these TFs [20].

1.2. MEF2 structure and binding partners

All MEF2 proteins contain highly conserved MADS and MEF2 do-
mains that lie in the N-terminus and are essential for DNA binding,
dimerization and interaction with other factors (Fig. 1A/2). This region
is highly conserved between the different family members and
throughout evolution. The carboxy-terminal segment, which provides
the transcriptional activation properties, is much less conserved
[21,22]. An exception involves the highly conserved final 35 residues,
where the NLS (nuclear localization sequence) is located [23,24].

MEF2 bind to the DNA as dimers (Fig. 1A) stacked head-to-head
with each other and recognize the consensus sequence YTA(A/T)4TAR
[25,26]. The stable folding of the MEF2 domain requires a correct
folding of the MADS domain and mutations that prevent DNA binding,
or alter the structure of this domain, affect the structure of the MEF2
domain [26]. As a consequence, a mutant of MEF2 deprived of its DNA
binding domain is less stable, probably because of N-terminus unfolding
[6,271].

As anticipated, the MEF2 domain is important not only for dimer-
ization, but also for mediating interactions with co-factors and co-re-
pressors. A hydrophobic groove on the MADS-box/MEF2 domain
formed by Leu66, Tyr69, and Thr70 and delimited by helix H2 and the
flexible linker between H2 and 33 (Fig. 1B) can rearrange to accom-
modate transcriptional co-activators or co-repressors, such as Cabinl
[28], class IIa HDACs [29], MyoD [26], p300 [30] and MASTR [26]. A
hydrophobic residue in these partners (e.g. a Leu in HDAC4, HDAC9,
Cabinl and a Phe in MASTR) drives the insertion into the groove and
contributes to the interaction with MEF2 [26]. A point mutation in this
key residue is sufficient to reduce the interaction between the re-
spective two proteins [28,29].

All of the most well characterized MEF2 partners bind the hydro-
phobic pocket between the MADS and the MEF2 domains where helix
H2 is fundamental for the interaction. Hence, it is very difficult to
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image that a single MEF2 dimer is capable of binding simultaneously to
many partners. Also, MEF2 binding to Cabinl, class Ila HDACs or to
p300 is mutually exclusive [26] (Fig. 1B). Interestingly, all these MEF2-
partners are characterized by a consensus sequence that fits in this
groove and that constitutes the so-called MEF2 binding sequence. The
sequence XX(V/T/D)(K/R)XZ(L/F)ZXX(V/1/L)XXX can be considered a
consensus for binding to MEF2 [26].

Despite the high conservation of the N-terminus, each MEF2 shows
some preferences for DNA binding. The consensus-binding is very si-
milar for the four MEF2s, but differs in the regions adjacent to the core
[25]. Wu and colleagues suggested that the specificity of the consensus
of each MEF2 depends on the difference between the H3 helix of each
paralogue [26]. In fact, helix H3 (Fig. 1A) is the portion less conserved
inside the N-terminus of the four human MEF2. It interacts with the
genomic regions flanking the core of MEF2-consensus region, con-
ferring a certain degree of specificity to each of the four MEF2. Further
levels of MEF2 DNA binding heterogeneity can be provided by the
tissue and context selectivity (e.g. during different cell-cycle phases or
differentiation steps). This second layer of specificity depends essen-
tially on four factors: i) the epigenetic status of the regulatory region
[9]; ii) the presence of specific partners [31]; iii) the level of specific
PTMSs [32]; and iv) the expression of specific splicing variants [19]
(Fig. 2). All these issues determine the tissue-specific MEF2 signature.
Less information is available about the structure of the C-terminus.
Deletional studies have identified two TADs (Fig. 2/3), followed by the
NLS [21].

In summary, when mutations or other alterations of MEF2 appear in
cancer, some properties of these TFs must be considered:

a) The four MEF2 are very similar in their DNA binding properties.
Some differences in the consensus sequence can be explained by the
selectivity of helix H3.

b) Mutations that affect the DNA binding domain and/or the dimer-
ization domain of MEF2 are predicted to diminish the transcrip-
tional activity [6,26].

¢) The three main partners of MEF2s (the repressors, Cabinl and class
ITa HDAGs, and the co-activator, p300) compete for binding to the
same region of MEF2. Therefore, any mutation that affects this
portion of MEF2 could have both positive and negative effects on
MEF2 transcriptional activities, depending on the stability of the
relative complexes in the specific cell lineage. These considerations
are exemplified using small molecules, derived from BML-210 and
designed to bind MEF2. In some circumstances these compounds can
activate MEF2 responses by displacing class Ila HDACs [33], but in
other contexts they can blunt MEF2 responses, by blocking the
binding of MEF2 and p300 [34].

2. MEF2 TFs and cancer

The involvement of MEF2 in cancer is still controversial. These TFs
can be converted into transcriptional activators or repressors after as-
sembly into multi-protein complexes and under the control of the tumor
microenvironment, and hence their categorization as oncogenes or
tumor suppressors cannot be unequivocally defined. Genetic alterations
have been observed among some members and frequently their ex-
pression is altered in different cancer types. Although the contributions
to cancer related processes such as proliferation, apoptosis, angiogen-
esis or epithelial-mesenchymal transition have been documented for
specific MEF2 members, we cannot exclude that other members may
also be involved in the same processes.

2.1. MEF2A
Mef2a null mice die perinatally from a spectrum of heart defects

[35]. Although the role of Mef2a in promoting muscle differentiation
[36] and heart development [35,37] is well established, its involvement
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in cancer has not been investigated in detail. Some cancer types are
marked by altered MEF2A expression and its contribution to key
adaptive responses that are instrumental for the transformation process
such as invasion, refractoriness to apoptosis, proliferation, angiogen-
esis, metabolism and inflammation, which are instrumental for the
transformation process, suggests a pro-tumorigenic role for this family
member.

Initial observations noted MEF2A involvement in transducing sig-
nals elicited by fibroblast growth factors in prostate cancer cells [38].
Subsequent studies in mammary epithelial cells also identified its in-
volvement in TGF-f signaling [39]. TGF-B promotes the activation of
MEF2A directly, by mediating its acetylation, and indirectly, by

helix H3 helix H3
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decreasing the stability of class Ila HDACs. As a consequence, MEF2A
favors matrix-degradative properties through the up-regulation of
MMP10. MEF2A can also influence neuronal cell survival and it is
subject to caspase-dependent processing during apoptosis [22,40,41]. A
role in cell survival for MEF2A was confirmed in cardiomyocytes, where
it positively regulates the expression of differentiation genes and an-
tagonizes the expression of cell-cycle regulated genes [16]. In en-
dothelial cells, in response to VEGF, MEF2A, as well as MEFC/D,
mediate the release of repressive histone marks from enhancers of genes
involved in sprouting angiogenesis [42].

In gastric cancer, MEF2A is the most expressed MEF2 family
member and 10% of patients are characterized by a significant

(caption on next page)
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Fig. 1. MEF2 and cancer.

A) Structure of MEF2A MADS-box/MEF2 domains bound to DNA [26] (PDB 3KOV). The MADS domain is formed by the N-terminal tail (aa 1-15 of MEF2A, in red in
the picture), helix H1 (15-37, in light blue in the picture), strands 31 (41-49) and B2 (53-59). The tail and helices H1 and H3 (in blue in the picture) are involved in
DNA binding. The MEF2 domain is composed by helix H2 (62-70), strand 33 (76-80), and helix H3 (82-90). This latter is involved in homo- and hetero-dimerization,
including binding with co-repressors such as Cabinl [28] and HDAC9 [29], of co-activators such as the TAZ2 domain of p300 [30] and additional partners such as
MyoD [26]. The angle of binding between HDAC9 and Cabinl and MEF2 is different from that between MEF2 dimers. Hence, Cabinl and class Ila HDACs binding to
MEF2 do not disturb its binding to DNA nor its dimerization. By contrast, the binding to co-factors and partners is strongly affected[26,30]. The minor grove (YT
A(A/T)4T AR) of the DNA consensus sequence is directly bound by aminoacids G2, R3, K4, K5 and 16 of MEF2A. For its binding to the major grove (YT A(A/T)4T AR)
only the tyrosine Y23 is not dispensable, while the positive charged R24, K30, K31 are involved in interaction with the negatively charged backbone phosphates.
Many residues participate in the dimerization and any mutation in these residues could prevent correct dimerization.

B) Zoomed view of the structure of the MEF2 domain of human MEF2A (in green, PDB ID: 3P57) bound to a motif of the transcriptional co-activator p300 (left, in
cyan) [30] and of MEF2B (in green, PDB ID: 1TQE) bound to a motif of the co-repressor HDAC9 (right, in cyan) [29]. The aminoacids Leu66, Tyr69, and Thr70 of the
MADS-box/MEF2 domain forming a hydrophobic groove as highlighted in magenta, while the glutamines and the hydrophobic residues (Val143, Leul47, Phel50,
and Leul51) respectively of p300 and of HDAC9 and that insert in the hydrophobic groove and are shown in red. The similarity of binding to MEF2 between p300
and HDAC9 highlights the incompatibility of their co-binding.

C) Effect of MEF2B D83V mutation, frequently found in DLBCL [6,60]: Superimposition of MEF2B MADS-box/MEF2 domains (green) bound to DNA (orange) [29]
(PDB ID: 1n6j) and of MEF2A-MEF2B chimeric MADS-box/MEF2 domains (cyan) bound to DNA (orange) [60] (PDB ID: 6BYY), bringing the D83V mutation. In the
picture it is highlighted the distortion of helix H3 induced by D83V (red) mutation. Effect of MEF2B mutations (K4, Y69), frequently found in DLBCL, affecting
respectively DNA binding and dimerization. Compare the wild-type MEF2B (PDB ID: 1n6j) on the left with the mutated ones in the right. K4E mutation removes the
positive charge fundamental for the interaction with DNA; Y69H decreases the hydrogen bonding between the dimers and with partners, such as p300. All the images
were elaborated with PyMOL2.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

upregulation of MEF2A mRNA levels (TCGA). In gastric cancer cells,
p38 can phosphorylate MEF2A to promote glycolysis by transcribing
GLUT4 [43]. In the same cells MEF2A has tumor suppressive roles, by
inducing the expression of CDKN1A through KLF4 [44]. Hence, MEF2A
can exhibit tumor suppressive or tumor promoting activities in models
of leiomyosarcomas, depending on its ability to operate as a tran-
scriptional activator or repressor, respectively [9].

Similar data, albeit incomplete, are available for pancreatic cancer
and hepatocellular carcinoma. A MEF2A SNP (Y105C) is frequent in
pancreatic cancer and this SNP can be considered as a strong negative
prognostic marker [45]. In hepatocellular carcinoma MEF2A protein
levels are frequently up-regulated together with MEF2C and class II
HDACs, compared to the levels in normal and cirrhotic livers [46].

Finally, MEF2A can regulate immune/inflammatory genes in dif-
ferent cell types [47,48]. As we will discuss below, the regulation of
some aspects of the inflammatory response seems to be a leitmotif
among the different MEF2 members [9,49-51].

2.2. MEF2B

From a phylogenetic and sequence homology point of view, MEF2B
is the most distant family member. Although the mutation rates of the
four MEF2 are extremely low, MEF2B evolved faster than MEF2A/C/D
[12]. An additional MEF2B peculiarity is a change in the MADS domain,
whereby a glutamic acid, that is fundamental for the binding to DNA is
substituted by a glutamine (E14Q). This modification results in a re-
duced capacity to bind the DNA in vitro, and can be restored by re-
inserting the glutamic acid residue Q14E [52]. Despite these peculia-
rities, mice null for Mef2b do not show overt phenotypes, indicating
that although Mef2b is the most divergent member, other Mef2 can
compensate for its absence in rodents [53].

The distinctive features of MEF2B compared to the other family
members also hold true in cancer. Here point mutations are protago-
nists. In 2011, MEF2B mutations were found in approximately 13% of
cases of follicular lymphoma and in 11% of cases of diffuse large B-cell

lymphoma (DLBCL) [54]. These observations were confirmed by fur-
ther studies [55-58]. Other mutations in MEF2B were discovered after
whole genome-sequencing in mantle cell lymphoma [59].
Fig. 2. Schematic representation of the splicing iso-
MEF2A 3a | | 5 | | 6/ﬁ|\7 | | 8 | | 9 | forms d(.escrib.ed for MEF2A,. C, D and MEFZB; exons
alternatively included are highlighted in red.

——nne MEF2 ADT TAD2 In the coding region of MEF2A/C/D there are nine
common exons. There are two alternative third
MEF2C 3a1 | 4 | | 5 | | 6 | b n E exons, 3al and 3a2, that are mutually exclusive and
. = that are present in each gene [156]. The al isoform

D MEr2 TADT TAD2 is ubiquitous and can complex with class Ila HDACs,

while the a2 isoform is expressed only in fully-dif-

ferentiated myocytes and is refractory to the bindin
vern[ 1 | [2 | X il IRiEikE yocy y g
- - | | | | | | | | | | | I by class IIa HDACs [19,156]. The alternative usage
— ) of the a2 in place of the al exon is under the control

MADS. IMEF2 TAD1 TADS of the kinase SPRK3 [106] and of the splicing factors

RBFox 1 and 2 [157,158]. The vertebrate MEF2
MEFZB| 1 | | 2 | | 3 | | 4 | | 5 | | 6 | 7 8 n genes could have an additional exon (B) between

exons 6 and 7, which is variably included in mRNAs.
Finally, a v domain fused to the last coding exon
could be excluded uniquely in MEF2C by the splicing
to a cryptic acceptor site in exon 9 [156]. The integration of the 3 domain enhances the transactivation capability of MEF2s probably through the phosphorylation of
the Ser/Thr residues by ATM [116]. The B- isoforms are predominant in cycling cells, while the 3+ are expressed in arrested/terminally differentiated cells of the
brain, hearth and skeletal muscles [156]. The RNA-binding protein MBNL3 negatively regulates the inclusion of the [} exon in differentiated myocytes, leading to
muscle degeneration and myotonic dystrophy [159]. For Mef2c instead the B-y- isoform is the most expressed also in muscles and in the brain [156]. Finally, the y
exon, which could be spliced out in MEF2C, has a repressive activity [160], due to the phosphorylation by CDK5 of Ser396 and the subsequent SUMOylation [161].
Less information is available about MEF2B. Its splicing was studied in rodents, where four isoforms where described [162]. In humans two isoforms were described, A
and B, respectively made up of 9 and 8 exons [6]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

— —
MADS MEF2 TAD1 TAD2
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Table 1
Mouse models targeting Mef2c functions in the hematopoietic system.
Mouse model Cell type Proposed Mef2c¢ function Ref.
Mef2C loss-of-function allele (floxed) in the miR-223- Myeloid-specific deletion Expansion of granulocyte progenitors [69]
deficient background
Mef2C” ~ Mx“® mice, in which CRE can be induced by BM cells Reduction of monocytic differentiation [70]

activation of the interferon pathway by polyl:C

Bone marrow cells transplanted from poly(I:C)-treated Mx1-
Cre compared to Mef2c™ mice from poly(I:C)-treated
Mx1-Cre Mef2c*/1

Vav Mef2c™? mice HSC

Mef2G? Cd19+/° mice

HSC and progenitor compartments

B cell subsets in the bone marrow and

Promotion of lymphoid development and repression in myeloid  [66]
generation, sustainment of common lymphoid progentitor

spleen, from pro-B cell stage (70%)

Mef2C™"? Cd19*/°™® mice
Mef2G® Mb-1 +/ere Pro-B-cell stage

Hdac7"~ Mb-1*+/"® mice Pro-B cell stage

B cells from early in development

population

Control megakaryopoiesis; age-dependent maintenance of [71]
specific B-cell progenitor populations

B cell proliferation and survival after BCR stimulation [72]
Regulation of B-cell proliferation after BCR stimulation [73]
Regulation of B-cell numbers in bone marrow and spleen of [74]
young animals.

Repression of myeloid and T lymphocyte genes in B cell [75]

progenitors through interaction with HDAC7

In DLBCL, hot spot mutations of MEF2B occur in aa located within
the MADS/MEF2 domains required for dimerization and DNA binding
(K4, Y69, D83) (Fig. 1C). Other mutations affect the transactivation
domain. Using ectopically expressed MEF2B, Pon and coauthors iden-
tified MEF2B regulated genes in 293 cells and demonstrated that K4E,
Y69H, D83V mutations all reduced MEF2B transcriptional activity [6].
As predicted from the structure [26] and demonstrated by the Olson
group [52] the K4E mutation affects the DNA binding properties of
MEF2B. Likewise, the mutation D83V, which lies within the MEF2
domain, affects MEF2B dimerization and indirectly affects its tran-
scriptional activity [6]. A recent study indicates that this mutation
shifts the conformation equilibrium of the MEF2 domain a-helix H3 to
the B-strand (Fig. 1C). Furthermore, this conformational change de-
creases the binding to DNA as well as to cofactors and partners [60].

As discussed above, Y69 is fundamental for p300 binding [30] and
therefore the decreased activity of MEF2B Y69H could depend on p300
displacement [6] (Fig. 1B/C). Further mutations cause premature
truncations of the protein (R171X and Y201X) or frame-shifts (G242fs,
P256fs and L269fs). As a result, these truncated mutants behave simi-
larly to MEF2B isoform B (Fig. 2), which is produced by alternative
splicing from aa 256. Isoform B shows decreased transcriptionally ac-
tivity [6]. All these hot spot mutations are present in heterozygosity,
but their capability to increase the migration and the malignancy of
DLBCL cells suggest that they could act as dominant mutations, when
homodimers or heterodimers are assembled [6].

If the impact of MEF2B mutations on the transcriptional activity is
established, their implications for tumorigenesis are less clear. Among
MEF2B target genes, BLC6 was identified as an important oncogene
marking GCB (germinal center B cell-like) and ABC (activated B cell-
like) subtypes of DLBCL [61]. BCL6 is a transcriptional repressor that
influences the expression of hundreds of genes involved in the DNA
damage response, cell cycle control and differentiation. Moreover,
BCL6 is required for germinal centers (GC) formation [62]. Within B-
cells of GC, BCL6 also represses well-known oncogenes, and its full
transforming potential was documented in cooperation with other on-
cogenes [63]. However, this view of BCL6 as a critical player for the
transformation process elicited by mutated MEF2B is debated, since
BCL6 is insufficient to rescue MEF2B knockdown cells from cell cycle
arrest. This point has lead to the hypothesis that additional MEF2B-
target genes could be implicated in the tumorigenic process. A recent
observation points to MEF2B as a regulator of chemotaxis [6]. Un-
doubtedly, further studies are necessary to clarify the correlation be-
tween the two genes.

Apart from the role of MEF2B in malignant transformation, DLBCL
patients with mutated MEF2B respond better to the HDAC inhibitor
Panobinostat, even though the explanation for this sensitivity is un-
known [64]. Less information is available for solid tumors. In colon

cancer the presence of the fusion gene TADA2-MEF2B was reported, but
not characterized [65].

2.3. MEF2C

Animal models have shown that Mef2c is essential for the devel-
opment and differentiation of multiple tissues including bone, neuronal
cells and cardiac and skeletal muscles [8]. In addition, when lineage
specific conditional knock-outs were generated, new functions of Mef2c
were discovered [66]. The contribution of MEF2C in driving the de-
velopment of hematopoietic cancers has been pursued in recent years. A
role of Mef2c as oncogene was initially suggested by Du and co-authors
[67]. They applied oncogenic-retrovirus-induced insertional mutagen-
esis to discover new genes able to cooperate with Sox4 in eliciting
myeloid leukemia. Although dysregulation of Mef2c alone was not
sufficient to trigger leukemia, its increased expression accelerated the
development of Sox4-induced leukemia [67].

This evidence for a contribution of MEF2C to leukemia development
was corroborated by the findings of key roles of MEF2C in regulation of
the immune system. In bone marrow, Mef2c is highly expressed by
common lymphoid progenitors (CLPs) and B cells, whereas Mef2c ex-
pression is minimal in T cells, granulocytes and erythrocytes. It is also
expressed, at lower levels compared to CLPs, in hematopoietic stem
cells (HSC) and common myeloid progenitors [68].

Several mouse models were developed and used to dissect the role
of Mef2c in the hematopoietic system[66,69-75]. Data are summarized
in Table 1. These models clearly show that Mef2c is required for B cell
homeostasis, by transducing proliferative and survival signals in re-
sponse to BCR stimulation [66] and, by cooperating with early B cell
factor-1 (EBF1), NF-kB and NFAT in transcribing B cell-specific genes,
including the anti-apoptotic Bcl-2 family members Al and Mcll
[73,76,77].

Mef2c stimulates lymphoid over myeloid differentiation principally
through two mechanisms: a) by activating lymphopoiesis synergisti-
cally with Pu.l [66], thus promoting B-cell progenitors survival
[77,78]; b) by repressing myelopoiesis, through the engagement of
Hdac7 on myeloid gene regulatory regions [75,79]. A repressive in-
fluence of Mef2c can also favor the differentiation of B cells over T cells
[80]. Here, Mef2c seems to exert a repressive function, by binding
Malml and competing with Notchl signaling, which promotes T cell
differentiation [68].

Although within the hematopoietic lineage MEF2C might be con-
sidered as a B-cell specific transcription factor, its deregulated expres-
sion can contribute to malignancies of T cells, e.g. acute lymphoblastic
leukemia (T-ALL), and of myeloid cells, e.g. acute myeloid leukemia
(AML). T-ALL is elicited by chromosomal alterations that cause the
activation of different oncogenes. The outcome is a block of T cell
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differentiation and the development of leukemogenesis. T-ALL sub-
groups are classified by their oncogenes [81]. In T-ALL, high expression
of NKX2-1/NKX2-2 or MEF2C typifies two clusters, which comprise
20% of all T-ALL cases. The MEF2C cluster is marked by a very im-
mature immunophenotype [82]. This subtype was named early T cell
precursor ALL. In leukemia cells MEF2C can be aberrantly activated as a
result of cardiac homeobox gene NKX2-5 expression or of genomic
deletions in the MEF2C promoter region. This deletion possibly abro-
gates a binding site for STATS5, critical to exert a repressive influence
[82-84]. Other studies have unveiled further mechanisms responsible
for MEF2C de-regulation [84]. The leukemogenic activity of MEF2C
could stem from uncontrolled pro-survival signaling. Repressing
NR4A1/NUR77 expression, possibly by binding class Ila HDACs, could
be a mechanism. Alternative strategies exploited by MEF2C to sustain T
cell survival could involve the expression of BCL2 family members
[83,85].

MEF2C has also been reported to be a driver oncogene in AML.
Indirect evidence of a mitogenic role of MEF2C in the myeloid lineage,
first arose from the observation that miR-223 null mice are character-
ized by a marked neutrophilia caused by the expansion of granulocyte
progenitors. This phenotype was proved being mainly due to elevated
Mef2c levels [69]. This finding is consistent with the fact that MEF2C is
strongly up-regulated during the commitment of granulocyte-monocyte
progenitors into leukemic stem cells (LSCs), as a consequence of MLL-
AF9 chimera overexpression [86]. The rise in MEF2C is necessary but
not sufficient for the maintenance of stemness and the tumorigenicity
characteristics of LSCs [86]. Knock-out of Mef2c in MLL/ENL mice
confirmed that it is dispensable for leukemogenesis and for the estab-
lishment of LSCs. Instead, Mef2c shortens the latency of the disease and
increases the infiltration of leukemic cells into the spleen, by rising the
homing and motility of LSCs [87]. Another layer of complexity concerns
MEF2C phosphorylation. MEF2C phosphorylation at serine 222 marks
chemoresistance in AML patients. Furthermore, Mef2c S222A/S222A
knock-in mice were resistant to leukemogenesis induced by MLL-AF9.
These findings point to a dominant tumor suppressive role of MEF2C
when not phosphorylated at serine 222, and a contribution to che-
moresistance when phosphorylated [88]. This hypothesis is consistent
with the mild phenotype of the KO described above.

AML cells were also found to be addicted to a salt-inducible kinase
(SIK) family member, SIK3, in large part due to its MEF2C-preserving
function [89]. In fact, AML cells with down-regulated SIK3 and/or
LKB1 showed an increase in the binding of HDAC4 to MEF2C on some
genomic enhancers [89]. In this context the authors proposed an anti-
proliferative effect of HDAC4 through the repression of the MEF2 pro-
oncogenic and pro-proliferative properties [86]. Curiously, as discussed
below for MEF2D-fusions, HDAC9 is among the genes regulated by
SIK3-MEF2C [89]. Whether HDAC9 up-regulation represents an op-
erative feed-back mechanism to buffer some MEF2C functions and how
much of this buffering could be required for cancer fitness is presently
unknown. Differently from what is reported in 293 cells [90], in AML
cells the kinase activity of SIK3 was required to export HDAC4 to the
cytoplasm and trigger MEF2-dependent transcription [89].

The leukemia genes under MEF2C orchestration are still to be de-
fined in detail. In murine hematopoietic precursors, Mef2c drives the
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up-regulation of Socs2 that limits unrestricted myelopoietic response
and the exhaustion of long-term HSC [91]. Mef2c was found to control
the expression of metalloproteinases and various chemokines [87].
These MEF2-target genes were also identified by other studies and in-
dicate the pervasive MEF2-signature [9,51,92-95]. Whether the secre-
tory repertoire activated by MEF2C is directly involved in the regula-
tion/functionality of the stem compartment remains to be investigated.
Even less explored is the contribution of MEF2C to the metabolic re-
programming of leukemic cells. It was observed that MEF2 sustained
the expression of oxidative phosphorylation genes in normal Foxp3™ T-
regulatory cells [96]. This finding was also seen in leukemic cells [97]
and MEF2C was shown to trigger a robust anti-oxidative response [97].

Additional data supporting a pro-oncogenic function of MEF2C were
obtained in some solid tumors, though data are somewhat fragmentary
and require confirmation. In colorectal cancer, MEF2C was found to be
up-regulated during disease progression [98]. In breast cancer, MEF2C
expression was associated with tumor invasion [99]. MEF2C was found
to be up-regulated in hepatocarcinomas [46,100,101]. In this tumor
MEF2C displays both oncogenic and tumor suppressive properties. It
mediates migration/invasion and VEGF-dependent angiogenesis on one
hand, whereas on the other hand it negatively affect cell proliferation,
by blocking B-catenin nuclear translocation and WNT signaling [100].
The injection in mice of hepatocarcinoma cells overexpressing MEF2C
gave rise to slowly proliferative but highly malignant tumors [100]. An
intronic SNP in MEF2C that could affect its splicing was recently as-
sociated with VEGF levels in a genome-wide association study on
16,112 individuals. This association confirmed the pro-angiogenic role
of MEF2C [102]. A link with p-catenin was also evoked in breast
cancer. Here tumor-associated macrophages release exosomes con-
taining high levels of miR-223 that promotes the invasion of breast
cancer cells. As MEF2C is a target of miR-223, increased cell invasive-
ness could be due to the MEF2-dependent control of 3-catenin nuclear
accumulation [103]. A different scenario has been proposed in Hodgkin
lymphoma, where MEF2C is down-regulated and, as a consequence, its
inhibitory influence on the homebox gene SIX1 was constrained. SIX1 is
aberrantly activated in 12% of patients and this alteration supports
lymphomagenesis via deregulation of developmental genes [104].

The double nature of MEF2C is exemplified in rhabdomyosarcomas
(RMS), the most common soft tissue sarcoma in children. Pediatric RMS
can be subdivided into two major histological subtypes: the embryonal
(ERMS) and the alveolar (ARMS) tumors [105]. The two major splicing
variants of MEF2C are derived by the mutually exclusive exons al/a2,
which generate the ubiquitously expressed MEF2Cal and the muscle-
specific MEF2Ca2 isoforms (Fig. 2 and Table 2). In RMS cells, the ratio
of a2/al is dramatically diminished compared with normal myoblasts.
MEF2Cal interacts more strongly with HDACS, thus recruiting the
deacetylase to myogenic gene promoters to repress the expression of
muscle-specific genes. Reintroduction of the MEF2Ca2 isoform fosters
the differentiation of RMS cells [106]. Whether the alternative splicing
is a cause or a consequence of RMS development is a fundamental
question, especially since changes in MEF2C splicing have also been
documented in other tumors [6,9,106].

In addition to the activation splicing mechanism, the down-reg-
ulation of MEF2C levels has been reported in RMS. A murine model of

Table 2

MEF?2 splicing in cancer
Gene Aberrant splicing event Cancer type Effect Ref.
MEF2B  Isoform A is most commonly expressed (91.7%), but Diffuse Large B-Cell Lymphoma The truncated isoforms, similarly to B isoform, show impaired  [6]

some patients have truncations that resemble the B (DLBCL)
isoform
MEF2C Increased levels of al, decreased levels of a2

MEF2D Increased levels of al, decreased levels of a2

Rhabdomyosarcoma (RMS)

Leiomyosarcoma (LMS)

transcriptional activity

HDACS interacts strongly with al keeping off the [106]
transcription of myogenic genes

Aggressive LMS cells express high levels of al isoform which  [9]
interacts strongly with HDAC9 keeping off transcription
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RMS indicates that neoplastic cells do not arise from differentiated
Mef2c-expressing cells, but from mesodermal immature progenitors
[107]. The defect of MEF2C expression in RMS initiating cells could be
caused by the loss of MYOD binding in its promoter and regulative
regions [108]. Down-modulation of MEF2C in RMS was confirmed by a
second study. In a zebrafish model of ERMS and in human ERMS cell
lines, the activation of NOTCH1 triggered the up-regulation of SNAIL
(SNAI1), which blocks muscle differentiation, thus keeping ERMS cells
undifferentiated. Most of this dedifferentiation is due to the repression
of MEF2C at both transcriptional and activation levels. Importantly,
suppression of MEF2C was required to maintain the self-renewal ca-
pacity of ERMS cells [109]. The cross-talk between MEF2C and
NOTCH1 pathways was first described in myoblasts; however further
studies are needed in order to clarify whether these pathways synergize
or antagonize [110-112].

Another example of MEF2C antiproliferative signalling was ob-
served in vascular smooth muscle cells whereby the over-expression of
miR-223 increases their proliferation and migration, at least in part
through the repression of MEF2C and of its target RHOB [113]. miR-
223 also plays a tumor suppressive role in mycosis fungoides/cutaneous
T-cell lymphoma by downregulating E2F1, MEF2C and TOX and
blocking the progression of the disease [114]. However, in myeloid
cells, as noted earlier, miR-223 is repressed in chronic myeloid leu-
kemia through a BCR/ABL mediated mechanism and the consequent
up-regulation of Mef2c contributes to disease development [69,114]. In
conclusion, the complex effects of MEF2C, involving both pro-onco-
genic and tumor suppressive actions, likely stem from, or are strongly
influenced, by the specific cellular context in which it operates.

2.4. MEF2D

The initial generation of Mef2d-null mice did not result in any overt
phenotype; mice were viable, showed no overt histological abnormal-
ities, and under normal conditions had normal lifespan, behaviour,
weight and fertility [115]. However, cardiac hypertrophy and fibrosis
induced by pressure overload were suppressed in Mef2d-/- mice, and
cardiac over-expression of Mef2d caused severe cardiomyopathy and
fibrosis [115]. Moreover, Mef2d has a non-redundant protective role in
cerebellum [116]. Compared to wild-type controls, cerebellar granular
cells from Mef2d-/- mice manifest increased susceptibility to DNA da-
mage induced by etoposide or irradiation. Mechanistically, DNA da-
mage activates Atm, which phosphorylates and activates Mef2d, pro-
moting expression of the pro-survival gene Bcl-xL. Mef2d deletion
prevents the expression of Bcl-xL and increases cell-death upon DNA
damage [116]. In Mef2c+ /- heterozygous mice, the absence of one
allele of Mef2d exacerbated bone defects [117]. In a second, tissue-
specific Mef2d knock-out mouse model, a key role of this family
member was observed in the retina; here Mef2d was necessary for the
survival of photoreceptor cells [31,118].

The first evidence of the involvement of MEF2D in the transfor-
mation process arose from studies of childhood pre-B acute lympho-
blastic leukemia (ALL). In ALL, the introns of MEF2D and DAZAP1 show
infrequent chromosomal translocations t(1;19)(q23;p1) [119-121],
generate both MEF2D-DAZAP1 and DAZAP1-MEF2D transcripts, and
give rise to in-frame fusions (Fig. 3). MEF2D-DAZAP1, but not DAZAP1-
MEF2D, can interact with MEF2D and HDAC4. DAZAP1 is a RNA
binding protein involved in mRNA splicing regulation and is char-
acterized by two N-terminus RRM (RNA-recognition motif) and a low
complexity C-terminal domain (CTD) proline-rich [122]. Both chimeric
proteins promoted cell proliferation when ectopically expressed [119].
Curiously, while DAZAP1/MEF2D loses the capability to bind the MEF2
consensus-site on DNA, the fusion of DAZAP1 to the C-terminus of
MEF2D increases the transcriptional capabilities of MEF2D [121]. De-
spite opposite effects in terms of MEF2 activation, the two chimeras
display similar oncogenic properties in NIH-3T3 cells and can cooperate
[120]. A difference was reported for the ability to protect from
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apoptosis; this task was afforded only by MEF2D-DAZAP1 [120].

More recent studies, aimed to explore the oncogenic mechanisms
responsible for ALL in children, adolescent and adults, provided further
evidences of MEF2D alterations and in-frame fusions that could impact
its activity (Fig. 3 and Table 3). In the first study, a large cohort of B-
ALL patients (92 adult and 111 pediatric cases) underwent genomic
characterization by NGS. 29 new fusions were identified; fusions in-
volving MEF2D were among the most frequent, affecting 6.7% of adults
and 3.4% of pediatric patients. The MEF2D-BCL9 and MEF2D-
HNRNPUL1 fusions upregulated HDAC9, which could cooperate with
the fused MEF2D to repress genes essential for B-lineage differentiation,
like RAG1 [123]. Suzuki and co-authors found MEF2D-BCL9 translo-
cations in children with relapsed or primary refractory B-ALL. These
patients were relatively older in age (between 10 and 13 years), had a
worse prognosis and were resistant to chemotherapy. Their leukemic
blasts mimicked morphologically mature B-cell leukaemia with mark-
edly high expression of HDACY. Interestingly MEF2D-BCL9 leukemic
cells were resistant to dexamethasone but responsive to HDAC in-
hibitors [124].

The co-existence of high levels of HDAC9 and MEF2D is an apparent
and unresolved paradox. MEF2D binds the promoter of HDAC9 and
favours its transcription. In physiological contexts it represents a ne-
gative feedback mechanism that assists the down-modulation of MEF2D
activities, as a consequence of HDAC9-dependent repression [125]. In a
physiological context this repression should also affect HDAC9 ex-
pression, since HDAC9 is a MEF2-target gene. However, this circuitry is
altered in tumors, allowing high levels of both MEF2D and HDAC9
expression (Fig. 4).

These results were confirmed in a larger cohort of 560 ALL cases
[126]. Some, 42 out of 560 cases, revealed fusions and rearrangements
between MEF2D and BCL9, CSF1R, DAZAP1, HNRNPULI1, SS18 or
FOXJ2. All fusions engaged the MADS/MEF2 domains of MEF2D,
whereas TAD1 was only partially retained and TAD2 at the carboxy-
terminus was lost (Fig. 3). However, when tested for transactivation
capacity on an artificial MEF2 reporter, MEF2D-BCL9 and MEF2D-
HNRPULL1 fusions showed strong transcriptional activities [126]. Tu-
mors with MEF2D fusions were characterized by similar gene expres-
sion profiles and repression of WNT signalling. Here again, the MEF2-
target gene HDAC9 was highly expressed while MEF2C was strongly
repressed and leukemic cells were vulnerable to HDAC inhibitors
[123,126].

In an RNA-seq analysis of Philadelphia chromosome (Ph)-negative
ALL specimens from adolescent and young adults (n = 73), 7% of cases
showed MEF2D translocations. The prognosis of these patients was
worse compared to patients bearing other fusions, and similar to that of
patients with Ph-like ALL. As with the other study, MEF2D-BCL9 and
MEF2D-HNRNPUL1 fusions were recurrently found in the cohort. The
chimeric MEF2D showed enhanced transcriptional activity and the
ability to transform NIH-3T3 cells. Expression of MEF2D-BCL9 in pro-B
cells triggered leukemia with low penetrance (~50% of mice developed
leukemia during the observation period of 290 days). MEF2D-BCL9
failed to confer a growth advantage on pro-B cells in vivo, but both
MEF2D chimeras hampered B cell differentiation beyond the pro-B cell
stage [127]. Similarly to the MEF2D-BCL9 fusion, the MEF2D-S18
chimera was found to arrest the differentiation of B cells at the pre-pro
B cells. This block was marked by the repression of some B-cell differ-
entiation genes, like RAGI, and by the up-regulation of HDAC9 tran-
scription[128].

Lilljebjorn and colleagues, also using again RNA-seq of a primary
pre B-ALL, identified a novel in-frame MEF2D/CSF1R fusion between
the N-terminus of MEF2D and the tyrosine kinase domain of CSF1R. It is
plausible that dimerization through the MADS domain generated a
constitutive active TK, which renders the leukemic cells susceptible to
imatinib treatment [129].

Dysregulations of the MEF2-HDAC9 axis are not limited to ALL. The
chromatin remodelling multiproteins complexes SWI/SNF are
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Fig. 3. MEF2D fusions in cancer.

Schematic representations of important MEF2D in-frame fusions found in malignant cells. The relevant domains of MEF2D and of the chimera are indicated. TADs are
in MEF2C TADI: aa 143-174 and TAD2: aa 247-327 and in MEF2D TADI: aa 143-184 and TAD2: aa 261-341.

Table 3

MEF2D fusions in cancer.
MEF2 fusions Disease Cases Tot. % Functions Ref.
MEF2D-DAZAP1 B-ALL 1 376 0,3 hyperactive (luciferase on HDAC9 promoter), but it represses RAG1; bad prognosis [123]
MEF2D-DAZAP1 B-ALL 1 560 0,2 not investigated [126]
MEF2D-BCL9 B-ALL 8 376 2,1 hyperactive (luciferase on HDAC9 promoter), but it represses RAG1; bad prognosis [123]
MEF2D-BCL9 B-ALL 4 55 7,3 increased transcription of HDAC9 [124]
MEF2D-BCL9 B-ALL 16 560 2,9 hyperactive (luciferase on 3xMEF2 reporter), but it represses MEF2C; bad prognosis [126]
MEF2D-BCL9 AYA-ALL 2 149 1,3 hyperactive (luciferase on artificial MEF2 reporter) [126]
MEF2D-HNRNPUL1 B-ALL 8 376 2,1 hyperactive (luciferase on HDAC9 promoter), but it represses RAG1; bad prognosis [126]
MEF2D-HNRNPUL1 B-ALL 3 560 0,5 hyperactive (luciferase on 3xMEF2 reporter), but it represses MEF2C; bad prognosis [126]
MEF2D-HNRNPUL1 AYA-ALL 3 149 2 hyperactive (luciferase on artificial MEF2 reporter) [126]
MEF2D-SS18 B-ALL 2 376 0,5 hyperactive (luciferase on HDAC9 promoter), but it represses RAG1 [126]
MEF2D-SS18 B-ALL 1 560 0,2 not investigated [126]
MEF2D-CSF1R B-ALL 1 560 0,2 increased TK activity of CSF1R? [126, 129]
MEF2D-FOXJ2 B-ALL 1 560 0,2 not investigated [126]

Differentiation Cancer important regulators of chromatin status and gene expression in several
MEF2D MEF2D contexts [130]. Alterations in these complexes are frequently found in
cancer. For example, in highly aggressive malignant rhabdoid tumors

Negative >< that affect young children, a critical perturbation involves the tumor
feed-back Abrogated suppressor SMARCB1/BAF47[131]. Expression of Brahma (BRM) or

HDAC9

-

Low repression  Strong repression

Fig. 4. Schematic representation.
Overview of the feedback mechanism acting on the promoter of HDAC9 in
normal but not cancer cells.

BRM-related gene 1 (BRG1), which encodes for the subunit with ATPase
activity, is lost in 15% to 40% of many primary solid tumors [132,133].
Frequently this loss is triggered by epigenetic mechanisms [133,134].
In lung cancer cell lines, MEF2D and HDAC9 supervise BRM silencing
[135,136]. Moreover, HDAC9 was overexpressed in rhabdoid cancer
cell lines and in primary BRM-deficient rhabdoid tumors. Both MEF2D
and HDAC9 bound BRM promoter close to two insertional poly-
morphisms that create two MEF2 binding sites (BRM-741:TTAAA and
BRM-1321:TATTTTT), which contribute to BRM silencing[136]. These
results were confirmed in non-small cell lung cancer (NSCLC) and the
decrease in BRM expression is associated with worse overall survival
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[137]. Under these conditions, regeneration of the MEF2D transcrip-
tional activity by inhibiting HDAC9 promises to be a fruitful strategy to
restore BRM expression and inhibit. A similar mechanism is operative in
oral squamous cell carcinoma [138] and in high-grade leiomyosarcoma
[9]; in both cases, high levels of HDAC9 are required to repress MEF2D,
selectively on the promoters of a subset of genes that probably antag-
onize cell transformation.

In hepatocellular carcinoma (HCC) high levels of MEF2D are asso-
ciated with poor prognosis [139] and these high levels could be related
to the reduced expression of miR-122. In HCC cells, MEF2D sustains cell
proliferation and is required for tumorigenicity [139]. Additional me-
chanisms augmenting MEF2D expression could involve the activity of
Pokemon, a transcription factor with proto-oncogenic activity con-
stituted by an N-terminal POZ/BTB domain and a C-terminal kruppel-
type zinc finger domain [140]. Curiously, in HCC cells, MEF2D binds
the promoters of genes (RPRM, GADD45A, GADD45B and CDKN1A)
involved in the negative regulation of G2/M transition, and in complex
with an unknown co-repressor keeps them silenced. This action pro-
motes proliferation and mitosis [139]. It is not yet known if this MEF2
co-repressor is a class Ila HDAC [27,141,142], although these genes are
frequently up-regulated together with MEF2C and MEF2D in HCC
samples [46].

As observed for other family members, MEF2D can influence an-
giogenesis and EMT. In hepatocytes, TGF-B treatment activates the
PI3K/AKT pathway and induces EMT [101]. As a consequence of this
activation, levels of MEF2A, C and D are increased. MEF2s promote
EMT and invasiveness and induce the expression of TGF-3 that sustains
the process, contributing to a feed-forward circuit [101]. Moreover,
MEF2D is reported to control transcription of the EMT driver gene
ZEB1, by facilitating histone acetylation at the ZEBI promoter
[143,144]

Several reports have pointed to pro-proliferative/pro-oncogenic
functions of MEF2D in different cellular models of solid tumors
[9,145-150]. However, MEF2D also has tumor suppressive properties,
as shown for rhabdomyosarcomas, low grade uterine leiomyosarcomas
[9,151], and breast cancers [142]. In these tumors, MEF2D could be
critical to cell cycle progression, as confirmed by knock-down experi-
ments in cardiac myocytes [152] and fibroblasts [27]. In a model of
embryonal rhabdomyosarcoma induced by YAP1, the expression of
MEF2C and MEF2D is repressed. YAP1 induces the expression of Twistl
and Cabinl, two MEF2 repressors, and redirects residual MEF2C and D
activities away from the promoters of myogenic differentiation genes
[153]. Curiously, in all these cases MEF2D was found to promote the
expression of the cell-cycle genes CDKNIA and GADD45A that were
found to be repressed in HCC cells [139].

3. Concluding remarks

Much of the data concerning the tumor suppressive or pro-onco-
genic functions of MEF2 TFs are based on gain or loss-off-function ex-
periments. Less frequently the binding of MEF2 to their partners was
investigated in parallel, as well as the compensatory intervention of a
paralogue [154,155]. Hence, whether the origin of their oncogenic
activities arises from the assembly of MEF2 proteins into transcriptional
activator or repressor complexes is still an open question.

The list of tumors in which MEF2 TFs exhibit oncogenic or tumor
suppressive functions is extensive and points to the need for further
analyses of the molecular biology and biochemistry of these TFs. In the
future, the dissection of activating or inhibitory signaling pathways
converging on MEF2s in different cancer types will likely shed light on
the still cryptic role of MEF2s in cancer and their potential importance
as therapeutic targets.
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