
Accelerating K-mer Frequency Counting
with GPU and Non-Volatile Memory

Nicola Cadenelli∗†, Jordà Polo∗ and David Carrera∗†
∗Barcelona Supercomputing Center (BSC)

†Universitat Politècnica de Catalunya (UPC) - BarcelonaTECH
nicola.cadenelli@bsc.es, jorda.polo@bsc.es, david.carrera@bsc.es

Abstract—The emergence of Next Generation Sequencing
(NGS) platforms has increased the throughput of genomic se-
quencing and in turn the amount of data that needs to be
processed, requiring highly efficient computation for its analysis.
In this context, modern architectures including accelerators and
non-volatile memory are essential to enable the mass exploitation
of these bioinformatics workloads. This paper presents a redesign
of the main component of a state-of-the-art reference-free method
for variant calling, SMUFIN, which has been adapted to make
the most of GPUs and NVM devices. SMUFIN relies on count-
ing the frequency of k-mers (substrings of length k) in DNA
sequences, which also constitutes a well-known problem for many
bioinformatics workloads, such as genome assembly. We propose
techniques to improve the efficiency of k-mer counting and to
scale-up workloads like SMUFIN that used to require 16 nodes
of Marenostrum 3 to a single machine with a GPU and NVM
drives. Results show that although the single machine is not able
to improve the time to solution of 16 nodes, its CPU time is 7.5x
shorter than the aggregate CPU time of the 16 nodes, with a
reduction in energy consumption of 5.5x.

Keywords—Scale-up, Acceleration, GPU, Non-Volatile Mem-
ory, NVM, Genomics, K-mer

I. INTRODUCTION

The field of computational genomics is quickly evolving in
a continuous seek for more accurate results but also looking
for dramatic improvements in terms of performance and cost-
efficiency. Advances in next-generation sequencing have been
successful in lowering costs, enabling discovery of variants for
different kinds of diseases, and have also been widely adopted
by the research community.

These advances in genome sequencing technology make
large-scale genomics possible. However, mass exploitation of
next-generation sequencing is still computationally challeng-
ing since it requires dealing with ever growing amounts of data
and complex workloads. Moreover, many of these workloads
have been traditionally designed with a set of constraints
that, on the computational side limit flexibility and scalability,
and on the biological side limit accuracy. For instance, many
variant calling methods rely on comparing sequences against a
reference genome, which makes it harder to accurately detect
certain genomic variations.

Computing architectures are also evolving. The introduction
of acceleration in the form of GPUs and FPGAs, as well as
Non-Volatile Memory, is enabling methods that were unfeasi-
ble only years ago. To address the aforementioned challenges
and limitations the new emerging bioinformatics workloads

will need to leverage these modern computing architectures to
remain efficient and competitive.

One such example in the context of variant calling is
SMUFIN [1], a state-of-the-art method that performs a direct
comparison of normal and tumor genomic samples from the
same patient without the need of a reference genome, leading
to more comprehensive results. In its original implementation,
this novel approach required significant amounts of resources
in a supercomputing facility.

This paper presents how SMUFIN has been adapted for
efficient performance and vertical scalability in a single node,
exploiting GPUs and NVM (Non-Volatile Memory) to ac-
celerate one of its core components: counting the frequency
of k-mers (substrings of length k) in DNA sequences. In
particular, this paper describes the following main contribu-
tions: (i) a way to construct large Bloom filters cooperatively
between CPU and GPU; (ii) a technique to minimize inter-
thread communication by shuffling data in the GPU; and
(iii) a customized mechanism to flush memory to non-volatile
devices to overcome memory capacity constraints.

The structure of the remaining sections of the paper is as
follows. Section II introduces key computational genomics
concepts, as well as an overview of the foundations of
SMUFIN. Section III presents the acceleration method in
detail. Next, Section IV shows results of the proposed changes.
And finally, Section V discussed related work, and Section VI
concludes.

II. BACKGROUND

A typical input of a genomics application consists of se-
quenced DNA samples usually taking hundreds of GB. Such
samples are stored as heavily compressed data and include
short sequenced strings of DNA nucleobases called reads.
Each sequenced genome sample typically contains 109 to 1010

reads, depending on some factors such as depth of coverage,
which indicates how many times each position in the genome
is represented. The length of each read is in the order of 10s
to 100s of bases that are represented by the four character
alphabet {A, C, G, T}. Along with each base in a sequenced
sample, there’s also an associated score that measures its
quality.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/159630764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. K-mer Frequency Counting

Many genomics applications require splitting reads into
smaller pieces called k-mers. Counting the frequencies of k-
mers is widely used for genome assembly and error detection,
but it also has other applications such as sequence alignment
and variant calling. k-mers of a nucleic acid read are all the
possible sub-sequences within the original read which have
a length k. The amount of k-mers in a read of length M is
M − k+1. For instance, the number of 8-mers in a sequence
of 10 bases is 10−8+1 = 3, meaning ACGGCAGCTG has the
following 8-mers: ACGGCAGC, CGGCAGCT, and GGCAGCTG.
In addition to k-mers, SMUFIN also defines the concept of
stem. A stem is a fragment of a k-mer represented by its
middle k − 2 bases. That is, removing the first and last bases
from a k-mer. For instance, the stem of the previous 8-mer is
-CGGCAG-. Stems are used to group similar k-mers and thus
favor locality in the algorithm.

One of the challenges of k-mer counting when processing
whole genome sequences is data amplification. For a read of
M bases, and thus M bytes, M −k+1 k-mers are generated.
For instance, a read of 100 bases requires at least 100 bytes,
but for k = 30 its 71 k-mers take 568 bytes (assuming 64
bits per k-mer – 2 bits per each base). This results in a 5.68x
amplification factor that further increases when lengthening
the bases or shortening the k-mers.

B. SMUFIN

The first implementation of the SMUFIN method [1] was
based on suffix trees. However, leveraging large suffix trees
that inherently require a locking mechanism to allow concur-
rent updates can be challenging. An alternative implementation
based on k-mers and hash tables to ease parallelization and
distribution of the workload is also available and is the focus
of the work presented in this paper.

The basic idea behind SMUFIN can be summarized in the
following steps: (i) input two sets of nucleic acid reads, normal
and tumoral; (ii) build frequency counters of substrings in the
input reads; and (iii) compare branches to find imbalances,
which are then extracted as candidate positions for variation.

SMUFIN is composed of “checkpointable” components
called units that are combined to build fully-fledged work-
loads. Notice that while units may resemble the individual
programs that belong to a traditional genomics pipeline, they
are in fact part of a single application. Units can split data
for processing into one or more partitions, and each one
of these partitions can then be placed and distributed as
needed: sequentially in a single machine or concurrently in
multiple nodes. This kind of data partitioning is achieved by
reading the entire input multiple times, discarding the parts
that do not belong to the current partition. In practice, scale-
out executions with multiple lower-end nodes can run the
algorithm partitioning the input many times but duplicating
IO. Meanwhile, at the opposite end of the spectrum, scale-up
runs do not require as many partitions, and hence less IO.
Moreover, the application uses a second level of distribution
to further divide the work within each partition to multiple

Bloom 
Filter 
(9 GB)

Prune Count
K-mer
Table

(300 GB)
Unify

Stem
Table 

(600 GB)

Filter

Index
(200-500 GB)

Merge

Index
(200 GB)

Group

Input
(300 GB)

Output
(100 GB)

Fig. 1. SMUFIN’s variant calling architecture: overview of units and its data
flow (Section II-B), along with proposed changes (Section III).

threads; allowing each thread to work on a dedicated data
structure without requiring synchronization.

Figure 1 provides an overview of the data flow between
the main units of SMUFIN: Count, Filter, Merge and Group;
it also includes the proposed units introduced in this paper:
Prune and Unify, described in more detail in Section III. In
this example, they are all configured to split data into two
partitions. As shown, three units read the entire input one
after another and generate intermediate results which are then
combined and assembled before producing the final output.
The output of each unit is read by the next one, either directly
in memory, or serializing and un-serializing to/from storage
when there’s not enough DRAM.

The goal and internal operations of each unit follow:
• Count: Builds a frequency table of normal and tumoral

k-mers in the input sequences. More specifically, k-mer
counters are used to detect imbalances when comparing two
samples, and it is designed to handle whole genome k-mers
for values of k in the range of 24 < k < 32. While the
number of k-mers in this range is potentially very large,
SMUFIN’s variant calling algorithm only requires k-mers
with a higher frequency in the tumoral sample. And because
the natural k-mers distribution implies that most of them are
seen only once, unique k-mers can be discarded.

• Filter: Selects k-mers with imbalanced frequencies, which
are candidates for breakpoints or mutations. This selection
is accomplished by reading the input sequences again and
looking up its k-mers in the frequency table generated in
the previous unit.

• Merge: Reads and combines multiple filter indexes from
different partitions into single and unified indexes.

• Group: Matches candidate reads that belong to the same
region. First, selecting reads that meet certain criteria, and
second, retrieving other reads that share the same k-mers.

III. ACCELERATION METHOD

The initial k-mer counting unit of SMUFIN is one of the
most computationally demanding, and so it’s the primary
focus of the acceleration methods presented in this paper. As
illustrated in Figure 1, to improve the performance of this unit,
it has been changed and extended to include two optional units:



Prune and Unify. These units aim to reduce the main memory
requirement of the application when counting k-mers, which
is the main requisite when scaling up: the frequency table can
take multiple TBs when there is no data partitioning involved.
Details of this extension follow:

• Prune: Adds all k-mers in the input files to a chain of two
Bloom filters where only those already in the first (i.e., seen
before), plus false positives, are propagated to the second
one. At processing all the input, the second Bloom filter
effectively constitutes a structure that can tell whether a k-
mer has been observed more than once. This second filter
is used in the Count unit to discard unique k-mers that are
not relevant for the algorithm, reducing memory footprint
and execution time.

• Count: As will be discussed in more details in §III-D, this
new version changes the memory layout and how items
are stored in the frequency table to keep a lower memory
footprint. Changes also involve a custom mechanism to swap
tables to an NVM drive, which also prevents running out of
system memory when structures get too big.

• Unify: Combines swapped frequency tables in the new
version of the Count unit and changes the memory layout
to its expected form required by the following Filter unit.
False positives given by the Bloom Filter are also removed
at this point.

Note that the rest of the application was left unaltered
and the proposed changes are completely compatible with the
original implementation of the other units.

The following sections present a description of how the
proposed changes have been accelerated. First, describing
how data encoding can be offloaded, and presenting how to
dimension data chunks for a double buffering pipeline to keep
the GPU as busy as possible while also overlapping data
transfer to and from the GPU. Next, we present how to shuffle
data on the GPU to minimize inter-thread communication
between CPU threads, followed by a discussion on how CPU
and GPU can cooperate to build Bloom filters. Finally, we
illustrate how a manual swapping mechanism can be used to
stage data to an NVM device efficiently.

A. Naive Offloading of CPU Intensive Operations

To parallelize k-mer counting the work is split into two
different kinds of CPU threads: Loader and Consumer. The
former threads are committed to (i) load the compressed input
files from storage to memory, (ii) perform quality checks on
the reads, (iii) generate and encode all the k-mers in their 64-
bit form, and (iv) send the k-mers to the Consumer threads.
Consumer threads, in turn, read incoming k-mers from the
Loader threads and insert them in the frequency tables. In
the original version, communication between Loader and Con-
sumer threads happens via dedicated lock-free single producer
single consumer queues. This design has been improved to
partially offload computation to a GPU, including quality
checking on the input DNA reads, and the generation and
encoding of all the k-mers to their 64-bit representation.

Efficient processing on the GPU requires splitting the ≈600
GB of uncompressed input into smaller chunks. To overlap
communication and computation of both CPU and GPU a
double buffering pipeline is used to stream data chunks to
and from the accelerator. This pipeline comprises of five stages
that after a ramp-up phase concurrently work on different data
chunks at every cycle and where the output of one stage is
the input of the following stage in the next cycle. The stages
can be summarized as: (i) CPU Loader threads fill a host-side
input chunk with DNA reads and quality markers; (ii) transfer
an input chunk from host to accelerator memory; (iii) the
accelerator consumes an input chunk generating all k-mers in
an output chunk; (iv) transfer an output chunk from accelerator
to host memory; and (v) CPU Consumer threads process the
k-mers directly from the output chunk. All synchronization is
carried out by a new kind of CPU thread called Orchestrator
thread.

The size of each chunk involved depends on the available
GPUs and must be carefully chosen to fully exploit the
high degree of parallelism offered by high-end GPUs. In
particular, because each GPU thread (work-item) processes
one distinct DNA read; the number of reads in one input
chunk has to be enough to keep the processing elements of
the accelerator busy. Thus, the degree of parallelism that the
accelerator exhibits dictates the size of each chunk requiring
input chunks up to the order of hundreds of MB. For what
concerns the output chunks instead, due to the amplification
factor explained in §II-A, their size is simply a multiple of the
input chunk. Moreover, the usage of pinned memory allows a
much better control on data transfers and even simultaneous
data transfers, one in each direction, are possible when using
GPUs equipped with two copy engines.

B. Shuffling Data to Minimize Inter-Thread Communications

With a pipeline as described in the previous section, one
of the challenges to achieve efficient vertical scalability is
to minimize data movement and communication. Given a
single output chunk coming from the GPU, all CPU Consumer
threads need to read the entire chunk despite processing only
parts of it. Increasing data movement and constraining the
scalability of the application. On the other hand, also a queue-
based approach similar to the one adopted in the original
version would limit scalability by adding hefty communication
between threads that exacerbates when increasing the number
of Consumer threads.

To address this limitation, we designed an algorithm that
shuffles generated k-mers according to the CPU Consumer
threads they belong to. This approach also involves storing
a list of offsets that allow Consumer threads to know where
exactly to start reading k-mers that belong to each particular
thread, effectively removing unnecessary communication to
distribute data to Consumers.

To shuffle the k-mers we implemented an algorithm, which
resembles a parallel Counting Sort that uses the data parti-
tioning logic of SMUFIN to select to which Consumer thread
each k-mer belongs but that does not sort the values within



buckets. Such algorithm was blended with the naive kernel
that generates the k-mers. The resulting algorithm is split into
the following four kernels:

• Zero-out kernel: Resets all device-side data shared among
different kernels from the previous cycle of the pipeline.

• Encode kernel: Each GPU thread (work-item) generates all
k-mers from a distinct DNA input read and count how many
k-mers belong to each Consumer thread creating a histogram
with as many bins as many Consumer threads. GPU threads
cooperate (using atomic add operation) to build, first, a
local histogram (at work-group scope) and then a global
histogram.

• Prefix-sum kernel: Performs an exclusive prefix-sum on the
global histogram. Note that the result of the prefix-sum is
the list of offsets that tells to each Consumer thread how
many k-mers and where to start reading them in the output
chunk.

• Broker kernel: Per each Consumer thread, each work-group
copies the, already locally shuffled, k-mers to the output
buffer applying the offsets obtained from the previous
prefix-sum; shuffling all k-mers by the Consumer threads.

The main reason why we split the algorithm into four ker-
nels is that it is the only way to obtain a global synchronization
point among GPU threads. Note also that extra GPU-side
buffers are required to share data between kernels and to store
k-mers in the Encode kernel. Whereas the former is a common
practice of GPU programming and occupies tens of MB, the
latter is a requirement of the algorithm and must be of the
same size of an output chunk. Such algorithm is in fact not
an in-place algorithm, and if we were to use the same buffer,
some threads might move some k-mers before other threads
even start. Thus, producing erroneous results.

Such solution considerably reduces CPU-side data move-
ment enabling vertical scalability to more CPU threads at the
expense of extra computation and more memory consumption
on the GPU side.

C. Cooperative CPU-GPU Construction of Very Large Bloom
Filters

As explained earlier in this Section the second main con-
tribution of this work is part of the Prune unit, which is used
to build a chain of two Bloom filters that allow discarding
k-mers that are seen only once.

Whereas in the Count unit the offloading to the GPU of the
lookups to the second level Bloom filters is natural and allows
to further unburden the Consumer threads. In the Prune unit,
we are populating the Filters on the CPU side so the same
cannot be done. However, when building the chain of Filters,
if an item is already in the second level adding it again is
superfluous. Hence, while building the chain of Bloom filters
the second level can be offloaded to the GPU to drop those k-
mers already in the list. This opposite behavior from the Count
unit reduces the number of k-mers that must be processed by
the Consumer threads in the Prune unit. Note also that, in the
Prune unit the GPU copy of the second level Bloom filter must

constantly be updated at every cycle of the pipeline. Which
increases CPU to GPU communication.

1) Overcoming GPU Memory Constrains: Albeit straight-
forward to implement, offloading the second level of Bloom
filter poses a challenge when aiming to remove data parti-
tioning. Such filter is in fact, of around 9 GB which due to
the pinned buffer might even require twice as much in the
GPU memory. Characteristic not common neither in high-end
GPUs.

However, after the Broker kernel, when the k-mers are
shuffled per Consumer thread, the lookups to the Bloom filter
can be split in multiple Bloom filter kernels. One per each
Consumer thread accessing a copy of the Bloom filter of
the relative CPU thread. And to relax the requirement on
the device memory, we added to our pipeline the ability
to virtualize the GPU memory in DRAM. To do this, the
Orchestrator thread allocates as much as possible GPU pinned
buffers of the size of each second Bloom filter. Plus, in
DRAM it also allocates enough memory to store the Bloom
filters. And, just before to execute a Bloom filter kernel,
the Orchestrator thread copies the Bloom filter to the GPU
memory. In Figure 2 we show the activity involved in one
cycle of the pipeline and the coordination work done by the
Orchestrator thread can be summarized as follows:

(I) Enqueue 1 an asynchronous data transfer to read the
global prefix-sum as soon as the prefix-sum kernel com-
pletes o .

(II) Enqueue 1 asynchronous data transfers b and h to
write the first pinned buffers to the accelerator.

(III) Spawn 1 CPU worker threads that wait f for the pinned
buffer transfer to complete h and copy the next stage
buffer to the pinned buffer i .

(IV) Wait for the transfer of the prefix-sum 4 and enqueue
the first round of Bloom filter Kernels s .

(V) Enqueue asynchronous transfers of next Bloom filters t .
These transfers will start only after the relative worker
thread finished the copy m and the Bloom filter kernel
completed u .

(VI) Restart from (III) until all Bloom filters are copied to the
pinned buffer, copied to the accelerator and its relative
kernel executed.

(VII) As soon last Bloom filters are copied, and while exe-
cuting last Bloom Filter kernels, spawn worker threads
to overwrite the first pinned buffer for next cycle of the
pipeline (not in Figure 2).

Note that our mechanism is similar to what OpenCL 2.0
Shared Virtual Memory and CUDA Unified Memory offers.
However, some GPU vendors do not support OpenCL 2.0.
Moreover, even if OpenCL 2.0 Shared Virtual Memory would
be available our mechanism can be simplified but it would still
be valid to prevent GPU-side page faults.

D. Custom Swapping to NVM

The main reason for the Prune unit is to reduce the amount
of DRAM required in the Count unit providing a small
Bloom filter to drop all those k-mers seen only once in input.



Fig. 2. Activity involved at every cycle of the pipeline.

However, even with the Prune unit, the frequency table used
in the Count unit requires hundreds of GB.

To relax this requirement, we implemented a mechanism
for which, accordingly to the amount of system DRAM, we
set a maximum size for the table of each Consumer thread
and, once full, a table is swapped to the memory extension
by a new thread while an empty table, previously allocated
as “hot spare”, becomes active. To reduce the overall data
written the size of each table is recommended to be as big as
possible since the bigger it is, the more likely repeated k-mers
will be seen again. Thus, leading to fewer duplicate elements
in the tables swapped to the NVM device. Moreover, writing
big chunks to non-volatile memories allows exploiting internal
parallelism typical of flash drives [2].

This custom swapping mechanism substitutes the OS swap-
ping, which is disabled to prevent performance deterioration
due to kernel-jittering. To avoid the overhead of a file system
software stack and to have a byte-addressable memory, we
access the NVM drive as a block device which gets memory
mapped and addressed as normal memory. We also developed
a bookkeeping system to store all metadata required to identify
and retrieve each swapped table. Such data comprise, but is not
limited to, information about: the partitions to which a table
belongs, if a table is “stale” and can be removed or not, the
offset in bytes from the beginning of the NVM drive, and the
number of items contained in each table. Metadata is kept in
main memory and is written to a reserved area at the beginning
of the memory extension right before un-mapping the drive.

Moreover, now that we store the tables to the memory
extension and we merge them in the Unify unit we can adopt
different data layouts from Count to Filter unit to address the
needs of both units. In details, in the original implementation,
the data layout was chosen to provide maximum data locality
in the Filter unit where given a k-mers all counts of all k-

mers belonging to the same stem are checked. For this reason,
counts are grouped per stem creating items of 72 Bytes – 8 for
the stem and 2 per each of the 16 normal and 16 tumoral k-
mers counts. However, a better layout for the Count unit is to
store counts per k-mer in 16 Bytes – 8 for the k-mer, 4 for the
two counts and 4 of padding added by the std::pair<key,item>
used in the Google’s sparse hash table used in SMUFIN. A
layout that, given the many zeros in the stem form, reduces
the memory footprint of the overall tables and also limits the
memory wasted for each false positive given by the Bloom
filters to only 16 Bytes.

Google’s hash maps implementation allows the serialization
of a table to a stream which we could have used to swap and
load tables back to memory. However, while this constitutes
a neat way it has two issues that increase the amount of data
required to store a serialized table. The first is that this call
also stores metadata to ensure that once a table is loaded back
to memory it will have each item at the same position of the
same bucket as in the original table which is something we
do not need. The second issue instead, is that it copies each
std::pair<key,item> as it is, including eventual padding used
for data alignment within the std::pair. If for small volumes
these two issues might not be a problem. In our tables of k-
mers, this extra padding, which as explained above is 25% of
the memory footprint, amounts to at least 100 GB. Hence, it
should be prevented. As a solution, we implemented a similar
routine which loops throughout all items and copies both key
and item from the std::pair<key,item>, skipping the padding,
to a memory region which can be flushed thereafter.

To reduce IO bursts given by the serialization of multiple
tables at the same time the application uses slightly different
maximum sizes from table to table. Furthermore, the swapping
mechanism can be tuned to use only a few working threads
to reduce the number of context switches when the CPU is



already saturated by the rest of the application.
Note that this proposed manual swapping mechanism also

allows the use of Google’s dense hash table that, compared to
the sparse implementation, offers considerable better perfor-
mance at the expense of a higher memory footprint.

IV. RESULTS

In order to evaluate the impact of the presented work,
we compare execution time and energy consumption to run
SMUFIN in two different environments. First, a large super-
computer with many distributed cores and a high-speed in-
terconnect where SMUFIN is usually deployed in production.
Second, a single customized node with specialized hardware
has been used to evaluate the vertical scalability. Note that
even if the work involved only the initial unit of k-mer
counting, the benefit of reducing the number of partitions and
using fast local storage can also be seen in the following units.
Due to this, we present results relative to the entire SMUFIN
application. The evaluation concludes with an analysis of
bottlenecks and limitations of the scale-up system used.

A. Evaluation Methodology

The distributed evaluation has been executed in 16 nodes of
Marenostrum 3, a supercomputer based on Intel SandyBridge-
EP running SuSe Distribution 11 SP3. Each node used was
equipped with 2x 8-core E5-2670 2.6GHz, one 500GB 7200
rpm SATA II local disk, and 8x 16G DDR3-1600 DIMMs for
a total of 128 GB of main memory. Each rack is composed
of 84 compute nodes and 2 BNT RackSwitch G8052F that
connects to a 1.9 PB of GPFS disk storage. Vertical scalability
is instead tested in one machine equipped with: two Intel
Xeon CPU E5-2680v3 @ 2.50GHz, one Nvidia Tesla K40c,
sixteen 32-GB DDR4 DIMMs running at 2133 MHz for
a total of 512 GB of DRAM, one FusionIO SX350-3200
used as local storage, and one FusionIO SX350-1600 used
as memory extension. The software stack is composed by
Ubuntu 16.10 with a 4.4.0-72-generic kernel, Nvidia Driver
version 375.39 offering OpenCL 1.2 version, and FusionIO
driver 4.3. The GPU is set with ECC enabled and GPUBoost
disabled. Moreover, to ascertain the effectiveness of the GPU
we tested this configuration with the GPU and without it. The
number of CPU threads changes accordingly to the number
of cores in each machine. For example, in each of the 16
nodes of Marenostrum 3 we used 8 loaders and 8 Consumers,
whereas in the scale-up machine we increased the number of
Consumer threads to 48. In both machines, we process the
same personalized genome based on the Hg19 reference, with
randomly chosen germline and somatic variants as described
in [1], including SNPs, SNVs (more than 100 bp apart),
translocations, and random insertions, deletions and inversions,
all ranging from 1 to 100Mbp. In silico sequencing was
simulated using ART Illumina21. The total size of the final
normal and tumoral samples is 312GB of gzip compressed
FASTQ files. In Marenostrum 3, each of the 16 nodes takes
care of one different data partition. On the scale-up version
instead, thanks to the solutions proposed in this work, data

 0

 20

 40

 60

 80

 100

 120

 140

 160

16 MN3 Nodes
Legacy Code

16 MN3 Nodes 1 Xeon Node
NVM

1 Xeon Node
NVM+GPU

CP
U

 T
im

e 
(h

)

Legacy
Prune
Count
Unify
Filter

Merge
Group

56 kWh/patient
18 patients/MWh

22 kWh/patient
45 patients/MWh

6.3 kWh/patient
159 patients/MWh 4 kWh/patient

250 patients/MWh

10:00 h/patient

6:40 h/patient

13:25 h/patient 8:19 h/patient

Fig. 3. Aggregate CPU time, time to solution and energy consumption of
SMUFIN running in 16 Marenostrum 3 nodes and in 1 Xeon-based node with
NVM drives without and with the GPU. Energy consumption was collected
using IPMI (Intelligent Platform Management Interface).

partitioning is not required for counting k-mers. However, the
frequency table in the stem format occupies around 600 GB;
requiring two partitions starting from the Filter unit.

B. Performance and Energy Consumption

Figure 3 shows the execution time and energy consumption
of SMUFIN on both environments. Note that to ease com-
parison of the results all times related to the Marenostrum
3 are aggregated as if the execution of all data partitions
had been performed sequentially. The dashed horizontal line
in the chart marks the execution time of the legacy code in
parallel and shows that the scale-up machine using the GPU
outperforms the 16 nodes of Marenostrum 3 when running the
legacy code based on suffix trees. The figure also reveals that
units not involved in this work – Filter, Merge, and Group –
have significant better performance on our single customized
node compared to the distributed environment. Such difference
is only in part due to the diverse CPU generations between
systems and it’s mainly due to the reduced number of data
partitions and to the use of local NVM which helps IO bound
units like Merge and Group. The results show that even though
both scale-up configurations have higher time to solution than
the 16 Marenostrum 3 nodes, they are clearly better in terms of
CPU time and energy consumption. In particular, the scale-up
configuration with the GPU has a CPU time 7.5x shorter than
the distributed while also reducing the energy consumption of
5.5x. The benefits of using a GPU are only relative to k-mer
counting and can be seen comparing the single node execution
without and with the GPU. And while with the GPU the overall
time to solution is 1.67x shorter than without the GPU, the
improvement relative to only the k-mer counting is instead of
3.67x.

C. Characterization of the Accelerated Version

Traces in Figure 4 show how the CPU is the main bottleneck
for most of the Count unit while the GPU is not fully utilized.



 0

 20

 40

 60

 80

 100
CP

U
 U

sa
ge

 (%
)

user
system

wait

Count Unify

 0

 20

 40

 60

 80

D
RA

M
 B

an
dw

id
th

 (G
B/

s) read
write

1.5

0

1.5

3

St
or

ag
e 

Tr
affi

c 
(G

B/
s)

output
input

 0

 20

 40

 60

 80

 100

0 500 1000 1500 2000 2500 3000 3500 4000

G
PU

 U
sa

ge
 (%

)

Elapsed Time (s)

Fig. 4. Traces of the system when running Count and Unify units. Prune unit
is omitted for space constraints and similarity to the Count unit.

In this unit, in fact, we can see a steady 100% utilization of the
CPU aside for a feeble reduction in the middle and last parts.
At these points in time, the application is swapping k-mer
tables to the NVM resulting in IO bursts in the storage traffic
plot. From the IO bursts happening in the middle of the Count
unit we can see how the CPU, getting busier to do the IO,
further decreases the GPU usage; justifying the simultaneous
drop in the GPU utilization. The second and last group of IO
bursts in the Count unit represent the swapping of the tables
at the end of the input and by this time the GPU is already
released which explains the total absence of GPU activity.
Although for the first IO bursts there is a reduction in the
CPU usage for the second instead, the wait CPU time shows
peaks at 40%. This difference is due to the fact that while our
swapping mechanism can be set to mitigate the IO bursts, at
the end of the count there is nothing to process so we do not
mind to flood the NVM with 48 threads writing. The lower
CPU usage in the Unify unit is mainly due to the IO intensive
nature of this unit. Because of it, in this unit, we only use a

 0

 20

 40

 60

 80

 100

 120

CPU IPC QPI FS
Read

FS
Write

NVM
Read

NVM
Write

GPU PCI
H2D

PCI
D2H

U
sa

ge
 (%

)

Prune
Count
Unify

Fig. 5. Usage of major components in the system. IPC is normalized to the
maximum achievable values which for the used CPU microarchitecture is 4.
QPI, FS and NVM drives are normalized to their maximum bandwidth. Data
relative to GPU and PCI represent the amount of time the resource was used
over the total execution time

dozen of CPU threads which are already able to put enough
pressure on the IO subsystem. Besides, empirical tests showed
that a higher number of CPU threads is counterproductive and
rapidly exacerbates the CPU wait time.

Figure 5 shows additional information on the utilization
of the resources for all three units. As expected it shows a
high CPU usage for both Prune and Count units with low
minimum values characteristic of the end of each unit where
the application is check-pointing dumping the Bloom filters
and the k-mer tables. An activity that is the cause of the
maximum values for the “FS Write" and “NVM Write" in
the Prune and Count unit respectively. Similarly the maximum
value for “FS Write" is the Unify unit is given by the dumping
of stem tables. Note that those values over 100% depict to the
ability of the NVM drive to absorb short bursts of IO thanks
to their on-board DRAM.

For Prune and Count units, Figure 5 also unveils that, even
if fully utilized, the CPU is ineffective and delivers a meager
IPC (Instruction Per Cycle) throughout the execution. Further
profiling showed that around one-third of CPU cycles are
wasted in stalls due to L1D cache misses and that up to half
are instead spent waiting for the memory subsystem. Misses
that are due to the small random updates in the Bloom filters
and in the Tables. To improve memory latency we tried all the
three QPI (QuickPath Interconnect) snoop protocol possible:
Home Snoop (default), Early Snoop and COD (Cluster-on-
die). As shown in [3] each protocol improves a different kind
of workloads: Home Snoop increases sustained bandwidth,
Early Snoop shortens the latency between sockets, and COD
improves the latency for local memory accesses. Results
showed that whereas Early Snoop yielded a 5% improvement
(6 minutes out of 114) in the execution time from Prune to
Unify, COD instead increased it of 48 minutes.

In conclusion, the memory latency should be considered the
bottleneck and the poor data locality of the memory accesses



to the Bloom filters and to the frequency tables is to be
blamed for the steady 100% CPU utilization but poor IPC.
Moreover, considering the size of such data structures, larger
CPUs caches would provide hardly any benefits.

V. RELATED WORK

Counting k-mer frequencies is a widely studied problem
in the literature and different kinds of data structures have
been used to solve it [4]. From enhanced suffix arrays in
Tallymer [5], lock-free hash tables in Jellyfish [6], to more
common hash tables, Bloom filters, or a combination of the
two like BFCounter [7]. However, most k-mer counters focus
on either smaller values of k or smaller input sizes than
required for SMUFIN. Moreover, some of such works also
include specific optimizations to discard the least frequent k-
mers like the chain of Bloom filter implemented in SMUFIN.

Offload part of genomic workloads with accelerators has
also been studied before. An example is BLAST, a local
alignment search tool, which has been accelerated adopting
FPGAs as described in [8] and in [9]. In the latter case, authors
also used offloaded Bloom filters to discard a large fraction
of a genome. The same strategy ported to GPUs was instead
implemented in [10]. However, both cases used Bloom filters
with smaller than 1 MB while our implementation uses much
bigger Bloom filters. In [11] instead, counting Bloom filters
are used to obtain similar results, but this kind of Bloom filters
has a memory footprint that is 3 to 4 times higher than the
normal filter. And would exacerbate the issue of few GPU
memory and cannot be afforded in our application.

Similarly to our manual swapping mechanism to NVM other
k-mer counting methods like DSK [12] and Jellyfish [6] also
dump tables results to disk to keep a low DRAM memory
footprint. However, they do not take advantage of the perfor-
mance boost given by NVM. Either they use few CPU Threads
unable to saturate the drives or they used rotational disks.

VI. CONCLUSIONS

In this paper, we illustrated how the data intensive nature of
counting k-mers in the human genome is still a computational
and memory challenge. However, we described techniques and
mechanisms to overcome the memory challenge and to allevi-
ate the computational one. In particular, we have demonstrated
how a GPU can be used to shuffle data to minimize inter-
thread communication and how it can cooperate with the CPU
to build large Bloom filters. While the former is important for
vertical scalability, the latter is used to unburden the CPU of
some work. Both of these novel methods were used in this
work for k-mer counting but they can be adopted to improve
algorithms from other domains. We have also illustrated how
NVM can be used to swap hash tables from DRAM in a
controlled way to minimize CPU waiting time. We applied
this work to SMUFIN, a real-world production genomics
application that performs a direct comparison of normal and
tumor genomic samples from the same patient. And we scaled-
up the application to run in single node machine equipped with
a GPU and NVM drives that can be easily hosted in hospitals.

Results showed that although the single machine is not able
to improve the time to solution of 16 Marenostrum 3 nodes,
the CPU time of the single machine is 7.5x shorter than the ag-
gregate CPU time of the 16 nodes, with a reduction in energy
consumption of 5.5x. In large supercomputing facilities, this
work makes massive genome analysis at an affordable energy
consumption a possible reality.

We are currently working on a multi-GPU implementation,
a way to improve data locality, and also exploring how
NVM sharing and disaggregation can reduce the total cost
of ownership.

ACKNOWLEDGMENTS

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 639595). It is also partially supported by the Ministry
of Economy of Spain under contract TIN2015-65316-P and
Generalitat de Catalunya under contract 2014SGR1051, by
the ICREA Academia program, and by the BSC-CNS Severo
Ochoa program (SEV-2015-0493).

We are also grateful to SandDisk for lending the FusionIO
cards and to Nvidia who donated the Tesla K40c.

REFERENCES

[1] V. Moncunill, S. Gonzalez, S. Beà, L. O. Andrieux, I. Salaverria,
C. Royo, L. Martinez, M. Puiggròs, M. Segura-Wang, A. M. Stütz
et al., “Comprehensive characterization of complex structural varia-
tions in cancer by directly comparing genome sequence reads,” Nature
biotechnology, vol. 32, no. 11, pp. 1106–1112, 2014.

[2] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed
data processing,” in 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, Feb. 2011, pp. 266–277.

[3] “Cache Coherence Protocol and Memory Performance of the Intel
Haswell-EP Architecture - IEEE Xplore Document.”

[4] D. Laehnemann, A. Borkhardt, and A. C. McHardy, “Denoising DNA
deep sequencing data-high-throughput sequencing errors and their cor-
rection,” Briefings in Bioinformatics, vol. 17, no. 1, pp. 154–179, Jan.
2016.

[5] S. Kurtz, A. Narechania, J. C. Stein, and D. Ware, “A new method
to compute k-mer frequencies and its application to annotate large
repetitive plant genomes,” BMC genomics, vol. 9, no. 1, p. 517, 2008.

[6] M. J. Puckelwartz, L. L. Pesce, V. Nelakuditi, L. Dellefave-Castillo,
J. R. Golbus, S. M. Day, T. P. Cappola, G. W. Dorn, II, I. T. Foster,
and E. M. McNally, “Supercomputing for the parallelization of whole
genome analysis,” Bioinformatics, vol. 30, no. 11, p. 1508, 2014.

[7] P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in dna
sequences using a bloom filter,” BMC bioinformatics, vol. 12, no. 1, p.
333, 2011.

[8] S. Datta, P. Beeraka, and R. Sass, “RC-BLASTn: Implementation
and Evaluation of the BLASTn Scan Function,” in 2009 17th IEEE
Symposium on Field Programmable Custom Computing Machines, Apr.
2009, pp. 88–95.

[9] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, M. Gyang,
and J. Lancaster, “Biosequence similarity search on the Mercury
system,” in Proceedings. 15th IEEE International Conference on
Application-Specific Systems, Architectures and Processors, 2004., Sep.
2004, pp. 365–375.

[10] L. Ma, R. D. Chamberlain, J. D. Buhler, and M. A. Franklin, “Bloom
Filter Performance on Graphics Engines,” in 2011 International Confer-
ence on Parallel Processing, Sep. 2011, pp. 522–531.

[11] Y. Liu, B. Schmidt, and D. L. Maskell, “DecGPU: distributed error
correction on massively parallel graphics processing units using CUDA
and MPI,” BMC Bioinformatics, vol. 12, p. 85, 2011.

[12] “DSK: K-mer counting with very low memory usage,” dOI:
http://dx.doi.org/10.1093/bioinformatics/btt020.


	I Introduction
	II Background
	II-A K-mer Frequency Counting
	II-B SMUFIN

	III Acceleration Method
	III-A Naive Offloading of CPU Intensive Operations
	III-B Shuffling Data to Minimize Inter-Thread Communications
	III-C Cooperative CPU-GPU Construction of Very Large Bloom Filters
	III-C1 Overcoming GPU Memory Constrains

	III-D Custom Swapping to NVM

	IV Results
	IV-A Evaluation Methodology
	IV-B Performance and Energy Consumption
	IV-C Characterization of the Accelerated Version

	V Related Work
	VI Conclusions
	References

