
Resilient Gossip-Inspired All-Reduce
Algorithms for High Performance
Computing – Potential, Limitations and
Open Questions

Marc Casas1 and Wilfried N. Gansterer2 and Elias Wimmer2,3

Abstract

We investigate the usefulness of gossip-based reduction algorithms in a High Performance Computing (HPC) context.

We compare them to state-of-the-art deterministic parallel reduction algorithms in terms of fault tolerance and resilience

against silent data corruption (SDC) as well as in terms of performance and scalability. New gossip-based reduction

algorithms are proposed which significantly improve the state-of-the-art in terms of resilience against SDC. Moreover,

a new gossip-inspired reduction algorithm is proposed which promises a much more competitive runtime performance

in an HPC context than classical gossip-based algorithms, in particular for low accuracy requirements.

Keywords

all-to-all reduction, all-reduce, gossip algorithm, fault tolerance, bit-flip, silent data corruption, recursive doubling, push-

flow algorithm

1 Introduction

The end of Dennard scaling (Dennard et al. (1974))
around 2005 created the basis for the current many-core
chips prevalence in computing systems. In the context of
High Performance Computing (HPC), distributed memory
parallel clusters composed of shared-memory many-core
sockets became prominent, which forced HPC systems to
exploit both distributed and shared memory parallelism.
The Message Passing Interface (MPI) standard is the most
wide spread parallel programming paradigm for distributed
memory systems while shared memory machines are
typically programmed with OpenMP (OpenMP Architecture
Review Board (2013)) or POSIX threads (Nichols et al.
(1996)). Hybrid MPI+OpenMP codes are common since they
exploit the different parallel layers of HPC infrastructures.

Since the technological limits of Dennard scaling were
hit, performance enhancements of HPC systems have been
mainly achieved by increasing their number of components,
which necessarily requires the software stack to deploy
increasing concurrency levels. This trend towards more
hardware components and more parallelism will certainly
keep driving the design of future HPC systems, as well as
the constraints in terms of power consumption, which will
bring more heterogeneity inside the node in terms of GPU
accelerators or vector units.

Such increases in terms of hardware components will
make the behavior of future HPC systems more unpre-
dictable, either in terms of hard and soft faults, which brings
issues in terms of software correctness and performance, or
in terms of low performing hardware and software compo-
nents, which will bring significant performance slowdowns.
Current HPC applications, implemented by combining MPI
and OpenMP, are very vulnerable to unexpected hardware
errors and shutdowns. The software stack must evolve
towards a more flexible and asynchronous approach, either
when managing on-chip parallelism or when dealing with
off-chip concurrency.

In particular, collective communications, which are
defined as communication operations that involve a group of
software components, are a specific kind of communication
patterns handled by the MPI programming model that are

1Barcelona Supercomputing Center (BSC), Spain
2University of Vienna, Faculty of Computer Science, Research Group
Theory and Applications of Algorithms, Vienna, Austria
3TU Wien, Faculty of Informatics, Research Group Parallel Computing,
Vienna, Austria

Corresponding author:
Wilfried N. Gansterer, University of Vienna, Faculty of Computer Science,
Währinger Straße 29, 1090 Vienna, Austria

Email: wilfried.gansterer@univie.ac.at

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/159630821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Journal Title XX(X)

particularly challenging on future systems. Global reductions
and barrier synchronizations are two very common types
of collective communications. An increase by two or
three more orders of magnitude in terms of concurrency
compared to today’s high-end computer systems will make
current collective communication approaches too rigid.
Given the way global MPI reductions are implemented
today, the impact of having just a single network switch
performing abnormally slow, OS noise, or of a single bit-flip
within a network packet can strongly undermine the global
performance or correctness of a large operation involving
hundreds of thousands or MPI processes (Ferreira et al.
(2008)).

The main drawback of current MPI collective implemen-
tations is that they are based on static (and deterministic)
approaches, such as recursive doubling (Thakur and Gropp
(2003)), and that they have no chance to react or to dynam-
ically adapt to sudden and unexpected issues. In this paper
we investigate alternative algorithmic strategies for collective
communications based on gossip algorithms.

Gossip protocols (sometimes called epidemic protocols)
are decentralized protocols originally intended for loosely
coupled distributed systems, such as P2P or ad-hoc networks.
Based on periodic information exchange between nodes
(or processes), they do not rely on any assumptions
about specific hardware connections, and thus they work
on arbitrary (connected) topologies. Moreover, they do
not assume reliable communication, and the selection of
communication partners is randomized in some form.
Every node operates only based on local knowledge of its
neighborhood, and conceptually no synchronization across
the network is assumed. To some extent, gossip-based
algorithms can be self-healing, i. e., they can potentially
deliver a correct result in the presence of failures or faults
without the need to explicitly detect or report a fault.

Gossip protocols have mainly been used for two
different purposes: gossip-based dissemination algorithms
use gossiping for spreading information (rumor-mongering),
and gossip-based aggregation algorithms compute a system-
wide aggregate—an all-to-all reduction (e. g., sum, average,
min, max)—by sampling information from randomly chosen
nodes (or processes) and combining the values. Gossip-based
all-to-all reduction algorithms have the capacity to deal with
unexpected behavior of the system for three main reasons:
(i) Due to their randomized communication schedules they
are more flexible and adaptive than classical deterministic
algorithms, (ii) they have very strong resilience properties,
and (iii) their accuracy can be adapted dynamically to the

requirements with a decrease of the computational cost for
lower accuracy.

While the utilization of gossip-based dissemination algo-
rithms in an HPC context has been proposed recently (Katti
et al. (2015); Herault et al. (2015)) for resilience purposes,
the focus of this paper is on investigating and evaluating the
potential of gossip-based all-to-all reduction algorithms in
an HPC context, taking into account resilience as well as
performance aspects. This is a very relevant problem since
all-to-all reduction (all-reduce) operations appear at the heart
of many important HPC applications.

The ability to trade accuracy for performance is a
very attractive aspect of gossip-based all-reduce algorithms.
Reduced precision computations have been studied in
many HPC application areas as one potential approach for
improving computational efficiency, e. g., by Váňa et al.
(2017) in weather forecasting. The interaction between
arithmetic precision and resulting accuracy has also received
interest beyond classical HPC, e. g., in machine learning (see,
e. g., Lesser et al. (2011)). In particular, for contemporary
deep learning applications, which pose important challenges
in high performance computing aspects (such as efficient
parallelization), the capability of reducing the computational
cost of global all-reduce operations for lower accuracy
requirements is of high interest. On the one hand, global
reduction operations appear in parallel variants of the
stochastic gradient descent algorithm, which is a pivotal
component of standard methods for training deep neural
networks (Dean et al. (2012); Bottou (2010)). This has
already motivated first attempts at exploiting a gossip
strategy in an asynchronous stochastic gradient descent
method (Jin et al. (2016)). However, several open questions
remain, and thus most strategies used in practice still rely on
a central server for aggregating gradient information. On the
other hand, the effects (and benefits) of reduced precision
in data representation and computation in the context of
training of and inference with deep neural networks have
been investigated extensively. In particular, it has been
demonstrated that very low precision is often sufficient in
the context of deep learning (see, e. g., Gupta et al. (2015)
and references therein).

Not only reduced precision, but also resilience against
silent data corruption (SDC) at the algorithmic level is a
relevant aspect for deep learning applications. For large
models, the training phase is often done on consumer GPUs
where mechanisms for detecting and correcting SDC are
usually weaker than on today’s HPC hardware.

Prepared using sagej.cls

Casas, Gansterer, Wimmer 3

1.1 Related Work

The Message Passing Interface (MPI) standard is the
most widespread distributed memory parallel programming
model (MPI Forum (2012)). Extensive research efforts have
been undertaken in the last years to improve the performance
of MPI codes. For example, Hoefler et al. (2007) have
extended the non-blocking communication paradigm, which
the MPI standard defines for point-to-point communications,
to collective communications, showing some potential to
improve performance under certain conditions. In terms of
increasing MPI fault tolerance, Herault et al. (2015) have
developed an agreement algorithm to address permanent
crashes. This solution is built on top of the User-Level
Failure Mitigation (ULFM) proposal by Bland et al. (2013).
Other approaches also rely on finding consensus for handling
faults in the context of MPI (e. g., Katti et al. (2015)).

Most existing work on fault tolerant gossip-based
aggregation algorithms exclusively focuses on message loss
or hardware failures (see Eyal et al. (2014); Jesus et al.
(2015); Gansterer et al. (2013)). Only Niederbrucker and
Gansterer (2013) have done a limited study on the impact
of certain types of bit-flips. In this paper, we extend existing
algorithms and thoroughly investigate to which extent the
fault tolerance potential of gossip-based aggregation can be
exploited when SDC is considered.

While gossip-based aggregation algorithms have shown
tolerance to loss of messages or hardware failures, they
can also dynamically adapt the accuracy they provide,
which brings proportional cost reductions. Other approaches
that deploy inexact or irregular computations for achieving
performance gains while keeping the algorithms’ accuracy
within acceptable margins have been considered. For
example, the loop perforation approach by Sidiroglou-
Douskos et al. (2011) aims to trade accuracy for performance
by transforming loops to execute only a subset of their
iterations. Such a subset is composed of the most relevant
iterations in terms of numerical accuracy.

1.2 Objectives and Contributions

The main motivation for this paper is to summarize the first
steps towards a better understanding of the potential and
limitations of gossip-based all-to-all reduction algorithms in
the context of High Performance Computing.

For this purpose, we start with summarizing the
upcoming challenges for HPC on future extreme-scale
systems and motivating the investigation of gossip-
based all-to-all reduction algorithms for such systems in
Section 2. In Section 3, we provide a compact review of

representative all-to-all reduction methods, both classical
deterministic algorithms as well as state-of-the-art gossip-
based algorithms. In Section 4 we focus on resilience
aspects. In particular, we compare deterministic algorithms
and asynchronous gossip-based approaches in terms of
their resilience against silent data corruption. Moreover, we
propose new asynchronous gossip-based algorithms which
exhibit improved resilience against silent data corruption.
Section 5 is dedicated to a discussion of performance
aspects of gossip-based all-to-all reduction methods in an
HPC context. To the best of our knowledge, this has not
been investigated systematically so far. Since gossip-based
algorithms are iterative in nature, we first discuss various
factors influencing the number of iterations required. This
is followed by identifying some fundamental open questions
with respect to the cost per iteration. Then we summarize
some experiences with a first naive MPI implementation
of a gossip-based reduction algorithm on a few thousand
nodes of a HPC cluster. Based on the insight gained from
this implementation, we devise an alternative round-based
gossip-inspired implementation strategy which is better
suited for an HPC context. With experiments on more
than 100 000 processes on a high-end supercomputer and
simulations up to one billion processes we then investigate
how the number of iterations required scales for low accuracy
requirements.

2 Challenges in HPC

Future HPC machines are expected to use 7 nm process
technology, several orders of magnitude more concurrency
than contemporary petascale systems and to operate under
very restricted power budgets. All these factors, either
coming from the hardware or the software side, will certainly
make HPC machines more vulenarable to faults (Seifert
et al. (2012)). To mitigate errors, several software- and
hardware-based techniques can be leveraged (Cappello
et al. (2014)), at the cost of decreasing performance and
adding extra latencies to detect and correct errors. Also,
the chances of a hardware component suddenly delivering
unexpectedly low performance just adds more uncertainty
to the whole scenario. Without any countermeasures, the
reduced reliability and increased irregular behavior of future
HPC systems will largely impact performance, making the
usage of such large infrastructures a very difficult task.

2.1 The Hardware Perspective

Historically, the performance improvements reported by
the Top500 List (2018) were due to CPU clock frequency

Prepared using sagej.cls

4 Journal Title XX(X)

increases, among other factors. However, due to technologi-
cal constraints, the CPU clock frequency has stagnated since
2007. As a consequence, performance enhancements can
only be achieved by increasing the number of sockets of
supercomputing infrastructures. Therefore, the expected total
number of components of an exascale system will be much
larger than those of a petascale system. Indeed, exascale
systems are expected to have at least hundreds of millions of
CPU cores and to handle concurrency levels of similar orders
of magnitude.

Individual components of such systems are not expected
to be more resilient. It is true that redundancy levels
and error checking mechanisms at the hardware level are
increasing, but these increases are aimed at dealing with the
higher complexity of hardware components, not at making
components more resilient. The main reason behind this
trend is that hardware vendors calibrate the resilience levels
of their products to satisfy the needs of their main markets,
and the HPC sector is not one of them. Consequently, the
fault rate of exascale systems is expected to grow at the same
rate as the total number of components does.

2.2 The Software Perspective

The perspective from the software side is not much
better (Ashby et al. (2010)). Indeed, current HPC software
stacks are not ready to deal with unexpected and faulty
behavior. They are typically very rigid, and they have
not been run and tested on faulty platforms. Moreover,
significant portions of them contain legacy code that is hardly
adaptable to the new context where HPC is going with
systems which will have to continuously handle misbehaving
hardware components.

In the current situation, once a fault is detected it is
either propagated through the different layers of the software
stack or some fault tolerance approach is executed to correct
it. Since an increase in the frequency and the diversity of
faults is expected, overheads due to fault correction using
current techniques may become intolerable. The solution
is to provide the software stack with new approaches to
take action in response to detected errors in a way that the
overhead associated with the correction is as low as possible.

Besides the resilience problem, which may lead to
execution crashes, incorrect results or significantly reduced
application performance due to correction overhead, there is
another important factor: performance degradation in parts
of the hardware. The chances of particular components of
the machine performing well below their expected delivery
rate may strongly impact the overall performance of large
scale runs. It is thus required to extend the software stack

with mechanisms and paradigms which are able to hide extra
latencies, either due to faults or to low performing hardware
components. More asynchronous and adaptive approaches
are required to tolerate unexpected latencies.

Global reduction operations are among the ones that
suffer most from faults or partial performance degradation
in the hardware. First, because the entire parallel execution
may be impacted by an error or a performance slowdown
during a global reduction, since this operation involves
all parallel threads. Second, because the rigidness of their
current implementations in today’s software stacks neither
allows the design of resilient software solutions which take
action against faults, nor other kinds of solutions to react to
performance degradations in hardware components.

3 Parallel All-to-all Reduction

In this section we survey the main available approaches
for performing global all-to-all reduction (all-reduce)
operations. In particular, we review in detail the classical
recursive doubling approach in Section 3.1, and two gossip-
based approaches in Section 3.2: the push-sum algorithm and
its more robust advancement, the push-flow algorithm.

3.1 Recursive Doubling

Recursive doubling is a standard method for carrying out a
parallel all-reduce operation. It is also one of the algorithms
used by current MPI implementations. Depending on the
message size and on the number of processes involved in the
all-to-all reduction, MPI uses different algorithms (Thakur
and Gropp (2003); Chan et al. (2007)). Recursive doubling
is the optimal all-reduce algorithm in terms of the number of
messages needed when operating with small message sizes.

In this paper, we consider the following all-to-all reduction
operation over N parallel processes:

y = ⊗
k=0:N−1

xk.

The initial data x0, x1, . . . , xN−1 (for simplicity, we
consider scalar initial data) is distributed over the N

parallel processes. The result y of the all-reduce operation
(the aggregate) is available at all processes. In general,
“⊗” denotes an element-wise associative and commutative
binary operation. In this paper we focus on summation and
averaging.

Recursive doubling computes the all-to-all reduction
on N = 2d processes (numbered 0, 1, . . . , N − 1 for
simplifying the presentation) in d = log2N steps (Line 2 in
Alg. 1). In every step k, each process i pairwise exchanges

Prepared using sagej.cls

Casas, Gansterer, Wimmer 5

Algorithm 1 Recursive Doubling [N = 2d, process i]
Input: xi ∈ R
Output: yi = ⊗

k=0:N−1
xk ∈ R

1: yi ← xi
2: for k ← 0, . . . , d− 1 do
3: j ← i⊕ 2k

4: send yi to process j
5: wait to receive yj from process j
6: yi ← yi ⊗ yj
7: end for

its current value with a process j whose process id differs
exactly in the kth bit from i (Lines 3-5 in Alg. 1, where
“⊕” denotes an XOR operation). This leads to a pairwise
exchange of values between processes whose “distance” (in
terms of process rank) doubles in every step. After every
exchange, the local variable yi is overwritten by the result
of applying the operator ⊗ locally to yi and yj (Line 6 in
Alg. 1). After d steps, every process has received information
from every other process and the result of the reduction is
available in the local variable yi at every process i.

3.1.1 Complexity of parallel all-to-all reductions. A lower
bound in terms of number of messages required for a parallel
all-reduce operation can be derived by the fact that each
process has some information needed by every other process.
Per step each process can send at most one message, thus
information can only be doubled in each step. Consequently,
the number of messages required is at least dlog2Ne.

Computing the reduction on a single process requires
(N − 1) operations. Consequently, when perfectly dis-
tributed acrossN processes, the computational cost is at least
N−1
N times the cost for a single operation ⊗.

The cost of transferring the data can be derived from the
lower bound on the computational cost. For completing the
computation at least N−1

N data items must be sent and N−1
N

items must be received by each process. This leads to a
minimal cost of 2N−1

N times the cost for transferring a single
data item (Thakur and Gropp (2003); Chan et al. (2007)).

3.1.2 Resilience of recursive doubling. Classical parallel
reduction approaches like recursive doubling are based on
a pre-determined and well synchronized sequence of data
movements. Therefore, they rely on the system software
and the underlying communication stack to provide failure
free data transfer. If an unreported message loss occurs, the
behavior of algorithms like recursive doubling is undefined.
In case of a SDC during the reduction process, it is very
likely that the computation will succeed, but since the error
may be propagated to many processes, many or all local
results may be wrong (see Section 4.4).

3.2 Gossip-Based All-to-All Reduction

Gossip-based all-to-all reduction algorithms (Eyal et al.
(2014); Jesus et al. (2015); Gansterer et al. (2013))
are decentralized iterative algorithms with randomized
communication schedules. They do not rely on any
assumptions about specific hardware connections, thus they
work on arbitrary (connected) topologies. Every process
operates only based on local knowledge of its neighborhood
and conceptually no synchronization across the network is
assumed. In each iteration (round), every process i chooses
a random communication partner from its neighborhoodNi.
This type of algorithm was originally intended for loosely
coupled distributed systems, such as P2P or ad-hoc networks.
In an HPC context, the neighborhood Ni would usually be
defined by a suitable overlay network (the communication

topology) which allows for optimizing performance.

3.2.1 Push-Sum. The Push-Sum algorithm (PS)
by Kempe et al. (2003) is a gossip algorithm for summing or
averaging N values x00, x

0
1, . . . , x

0
N−1 distributed across N

processes. Each process i starts with an initial value-weight
pair (x0i , w

0
i) and at time t computes a local approximation

yti of the weighted sum
∑

k=0:N−1 x
0
k/
∑

k=0:N−1 w
0
k.

Note that this weighted sum is the average over all x0i
if w0

i = 1 ∀i, and it is the sum of all x0i if
∑

i w
0
i = 1.

In order to simplify the notation we will omit the time
superscript (0 or t) in the following unless it is needed to
avoid ambiguity.

Algorithm 2 Push-Sum (PS) [process i]
Input: (x0i , w0

i) ∈ R, ε ∈ R
Output: yi ≈

∑
k=0:N−1 x

0
k /
∑

k=0:N−1 w
0
k ∈ R

1: while not ε-accurate do
2: j ← choose a neighbor ∈ Ni uniformly at random
3: (xi, wi)← (xi, wi)/2
4: send (xi, wi) to process j
5: for each received pair (xj , wj) do
6: (xi, wi)← (xi, wi) + (xj , wj)
7: end for
8: end while
9: yi ← xi/wi

In each (local) iteration every process i halves its local
value-weight pair (xi, wi) and sends it to a neighbor j ∈ Ni

chosen uniformly at random (Lines 2-4 in Algorithm 2).
Afterwards all received value-weight pairs (xj , wj) are
added to the local value-weight pair (xi, wi) (Lines 5-7 in
Algorithm 2). This process is repeated until convergence.
Note that every process i can send messages independently
of all other processes. Thus, PS (like other gossip-based

Prepared using sagej.cls

6 Journal Title XX(X)

algorithms) conceptually does not require synchronization of
sending and receiving messages among processes.

The local approximation yti of the aggregate is computed
by dividing xti by wt

i (Line 9 in Algorithm 2). We refer to ε
as “target accuracy” and say that PS computed an ε-accurate
estimate of the true aggregate if the maximum relative error
over all processes is bounded by ε.

3.2.2 Improving resilience — Push-Flow. For correct-
ness of the PS algorithm mass conservation needs to
be ensured (Kempe et al. (2003)), i. e.,

∑
i(x

t
i, w

t
i) =∑

i(x
0
i , w

0
i) needs to hold at all times t. If this relation is

not preserved (mass loss), the iterative procedure will still
converge to the same value at every process (“consensus”),
but not to the correct aggregate of the initial values.

Note that mass conservation is a global property which is
usually violated by faults such as (silent) data corruption or
message loss. Although the flexible communication schedule
of PS easily allows for tolerating reported faults, any kind
of unreported fault (such as silent data corruption) violates
mass conservation. Thus, the PS algorithm cannot guarantee
correct all-to-all reductions in the presence of silent data
corruption.

Several ideas have been pursued to overcome this
problem, however, so far with a focus on unreported message
loss (Eyal et al. (2011); Hadjicostis et al. (2012); Jesus
et al. (2009, 2010)) or on node failures and dynamic
topology changes (Eyal et al. (2014); Jesus et al. (2015)). We
focus here on the Push-Flow algorithm (PF), proposed and
investigated by Niederbrucker et al. (2012); Gansterer et al.
(2013); Niederbrucker and Gansterer (2013) and shown in
Algorithm 3. PF can be viewed as an advancement of PS for
improving resilience by utilizing a flow concept borrowed
from graph theoretical flow networks .

Algorithm 3 Push-Flow (PF) [process i]
Input: (xi, wi) ∈ R2

∀ k ∈ Ni : fi,k ← (0, 0) ∈ R2, ε ∈ R
Output: yi ≈

∑
k=0:N−1 xk /

∑
k=0:N−1 wk ∈ R

1: while not ε-accurate do
2: ei ← (xi, wi) +

∑
k∈Ni

fi,k ∈ R2

3: j ← choose a neighbor ∈ Ni uniformly at random
4: fi,j ← fi,j − ej/2
5: send fi,j to process j
6: for each received flow fj,i from process j do
7: fi,j ← −fj,i

8: end for
9: end while

10: yi ← ei(1)/ei(2)

For every neighboring process j ∈ Ni, process i holds
a flow variable fi,j ∈ R2 representing the data flow (the

“mass” sent) to process j. Whereas in PS the sent mass
is immediately subtracted from the current value-weight
pair, in PF sent mass is only stored in the flow variables.
Hence, the initial value-weight pair is never changed. The
current local value-weight pair ei ∈ R2 of process i can
be computed as ei = (xi, wi) +

∑
k∈Ni

fi,k (Line 2 in
Algorithm 3).

Like in PS, in each iteration every process i chooses some
process j ∈ Ni to which it sends half of its current value-
weight pair ei. In contrast to PS, only the flow variables are
updated and sent (Lines 4-5 in Algorithm 3). All received
flows are negated and overwrite the corresponding flow
variable (Lines 6-8 in Algorithm 3). The local approximation
yi of the aggregate is computed by dividing the value
component ei(1) of the current value-weight pair ei by the
weight component ei(2) (Line 10 in Algorithm 2).

In the Push-Flow algorithm, flow conservation is ensured,
i. e.,

∑
i

∑
j∈Ni

fi,j = (0, 0) holds at all times if no
faults occur. Note that flow conservation implies mass
conservation. However, in contrast to mass conservation,
flow conservation is a local property and can be maintained
or restored more easily. In particular, every successful
transmission of an uncorrupted flow variable automatically
re-establishes flow conservation between two processes,
even if it has been violated previously by some fault. The PF
algorithm thus very naturally recovers from loss of messages
at the next successful fault-free communication without even
detecting it explicitly as shown by Gansterer et al. (2013).
Detected or reported broken system components, e. g.,
permanently failed links or processes, can easily be tolerated
by setting the corresponding flow variables to zero, since
this algorithmically excludes the failed components from the
computation (Gansterer et al. (2013)). In exact arithmetic,
PF can also recover from SDC in the flow variables and/or
messages (with some additional cost). However, we will
illustrate in Section 4 that further advancements are needed
for tolerating SDC in practice (in floating-point arithmetic).

3.2.3 Convergence and complexity. A time complexity
of O(logN + log ε−1) rounds for approximating the target
aggregate with a relative error at most ε at each process
has been proved for Push-Sum on fully connected networks
by Kempe et al. (2003). Later, Boyd et al. (2006) extended
this result to a time complexity of O(logN/(1− λ2))
rounds, where λ2 is the second largest eigenvalue of the
communication matrix. In practice, networks allow for fast
gossip-based all-to-all reductions in O(logN) rounds either
by their physical topology or by some overlay network
combined with efficient routing techniques. As discussed

Prepared using sagej.cls

Casas, Gansterer, Wimmer 7

by Gansterer et al. (2013), these time complexity results for
the PS algorithm also hold for the PF algorithm. Note that
for aggregating scalar data, which is the focus of our paper,
asymptotically this is the same time complexity as the one of
deterministic recursive doubling (cf. Section 3.1.1)

4 Improving Resilience Against SDC

This section motivates the need for algorithms to deal with
SDC that takes place while data is being transferred. It
also discusses the limitations of the approaches described
in Section 3 and presents an enhancement of the PF
algorithm which is able to effectively deal with SDC in
the communication process. In Section 4.5 we also briefly
outline how to recover from SDC in the initial data.

4.1 Motivation

Typically, MPI communications are done via a network
interconnect. When moving data through such devices,
there are many scenarios where silent data corruption may
occur, as, e. g., discussed by the Commonwealth Scientific
and Industrial Research Organization (CSIRO) (2014).
For example, electromagnetic interferences from electric
cables may interfere electrical signals being transmitted by
others. This problem is especially important in computing
infrastructures with many cables packed together, like data
centers or supercomputers. Also, the arrival time of the
different electrical signals may not be exactly the same
due to unavoidable differences in cable lenghts. Normally,
interconnecting networks can tolerate differences of up to
50 nanoseconds per 100 meters of cable, but late arrivals
beyond this treshold may produce silent data corruptions. All
these scenarios may end up producing bit-flips in the data
being transmitted. So far, concepts for guaranteeing reliable
communication are concentrated at the transport layer and
layers below in the OSI model. Our approach is to investigate
the capability of algorithmic fault tolerance at the application
layer in order to complement and extend the range of
available strategies for improving resilience. It remains to
be investigated whether a combination of concepts at several

layers can yield even more improvements in relevant metrics.

Although in theory (exact arithmetic) the concept of flows
allows PF to recover from any bit-flip in the flow variables
and messages, Niederbrucker and Gansterer (2013) and
Niederbrucker et al. (2012) illustrated that in practice the
limited precision of floating-point arithmetic causes mass
loss. This is due to round-off errors in the computation of the
estimate when bits with high significance are affected. In the
following we present two novel algorithms which overcome

this problem and are therefore capable of handling SDC in
messages as well as in flow variables.

4.2 Push-Flow with Local Correction

The basic idea for handling the effects of bit-flips which
cannot be tolerated by PF is to integrate explicit fault
detection strategies into the PF algorithm. In our context,
checksum approaches based on summing the value-weight
pair are appropriate. Although more sophisticated methods
for error detection exist, for our purposes it is essential to
quantify the size of the detected error and to do an explicit
correction only if the error is too large.

The novel gossip-based algorithm Push-Flow with local

correction (PFLC, see Algorithm 4) extends the local data
and each flow variable by a third component. In the initial
local data this third component contains the sum of the
value and the weight variable. In each flow variable this
third component is the sum of the first two components.
After computing the estimate ei (Line 2 in Algorithm 4),
every process checks for a data corruption by comparing the
sum of the first two entries of the estimate with the third
entry containing the checksum. If the difference is larger
than a threshold τ , an error in the flow variables is detected
(Line 3 in Algorithm 4). In this case, the process checks
every flow variable for an error and repairs the local data
by setting flow variables to zero when necessary (Lines 4
to 6 in Algorithm 4). Afterwards the current estimate ei

is recalculated using the new flow variables (Line 9 in
Algorithm 4).

The sending part is identical to Push-Flow (Lines 11
to 13 in Algorithm 4). When process i receives a message
from process j, it first verifies the checksum for the
received flow fj,i. Only if the checksum error is below the
threshold τ , the negated received flow is set as the new
local flow fi,j (Lines 15 to 17 in Algorithm 4), otherwise
the received message (flow variable) is discarded. The local
approximation yi of the aggregate is computed like in PF
(Line 20 in Algorithm 4).

Improved fault tolerance. In theory (exact arithmetic),
PFLC has the same fault tolerance properties as PF. However,
SDC in the most significant bits in floating-point arithmetic,
which leads to large errors in magnitude, can only be
tolerated by PFLC (and not by PF). This is due to the
fact that by dropping received faulty flow variables and
by resetting the corresponding local flow variables to zero,
PFLC prevents the potentially excessive growth of a flow
variable caused by some bit-flips and thus avoids the effects
of the associated round-off errors. The next communication

Prepared using sagej.cls

8 Journal Title XX(X)

Algorithm 4 PFLC [process i]
Input: (xi, wi, ci) ∈ R3, ci = xi + wi

∀ k ∈ Ni : fi,k ← (0, 0, 0) ∈ R3; ε, τ ∈ R
Output: yi ≈

∑
j=0:N−1 xj /

∑
j=0:N−1 wj ∈ R

1: while not ε-accurate do
2: ei ← (xi, wi, ci) +

∑
k∈Ni

fi,k ∈ R3

3: if |ei(1) + ei(2)− ei(3)| > τ then
4: for each k ∈ Ni do
5: if |fi,k(1) + fi,k(2)− fi,k(3)| > τ then
6: fi,k ← (0, 0, 0)
7: end if
8: end for
9: ei ← (xi, wi, ci) +

∑
k∈Ni

fi,k

10: end if
11: j ← choose a neighbor ∈ Ni uniformly at random
12: fi,j ← fi,j − ej/2
13: send fi,j to process j
14: for each received flow fj,i from process j do
15: if |fj,i(1) + fj,i(2)− fj,i(3)| ≤ τ then
16: fi,j ← −fj,i

17: end if
18: end for
19: end while
20: yi ← ei(1)/ei(2)

between two processes after resetting a corrupted flow
variable will re-establish flow conservation between them.

Simply resetting a flow variable fi,j to zero corresponds
to a loss of the information exchange so far and thus may
in general lead to a significant convergence delay. However,
not every fault necessarily leads to such a strong setback in
convergence. For seeing this, let us assume that only a single
process i experiences one bit-flip in the flow variable fi,j

and thus resets it to zero. Depending on which process (i or
j) initiates the next communication, we can distinguish two
cases: If first i sends its flow variable fi,j (which is zero)
to j, then fi,j overwrites fj,i, and a significant convergence
delay is usually experienced. However, if j sends its flow fj,i

first, then fi,j gets overwritten by fj,i, and the convergence
delay is negligible.

4.3 Push-Flow with Cooperative Correction

As mentioned before, every reset of a flow variable can
lead to a setback in convergence. However, due to the
redundancy in the flow variables it is in many cases possible
that a correct flow overwrites a neighbor’s faulty one without
causing any setback in convergence. Such considerations
motivate the idea underlying Push-Flow with cooperative

correction (PFCC, see Algorithm 5): design an algorithm
which resets flow variables to zero only when it is absolutely
necessary. This can be achieved by leaving a faulty flow
uncorrected, but sending it to the corresponding neighbor as

soon as possible. Once the neighbor detects that the received
flow variable is faulty, it can send back its correct flow
variable, thus correcting the fault by overwriting the faulty
flow variable. Only if both flow variables are corrupted,
the processes involved need to reset their flow variables to
zero. This way many SDC errors can be corrected without a
convergence delay.

Algorithm 5 PFCC [process i]
Input: (xi, wi, ci) ∈ R3, ci = xi + wi

∀ k ∈ Ni : fi,k ← (0, 0, 0) ∈ R3; ε, τ ∈ R
Output: yi ≈

∑
j=0:N−1 xj /

∑
j=0:N−1 wj ∈ R

1: while not ε-accurate do
2: ei ← (xi, wi, ci) +

∑
k∈Ni

fi,k ∈ R3

3: if |ei(1) + ei(2)− ei(3)| > τ then
4: for each k ∈ Ni do
5: if |fi,k(1) + fi,k(2)− fi,k(3)| > τ then
6: send fi,j to k
7: end if
8: end for
9: end if

10: j ← choose a neighbor ∈ Ni uniformly at random
11: fi,j ← fi,j − ej/2
12: send fi,j to j
13: for each received flow fj,i from process j do
14: if |fj,i(1) + fj,i(2)− fj,i(3)| ≤ τ then
15: fi,j ← −fj,i

16: else
17: if |fi,j(1) + fi,j(2)− fi,j(3)| > τ then
18: fi,j ← (0, 0, 0)
19: end if
20: send fi,j to j
21: end if
22: end for
23: end while
24: yi ← ei(1)/ei(2)

PFCC uses the same checksums as PFLC, it differs only
in the reaction to the detection of corrupted flow variables.
When process i detects an error in the estimate ei, it checks
every flow variable and sends the damaged flows to the
respective neighbors (cf. Lines 3 to 9 in Algorithm 5). When
a process receives a faulty flow variable, it additionally
checks if its local flow variable is also corrupted (cf. Lines 14
and 17 in Algorithm 5). Only if both flow variables (received
and local) are corrupted, the local flow variable is set to zero
(cf. Line 18 in Algorithm 5). For all received corrupted flows,
a process sends its current local flow variable to the sender
(cf. Line 20 in Algorithm 5).

In summary, PFCC has the same fault-tolerance properties
as PFLC, but in many situations it will recover much faster
from SDC than PFLC, as we will illustrate experimentally in
Section 4.4.

Prepared using sagej.cls

Casas, Gansterer, Wimmer 9

4.4 Fault Tolerance in Practice

The following experiments illustrate the effect of SDC on
the various all-to-all reduction algorithms. We investigate
bit-flips in local data structures and their influence on
the achieved accuracy as well as on the communication
overhead. In contrast to all results in the literature so far,
our resilience results in this section are for asynchronous

implementations, i. e., implementations that do not require
synchronization operations. In Section 5 we will discuss
performance aspects of gossip-based all-to-all reduction
algorithms, in particular their runtime overhead compared to
less resilient recursive doubling. There, we will see that when
implementing gossip-based all-reduce in MPI, the standard
parallelization paradigm for HPC, synchronized round-based
implementations have performance advantages over fully
asynchronous implementations.

4.4.1 Experimental setup. We simulated asynchronous
versions of the algorithms discussed so far with a discrete
event simulator. All algorithms were run with the same
sequence of random numbers. Thus, in the fault-free case
all PF variants show exactly the same results. The error erm

shown in the figures represents the maximum relative error
over all processes i:

max relative error erm := arg maxi
|yi − ytrue|
|ytrue|

, (1)

where ytrue is the correct aggregate.
All experiments in Sections 4.4.2 and 4.4.3 were per-

formed forN = 32 processes in a hypercube communication
topology. The algorithms were terminated once the local
relative error of all processes was less than 10−14. Alterna-
tively, the algorithms were stopped once the first process has
sent out 500 messages. The threshold τ for the checksums
in PFLC and PFCC was set to 10−11. In Section 4.4.4 we
discuss how the choice of τ influences the performance of
PFLC and PFCC.

4.4.2 Influence of SDC on convergence behavior. The
different gossip-based algorithms recover differently from
SDC. As mentioned earlier, due to the effects of floating-
point arithmetic, PF cannot handle any SDC which causes a
huge error in a flow variable.

Fig. 1 compares the convergence history of the three PF
variants in case of a single bit-flip at time tbit-flip. In the failure-
free case (no bit-flip), all three algorithms show exactly the
same convergence history. For each algorithm the 56th bit in a
randomly chosen flow variable (the same flow variable in all
algorithms) was flipped at time tbit-flip. We see that standard
PF first falls back in the convergence process and later

time
10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

e r
m

PF

PFLC

PFCC

no failure

tbit−flip

Figure 1. Convergence behavior of different Push-Flow
algorithms in case of a single bit-flip

converges to an aggregate which has a relative error of about
10−11, since the round-off error caused by the bit-flip when
computing the aggregate is too large. In contrast, both PFLC
and PFCC converge much faster, and the aggregate which
they produce has a relative error of only about 10−14. PFLC
immediately resets every corrupted flow variable to zero
and thus also experiences some fall-back in the convergence
process. However, in contrast to standard PF, in the worst
case this fall-back is only to the initial estimate, and, as
the fault is never propagated, it always converges to a
more accurate aggregate. PFCC requests a message from
the neighbor associated with a detected corrupted flow to
overwrite this corrupted flow variable. Thus, PFCC recovers
much faster from the fault and experiences hardly any slow-
down compared to the failure-free case.

4.4.3 Influence of the position of the fault. The next
experiment illustrates the influence of a bit-flip in a value-
weight pair for PS and in a flow variable for all PF variants
in all possible positions of an IEEE 754 double precision
floating-point variable. For each algorithm a bit is flipped
after the first process sent 150 messages.

Fig. 2 shows the maximum of the erm from Equation (1)
over 100 different runs. The first interesting observation is
that PS can only tolerate SDC in a few of the least significant
bits. Note that in Fig. 2 relative errors greater than 1 are
beyond the range of the y-axis. Second, it is interesting to
observe that PS and recursive doubling have very similar
resilience properties. Third, PF can recover from all bit-flips
in the sign and mantissa bits as the resulting error is relatively
small, but for bit-flips in the exponent of a floating-point
number, the maximum relative error of PF increases rapidly.
Fourth, our novel algorithms PFLC and PFCC fully recover
from bit-flips at any position in the local flow data structures.

Prepared using sagej.cls

10 Journal Title XX(X)

10−0

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

exponent mantissasign

m
ax

.
re
la
ti
ve

er
ro
r

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

Recursive Doubling

Push-Sum

Push-Flow

PFLC / PFCC

Figure 2. Maximum relative error over 100 individual runs depending on the position of the bit-flip (simulation for N = 32,
ε = 10−14)

In Fig. 3, we illustrate the “prize” of this increased fault
tolerance in terms of its communication overhead. More
specifically, we compare the mean (over 100 runs) of all
sent messages per process of PS without any bit-flips with
the mean of all sent messages of PF, PFLC and PFCC with
a single bit-flip on different positions in a flow variable.
The overhead of all PF variants compared to PS (slightly
more than 50%) is due to a special situation which occurred
relatively often in our discrete event simulator: If two
neighboring processes send to each other simultaneously,
these messages can overwrite each other’s flow variable. This
has the same effect as if one of the messages is lost and thus
causes an overhead each time it happens. In Section 6 we
show how to overcome this issue and thereby improve the
performance of the PF variants.

We note that up to the 30th bit there is no difference in the
communication overhead of the three resilient algorithms, as
the error caused by the flipped bit is below the threshold
τ . Beginning with the 31st bit, PFCC persistently requires
fewer messages than PF and PFLC due to its more efficient
recovery mechanism. PF and PFLC require roughly the same
number of messages up to the 49th bit. From this point
on, PFLC corrects errors and sets corrupted flow variables
to zero. Starting with bit number 55, PF does not always
converge to an accurate aggregate any more (cf. Fig. 1),
and thus the average communication overhead also includes
runs which were terminated because one process reached the
maximum message count of 500. Only PFCC has an almost
constant message count independently of the position of the
bit-flip.

4.4.4 Influence of the checksum threshold τ . For both
algorithms PFLC and PFCC the communication overhead in
case of bit-flips strongly depends on the checksum threshold
τ . In Figures 4 and 5 we illustrate the influence of τ on the

communication overhead of PFLC and PFCC in case of bit-
flips by depicting the median and 1.5 times the interquartile
range (IQR) of the required number of iterations over all
runs. It becomes clear that τ has to be chosen differently
for both algorithms, but also for different process counts. In
general one can deduce from the two figures, that for PFLC
τ > 0.1 is beneficial, whereas for PFCC τ should be chosen
very small.

4.4.5 Many bit-flips. Next we investigated the influence of
the number of bit-flips on the overhead of both algorithms.
We ran both algorithms 500 times with a fault rate of
0.0001 (before sending a message, some flow variable
is corrupted with probability 0.0001) and recorded the
number of iterations needed for different numbers of bit-
flips. For a single bit-flip, PFLC and PFCC show similar
communication cost (see Fig. 6), but starting from two bit-
flips per reduction, the overhead of PFLC increases strongly
whereas PFCC shows no significant difference in the number
of iterations. While it is unclear whether high bit-flip rates
appear in practice, for low bit-flip rates both algorithms are
comparable.

4.5 SDC Beyond Flow Variables

First, we note that all insights from Figs. 2 and 3 also apply to
bit-flips in messages, since such faults have an impact once
the contents of the message is written into the flow variable
of the receiving process.

When considering SDC beyond flow variables and
messages, things get more complicated. Neverthless, to
some extent it is even possible to repair corrupted initial
value-weight pairs. For example, if the current estimate
ei and all flow variables are correct, one can recompute
(xi, wi, ci) by subtracting the sum over all flows from the
current estimate (xi, wi, ci) = ei −

∑
k fi,k. Moreover, we

Prepared using sagej.cls

Casas, Gansterer, Wimmer 11

0 %

25 %

50 %

75 %

100 %

125 %

150 %

exponent mantissasign

av
g.

m
es
sa
ge

ov
er
h
ea
d
ov
er

P
S

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

Push-Flow

Push-Flow with local correction

Push-Flow with cooperative correction

not always converged!

Figure 3. Mean message overhead for PF, PFLC and PFCC compared to Push-Sum (simulation for N = 32, ε = 10−14,
τPFLC = 0.5 and τPFCC = 10−10)

10−13 10−9 10−5 10−1 103 107 1011

τ

0

200

400

600

800

1000

1200

1400

1600

#
it
er
a
ti
o
n
s

32 processes

PFLC

PFCC

Figure 4. Influence of τ on the number of iterations until
convergence for PFLC and PFCC in the presence of several
bit-flips (line shows the median and the colored area shows
1.5 · IQR, simulation for N = 32, ε = 10−14, bit-flip rate 0.0001)

10−13 10−9 10−5 10−1 103 107 1011

τ

0

200

400

600

800

1000

1200

1400

1600

#
it
er
at
io
n
s

64 processes

PFLC

PFCC

Figure 5. Influence of τ on the number of iterations until
convergence for PFLC and PFCC in the presence of several
bit-flips (line shows the median and the colored area shows
1.5 · IQR, simulation for N = 64, ε = 10−14, bit-flip rate 0.0001)

are currently investigating whether remote flow variables can
be exploited to recover from SDC in the initial value-weight
pair. However, this is still work in progress.

0 1 2 3 4 5 6 7 8 9 10

bit-flips

0

200

400

600

800

1000

1200

1400

1600

#
it

er
a
ti

o
n

s

PFLC

PFCC

Figure 6. Number of iterations until convergence for PFLC and
PFCC for different bit-flip counts (simulation for N = 64,
ε = 10−14, τPFLC = 0.5, τPFCC = 10−10, whiskers at 1.5 · IQR)

5 Runtime Performance and Scalability

Beyond the strong resilience properties demonstrated in
Section 4 it is so far unclear whether gossip-based algorithms
are efficient enough in practice to be of interest in
an HPC context. Obviously, one has to expect that the
greatly increased flexibility and robustness of gossip-based
algorithms come with some overhead in terms of execution
time compared to routines optimized for classical parallel
systems. A thorough quantification of the cost of the
improved resilience achieved by gossip-based all-reduce
algorithms as discussed in Section 4 is very complex,
in particular for asynchronous implementations. In this
section, we investigate the runtime performance of gossip-
based reduction algorithms. In such an investigation, it is
important to distinguish between the number of iterations (cf.
Section 5.1) and the cost per iteration (cf. Section 5.2).

The overall execution time to a great extent also depends
on an efficient implementation (e. g., to which extent
the very low synchronization requirements of PFCC can
be exploited). How to implement gossip-based algorithms

Prepared using sagej.cls

12 Journal Title XX(X)

efficiently for an HPC context is so far a widely open
question. In Sections 5.3 we summarize first experiences
when implementing gossip-based reduction algorithms in
today’s dominant parallel programming model for HPC,
MPI, and we present a gossip-inspired approach which is
much better suited for an efficient implementation in MPI
than classical gossip-based algorithms such as Algorithm 2.

5.1 Number of Iterations

First we note that although recursive doubling is not
an iterative algorithm, it proceeds in log2N steps (cf.
Algorithm 1). For simplicity, we do not distinguish between
a “step” (in the case of recursive doubling) and an “iteration”
(in the case of gossip-based reduction algorithms) in the
following, but we use the term “iteration” (or “round”) for
both. Having said this, all algorithms considered in this paper
asymptotically require O(logN) iterations for achieving
full accuracy (subject to the limitations of floating-point
accuracy) on fully-connected topologies.

As indicated, this asymptotic complexity is influenced
by two important factors: the underlying communication
topology, i. e., the virtual topology superimposed on the
physical topology of the computer system, which defines
the neighborhood of each node, and—for gossip-based
approaches—the desired accuracy of the result in terms of
the acceptable maximum relative error (1). Taking these
factors into account, the theoretical runtime complexity of
PS is given by

O
(
logN + log ε−1

1− λ2

)
(2)

iterations for achieving an accuracy of ε (Boyd et al. (2006)).
Here, 1− λ2 denotes the spectral gap of the communication
matrix of PS, whose largest eigenvalue by design is always
one. The better connected the network, the larger the spectral
gap. Thus, the connectivity of the communication network
has a strong influence on the number of iterations needed
by gossip-based algorithms. The spectral gap of a fully
connected network is independent of N , the spectral gap of
a hypercube decreases logarithmically with N , whereas the
second largest eigenvalue for torus topologies or trees grows
much faster with N .

For deterministic reduction algorithms, the communica-
tion topology does not influence the number of iterations, but
the cost per iteration, which we will discuss in Section 5.2.
Moreover, for these algorithms the accuracy of the result
usually does not significantly influence the number of itera-
tions. In general, full accuracy will be achieved after log2N
iterations. Thus, Expression (2) indicates that gossip-based

102 103 104 105

processes N

100

101

102

103

104

105

106

#
it
er
a
ti
o
n
s

3d-torus

hypercube

fully-connected

recursive doubling

Figure 7. Number of iterations until convergence for Push-Sum
with different communication topologies (simulation in Matlab,
initial data uniformly random ∈ [0, 1], erm = 10−14)

approaches can be expected to be most competitive in terms
of the number of iterations if the communication topology
is well-connected (such as fully-connected or hypercube
topologies) and if a low accuracy approximation of the
reduction operation is sufficient.

Simulations of synchronized, round-based Push-Sum (see
Fig. 7) support these theoretical considerations and show that
communication topologies with a small spectral gap need
a much larger number of iterations than fully-connected or
hypercube toplogies. These simulation results also indicate
a constant overhead in terms of the number of iterations
for Push-Sum over recursive doubling, independently of
the communication topology and the number of nodes or
processes.

However, three aspects are worth being pointed out
when comparing gossip-based algorithms with recursive
doubling: First, due to their iterative nature, gossip-based
algorithms allow for achieving a reduced target accuracy
at a proportionally reduced cost (cf. expression (2)). This
aspect, which can be attractive in certain applications,
will be discussed in more detail in Section 6.2. Second,
the convergence speed of gossip-based algorithms can be
improved using various acceleration strategies, e. g., by
adapting ideas presented by Dimakis et al. (2008) or
by Janecek and Gansterer (2016). Third, due to their
localized communication patterns, gossip-based algorithms
may potentially have advantages in terms of the cost per

iteration on extreme-scale systems, as we will discuss in
Section 5.2.

Prepared using sagej.cls

Casas, Gansterer, Wimmer 13

5.2 Cost per Iteration

In both types of algorithms considered in this paper—
deterministic parallel reduction algorithms as well as gossip-
based reduction algorithms—each process involved sends
one message per iteration. However, the distance which such
a message has to travel (number of hops) and therefore the
communication cost per iteration may differ significantly.

For deterministic parallel reduction algorithms, the
communication cost per iteration depends on the physical
topology of the computer system. More specifically, the
maximum number of hops between any two communicating
processes can be as large as the diameter of the physical
topology.

In contrast, the communication cost per iteration of a
gossip-based algorithm can be made independent of the
physical topology by restricting all the communication to
single-hop communication between processes on physically
neighboring nodes. However, this extreme case may lead to
a relatively large number of iterations for physical topologies
with a small spectral gap (as discussed in Section 5.1).
Thus, it is usually advisable to superimpose a well-connected
virtual communication topology on the physical topology for
defining the neighborhood of each process. Although this
increases the communication cost per iteration of a gossip-
based algorithm by allowing for multi-hop communication,
it will keep the total number of iterations low if the
communication topology has a large spectral gap.

Consequently, in contrast to deterministic parallel reduc-
tion algorithms, gossip-based algorithms support a trade-
off between number of iterations and cost per iteration via
the choice of the communication topology. Whether this
capability can be exploited in terms of the overall execution
time, especially for extreme-scale systems, strongly depends
on how the communication cost between two nodes grows
with the physical distance between these two nodes.

Assuming that the communication cost increases strictly
monotonically with the physical distance between two
communicating nodes, one would have to solve the following
graph theoretical problem: Given a physical topology P,
what is the communication topology C defined by the
set of nodes of P and edges connecting these nodes
such that the total number of hops accumulated over all
communication operations until convergence of a gossip-
based algorithm using this communication topology C is
minimized? Alternatively, one could consider a slightly
different problem: Given a physical topology P and a
maximum number of hops hmax, what is the communication
topology C defined by the set of nodes of P and edges
connecting these nodes such that (i) the diameter of C is

at most hmax, and (ii) the spectral gap of C is maximized?
We are currently not aware of general solutions of such
problems, and thus it seems still an open problem whether
and under which conditions the localized communication
properties of gossip-based reduction algorithms could lead
to performance advantages for extreme-scale systems.

5.3 Implementing Gossip All-Reduce in MPI

Since the previous theoretical considerations and sequential
simulations do not allow for precise predictions of execution
times on HPC-Systems, we implemented Push-Sum using
MPI and ran a first set of experiments on the Vienna
Scientific Cluster VSC-2. This cluster consists of 1314

nodes, each of which holds two AMD Opteron 6132HE
processors with eight cores each and has 32 GB of main
memory. The nodes are connected through Infiniband QDR
using a fat tree topology.

Our first Push-Sum implementation based on MPI
one-sided communication showed disappointing runtime
performance. Thus we decided to implement Push-
Sum based on MPI point-to-point communication, which
subsequently also allowed for extending the code to Push-
Flow, PFLC and PFCC. However, the experimental results
shown in Fig. 8 only partly reflect the runtime behavior to be
expected from the theoretical considerations in Sections 5.1
and 5.2. Whereas the scaling behavior on hypercube and 3d-

32 64 128 256 512 1024 2048 4096

processes N

10−5

10−4

10−3

10−2

10−1

ru
n
ti
m
e
(s
ec
)

3d-torus

hypercube

fully-connected

recursive doubling

Figure 8. Runtime on VSC-2 for Push-Sum with different
communication topologies until convergence (asynchronous
MPI implementation, initial data uniformly random ∈ [0, 1],
ε = 10−14)

torus communication topologies is roughly as anticipated,
the scaling behavior of this Push-Sum implementation on a
fully-connected communication topology was much worse
than expected. The reason is that imposing a fully connected
communication topology on top of the physical fat-tree

Prepared using sagej.cls

14 Journal Title XX(X)

network topology of the VSC-2 causes a lot of network
congestion.

These first experiments indicated that a naive MPI-based
implementation of Push-Sum for HPC systems can by no
means compete in terms of runtime performance with state-
of-the-art all-reduce algorithms such as recursive doubling.

6 A Gossip-Inspired Approach

In order to advance the state-of-the-art in this question,
we carefully investigate modifications of the original gossip
concept which are better suited for the HPC context.
More specifically, we develop and implement a gossip-
inspired all-reduce scheme which we call HPS (high

performance push-sum). It is specifically designed to match
the MPI programming model in order to better understand
the performance potential of approaches based on local
communication. To implement a more competitive gossip-
inspired reduction in MPI, we consider a scheme which
better matches the MPI programming paradigm than the
original asynchronous concept of Algorithm 2.

The key ideas are the following: First, we consider a
synchronized (global iteration-based) variant, where each
MPI process receives exactly one message per iteration.
This strategy, where we do not allow iteration k + 1 to start
before all N communications of iteration k have finished,
reduces the communication complexity of the algorithm
significantly. In a more general scheme complicated message
queues and termination strategies for asynchronous point-to-
point communications are needed which limit computational
efficiency.

Second, we globally prescribe the sequence of local
communications for all processes a priori. In other words,
the communication pattern in each iteration is defined by
a random permutation of the integers 0, 1, . . . , N − 1. This
restriction to a single communication partner per iteration
avoids the need to manage (up to) N − 1 active receive
operations per MPI process, which would arise in the general
setting of Algorithm 2 where the number of communication
partners of a process per iteration can potentially be as large
as N − 1.

The HPS approach has an additional advantage, which is
not MPI-specific: The permutations that define the commu-
nication patterns of each iteration can be precomputed and
stored in the memory of the computing device where each
process runs. This eliminates the influence on the parallel
execution caused by repeated random number generation.

6.1 Improving Resilience Against SDC

The improvement in resilience which leads from PS to
PFLC as described in Section 4.2 involves only modifications
in local computations and in book-keeping, but does not
change any communication-related aspects. Therefore, it
is straightforward to extend the ideas underlying HPS to
PFLC. Doing so yields the parallel reduction algorithm
HPFLC (high performance push-flow with local correction)
which combines the resilience properties of PFLC with the
improved performance of HPS. Moreover, we can solve the
problem caused by simultaneous message exchange in Push-
Flow-based algorithms which we identified in Section 4.4.3
by generating random permutation cycles instead of simple
random permutations for each iteration.

Note that extending the ideas underlying HPS to PFCC
is not straightforward, since the communication patterns of
PFCC differ from those of PS in the event of a fault. We plan
to investigate this aspect in future work.

6.2 Accuracy vs. Number of Iterations

Before we show first results of an MPI-based implementation
of the HPS algorithm in Section 6.3, we first convince
ourselves that HPS exhibits a similar convergence behavior
as the resilient gossip-based reduction algorithms proposed
in Section 4.

103 104 105 106 107 108 109

processes N

5

10

15

20

25

30

35

40

#
it
er
at
io
n
s

log2 N

HPS ε = 10−6

HPS ε = 10−5

HPS ε = 10−4

Figure 9. Number of iterations of HPS for higher accuracy
levels (median over 100 runs, base topology is fully connected)

Figs. 9 and 10 show the number of iterations required
by HPS for various accuracy levels based on a sequential
implementation in C. The algorithm was terminated once
the maximum relative error erm over all processes (cf.
Equation (1)) fell below a certain threshold ε.

Fig. 9 shows the results for higher accuracy levels
(ε = 10−4, 10−5, 10−6), whereas Fig. 10 focusses on lower

Prepared using sagej.cls

Casas, Gansterer, Wimmer 15

103 104 105 106 107 108 109

processes N

5

10

15

20

25

30
#

it
er
at
io
n
s

log2 N

HPS ε = 10−3

HPS ε = 10−2

HPS ε = 10−1

Figure 10. Number of iterations of HPS for lower accuracy
levels (median over 100 runs, base topology is fully connected)

accuracy levels (ε = 10−1, 10−2, 10−3). For the accuracy
range considered we observe that the number of iterations
of HPS grows slower with N than log2N , which is the
number of iterations required by recursive doubling. More
generally speaking, any method in which every process
receives information from every other process requires
log2N iterations (cf. Section 5.1). This indicates that if the
system is large enough, HPS will require much less than
log2N iterations for reduced accuracy requirements. For
very low accuracy requirements, this advantage can already
be expected for small or medium-sized systems, as Fig. 10
illustrates.

Whenever HPS performs fewer than log2N iterations,
it effectively only (randomly) samples the initial data.
From the previous observations we can conclude that such
random sampling is sufficient for meeting reduced accuracy
requirements.

Of course, one would also expect that variants of recursive
doubling can be developed which have similar properties.
More concretely, one could terminate recursive doubling
whenever the root node has reached a certain predefined
desired accuracy level. In fact, this strategy effectively
corresponds to some form of “sampling” the data to
be aggregated. We will consider such an approximative
“sampling” variant of recursive doubling (approximate

RDB, abbreviated as ARDB) in Section 6.3 and observe
that reduced accuracy requirements can also reduce the
number of iterations for a deterministic reduction algorithm.
However, the extent of this reduction will in general strongly
depend on the distribution of the initial data over the
participating processes. For uniformly distributed initial
data, the possible reductions in HPS and recursive doubling
can be expected to be similar (see Section 6.3). Moreover, an

approximate recursive doubling algorithm will not have the
same resilience against SDC as the gossip-inspired HPFLC
algorithm.

6.3 Experimental Performance Evaluation of
HPS and HPFLC

We now experimentally compare MPI implementations of
the gossip-inspired all-reduce scheme HPS with recursive
doubling on a supercomputer.

In our first set of experiments, a random single precision
initial value is independently generated by each MPI process,
and then the parallel reduction operation is performed over
these randomly generated initial values. More specifically,
the initial values are uniformly distributed in an interval
between 0 and the largest possible single-precision floating-
point number. The experiments are performed on the Vulcan
Supercomputer (2015) of the Lawrence Livermore National
Laboratory (LLNL), which is an IBM Blue Gene/Q system
composed of 24576 16-core PowerPC-A2 computing nodes.

For HPS we consider different levels of accuracy ε ranging
from ε = 10−2 to ε = 10−5. The relative error is defined by
|ỹ−yRD|

yRD
, where ỹ denotes the approximation computed by the

HPS algorithm or by ARDB, and yRD denotes the result of
classical recursive doubling, both at the root node. In this
context, we consider the HPS approach to converge with M
iterations to a particular accuracy ε if the relative error at the
root node after M iterations is less than or equal to ε.

Fig. 11 shows the number of iterations required when
considering four different accuracy levels (10−2, 10−3, 10−4

and 10−5) and four different parallel scenarios from 16384
up to 131072 MPI processes.

For each particular accuracy and each number of MPI
processes, the HPS algorithm has been run 50 times using
different randomly generated communication patterns (with
identical initial data). The error bars displayed in Fig. 11
represent the standard error computed over the 50 repetitions
performed per experiment while each point shown for HPS
represents its average. Fig. 11 does not reflect the influence
of variations in the initial data on the number of iterations of
the various algorithms.

The experiment validates the results gathered from our
sequential simulations of HPS shown in Figs. 9 and 10: For
lower MPI process counts, the results clearly show that for
reasonable error levels HPS needs many more iterations until
convergence than the log2N iterations recursive doubling
would need. However, for higher process counts HPS starts
having an advantage in terms of number of iterations until
convergence, in particular for low accuracy requirements.

Prepared using sagej.cls

16 Journal Title XX(X)

10−510−410−310−2

ε

5

10

15

20

25

30

#
it
er
at
io
n
s

N = 16384

log2 N

HPS

10−510−410−310−2

ε

N = 32768

10−510−410−310−2

ε

N = 65536

10−510−410−310−2

ε

N = 131072

Figure 11. Number of iterations for MPI implementations of HPS on the Vulcan supercomputer (fully connected communication
topology, uniformly distributed random initial data, intervals show standard error, 50 runs for each point)

As N grows larger, HPS becomes competitive in terms of
number of iterations for higher and higher accuracy.

For Fig. 12 we simulated HPFLC and ARDB on a very
large scale. The graphs show the median as well as the
minimum and maximum number of iterations over 100 runs
for each data point. We note that for low accuracy levels
HPFLC clearly outperforms ARDB in all cases and for one
billion nodes/processes it is even competitive with ARDB up
to an accuracy level of 10−5.

Finally, we also investigate the iteration overhead caused
by SDC in HPFLC, i. e., how many extra iterations are
needed for a single bit-flip for HPFLC at large scale. Fig. 13
summarizes similar experiments as for PFLC in Fig. 3,
showing the average iteration overhead for a single bit-
flip at different positions in flow variables of HPFLC. As
HPFLC’s main strength lies in its fast convergence for low
accuracy requirements we internally stored all data in single
precision. Fig. 13 shows the iteration overhead for bit-flips
in all possible 32 positions. It turns out that HPFLC needs at

most one additional iteration to compensate for a fault. Most
of the time no additional iterations were required, and thus
for all positions the average overhead caused by a bit-flip
was less than 1%.

7 Conclusions

Gossip-based reduction algorithms as discussed in this paper
offer high flexibility and thus have high potential for strong
algorithmic resilience and fault tolerance. However, we
have shown in this paper that this potential was hardly
utilized so far and that the classical gossip-based push-
sum algorithm does not have any advantage in terms of
resilience over deterministic recursive doubling. Moreover,
we have proposed two novel advancements of the push-
flow algorithm, PFLC and PFCC, which exploit this fault

tolerance potential better and are much more robust against
silent data corruption than any existing reduction algorithm.
They can recover from silent data corruption (bit-flips) in all
bits of the floating-point representation (including the most
significant ones) and still converge to the correct result.

There is currently a trade-off between resilience and per-
formance when comparing deterministic and gossip-based
reduction algorithms. We have shown that gossip-based
algorithms achieve much better resilience, but deterministic
parallel algorithms perform much better. Consequently, we
have proposed the novel gossip-inspired algorithm HPFLC
which inherits the strong resilience properties from PFLC,
but achieves much better performance. Although the number
of iterations required by HPFLC for achieving full double
precision accuracy (within the limitations of floating-point
accuracy) is usually significantly higher than the number of
steps required by a standard parallel reduction method such
as recursive doubling, for low accuracy requirements and for
large process counts the number of iterations required by
HPFLC tends to be much lower than for recursive doubling.
In these scenarios, HPFLC combines competitive perfor-
mance with superior resilience.

It is currently still an open question how the runtime
performance of gossip-based and gossip-inspired reduction
algorithms can be further improved for an HPC context.
In addition to efficient implementation, one aspect deserves
further exploration: Can the high locality in the communica-
tion patterns of gossip-inspired algorithms lead to advantages
compared to deterministic parallel reduction algorithms, in
particular, in the context of future extreme-scale systems?
We expect substantial progress in this question in the near
future, which in turn may lead to increased interest in gossip-
inspired algorithms for HPC.

Prepared using sagej.cls

Casas, Gansterer, Wimmer 17

10−610−510−410−310−210−1

ε

5

10

15

20

25

30

35

40

#
it
er
at
io
n
s

N = 220

log2 N

ARDB

HPFLC

10−610−510−410−310−210−1

ε

N = 221

10−610−510−410−310−210−1

ε

N = 222

10−610−510−410−310−210−1

ε

N = 224

10−610−510−410−310−210−1

ε

5

10

15

20

25

30

35

40

#
it
er
at
io
n
s

N = 226

10−610−510−410−310−210−1

ε

N = 228

10−610−510−410−310−210−1

ε

N = 229

10−610−510−410−310−210−1

ε

N = 230

Figure 12. Simulated number of iterations for approximate recursive doubling ARDB and HPFLC (fully connected communication
topology, uniformly distributed random initial data, min/max intervals, 100 runs for each point)

0 %

0.1 %

0.2 %

0.3 %

0.4 %

0.5 %

0.6 %

0.7 %

0.8 %

0.9 %

1.0 %

exponent mantissasign

m
ea
n
%

of
it
er
at
io
n
ov
er
h
ea
d

012345678910111213141516171819202122232425262728293031

HPFLC

Figure 13. Average iteration overhead caused by a single
bit-flip in HPFLC (N = 220, ε = 10−3)

Acknowledgements

This work has been partially funded by the Spanish Ministry

of Science and Innovation [contract TIN2015-65316]; by the

Government of Catalonia [contracts 2014-SGR-1051, 2014-SGR-

1272]; by the RoMoL ERC Advanced Grant [grant number GA

321253] and by the Vienna Science and Technology Fund (WWTF)

through project ICT15-113.

Some of the computational results presented were produced

using the Vienna Scientific Cluster (VSC).∗

Author Biographies

Marc Casas is a senior researcher at the Barcelona Supercomputing

Center (BSC). He received a 5-years degree in mathematics in 2004

from the Technical University of Catalonia (UPC) and a PhD degree

in Computer Science in 2010 from the Computer Architecture

Department of UPC. He was a postdoctoral research scholar at

the Lawrence Livermore National Laboratory (LLNL) from 2010

to 2013. His current research interests are high performance

computing architectures, runtime systems and parallel algorithms.

He is currently involved with the RoMoL and the Montblanc3

projects as well as the IBM-BSC Deep Learning Center.

Wilfried N. Gansterer is full professor and deputy head of the

research group Theory and Applications of Algorithms at the

Faculty of Computer Science of the University of Vienna. He

received a 5-years degree in Mathematics from TU Wien, an M.Sc.

degree in Scientific Computing/Computational Mathematics from

Stanford University, and a Ph.D. degree in Scientific Computing

∗http://vsc.ac.at/

Prepared using sagej.cls

18 Journal Title XX(X)

from TU Wien. His research interests cover various aspects of

numerical algorithms, including resilience and fault tolerance,

parallel and distributed computing, high performance computing,

as well as applications in data mining and Internet security.

Elias Wimmer received Bachelor and Masters degrees in scientific

computing at the University of Vienna, where he worked closely

together with Prof. Gansterer. Later he joined the research group

Parallel Computing at TU Wien as an assistant. Currently he works

for IMS, an Intel owned company developing future highly parallel

mask writers for VLSI.

References

Ashby S, Beckman P, Chen J, Colella P, Collins B, Crawford D,

Dongarra J, Kothe D, Lusk R, Messina P, Mezzacappa T, Moin

P, Norman M, Rosner R, Sarkar V, Siegel A, Streitz F, White

A and Wright M (2010) The opportunities and challenges of

exascale computing. URL https://science.energy.

gov/˜/MEDIA/ASCR/ASCAC/PDF/REPORTS/

EXASCALE_SUBCOMMITTEE_REPORT.PDF.

Bland W, Bouteiller A, Herault T, Bosilca G and Dongarra J

(2013) Post-failure recovery of MPI communication capability:

Design and rationale. Int. J. High Perform. Comput. Appl.

27(3): 244–254.

Bottou L (2010) Large-scale machine learning with stochastic

gradient descent. In: Lechevallier Y and Saporta G

(eds.) Proceedings of COMPSTAT’2010: 19th International

Conference on Computational Statistics. Physica-Verlag HD,

pp. 177–186.

Boyd S, Ghosh A, Prabhakar B and Shah D (2006) Randomized

gossip algorithms. IEEE Trans. Inf. Theory 52(6): 2508–2530.

Cappello F, Geist A, Gropp W, Kale S, Kramer B and Snir M (2014)

Toward exascale resilience: 2014 update. Supercomputing

Frontiers and Innovations 1(1): 5–28.

Chan E, Heimlich M, Purkayastha A and van de Geijn R (2007)

Collective communication: Theory, practice, and experience.

Concurrency Computat.: Pract. Exper. 19(13): 1749–1783.

Commonwealth Scientific and Industrial Research Organization

(CSIRO) (2014) Scientific computing user manual. URL

https://wiki.csiro.au/display/ASC/User+

Manual.

Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, Mao

MZ, Ranzato M, Senior A, Tucker P, Yang K and Ng AY

(2012) Large scale distributed deep networks. In: Proceedings

of the 25th International Conference on Neural Information

Processing Systems, NIPS’12. Curran Associates Inc., pp.

1223–1231.

Dennard RH, Gaensslen FH, Yu H, Rideout VL, Bassous E and

Leblanc AR (1974) Design of ion-implanted mosfets with very

small physical dimensions. IEEE J. Solid-State Circuits : 256–

268.

Dimakis A, Sarwate A and Wainwright M (2008) Geographic

Gossip: Efficient Averaging for Sensor Networks. IEEE T.

Signal Proces. 56(3): 1205–1216.

Eyal I, Keidar I and Rom R (2011) LiMoSense – Live Monitoring

in Dynamic Sensor Networks. In: Proceedings of the 7th

International Symposium on Algorithms for Sensor Systems,

Wireless Ad Hoc Networks and Autonomous Mobile Entities,

ALGOSENSORS 2011. pp. 72–85.

Eyal I, Keidar I and Rom R (2014) LiMoSense: live monitoring in

dynamic sensor networks. Distrib. Comput. 27(5): 313–328.

Ferreira KB, Bridges P and Brightwell R (2008) Characterizing

application sensitivity to OS interference using kernel-level

noise injection. In: Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, SC ’08. IEEE Press, pp. 19:1–

19:12.

Gansterer WN, Niederbrucker G, Straková H and Schulze Grotthoff

S (2013) Scalable and fault tolerant orthogonalization based on

randomized distributed data aggregation. J. Comput. Sci. 4(6):

480–488.

Gupta S, Agrawal A, Gopalakrishnan K and Narayanan P

(2015) Deep learning with limited numerical precision. In:

Proceedings of the 32nd International Conference on Machine

Learning, ICML’15, volume 37. JMLR.org, pp. 1737–1746.

Hadjicostis C, Dominguez-Garcia A and Vaidya N (2012) Resilient

average consensus in the presence of heterogeneous packet

dropping links. In: 51st Annual Conference on Decision and

Control, CDC 2012. pp. 106–111.

Herault T, Bouteiller A, Bosilca G, Gamell M, Teranishi K, Parashar

M and Dongarra J (2015) Practical scalable consensus for

pseudo-synchronous distributed systems. In: Proceedings

of the International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’15. ACM,

pp. 31:1–31:12.

Hoefler T, Gottschling P, Lumsdaine A and Rehm W (2007)

Optimizing a conjugate gradient solver with non-blocking

collective operations. Parallel Comput. 33(9): 624–633.

Janecek A and Gansterer WN (2016) ACO-inspired acceleration

of gossip averaging. In: Proceedings of the Genetic and

Evolutionary Computation Conference 2016, GECCO ’16.

ACM, pp. 21–28.

Jesus P, Baquero C and Almeida PS (2009) Fault-Tolerant

Aggregation by Flow Updating. In: Proceedings of the

International Conference on Distributed Applications and

Interoperable Systems, DAIS 2009. pp. 73–86.

Prepared using sagej.cls

https://science.energy.gov/~/MEDIA/ASCR/ASCAC/PDF/REPORTS/EXASCALE_SUBCOMMITTEE_REPORT.PDF
https://science.energy.gov/~/MEDIA/ASCR/ASCAC/PDF/REPORTS/EXASCALE_SUBCOMMITTEE_REPORT.PDF
https://science.energy.gov/~/MEDIA/ASCR/ASCAC/PDF/REPORTS/EXASCALE_SUBCOMMITTEE_REPORT.PDF
https://wiki.csiro.au/display/ASC/User+Manual
https://wiki.csiro.au/display/ASC/User+Manual

Casas, Gansterer, Wimmer 19

Jesus P, Baquero C and Almeida PS (2010) Fault-Tolerant

Aggregation for Dynamic Networks. In: Proceedings of the

29th IEEE Symposium on Reliable Distributed Systems. pp. 37–

43.

Jesus P, Baquero C and Almeida PS (2015) Flow updating: Fault-

tolerant aggregation for dynamic networks. J. Parallel Distr.

Com. 78: 53–64.

Jin PH, Yuan Q, Iandola FN and Keutzer K (2016) How to scale

distributed deep learning? CoRR abs/1611.04581. URL

http://arxiv.org/abs/1611.04581.

Katti A, Di Fatta G, Naughton T and Engelmann C (2015)

Scalable and fault tolerant failure detection and consensus. In:

Proceedings of the 22nd European MPI Users’ Group Meeting,

EuroMPI ’15. ACM, pp. 13:1–13:9.

Kempe D, Dobra A and Gehrke J (2003) Gossip-based computation

of aggregate information. In: Proceedings of the 44th Annual

IEEE Symposium on Foundations of Computer Science. pp.

482–491.

Lesser B, Mücke M and Gansterer WN (2011) Effects of reduced

precision on floating-point SVM classification accuracy.

Procedia Computer Science 4: 508 – 517.

MPI Forum (2012) MPI: A Message-Passing Interface Standard

Version 3.0.

Nichols B, Buttlar D and Farrell JP (1996) Pthreads Programming.

Sebastopol, CA, USA: O’Reilly & Associates, Inc.

Niederbrucker G and Gansterer WN (2013) Robust gossip-based

aggregation: A practical point of view. In: Sanders P and

Zeh N (eds.) Proc. 15th Meeting on Algorithm Engineering &

Experiments. SIAM, pp. 133–147.

Niederbrucker G, Straková H and Gansterer WN (2012) Improving

fault tolerance and accuracy of a distributed reduction

algorithm. In: Proc. Third Workshop on Latest Advances in

Scalable Algorithms for Large-Scale Systems. pp. 643–651.

OpenMP Architecture Review Board (2013) OpenMP application

program interface version 4.0.

Seifert N, Gill B, Jahinuzzaman S, Basile J, Ambrose V, Shi Q,

Allmon R and Bramnik A (2012) Soft error susceptibilities of

22 nm tri-gate devices. IEEE T. Nucl. Sci. 59(6): 2666–2673.

Sidiroglou-Douskos S, Misailovic S, Hoffmann H and Rinard M

(2011) Managing performance vs. accuracy trade-offs with

loop perforation. In: Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations

of Software Engineering, ESEC/FSE ’11. ACM, pp. 124–134.

Thakur R and Gropp WD (2003) Improving the performance of

collective operations in MPICH. In: Dongarra J, Laforenza

D and Orlando S (eds.) Recent Advances in Parallel Virtual

Machine and Message Passing Interface, Lecture Notes in

Computer Science, volume 2840. Springer, pp. 257–267.

Top500 List (2018) TOP500 Supercomputers. URL http://

www.top500.org.

Váňa F, Düben P, Lang S, Palmer T, Leutbecher M, Salmond D

and Carver G (2017) Single precision in weather forecasting

models: An evaluation with the IFS. Monthly Weather Review

145(2): 495–502.

Vulcan Supercomputer (2015) Livermore Computing. URL http:

//computation.llnl.gov/computers/vulcan.

Prepared using sagej.cls

http://arxiv.org/abs/1611.04581
http://www.top500.org
http://www.top500.org
http://computation.llnl.gov/computers/vulcan
http://computation.llnl.gov/computers/vulcan

	1 Introduction
	1.1 Related Work
	1.2 Objectives and Contributions

	2 Challenges in HPC
	2.1 The Hardware Perspective
	2.2 The Software Perspective

	3 Parallel All-to-all Reduction
	3.1 Recursive Doubling
	3.1.1 Complexity of parallel all-to-all reductions.
	3.1.2 Resilience of recursive doubling.

	3.2 Gossip-Based All-to-All Reduction
	3.2.1 Push-Sum.
	3.2.2 Improving resilience — Push-Flow.
	3.2.3 Convergence and complexity.

	4 Improving Resilience Against SDC
	4.1 Motivation
	4.2 Push-Flow with Local Correction
	4.3 Push-Flow with Cooperative Correction
	4.4 Fault Tolerance in Practice
	4.4.1 Experimental setup.
	4.4.2 Influence of SDC on convergence behavior.
	4.4.3 Influence of the position of the fault.
	4.4.4 Influence of the checksum threshold .
	4.4.5 Many bit-flips.

	4.5 SDC Beyond Flow Variables

	5 Runtime Performance and Scalability
	5.1 Number of Iterations
	5.2 Cost per Iteration
	5.3 Implementing Gossip All-Reduce in MPI

	6 A Gossip-Inspired Approach
	6.1 Improving Resilience Against SDC
	6.2 Accuracy vs. Number of Iterations
	6.3 Experimental Performance Evaluation of HPS and HPFLC

	7 Conclusions

