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Abstract

In this project we explore the connections between elliptic curves, modular curves and
complex multiplication (CM). The main theorem of CM shows that the theory of CM for
elliptic curves provides an explicit construction of finite abelian extensions of a quadratic
imaginary field. The proof we discuss uses many of the properties of the classical modular
curve, which is introduced both as a geometrical object and as a moduli space. This theory
together with the Modularity theorem is used in the construction of Heegner points, which
are in the heart of the proof of Kolyvagin’s theorem, a result closely related with the Birch
and Swinnerton-Dyer conjecture.
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Introduction

This project exposes some of the ideas and connections between elliptic curves, modular
curves and complex multiplication. In section 1 we recall some results on number fields
which will be required in the following sections.

Complex multiplication is a property some elliptic curves have, discussed in section 2.
An elliptic curve E can be defined to be the zero locus of a degree 3 polynomial in two
variables having no singularities. Drawing an elliptic curve F on a real plane has its
limitations, since the picture we obtain depends on the particular equation E verifies. If
we allow complex numbers and instead embed it in the complex projective plane then
E is now isomorphic to a complex torus, a genus 1 compact surface. Moreover, one can
define through a geometrical construction a law group on E making it an abelian group.
In abelian groups one can consider the multiplication-by-n endomorphisms defined by
P — nP. In the case of most elliptic curves, there are no other endomorphisms i.e. the
endomorphism ring End () is isomorphic to Z. Then E has complex multiplication (CM)
if End(F) is strictly larger than Z. The ring End(F) is then also an special kind of ring
i.e. an order O of a quadratic imaginary field K. The ring of integers Ok of K is the
maximal order i.e. it contains all the others. In particular, an order O is a lattice in
C and so it has a fundamental parallelogram Pn. The conductor of an order O is then
the ratio f = f(O) = A(Po,)/A(Po) where A(-) denotes area. In the case of quadratic
imaginary fields, the conductor determines completely the order. There is a quantity
attached to every elliptic curve that tells us whether two curves are C-isomorphic or not,
the j-invariant. In the case that E has CM its j-invariant is an algebraic number over Q.
Every order O has an associated proper ideal class group cl(O) and a ring class field K,
and both are constructed in terms of elliptic curves having CM by O. The main theorem
of CM shows that the Galois group of Ky over K is cl(O). Since cl(O) is abelian this
is an explicit construction of infinitely many finite abelian extensions of K. This solves
partially - for the quadratic imaginary case - the main problem in class field theory, which
is finding all the finite abelian extensions of a number field.

All of this requires showing that the j-invariants of elliptic curves with CM are algebraic
over Q. This last property is proven in section 3 by using the fact that the modular curve
Xo(N) can be defined over Q and an alternative interpretation of X, (V) as a moduli space
i.e. the curve Xo(N) classifies the degree N isogenies between elliptic curves. However,
the first definition of Xy(/N) is geometrical. In the same way a complex torus 7' = C/A is
the quotient space when A acts on the plane as a discrete group of isometries, the modular
curve is also defined in geometrical terms'. Tt is the quotient space Xo(N) = H*/To(N),
where I'g(V) is a carefully chosen finite index subgroup of SLy(Z).

Finally, in section 4 we discuss the construction of Heegner points, which we can think
of as an application of the theory of complex multiplication. Together with the Modu-
larity theorem, Kolyvagin, Gross and Zagier gave results closely related to the Birch and
Swinnerton-Dyer conjecture, an open problem concerning elliptic curves.

1SL»(7Z) is also a discrete subgroup of isometries of the upper half plane $ with the Poincaré metric.
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1 Number fields

A number field is a finite extension K C C of Q. The algebraic integers Ok of K are
the elements v of K for which there exists f € Z[z] monic with f(«) = 0. They form a
subring of K and the field of fractions of Ok is K itself. Furthermore, Ok is a Dedekind
domain i.e.

o Ok is Noetherian
e Every prime ideal 0 # p C O is maximal

e Oy is integrally closed

In a Dedekind domain, every ideal a of O factors uniquely up to reordering as a product
of prime ideals

e er
a:pll...pr

A fractional ideal of K is a finitely generated Og-submodule of K, and it can be regarded
as a generalization of ideal of O. The set of fractional ideals Z(K') forms a group under
multiplication, and it is freely generated by the prime ideals of K. Note that the subset
of principal fractional ideals P(K’) forms a subgroup of Z(K).

The ideal class group of K is the abelian group cl(K) = Z(K)/P(K). The cardinal of
hx = |cl(K)| is called the class number of K, and it is always finite.

Another result is Dirichlet’s unit theorem which states that the group of units Oj of
Oy verifies OF ~ p(K) x Z™*! where r and 2s are respectively the number of real
and complex embeddings of K in C and u(K) is the torsion of O, the roots of unity
contained in O.

Let L/K be a finite extension and let o € L, and let M,, be a matrix of the K-linear map
Mq : L — L in some basis of L/K. The norm Np,k(a) and trace Trp k(o) of o is the
norm and trace of M,. An integral basis of Of is a set {3;}; that generates Op = (5;)z
as a Z-module. The discriminant of L/K with respect to (3; is the determinant of the
matrix {Trz/x(353;)}i - As it depends on a choice of basis, it is defined in general up to
elements in (Ox)%

In this section, we consulted [6, 5, 1].

1.1 Ramification

Let L/K be a finite extension of K and let p be a prime ideal of Ok. One can consider
the factorization of pOr in Of

pOL = Pi'--- Py (1.1)

One says that 9B; lies above p. The coefficients e; in (1.1) are the ramification indices.
The inertial degrees are f; = [IF%Z : Fg(] These make sense since IF;% = OL/PB; can be
regarded as a finite Galois extension of Ff = Ok /p, because these fields are finite and
p CPB.

We say that a prime ideal p of K
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splits in L if e; = 1 for all ¢

splits completely in L if it splits and f; = 1 for all ¢

e ramifies in L if it does not split and it is not a prime of K

is tnert in L if pOp is a prime ideal of L

It can be shown that if p ramifies then p divides the discriminant of L/K. This proves
that only finitely many primes of K ramify in L. The following relation

g

> eifi=IL: K] (1.2)

=1

tells us there is a finite number of possibilities for the e; and f;. It is sometimes called
the fundamental identity for its role in many proofs of the results we discuss.

1.1.1 The Galois case

If L/K is Galois then the situation is simplified, because if we let G = Gal(L/K) then G
acts on the set of prime ideals of O, because 0Oy = Oy, for 0 € G. Moreover, if we fix p
and choose P above p the primes P, in the factorization of pOy all lie in the G-orbit of
B, so G acts transitively on the 3;. From this fact one can prove that e = ¢; and f = f;

for all 7, thus
efg=I[L: K]

The inertial and ramification degrees are multiplicative: e(M/K) = e(M/L)-e(L/K) and
f(IM/K)=f(M/L)f(L/K) for an extension M /L.

Some subgroups of GG are studied to derive further properties of the decomposition of p.
The decomposition group Gy = G(B|p) is the stabilizer? of J:

Gy ={oeG: 0P =P}
The inertia group Iy = I(Blp) is
Iy={0€G:or=2mod P forall x € L}

It follows that Iy C Gy, and each 0 € Gy naturally induces an automorphism Qo) =
o € G = Gal(Fy/F)*) that makes the following diagram® commute:

OL#OL

e

L o L
Fy —— Fy

2This makes sense since G acts on O,
3Here my is the natural quotient by 9 map
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The map Q : Gy — G is a group homomorphism, and ker @ = Iy because Q(c) = 1 if
and only if for any x one has ompxr = mpw = mpow, and this is to say o € Ip. The fixed
subfields of L by the decomposition and inertia groups are called the decomposition field
Zy and the inertia field Tyg. Therefore Tiy/Zy is a normal extension because ker Q =
Iy <« Gy is a normal subgroup. It can be shown that Q is surjective, so we have an exact
sequence

1 > Iy > Gip > G > 1

The reason of introducing the decomposition and inertia fields will become clear now in
the following diagram

ramification index p 1 mZ Jl[ mT i q:;

inertial degree

Let P be a prime of L above p and consider the factorization of p in the tower of extensions
K C Zy C Ty C L. Then p splits completely in the decomposition field, into primes which
remain inert in the inertia field, which finally can ramify in L.

Note that |G| = ef since G acts transitively on the set of primes B above p; the number
of factors in the factorization (1.1) is g = (G : Gp), and |G| =efg = [L : K].

In the case L/K is an abelian extension, i.e. that G is abelian then the decomposition
and inertia groups Gy and Iy only depend on p and not on ‘B, because in general

Gop = 0Gypo™!
Lo = U[spa'_l

and all the subgroups of G are normal. Then we write Gy = G, and Iy = I,.

1.2 The Artin symbol

We recall that G is the Galois group of a finite field, so it is cyclic and generated by a
power of the Frobenius automorphism ¢ which maps T — 7, namely by ¢ = o™ where
Np = (Ok : p) is the numerical norm of p and (p) = pNZ. Now consider a prime p of K
that is unramified in L (e = 1). It can be shown that |Iy| = e, so in this case the inertia
group Iy is trivial and Q induces an isomorphism

Gp~G= Gal(E%/IF;() = (¢)

Taking the preimage ¢ = Q~'(¢) of ¢ by Q gives the generator of Gs. By the definition
of Q, we see that ¢ verifies
o(z) = 2™° mod P (1.3)

because in G we had ¢(Z) = Z*. Note ¢ is the only element in G verifying this condition,
since Q is an isomorphism. In this case, the Artin symbol is

4~
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The notation remarks that ¢ depends on L, K and 8. The order of (L/TK) is the inertial

degree f = |G|, since G is generated by the Frobenius element.
From the uniqueness of an element verifying (1.3) it follows that for any o € G

<l;/—;£(> = U(L/TK>O'_1 (1.4)

i.e. the Artin symbol of the conjugate by ¢ of a prime ‘B is the conjugate of the Artin
symbol by o.

If L/K is abelian then conjugation by o is the identity map in G, so (L/TK) does not really
depend on what prime *J3 above p we choose. In this case, given a prime p of K we define

L/K L/K
(L) - (145 e
p RY
where the right hand side is the Artin symbol and P is some prime in L above p. From
our discussion above it follows that is well-defined.

When L/K is not abelian, by taking all the elements in the conjugacy class of (L/K,})

we define similarly
(L/TK> = {(MTK) with B above p} (1.6)

Remark 1.1. The Artin symbol also characterizes those unramified primes splitting com-
pletely; if p is unramified and (L/K,p) = 1 then p splits completely, since the hypotheses
imply e=f=1and efg=g=[L: K]

1.3 Artin reciprocity law

We were able to define the Artin symbol for p unramified in L, because Q was an isomor-
phism. If one wants to define it for all prime ideals, then one can consider the case of an
abelian unramified extension L/K; that all primes in K are unramified in L. Briefly, the
commutativity of G lets one define the Artin symbol for a prime p of K as in (1.5) and
the condition that L/K is unramified is imposed so that it can be defined for all primes.
Let Z(K) be the group of fractional ideals of K. One can define the Artin symbol for any
fractional ideal

(L/_K) L I(K) — Gal(L/K)
a =TT — I (25)"

Note that the expression above makes sense because Gal(L/K) is abelian, hence we may
take the product of the <pi,L/K> in any order. The Hilbert class field of K is the

maximal abelian unramified extension of K. In the case of K = QQ the Hilbert class field
is QQ itself, because every extension of QQ is ramified.

10
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Theorem 1.2 (Artin reciprocity law for the Hilbert class field). Let L be the Hilbert class
field of K. Then the map (L/—K) described above is surjective and the kernel is P(K).

Hence, to find all the abelian unramified extensions of K one has only to find Gal(L/K)
because of the Galois correspondence i.e. it follows that the Artin symbol induces an
isomorphism cl(K) = Gal(L/K), and by Galois theory we obtain

Corollary 1.3. There is a one-to-one correspondence between the subgroups of cl(K') and
the abelian unramified extensions of K. *

In the case of K being quadratic imaginary, by using some results on elliptic curves the
Galois group is completely determined. This is the goal of section 2.

Theorem 1.2 is a particular case of the following result, for which one does not need the
extension L/K to be unramified:

Theorem 1.4 (Artin reciprocity). Let L/K be a finite abelian extension of number fields.
Then there exists an integral ideal ¢ of K divisible by and only by the primes of K ramifying
i L for which the Artin map

(L/—K) . T.(K) —— Gal(L/K)

ri . L/K\"
a=[[p" 'Hz(,{z>

is a well-defined morphism from I.(K) = the set of fractional ideals coprime with ¢ to the
Galois group Gal(L/K) and so that the kernel of (-, L/K) contains P.(K) = the set of
principal ideals (o)) with o = 1 mod ¢.”

One can consider the nonempty set of integral ideals ¢ of K verifying theorem 1.4. It
follows that there must exist a maximal element c¢;/x in this set - because Ok is a
Noetherian ring - and it is called the conductor of L/K.

1.4 Completions

We will need some terminology and facts concerning completions of number fields to define
the Selmer and Tate-Shafarevich groups in section 4.5.1, and we discuss them below.
An absolute value on a field K is a map |- | : K — R that verifies the following:

e |z| >0 for any z € K, and |z| = 0 if and only if x = 0.

o |yl = |=[ly|
e There exists C' > 0 such that |z + y| < Cmax{|z|, |y|}

4In particular, if Ok is a principal ideal domain (e.g. K = Q(i) or K = Q) it has no nontrivial abelian
unramified extensions.
SHere we restrict the Artin map to Z.(K) C Z(K) to avoid the possible ramifying primes of L/K.

11
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An absolute value is trivial if |z| = 1 for x # 0, and two absolute values are equivalent if
there exists a € R nonzero with |z|; = |z|§ i.e. one is a positive real power of the other.
A waluation is an absolute value that satisfies the triangle inequality

lz +y| < |x| + |y

It is a nonarchimedean valuation if |z + y| < max{|z|, |y|}, or an archimedean valuation
otherwise. Moreover, if the characteristic of K is # 0 the only valuations on K are
nonarchimedean.

If K C Cis a number field one can provide K a natural nontrivial archimedean valuation
for every embedding of K in C. It is given by

2], = [e(2)le

where | - |¢ is the usual absolute value in C and ¢ : K — C is an embedding.
We can also construct nonarchimedean valuations on a number field. For x € K — {0}
the fractional ideal () admits the following factorization

(x) =[] p®
p

for some v (x) € Z. In this case, one says v,(z) is an ezponential valuation on K because
the following properties

o y(z) € Z for any v € K — {0}
o vp(xy) = vp(x) + 14(y)
o vp(z +y) = min{n (), 15(y)}

make the map |z|, := @ a nonarchimedean valuation on K for any ¢ € (0, 1), if we
define 1,(0) = oo formally. It is called the p-adic valuation on K.

A place is an equivalence class of valuations. A field together with a valuation is complete
if Cauchy sequences are convergent. A completion of K is an extension L/K that is
complete with respect to a valuation v/ that extends v and for which every element in L
is a limit of elements in K.

In the same way R is obtained from Q by considering Cauchy sequences with respect to
the usual absolute value, one can obtain completions of a number field with respect to
any of its places:

Theorem 1.5. Let K be a number field and v a place of K. Let C be the set of Cauchy
sequences in K with respect to v and I the ideal of Cauchy sequences tending to zero.
Then C has a natural ring structure and the quotient K = C/I is a completion of K.
Moreover, any two completions of K are isomorphic up to isomorphisms preserving v.

We denote by K, the completion of K with respect to v. If v is nonarchimedean, there
are some important associated objects. The ring of integers is the set

R={reK,:v(x) <1}

12
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It is a discrete valuation ring with maximal ideal m = {z € K, : v(z) < 1}, which is also
principal. A generator for m is called an uniformizer. The residue field is k = R/m.

For instance, the p-adic numbers Q, are the completion of Q with respect the p-adic norm,
the ring of integers is the ring of p-adic integers Z,, the maximal ideal is pZ, and the
uniformizer is just p. The residue field is Z/pZ, a finite field.

The following theorem characterizes all the completions of Q:

Theorem 1.6 (Ostrowski). The completions of Q are Q, and R, where p is prime.

There is also a generalization for number fields i.e. it can be shown that all the nontrivial
absolute values on a number field K are either the induced by a prime ideal p or the
euclidean metric induced by an embedding K — C. Note also that the completion of
a number field with respect to the norm induced by a prime is an example of the more
general concept of local field.

13



2 COMPLEX MULTIPLICATION

2 Complex multiplication

In the last section we explained what was the Artin map and Artin reciprocity law, which
were obtained by patching together local data in unramified primes. In this section, we
will expose that in the case that K is a quadratic imaginary field there is a geometric
interpretation of the Artin map in terms of lattices: the fact that the j-invariant of an
elliptic curve with CM by Oy is algebraic lets one define a Galois action on the set of
Q-isomorphism classes of elliptic curves, which turns out to be the same action of the
ideal class group on lattices with endomorphism ring O (if the Galois group is that of
the Hilbert class field of K).

In other words, complex multiplication will enable us to do class field theory for quadratic
imaginary fields.

Here we followed closely [10, 1, 9].

2.1 Lattices

To describe the endomorphism ring of an elliptic curve over C we introduce lattices, a
class of geometric groups whose set of homomorphisms is easily found. In other words,
we first study lattices and its endomorphisms and then relate them to elliptic curves over
C.

A lattice is a discrete abelian group A C C of the form A = (wy, ws)z where wy,wy € C
are R-linearly independent and 3(wpw; ') > 05, Denote by Lat the set of lattices A C C.
The set of homomorphisms between two lattices is

HOm(Al,Az) = {Oé e C: OéAl C AQ}

and if Ay = Ay = A we set Hom(A, A) = End(A). Two lattices are homothetic if there is
an isomorphism between them i.e. if aA; = Ay for some o € C.” Homothety induces an
equivalence relation ~ on Lat. Given an homothety class [A] € Lat. with A = (wy, ws)
we can choose a representative A, = (1,7)z where 7 = wyw; ' verifies 7 € §). However, it
is does not follow that A, ~ A, if and only if 7 = 7/. To find an unique representative
and for simplicity, from now on we work with lattices of the form A.. Two points 7,7’ € $
are equivalent if T = 7’ for some v € SLy(Z). We denote this by 7 ~ 7'.

From an homothety A, = A, we obtain a-1 = a+b7" and a-7 = c+d7’ for some integers
a,b,c,d € Z. By arguing similarly with A, = a~'A, it follows that v = (2 }) € SLy(Z)
and 7,7’ lie in the same SLy(Z)-orbit of §). Conversely, for every v = () € SLy(Z) and
7' € § the lattice A, with 7 = (¢ + d7’)(a + br’)~? verifies aA, = A, where a = a + b7'.
In other words, A, ~ A if and only if 7 ~ 7/ and so there is a natural bijection

Lat. < F

between the set of homothety classes of lattices and the fundamental domain® F for the
action of SLy(Z) in $.

Tn other words, we are choosing an orientation.
"Geometrically, that Ay can be obtained by rotating and zooming A;.
8 F is defined in section 2.4.1

14



2 COMPLEX MULTIPLICATION 2.2 Tori

2.1.1 Orders

The endomorphism ring of lattice is a quadratic imaginary order. We introduce them
here to know beforehand some of its properties.

Let K be a quadratic imaginary field. An order O of K is a subring of K containing
1 and a Q-basis of K which is a finitely generated Z-module. Then every element of O
must be integral over Z so O C Ok = (1, wk)z where

o di + Vdg

Wk 9

and dx is the discriminant of K. Therefore @ is a free Z-module of rank 2 because it
contains a Q-basis of K and its rank its bounded by the rank of Ok.

The index f = (O : O) is now finite. It is the conductor of O©. Then O can be written
as O = (1, fwg)z, and the discriminant D of O is

2 fdx

2
i | = [T

D=1 a JER A

An order is completely determined by its discriminant:

Theorem 2.1. For quadratic imaginary fields, there is only one order of discriminant D.

2.1.2 The endomorphisms of a lattice

Recall that End(A) = {a € C : aA C A}. Note that End(A) depends only on the
homothety class [A] € Lat.. Then O = End(A) is a commutative ring and contains Z. To
describe it more precisely, let « € O—Z. We obtain a-1 = a+b71 and a-7 = c+dr for some
integers a, b, c,d € 7Z. There are two differences between this situation and that of section
2.1; now we cannot deduce that v = (¢4) € SLy(Z). On the other hand, by rewriting
these equations into a linear system we deduce that « verifies o — (a+d)a+ (ad —bc) = 0.
But o ¢ Z and a = a + br € C imply that Q(7) is a quadratic imaginary extension of Q.
Then O is an order of the quadratic imaginary field Q(7).

2.2 Tori

To relate lattices with elliptic curves we need another intermediate step.

A complex torus for a lattice A C C is the Riemann surface C/A, together with struc-
ture of abelian group induced by C. Denote by Tor the set of tori C/A. The set of
homomorphisms between two complex tori T; = C/A; is

Hom(7Ty,T3) = {¢ : T1 — T, holomorphic morphism of abelian groups}
Two tori are equivalent if they are isomorphic. The morphisms between tori are easily

described:

15



2.3 Elliptic curves over C 2 COMPLEX MULTIPLICATION

Proposition 2.2. If ¢ : T} — Ty is an holomorphic morphism then ¢(z) = ¢o(z) where
ba(2) = az for some a € Hom(A1,Ay). Conversely, every o € Hom(Aq, As) induces
bo € Hom(T',T,) so there is a one-to-one correspondence

HOHI(Al, Ag) <~ I‘IOHI(YE7 Tg)
This establishes an equivalence of categories between Lat and Tor.

In particular, there is a bijection Tor. <+ Lat. between the sets of equivalence classes.

2.3 Elliptic curves over C

An elliptic curve over C is a nonsingular planar cubic curve E C P?(C). Denote by Ell¢ the
set of elliptic curves over C. An isogeny ¢ : Fy — Es of elliptic curves defined over a field
k is a surjective morphism of curves that induces a group homomorphism E; (k) — Ey(k).
The set of isogenies between two elliptic curves is Hom(E, Es). Two elliptic curves Ey, Es
are isomorphic over k if there exist mutually inverse bijective isogenies between FE; and
E5. From now on k£ = C.

Given a lattice A, let Ey be the following curve
Ep:Y? =4X3 — go(A)X — g3(A) (2.1)

where go = 60G4(A) and g3 = 140Gg¢(A).? Then E, is an elliptic curve. Conversely, for
every elliptic curve E/C there exists A unique up to homothety with £ ~ E,. To show
this, we introduce the j-invariant. It is defined by

ga(7)’
g2(7)3 — 27g3(7)?

j(r) =1728
It is SLy(Z)-invariant since it is a quotient of two modular forms'® of weight 12. It can
be shown that j : F — C is injective and surjective. In fact,
Theorem 2.3. The j-invariant induces an isomorphism between X (1) and C.

Here X (1) can be thought as F together with a point at infinity (section 3.1). Moreover,
two elliptic curves are isomorphic over C if and only if their j-invariants are the same.
Thus, there is a one-to-one correspondence between Lat.. and (Ellg).:

Lat. +— (Ell¢)~
A EA

It turns out that elliptic curves over C are tori:

Theorem 2.4. The following map

9Here G (M) or G (1) is the Eisenstein series of weight k
0Modular forms are defined in section 3.5.2.
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2 COMPLEX MULTIPLICATION 2.3 Elliptic curves over C

®: C/AN—— E\
24+ AN —— (pa(2) : @h(2) : 1)
O+A+—(0:1:0)

1s an holomorphic isomorphism of Riemann surfaces, where py is the Weierstrass @ func-
tion associated to A.

Moreover, p and @’ generate all the functions on a complex torus; the field of the doubly
periodic functions with respect to A is C(gp, p’) where p denotes the Weierstrass function
with respect to A.

Theorem 2.5. Let o and po denote the Weierstrass functions associated to Ay and A,.
Then the following are equivalent: ¢, € End(T1,Ts); pa(az) € C(p1,9}); there is an
unique o € C making the following diagram commute

Tl L)T2

e |

ElLEQ

where ¢ = ® o ¢, 0 L. Moreover, there is an isomorphism of abelian groups between
Hom(E, Ey) and Hom(Ty,T).

The isomorphism of rings exists because if we are given an isogeny ¢ : E; — Fy then
®,' 0 ¢ o ®(2) = f(2) is an holomorphic morphism between complex tori, so f = ¢, for
some o € C, but then aA; C Ay so o € End(A1, Ay). Conversely, given o € End (A4, Ag)
the map ¢ = ®5 0 ¢, 0 ®; ' is an isogeny ¢ : B — Es.

Therefore, we have established Lat, Tor and Ell¢ are equivalent categories. We partic-
ularize theorem 2.5 for A; = Ay = A to obtain the following:

Corollary 2.6. Suppose End(E) 2 Z. Then End(F) is naturally isomorphic to an order
O of a quadratic imaginary field K C C

LN
oo
E—*yE

Here T =C/A and Ep ~ E.
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Remark 2.7. The dual isogeny for a degree N isogeny E — E’ is another isogeny E' — E
such that the composition is the multiplication-by-N map, and exists whenever the isogeny
is not constant. For the case £ = E’, it is particularly easy to find. Given o € O, the
dual isogeny is just ®(a) where @ denotes the conjugate of o.!!

This motivates the following definition:

Definition 2.8. An elliptic curve E/C has complex multiplication by the quadratic imag-
inary order O if £ ~ Ej and End(A) = O. We denote the set of equivalence classes of
elliptic curves with CM by O by

Ellc(0) = {|E] € Ell¢ with CM by O}

We define [a] = U~!(«) where U is as in corollary 2.6. The invariant differential for an
elliptic curve is w = 9. It is invariant under translations in the elliptic curve, hence its
name. For instance, the pullback by ® of w is cdz for some constant ¢, which is certainly
translation invariant. In this case, the pair (F,[.]) is normalized. The chosen embedding
has an additional property:

Corollary 2.9. For any invariant differential w € Qp,
[a]'w = aw
where [a]* denotes the pullback of differential forms by [a].

Example 2.10. Consider the lattice A = A;. Then O = End(A;) clearly contains the
Gaussian integers Z][i], so O = Z[i] because Of is the maximal order of K = Q(¢). There-
fore any elliptic curve C-isomorphic to E, has complex multiplication by Z[i]. An ex-
pression for the isomorphism [i] : £y — Ej is easily found because (X,Y) = (p(2), ¢'(2))
and

[{(X,Y) = (p(iz), ¢'(i2)) = (—p(2), i/ (2)) = (=X, iY)

because of the properties of the Weierstrass o function.

2.4 Binary quadratic forms

Complex multiplication also arises from an algebraic classification problem, namely clas-
sifying the set forms of given discriminant. A form is a binary quadratic form, i.e. an
homogeneous polynomial in two variables,

f(X,Y) = (a,b,c) =aX?+bXY +cY?

satisfying the following conditions: f is integral, primitive and positive definite. That is,
a, b, ¢ are coprime integers verifying b*> —4ac < 0 and a@ > 0. These latter conditions follow
from Sylvester’s criterion of positive definiteness, because one can rewrite f as.

[(X)Y) = vt(b?Q bf)v

HNote that @ € O C O because Tr(a) =a+a € Z and 1 € O.
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2 COMPLEX MULTIPLICATION 2.4 Binary quadratic forms

with v = (X,Y). The discriminant of a form f is D = b? — 4ac. The set of forms of
discriminant D is denoted by F(D). From now on D is a fixed negative integer.

It follows from its definition that the discriminant is invariant under invertible transfor-
mations in Z?, hence by the special linear group SLs(Z). Moreover, SLy(Z) acts on F(D);
for v = (%%) € SLa(Z) let v(X,Y) = (uX +vY,sX +tY) and define the action by

JIXY) = f(y(X,Y))

Then f¥ € F(D) remains a form. Two forms f, g are equivalent if they lie in the same
SLy(Z)-orbit of F(D). We denote this by f ~ g. The set of orbits is the form class group
of discriminant D denoted by cl(D). That is, cl(D) is a finite group where the group
operation is the composition of equivalence classes of quadratic forms found by Gauss.
There is also an isomorphism cl(D) ~ cl(Of) when K = Q(v/D) has discriminant D.

2.4.1 The form class group is finite

The principal root 7(f) of a form f is the unique solution of the equation f(7,1) = 0

lying in $'2, namely 7 = %ﬁ. By considering principal roots we will be able to choose
an unique representative for each orbit in cl(D). A reduced form verifies —a < b <a <c¢

or 0 <b<a=c. Then f is reduced if and only if 7(f) € F where
F={z€C:|z|>1land —1/2<Rz2<0}U{z€C:|z|>1and 0 <Rz <1/2}

Recall that SLy(Z) also acts in $. Then y~'7 is the principal root of f7. It follows
easily that f ~ ¢ if and only if 7(f) ~ 7(g).!® Therefore, every form is equivalent to an
unique reduced form because the SLy(Z)-translates of F form a disjoint cover of $); given
f compute 7(f) and find the only 7 € F with 7 ~ 7(f).

Finally, to show that cl(D) is finite we observe that

V3

POV,
mip () = 5

Hence S7(f) = VIl

2a

> V3 implies 1 < a < 4/|D|/3, so there are only finitely many
possibilities for a, and b € (—

2
(—a,a] for a fixed a. Therefore the form class group is finite

h(D) = ‘ CI(D)‘ = the number of reduced forms in F(D) < 2(V |]23|/3) <|D|/3
and finding the reduced forms in F(D) gives an effective procedure to find h(D).

2.4.2 Lattices, proper ideals and forms

Let O be an order of K = Q(v/D). We want to define an ideal class group cl(©Q) for O as
we did for number fields to show that cl(D) ~ cl(O). In fact, we only have to show the

12Recall that D is negative.
131t is also clear that if f = (a,b,c) is reduced then aX? + bX + c is the minimal polynomial of 7(f).
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2.5 ¢cl(O) acts on Ell¢(O) 2 COMPLEX MULTIPLICATION

number of equivalence class of ideals is | cl(D)| because the product in cl(D) will be the
induced by that of cl(O). For this to be true, we will have to consider only some of the
ideals, the proper ideals.

A fractional O-ideal b is a finitely generated O-submodule of K. It is invertible if ab = O
for some a, and proper if O(b) = O. It turns out a fractional ideal is proper if and only
if it is invertible. Then the set of proper ideals I(O) forms a group, so we can form the
ideal class group cl(O) = I(O)/P(O) where P(O) C I(O) is the subgroup of principal
ideals.

Now let f = (a,b,c¢) € F(D) be a form. The associated lattice is Ay = a(l,7(f))z.
Then f ~ g if and only if Ay ~ A,. In other words, [f] — [Af] defines an injection
Ay cl(D) < Lat.. Moreover, these lattices are proper O-ideals. To show this, let the
order of a lattice be its set of endomorphisms O(A) = End(A). Then

Lemma 2.11. One has O o A(f) = O(Ay) = (1, ar)z, which is the order of discriminant
D of K =Q(VD).

Proof. One inclusion follows easily by noting (a7)?> = —b- (a7) — ac - 1. For the other,
observe that O(Ay) = O(A;(y)) and let « € O(Ay). Then -1 = a = u + v7 for some
u,v€Zsoa-7=(u—2)7 - but a,b,c are coprime so alv and « € (1,a7)z. O

In particular, the injection Ay : cI(D) — Lat(O) restricts to lattices with End(A) = O.
Thus | cl(D)| < |cl(O)|. Conversely, it can be shown that every proper O-ideal is the
associated lattice of a form in F'(D).

2.5 cl(O) acts on Ellc(O)

With the results above, one can now find all the elliptic curves over C with CM. Let O
be a quadratic imaginary order. Then the following map

cl(0) «— Ell¢(0)
[a] —— E,

is a bijection, where F, is as in (2.1). It is well-defined, since every proper O-ideal a is
a lattice with End(a) = O, and so for every E € [E,] one has End(E) ~ End(a) = O
since £ ~ FE,. Every lattice A with End(A) = O is homothetic to a proper O-ideal,
so surjectivity follows. And if [E,| = [Es] for two fractional proper O-ideals a,b then
J(E,) = j(Ep) so a and b must be C-homothetic, so [a] = [b] in cl(O).* Let us define

Lat.(O) = {[A] € Lat. with End(A) = O}

and

F(O) = {7(f) with f = (a,b,¢) € F(D)}

14In this case, C-homothety implies @-homothety.
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2 COMPLEX MULTIPLICATION 2.6 The Hilbert class polynomial

Then the correspondence of section 2.3 restricts to Ellc(O) <« Lat..(O). From the dis-
cussion in section 2.4 and the bijection Lat. <> F of section 2.1 it follows that we have a
correspondence between finite sets Lat.(O) <» F(O). Thus

| cl(O)] = [cl(D)| = h(D) = | Ellc(O)| = |F(O)]
Now let us define the following action

cl(0) x Ellg(0) —— Ellc(0O)

o], By ———— aFy = By 1y

It is indeed a well-defined action. The crucial fact here is that it is a free action: if
[Eq-15] = [Es] then a is principal, since a~'b and b must be homothetic and b is invertible
because it is proper. In general, if we have a free group action G O X with |G| = | X|
finite then it is transitive, i.e. the orbit of any element is X. Hence, our action above is
transitive.

Example 2.12. For instance, there is only one isomorphism class of elliptic curves with

CM by O = Z[i] or Z[\/—2] because they are both principal ideal domains, and there are

1++v/-5 ]
2

two isomorphism classes when O = Z] . These are simple examples because they

are all maximal orders.

2.5.1 The action in terms of isogenies

The action cl(O) O Ellc(O) can be interpreted in terms of isogenies.

Let ¢ : By — FE5 be an isogeny with E; = E\, and denote by T; = C/A;. Then by theorem
2.5 there exists & € Hom(A1, Ag) with aA; C Ay and ¢ = ®9¢,P;". Denote by A} = aA;
and T] = C/A,. The lattices A; and A} are then C-homothetic, so ¢ : Ty =% T/ is

an isomorphism and the natural inclusion ¢” : T/ 225 T, has kernel ker ¢” ~ A’ /A,.

Moreover, ¢, = ¢"¢’. In other words, every isogeny is induced by an inclusion of tori up
to C-isomorphism.

If £,/C has CM by O then A; is homothetic to a proper O-ideal b, and if a is a proper
O-ideal then so is a='b. The inclusion of lattices b C a~!b induces an isogeny ¢, : Fy, —
E.-1y,. Therefore, all elliptic curves with CM by O are isogeneous, because the action is

transitive. The kernel of ¢, : E — aFE can be shown to be

Ela]={Pe FE:aP =0forall o € a}

2.6 The Hilbert class polynomial

Let O be a imaginary quadratic order of discriminant D. The Hilbert class polynomial is

mpx) = I (x-i®)

[E]€El(O)
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2.7 The Galois action 2 COMPLEX MULTIPLICATION

By using the properties of the modular polynomial ®5 for N prime in section 3.5.4 we
will show that Hp(X) € Z[X]. We only have to take for granted theorem 3.12 and the
following theorem

Theorem 2.13 (Dirichlet,Weber). There are infinitely many prime ideals p of prime
norm (O : p) in every class of cl(O).

We proceed.

Theorem 2.14. One has Hp(X) € Z[X]. Thus, the j-invariant of an elliptic curve E
with CM 1is an algebraic integer, and E can be defined over Q.

Proof. Let E € Ellc(O) and let p = aO be a principal ideal of norm p. Then [p] acts
trivially on Ellc(O) and there is an isomorphism ¢ : pE — E. If b is a lattice with
Ey, ~ E then the inclusion of lattices b C p~'b induces an isogeny ¢ : £ — pE with
ker¢ ~ p~'b/b, but (p~'b : b) = (b : pb) = (O : p) = p, thus ¢ is cyclic. Hence
p o ¢ is a degree p (cyclic) isogeny of E onto itself, and so by theorem 3.14 one has
®,(j(E),j(E)) = 0. Thus j(E) is an algebraic integer because ®,(X,X) is a monic
polynomial by theorem 3.15, and E can be defined over Q.

Let Ellz(O) be the set of equivalence classes of elliptic curves defined over Q modulo
Q-isomorphism. Then there is a bijection between Ellg(O) and Ellc(0)*. The absolute
Galois group G = Gal(Q/Q) acts on Ellg(O) as follows: for every o € G and [E] € Ellg(0)
with F : y? = 423 — Az — B we define E7 : 3% = 423 — A%2 — B°. It is well-defined,
since given an isogeny ¢ : E — E defined over Q, ¢ is obtained by applying ¢ to the
coefficients in an expression for ¢, so End(E) ~ End(E7).

The coefficients of Hp(X) are symmetric functions on the j-invariants for [E] € Ellg(0),
thus invariant under the action of G so Hp(X) € Q. But E was arbitrary so Hp(X)
divides ®,(X, X) in Q[X], because ®,(X,X) € Q[X] by theorem 3.12. Finally, ®, is
monic by theorem 3.15, so by Gauss lemma it follows that Hp(X) € Z[X]. O

2.7 The Galois action

Let O C K be an order of discriminant D and K a quadratic imaginary field. In the
proof of theorem 2.14 we considered the action of the absolute Galois group Gal(Q/Q).
Note that many elements do not fix K. To simplify the picture, we take an smaller group
G = Gal(L/K) where L is the splitting field of Hp(X). For each o € G the curve E? has
CM by O. The action of the class group in section 2.5 is free and transitive so £7 ~ aF
for some unique a € cl(O). Moreover, the Galois action and the class group action are
nicely related

Lemma 2.15. For any E € Ellg(0), o € G and b € cl(O) one has (bE)” = b7 E°.

15Tf two elliptic curves are Q-isomorphic they are C-isomorphic. Conversely, if E, £’ are C-isomorphic
with CM by O then both can be defined over Q because their j-invariant is the same and belongs to Q.
It can be shown that then they are Q-isomorphic.
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2 COMPLEX MULTIPLICATION 2.8 The First Main theorem of CM

Taking this for granted, it follows that a depends only on o: for any E’ € Ellg(O) one
has E' ~ bE for some b € cl(O) by transitivity. Thus E7 ~ (bE)? = b°E? = bE? ~
baE = abFE ~ aF’. Here b” = b because o fixes K and b C O C K. Therefore we have a
well-defined injective!® map

U:Gal(L/K) —— cl(O)
or—— Yo)=a

where £? = aF. It is a group homomorphism since for any F
VU(oT)E = E°T = (E°) = (V(0)E) =V(r)V(o)E =V(o)¥(1)E

The injectivity of ¥ implies that Gal(L/K) is abelian, and [L : K| < h(D). In fact, ¥
surjects.

The splitting field L is known as the ring class field of O. In the case where the order
O = Ok is maximal L is the Hilbert class field, which is also the maximal unramified
abelian extension of K.

2.8 The First Main theorem of Complex Multiplication

The goal of this section is to prove that ¥ is an isomorphism. The previous results
together with the Artin map of section 1.2 help in the proof of this result:

Theorem 2.16. Let O be a quadratic imaginary order of discriminant D and L the
splitting field of Hp(X) over K = Q(v/D). Then there is an isomorphism

U Gal(L/K) ——— cl(0)
o— VY(o)=a

where E° = aFE.
Proof. Take [a] € cl(O) and let p be a prime of K satisfying the following conditions

(a) g =pNO is a proper O-ideal of prime norm with [q] = [a]
(b) p and p are unramified in K and L respectively

(c) Forevery [E] € Ell(O) there exists an elliptic curve E/L with good reduction modulo
B for any prime B of L above p

(d) The elements in {j(F)}gjeen, o) are distinct '™ modulo P for Pp

6Given E € Ell5(0), the only element in G fixing j(E) is the identity.
17Condition d lets us detect whether two curves are isomorphic or not by checking if they are isomorphic
modulo ‘B.
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2.8 The First Main theorem of CM 2 COMPLEX MULTIPLICATION

There are infinitely many p for which these conditions hold, because theorem 2.13 assures
the existence of infinitely many q verifying condition a and because we can lift the prime
q to a prime p = qOf of K provided that q does not contain (f), where f is the conductor
of O defined in section 2.1.1.
For condition b recall that in a finite extension only finitely many primes ramify'®. For
c take a representative E of [E] i.e. choose a Weierstrass model and avoid primes 3
of L dividing the discriminant of the curve!, and for condition d avoid primes B of
L appearing in the factorizations in Op, of the elements in {j(E) — j(E') }g£[eq where
[E], [E'] € EllL(O).
Fix B above p and E/L with good reduction modulo . Let E/Fy be the reduction of
E modulo B, obtained by reducing the coefficients in L of the equation of £ modulo .
Soif Eisgiven by E:Y? = X34+ AX + Bwith A, B€ Opthen E:Y?= X3+ AX + B
and A(E) # 0.
Now p is unramified so we may form the Artin symbol ¢ = (p, L/K) as in section 1.2,
and (Ok :p) = (O : q) = p. Recall that o verifies o(z) = 2” mod P, i.e. Q(0) =7 is the
Frobenius element. Then ¢ induces an isogeny 7 : E — E° by applying 7 coordinatewise
m(z,y) = (2P,9?) from Eto B :Y? =X+ A'X + B".
Recall from section 2.5.1 that q induces a degree p isogeny ¢4 : £ — qF. Note that qF
has good reduction modulo B by condition c. Then by reducing ¢, modulo ‘B we obtain
¢ : E — qE. Tt can be shown that ¢ has again degree p. The composition of ¢ with
its dual isogeny?’ qZA> is the multiplication-by-p map m,,, which is purely inseparable** in
characteristic p. Then either ¢ or qg is inseparable, because separability is transitive for
extensions, so we may suppose this is the case for ¢. It turns out that every inseparable
isogeny factors as a composition of an n-th power of 7 and a separable map ¢’, for some
n >0, i.e.

p=y on"
But here ¢ = ¢ and deg p = deg ¢’ degn” = p =d-p" with ptdsod =1and n = 1. Thus
¢ E° 5 qF is an isomorphism i.e. j(E?) = j(E°) = j(qE) = j(qE) and condition d
implies [qE| = [E?]. Therefore ¥ surjects. O

2.8.1 Relating cl(O) with cl(Ok)

From now on, we shall denote the field L in the proof of theorem 2.16 by K or the ring
class field of conductor f. Note that the result above is an special case of a weakening
of theorem 1.4 i.e. the conductor in this case is principal ¢ = (f) and it is generated by
the conductor of O, hence its name. From theorem 1.4 we deduce that the primes of K
ramifying in L = Ky are precisely those dividing the conductor f.

¥Namely, those dividing the discriminant of the extension defined in section 1.

9Because those are the primes of bad reduction.

20Gee remark 2.7

21 A nonconstant morphism ¢ : C — C’ defined over a field K between curves over K has the property
P if so does the field extension K(C")/¢*K(C) where ¢* : K(C') — K(C) is defined by f — fop. P
can be separability, Galois, etc.
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2 COMPLEX MULTIPLICATION 2.8 The First Main theorem of CM

Section 4.6 will require an accurate description of some Galois groups involving the ring
class fields, and this reduces to relate cl(D) with cl(Og). For this, we will now relate the
proper O-ideals with the ideals of Ok, we introduce another family of ideals, and discuss
some results on them that we will not prove??. We suppose throughout this section that
O = {£1}.

A nonzero O-ideal a is prime to f if a + fO = O. This equivalent to the norm (O : a)
being relatively prime to f, since the injective® map O/a — O/a where x — xz f surjects
precisely when a is prime to f i.e. when f is coprime to the cardinal (O : a) of the finite
abelian group O/a.

Every O-ideal a prime to f is proper since fOr C O and if @ € End(a) then aO =
ala+ fO) Ca+ fOx C a+ O C O as wanted. The O-ideals prime to f generate a
subgroup I(O, f) C I(O) since the ideal norm is multiplicative. They also suffice to form
the ideal class group cl(O)

(O, f)/P(O, f) = cl(O)
Moreover, there is an isomorphism?*
n:1(0, f) — I(Ok, f)

anN® «———a
b — bOg

(2.2)

Now we are going to see how do the ring class fields and their Galois groups relate to each
other.

2.8.2 Some Galois groups of ring class fields

Taking these results for granted, it follows that if P = n(P(O, f)) we have a commutative
diagram

I — I(Ok, f)N P(Ok)/P — 1(Ok, f)/ P — I(Ok)/P(Ok)

EoL

c(0) ——— cl(Ok)
Since the induced map 7 : cl(O) — cl(Ok) surjects it follows that
kerm ~ I(Ok, f)N P(Ok)/P
We also have the following exact sequence

1 — (Z)f2) — (Ok/fOk)* —— kerm —— 1

2For the proofs see propositions 7.19-7.24 in [1].
23The map O — O where = — zf injects.
241t also implies the unique factorization for ideals in I(O, f), since O is Dedekind.
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2.8 The First Main theorem of CM 2 COMPLEX MULTIPLICATION

and if we let f = ¢ be a prime ¢ which is inert in K, then the residue field for g = (O
above ¢ is Fyy = Ok /lOk and the inertial degree is [Fy : Fy] = 2. Thus

kerm = (Ox/fOx)" /(Z] fZ)* = Fjy, [}

Since theorem 2.16 implies Gal(K;/K) ~ cl(Ok) and Gal(K;/K) ~ cl(O), by the natu-
rality of these isomorphisms we have that the following diagram commutes

1 — Gal(K;/K,) — Gal(K;/K) — Gal(K;/K) —— 1

l: !

1 — s kerr —— d(O) —— A(Of) ——— 1

In particular, Gal(K,/K;) ~ ker 7 is cyclic with £ + 1 elements since
| Gal(Ky/K1)| = |kern| = |[F /FS| = (> = 1)/(—1)=(+1

Moreover, if f is squarefree and we write f = [] ; ¢; for distinct primes /; then there is an
isomorphism
Gal(Ky/K,) ~ [ [ Gal(K,, /K1)
J
In particular, the extension has degree [K;/K1] = [];(¢; +1). The general picture is that
for f = ¢g and ¢ 1 g one has the following tower of extensions

Ky
N
K, K,
N 7
K,
|
K
|
Q
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3 MODULAR CURVES

3 Modular curves

In this section we define the modular curve in two ways, as a quotient of the upper
half-plane modulo a certain subgroup I' of SLy(Z) and as an algebraic curve. The first
approach is geometrical since SLy(Z) is in fact a discrete subgroup of isometries of $ with
the Poincaré metric, and it provides a formula for its genus in function of the subgroup I'
by applying results on Riemann surfaces. The second approach shows that the modular
curve classifies somehow the isogenies between elliptic curves. This requires studying the
field of functions that one can define on the curve.

In this section we followed |[3, 10].

3.1 The modular curve

The upper half plane is $ = {z € C: Iz > 0}. The special linear group over Z is
SLy(Z) = {(cgg) ca,b,c,d €7 and ad — be — 1}
and the following map defines an action of SLy(Z) on $.

HxSLy(Z) —— 9

az+b

(2,7) ——— (%) == 54

In particular, note that for v € SLy(Z) the formula

3(7)

S0 = o ap

shows that the action is well-defined. However, this action is not faithful. This leads
one to consider the modular group which identifies elements in SLy(Z) according to the
action above. This is SLy(Z)/{£I} where —I = (' ). Each element of the modular
group represents a linear fractional transformation, and these can be extended to be the
automorphisms of the Riemann sphere. In projective coordinates,

(25)(u:v) = (au+bv:cu+ dv)

It can be shown that the modular group is generated by 7~ 7 + 1 and 7+ 7~ L.
The principal congruence subgroup of level N > 1 is the following subgroup of SLy(Z)

L(N)={y=(25):(2}) = (§?) mod n}

A subgroup I' C SLy(Z) is a congruence subgroup if there exists N > 1 with I' D I'(N). It
can be shown that the index [SLy(Z) : I'(N)] is finite, hence [SLy(Z) : '] < oo holds too.
Given a congruence subgroup I', the modular curve of T" is the set of orbits for the action
of T" on §, i.e. Y(I') = I'\$ together with the quotient topology induced by the map
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3.1 The modular curve 3 MODULAR CURVES

7:9H —— Y(I)
s —TI's

if we endow $ with the Euclidean topology. Here 7 is an open map because given an
open subset U C $ we have

! (x(U) = | JwWw=TU

vyel

And I'U is an open set because the elements v € I' C SLy(Z) are homeomorphisms. It
follows that Y (I") is connected because 7 is continuous by construction and §) is connected.

Example 3.1. One important example is Y (1) = SLy(Z)\$, since every point in Y (1)
represents a C-isomorphism class of elliptic curves. Moreover, it turns out that if we let
F be

F={z€C:|z|>1and —1/2<Rz2<0}U{z€C:|z|>1and 0 < Rz < 1/2}

then Y (1) = F/ ~ where ~ here means identifying z + 1/2 = 2z — 1/2 when Rz = 0 and
1

= —2"! when |z] =1. #
N NN SNONING  SONENT NONE SSOSNE

Figure 1: The fundamental domain F, with some of its SLy(Z)-translates.

This follows from the moduli interpretation of Xy(1) (theorem 3.14): every point in
Y (1) represents a pair of elliptic curves together with a degree-1 isogeny. Since degree-1
isogenies are isomorphisms because they are automatically surjective, it follows that every

B F is called a fundamental domain for Y (1) because there exists a boundary identification ~ with
Y (1) = F/ ~. In particular, the upper-half plane is tiled by the SLy(Z)-translates of F, = SLy(Z) - F.
See figure 1
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point represents an isomorphism class of elliptic curves. Moreover, Y (') is a Riemann
surface. To prove this one has to give local charts in every point of Y (I'). It is natural
to consider the map obtained by sending I's — s € $), and it will work locally on almost
every point. However, this map need not to be well-defined for it may happen for instance
that I's = I's’ for s # s’. The points where this approach does not work are either the
elliptic points or the cusps, and require further study.

3.2 Elliptic points

Given 7 € $) we define the isotropy subgroup of T to be the set of elements in I' that fix 7

I,=f{yel:y(r) =7}

Then 7 €  is an elliptic point for I' if {£I}I",/{£I} is nontrivial. In other words, if
the isotropy subgroup is nontrivial when we identify each element of I', with a linear
fractional transformation. The cardinal hl = |{+I}I",/{&I}| is called the period of T
and hence 7 is elliptic if hX > 1. Moreover, the period depends only on I't because for
any v € I" one has

Tyr = (Y )y = ATy 2 Ts
Thus the period is defined for points in Y (I'). In fact, if I" < SLy(Z) is normal subgroup
the above is valid for any v € SLy(Z) and the period is the same for all points in the orbit
of 7 when SLy(Z) acts on $). It remains to find the elliptic points, and it is sufficient to
find them when I' = SLy(Z) because I'; is a subgroup of SLy(Z).

Theorem 3.2. The elliptic points for SLy(Z) are the elements in SLy(Z) -i or SLy(Z) - ¢
(the orbit of i and C respectively), where (> = 1,( # 1. Moreover, the isotropy subgroup
1s finite cyclic of order 1,2 or 3.

There are congruence subgroups I' for which there are no elliptic points, for instance
I' = T'o(N) with p|N for some prime p = —1 mod 12 and

To(N) ={y=(24):(24) = (5%) mod n}

It can be shown that for every point I't € Y(I') there exists a sufficiently small neigh-
borhood U of 7 containing at most one elliptic point (when 7 is elliptic) such that the
following map is a chart

o:1(U) —— V

Ty —— &, (u)"

where 0, (u) = =L*0 *". These charts define a complex atlas on Y (T').

26The map centers the neighborhood by sending 7 — 0 and 7 + oco.
2TThis suggests that m sends the neighborhood of an elliptic point 7 in to a neighborhood of 7(7) in
which every point but 7 has h, preimages.
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3.3 Cusps and X(I) 3 MODULAR CURVES

3.3 Cusps and X(I')

Let H* = HUQU {oo}. Then SLy(Z) acts on $H* and the orbit of co is QU {oo} because
if v=(2%) and ¢ # 0 then y(c0) = a/c is a rational number.
We define X (I") as the set of orbits of the action of I on $*

X() =T\9"

The cusps of I" are the equivalence classes of Q U {oo} under I'. If we endow $H* with a
convenient topology we will be able to include Y (T') in X(T") with X (T") being a compact
space, and this fact will allow us to compute the genus after applying some tools for
compact Riemann surfaces.

We define the open sets on $* to be the open sets in §) together with the sets v(N,, U{oo})
where ~ runs over SLy(Z) and

Ny ={2€C:3z>m}

which are the neighborhoods of co. The boundary of these sets (N, U {oo}) are either
a line or a circle that is tangent to the real axis, because v € SLy(Z) is a fractional linear
transformation. Now X (I') is Y(I') together with the cusps of I'

X(D) =T\ = Y(I) UT - (QU {o0})

and endowed with the quotient topology given by 7* : $* — X (I'). This is adding only
finitely many points (the cusps), because the index [SLy(Z) : I'] is finite and

SLy(Z) - (QU {oc}) = QU {00} = (Ur%) QU {oo})

In this process we have not lost any of the topological properties of Y (I'),
Theorem 3.3. X (I) is connected, Hausdorff and compact.

The compactness of X(T') follows from the compactness of F* = F U {co} * and the
finiteness of the index [SLy(Z) : I'], because if SLy(Z) = |J, I'y; then

X(P) =T 6" =T (SLa(Z) - F*) = (I3 F”

and so X(I') is compact for being a finite union of compacts.

To prove that X (I') is still a (compact) Riemann surface, one has to give charts at the
cusps. Recall that 7 has hl preimages in a neighborhood of an elliptic point. It turns
out that 7 has infinitely many preimages in a neighborhood of a cusp 2. SLy(Z) is
generated by 7 — 7 + 1, because if y(c0) = (¢4)(c0) = oo then ¢ = 0 and ad — be = 1

28 Any open cover of F* must contain a neighborhood of oo of the form N,,. Thus a finite open subcover
is N,,, together with a finite open subcover of 7* — N,,, which is compact in the Euclidean topology.
29This does not enter in contradiction with the theory of Riemann surfaces, because $* is not compact.
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3 MODULAR CURVES 3.4 The genus of X (I")

implies that a = d = +1 and thus y = (§ %)ib is a translation. In other words, the period
is not defined at a cusp. The width of a cusp s € Q U {oo} is defined as

hor = |SLo(Z) oo/ (0{EIIT6 ) o]

where §(s) = co. Then hyr is counting the number of SLy(Z)-translates of F* which
are distinct under I'-isotropy. At the cusps I's € X (I") the charts are

i) ———V
T'u ——— exp(2mids(u)/hsr)

where d4(s) = oo. This transforms F* into a 27/hsr sector of the unit disk, sending
s — 0. In short,

Theorem 3.4. The topology and the charts treated above define a complex atlas for X (T').
Thus X (') is a compact Riemann surface.

3.4 The genus of X(I)

A compact Riemann surface X is in particular a compact topological surface and every
such space is homeomorphic to a g-holed torus, where g is the genus of X. One can
recover the genus gx of X = X(I') for I' a congruence subgroup by counting the cusps
and the elliptic points of X (I'), by using some identities that apply to general compact
Riemann surfaces.

If f: X — Y is a nonconstant holomorphic map between compact connected Riemann
surfaces, it surjects because im f is both open (by the open mapping theorem for holo-
morphic functions) and closed (im f is compact in a Hausdorff space, thus closed). The
degree d is defined as follows. For any y € Y let

d= Z €
ref~1(y)

where e, is the ramification degree of f at x defined by the local expression of f given by
local charts centered at x. That is

@ ofopl(z)=2"g(z)

for some g holomorphic with g(0) # 0, 00. The degree is well-defined by the definition of
e,. Given a nonconstant holomorphic map f, the Riemann-Hurwitz formula relates the
degree, the ramification degrees and the genus of X and Y

2gx —2=d(29y —2)+ > (e, — 1) (3.1)

rzeX

The map we are going to apply (3.1) is the natural projection
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3.4 The genus of X (T') 3 MODULAR CURVES

II: X(I') —— X(1)
't —— SLy(Z) 1

which is an holomorphic map. The ramification index at an elliptic point is
{E1YSLa(Z), : {£1}T

because a local chart ¢ in X(I') sends 7(7') — u = 6-(7')"r, and the local expression of

IT sends u +— oIl o (u) = 5T(T’)h§L2(Z) and thus

SLQ(Z)/hF

Yollop™(u) =u"
as wanted. By a similar argument the ramification index at a cusp is
{£1}SLy(Z)s : {£I}T]

and clearly the ramification index is 1 at everywhere else. Denote by ¢, the number of
elliptic points 7 in X (I") with ;| = h where h € {2,3}, and €., the number of cusps in
X (T). Then by the well-definedness of the degree one has 3

S (e —1) = (d— o) + 5 d — ) + 2 (d — )

zeX(T)
Then by (3.1) the genus of X (I') is

d €2 €3  €oo
1y _2_5_ f
=t g Ty T3 T

because X (1) has genus 0. This follows from the fact that the j-invariant
j:X(1)—=C

is an holomorphic isomorphism of compact Riemann surfaces.
We apply the formula above to X (1), although we already know its genus.

PR SE N N S
9= T 173 2~

because II = idx (1) has degree 1 and X (1) has only one cusp by the transitivity of SLy(Z)
on Q U oo and two elliptic points, one of period 2 and another of period 3 (namely, i and

(3) because these are the only elliptic points in the fundamental domain F for X (1) by
theorem 3.2.

39Note that II sends cusps to cusps and elliptic points to elliptic points, although some elliptic points
in X (1) may not come from elliptic points in X (T").
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3 MODULAR CURVES 3.5 Modular curves as algebraic curves

3.5 Modular curves as algebraic curves

There is a general result on Riemann surfaces:

Theorem 3.5. Every compact connected Riemann surface can be represented as an alge-
braic curve over C. 3!

Modular curves are Riemann surfaces, so they must also be represented as algebraic curves
over C. They are in fact curves over Q:

Theorem 3.6. There exists an algebraic curve X defined over Q such that the following
18 an isomorphism of Riemann surfaces

X(C) ~ Xo(N)
where Xo(N) = X(I'o(N)) is defined as in 3.3.

There are at least two ways to show this. The first method shows that the field of functions
of Xo(N) is C(j,jn) where jy = j(N7), and we devote sections 3.5.2,3.5.3 and 3.5.4 to
this approach.

The second approach uses that a moduli space has model over a number field, which in
this case can be shown to be Q. All that is left to do is that X,(/V) is a moduli space
(section 3.6).

The first approach is however not easily generalizable to other contexts.

3.5.1 Algebraic curves

To begin we must define what is an algebraic curve. Let k be a field of characteristic 0
and k its algebraic closure. Let fi, -+, fin € k[X1, -+, X,] be a set of m polynomials
and let I be the following ideal I = (f1,--- , fm). Let C be the following set

C={zek": f(z)=0forall fel}

The coordinate ring of C' over kis k[C] = k[X1,--- , X,,]/I and the function field of C' over
k denoted by k(C) is the field of fractions of k[C] when I is a prime ideal in k[X1, -+, X,],
because to form a quotient field from a ring requires the ring to be an integral domain.
The field of fractions is the set of rational functions on the coordinates of a point in C'
when we ignore elements in /. This makes sense because C' is the vanishing set of I.

C is an affine algebraic curve over k if k(C) has transcendence degree 1 over k and
k(C)/k(t) is a finite algebraic extension, where ¢ is a transcendence base.

C'is nonsingular if the matrix (D, f;(P)); ; has rank n —1 for any P € C. For nonsingular
curves, one can prove that mp/m% is a one dimensional vector space over k where mp =
{f € k[C] : f(P) = 0} by showing that mp/m? is isomorphic to the tangent space to

31Here an algebraic curve over C is loosely speaking a set given by ¢(z,y) = 0 where ¢ € Clx,y] is a
bivariate polynomial. We will define them more precisely in section 3.5.1.
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C at P, which is the kernel of (D, f;(P));; and this latter has dimension 1 because C' is
nonsingular. Moreover,

E[Clp ={f/g € k(C) : g(P) # 0}

is a local ring with maximal ideal
Mp ={f/g € k[C]p: f(P) =0}

and by using Nakayama’s lemma (which can be used because k[C]p is local and Noetherian
and Mp = mp - k[C]p implies that Mp is finitely generated) one can show that Mp is a
principal ideal, generated by some ¢. This element ¢ is called an uniformizer at P and it
induces a valuation in k[C] and by extension on k(C)

vp:  k(C) —— ZU{cx}
f=tur—e

Here vp(0) = oo by definition. From now on C' is a nonsingular affine algebraic curve
over k.

Affine curves arise from projective curves when one chooses an affine chart in the projective
space P". Instead, to define a projective curve the polynomials f; must be homogeneous
in order to make f;(p) = 0 a well-defined expression for p € P". Similarly, a nonsingular
projective curve is such that every nonempty affine curve associated to every affine chart
is nonsingular.

To define morphisms between curves we include them in an ambient space, which is the
projective space P". A morphism of curves h : C'— C’ is the map

h(P) = (t""ho(P):---:t " h.(P))

(where v = min; vp(h;)) associated to an element h = (hg : --- , h,) € P"(k(C)) so that
h(C) C C".

Such a map is an isomorphism if there exists another morphism of curves h~! with hoh™!
and h~1oh being the identity maps on C’ and C, respectively. This induces an equivalence
relation. An stricter criterion is to be isomorphic over k, when h and h=! are defined over
k. A morphism h is defined over k if h; € k(C') = the field of fractions of k[X}],/I} where
I, = I Nk[X;];. Here k(C) can be thought as a subfield of k(C') because I; C I.32

A function field K over k is a field with K Nk = k and a finite extension of k(t) with ¢
transcendental over k. We introduce another equivalence relation: two function fields K
and K’ are conjugate over k if there exists ¢ : K — K’ that fixes k pointwise.

The following result from algebraic geometry gives a crucial correspondence:

32For instance, if & = Q the projective curves C' : X2 +Y? = 272 and C' : X2 +Y? = 372 are
isomorphic when C,C’ C P?(Q), but not isomorphic over Q: working modulo 4 or over the Gaussian
integers one can easily show that C’ has no Q-points in P?(Q) while C does (for instance (1:1:1) € C)
and if they were isomorphic over Q, Q-points would be mapped to Q-points.
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Theorem 3.7. There is a bijection between the set of isomorphism over k classes of
nonsingular projective curves over k and the set of conjugate over k classes of function
fields over k, where the class of a curve C' is mapped to the class of k(C'). Conversely, a
function field K is mapped to some desingularization of the curve defined by F(t,u) =0
where F(x,y) is obtained by clearing denominators from f, the minimal polynomial of u
over k(t) where K = k(t,u).

Proof. If two curves C, C" are isomorphic C £ ¢ over k then so are their function fields;
consider the pullback ¢* : k(C") — k(C') where ¢*(g) = g o . It is an isomorphism since
(™1 = (¢*)7}, and it also fixes k so k(C') and k(C") are conjugate over k. Thus the
map is well-defined. It is also injective, but we will not show this.

To show it surjects take a function field K and suppose that K/k(t) is separable. Then by
the primitive element theorem we may write K = k(u,t). Let f(Y) = minpoly(u, k(t),Y)
and define F(X,Y) by clearing denominators from f. If F' is not irreducible over k then
it factors ' = F}F, for some F; € k[X,Y].

The coefficients of F, F» lie in a finite extension k(7). Note that g(Z) = minpoly(n, k, Z)
is also irreducible in k(t)[Z], otherwise by unique factorization the coefficients of a fac-
torization of g lie in k(t) Nk = k. Now put L = k(t,n) so that [K : k(t)] = deg(f) and
[L: k(t)] = deg(g). Let M = KL = k(u,t,n). By hypothesis F' factors over k(n) so
[M : L] < deg(f) and

[M = k(1)) = [M = L][L - k(t)] < deg(f) deg(g)

Thus [M : k(t)] = [M : K][K : k(t)] implies [M : K] < deg(g) so g factors g = g1g2 for
g; € K[Z]. But g factors also in k and g; € (K Nk)[Z] = k[Z], a contradiction.

Thus F is irreducible over k and C' : F = 0 defines a plane curve. If it is nonsingular
we are done, otherwise we desingularize it. This process gives another curve which is
nonsingular and birationally equivalent to C'. Note that the function field remains the

same, since any birational equivalence induces an automorphism of the function field. [

3.5.2 Automorphic forms
If v € SLy(Z) then we define the weight-k operator [-]; as follows

fNe(m) =50, 7) 7 f(v(7))

where j(v,7) = ¢ +d. A function f is weight-k invariant with respect to I' C SLy(Z) if
F[v)e = f for any 5 € T.

Let I" be a congruence subgroup. An automorphic form of weight k with respect to I" is
a meromorphic weight-k invariant function f : § — C such that f[a], is meromorphic at
oo for any « € SLy(Z) (that is, is meromorphic at the cusps of I'). We denote the set of
automorphic forms of weight k with respect to I' by A.(I") and define C(T") = Ay(T").

A modular form of weight k with respect to ' is an automorphic form of weight k& with
respect to SLy(Z) that is holomorphic, an stronger condition than meromorphic, and a
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cusp form is a modular form that vanishes at the cusps of I'. The set of modular forms
is M (I") and the set of cusp forms of weight k is denoted by Si(I).

For instance the j-invariant j : X (1) — C is an automorphic form of weight 0 with respect
to SLa(Z), so C(j5) C Ap(I'(1)). In fact

Theorem 3.8. One has C(I'(1)) = C(j)

Proof. Let f : X(1) = C be an automorphic form for SLy(Z). Then foj*:C — Cis
an holomorphic map on the Riemann sphere C. But every holomorphic map C - Cis
a rational function, so f o j71(2) = r(z) for some r € C(z). Therefore f € C(j(z)) as
wanted.

It follows also that if f is holomorphic on Y(1) then it is a polynomial on j, because j is
exhaustive and any factor in the denominator of r would create a pole. O]

3.5.3 The modular polynomial

In other words, the function field of the Riemann sphere is just the rational functions C(t),
and the isomorphism j : X (1) — C gives C(X (1)) = C(j). We will now find C(I'o(N)),
but first a general theorem for C(I'):

Theorem 3.9. Let T be a congruence subgroup. Then C(T') is a finite extension of
C(I'(1)), and its degree is at most [I'(1) : T].

Proof. Choose n right coset representatives ; such that I'(1) = | |, I'y; with 73 = id. Let
f € C(I'). Then the set {f;}; where fi(7) = f(v:(7)) is left invariant by 7 + 7 for any
v € I'(1), because f is I'-invariant and ;¥ = ~; ;7; for some j and ~; ; € I'. Thus any
symmetric function on the f; is I'(1)-invariant, i.e. is in C(j). Note that f = f;. Then

P(Y) = H(Y — fi)

is a polynomial P € C(5)[Y] with P(f) = 0 of degree n, and f was arbitrary. O
Theorem 3.10. One has C(I'y(N)) = C(j, jn(t)) where jn(T) = j(NT).

Proof. jn is meromorphic because j is meromorphic, but we still have to show that jy is
[o(N) invariant. Let v = (24) € Io(N). Here is crucial that N|c. Then

i) = i) = (R = ()

=Jj(Y(N7)) = j(NT) = jin(7)
because 7' = (C/“N bflv) € SLy(Z), as wanted.

33The degree of any element is bounded by n and the extension is separable.
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Again choose n = [I'(1) : I'g(N)] right coset representatives such that I'(1) = ||, To(N)~;.
Let P € C(j)[Y] be the minimal polynomial of jy over C(j). Then f(7) = P(j(7), jn (7))
is the zero function, and for all ¢

f(nim) = 0= P(j(vi7),jn(07)) = P(i(7), jn (7))

Thus jy(7:7) is also a root of P. Suppose that jx(vx7) = jn(77) for some 7. Then both
a(N~,7) and S(N~7) are in F for some «, 5 € SLy(Z) and by the injectivity of j one
has a(Nv7') = B(Ny7') for all 7/ in a neighborhood of 7. If @' = (¢4) then

= (19 1)aTB(F1) = (&) € To(N)
so k=1, and [C(j, jn) : C(j)] = n has degree n. O

The modular polynomial ® is the minimal polynomial of jy over C(j). By the above it
has degree n = [['(1) : To(NN)] and it can be written as

On(Y) = [[(Y = sin(rer) Z@vz
for some rational functions ¢n;(j) € C(j) in j.

Remark 3.11. Each ¢y, is a symmetric polynomial in jn(7,;7), hence holomorphic in £
and I'(1)-invariant, so it must be a polynomial in j by theorem 3.8. Thus we may write
Oy (X,Y) as the polynomial obtained by replacing j — X in ®x(Y) € C(j)[Y].

3.5.4 Properties of the modular polynomial

Throughout this section NV is a prime number. Although the results remain to be true for
elliptic curves over any field with characteristic not dividing N we expose only the cases
for N prime, because the proofs for the general case are more involved but with the same
ideas, i.e. writing down a set of coset representatives explicitly. In other words, we claim

that
{% =STF = (9! )}0§k<N

is a set of right coset representatives of I'(1)/Io(N), i.e. T'(1) = [ y<pe y To(IV) 7k

By theorem 3.7, X((N) is a desingularization of the plane curve ®y(z,y) = 0. First we
show @ has integer coefficients. This is relevant, for it lets one consider the reduction of
the modular curve modulo a prime.

Theorem 3.12. One has ¢ni(X) € Z[X]. Thus n5(X,Y) € Z[X,Y].

Proof. Consider the following expression for @y (Y)

N-1

(I)N(Y):< — Jn(T ) < —JN’YkT>

k=0
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Note that ¢y, € C[j] by remark 3.11. The g-expansion of the j-invariant has inte-
ger coefficients, ie. j(r) = ¢!+ 744 + > ., a,q¢" with a, € Z, because j(1) =
172895(7)3(g2(7) — 27g3(7)?)~! and Eisenstein series have integral g-expansions. Thus if
we let (y = e“N" one has

T+ k
IN(WT) = J( N ) = >§_1anq g

because 2N = ¢/N¢k Hence jy () € Q(Cw)[[q"N]] ie. it is a ¢*/N-series with
coefficients in Q((y). The Galois group Gal(Q(Cx)/Q) acts naturally on Q(¢y)[[¢"/™]]
coefficientwise. In particular, the set S = {jn(7£7)} is the union of two orbits because
jn(t) is fixed, so ¢y, € Q[[¢*/V]] for it is a symmetric function on S hence invariant by
the action. Moreover, since ¢n,; € C[j] is a polynomial on j all of its g-powers must be
integral i.e. ¢n; € Q[[g]]. On the other hand, as the coefficients a,(5" of jn(yx7) are
algebraic integers so are the coefficients of ¢ ;. Thus ¢y, € (Q N Z)[[q]] = Z[[q]] since
Z is integrally closed. Lemma 3.13 then implies ¢n; € Z[j] is a polynomial with integer
coeflicients.

[]

Lemma 3.13 (Hasse g-expansion principle). Let f € C(I'(1)) be holomorphic in $ with
f € Allq]] i.e. the coefficients in its q-expansion lie in A for some Z-module A C C. Then
f € Alj] is a polynomial in j with coefficients in A.

Proof. Theorem 3.8 implies f € C[j] i.e. f = P(j) for some P € C[X] so our goal is to
show P € A[X]. We proceed by induction on d = deg P. The case d = 0 is clear, since f
is constant. Suppose d > 0. Since j(7) = ¢~' + O(1) one has f(7) = a_4q~ % + O(q~¢™).
Let Q(X) = P(X) —a_qX% and g(7) = Q(j(7)). Then g € Al[q]] and deg@ < d so by
induction hypothesis @ € A[X] and thus P € A[X]. O

The second result says that the modular curve parametrizes somehow the isogenies of
degree®* N. This point of view is used in section 4 to construct Heegner points, which
by the following theorem can also be seen to correspond to diagrams ¢ : £ — E’ where
E, E’ are two elliptic curves and ¢ is a cyclic isogeny. A more precise statement is

Theorem 3.14. A point (j,j') € C? is in Xo(N) : ®n(z,y) = 0 if and only if there exist
elliptic curves E, E" over C with j-invariants j and j' and a cyclic isogeny E — E' of
degree N .

An isogeny is cyclic if it has cyclic kernel. Our isogenies here will have degree N with N
prime, hence cyclic.

Proof. With this result, we write down ®y(7,Y)

34Here the degree is the cardinal of the kernel, because C is separable.
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T+ k

—)) (32)

(i), Y) = (V=ju(r) T (V=iwtuer)) = (Y=j(vr) T v (

0<k<N 0<k<N

By the surjectivity of j we may put j' = j(7'). Thus ®y(j, ') = 0 if and only if 7/ ~ N7
or 7 ~ %, or equivalently if A.s ~ An, or Av ~ (N, 7+ k) as homothety of lattices.
Note that these are sublattices of A, of index N. Conversely, a sublattice of A, of index
N must be one of these: let A’ C A with [A: A’] = N and d the smallest positive integer
in A’. Then A" = (d,ar + k) with ad = N and 0 < k < N. But N is prime so either
(a,d) = (1,N) or (a,d) = (N, 1), as wanted.

The natural inclusion A’ C A with [A : A’] = N induces a cyclic isogeny En — Ej.
Conversely, every degree N isogeny is induced by an inclusion of lattices A’ C A with

[A: A'] = N. Tt is then cyclic because the kernel is isomorphic to A/A’ O

The existence of the dual isogeny implies that ®y(j,5') = 0 if and only if ®x(j’,5) = 0.
Moreover,

Theorem 3.15. One has P (X,Y) = On(Y, X). Moreover, ®n(X, X) has leading term
—X?N j.e. is monic.

Proof. Recall that jy(v7) = ](%) isaroot of @ (j(7),Y). We also had ®n(j(7),j(NT)) =

0 for all 7. Hence j(%) is also a root of ®n(Y,j(7)). Pn(j,Y) is irreducible in C(j)[Y]

so it divides ®n (Y, j). Now for any fixed lattice A C C the equations ®(j(A),Y) = 0 and
Oy (Y, 7(A)) = 0 have the same number of roots in C. Hence ®n(j,Y) - f = Pn(Y, ) for
some f € C(j). Now C(j)/C is transcendental so ®x(j,7) # 0 and f(j) = 1, as wanted.
The j-invariant has the following g-expansion j(7) = %—1—0(1), while f(7) = ®n(j(7),4(T))

verifies
f(T) = <](7') —](NT)> H <j(7') —j(T;k>> = _q2LN_|_...

0<k<N

because j(1) —j(NT)=q¢ ' —¢ N +--- and j(7) —j(iNk) =q ' = (N + -+ where
(n is an N-th primitive root of unity. O]

3.6 Modular curves as moduli spaces

The result of this section is quite similar to theorem 3.14; that modular curve parameterize
somehow elliptic curves together with some additional data. The point of discussing this
is that there is a definition of moduli space in terms of categories given by Mumford in the
1960s, and this categorical definition ensures that a moduli space is unique up to unique
isomorphism.

The elements of our moduli space will be enhanced elliptic curves. An enhanced elliptic
curve for I'o(N) is a pair (F,C) where E is an elliptic curve and C' C E is a cyclic
subgroup of order N (a N-cyclic group). Two enhanced elliptic curves (£, C) and (E',C")
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are equivalent if there exists an isomorphism E — E’ sending C' to C’. The set of
equivalence classes of enhanced elliptic curves is denoted by So(IV).

So(N) ={[(F,C)] : E elliptic curve and C C E an N-cyclic subgroup}
Then Yy(N) (defined in section 3.1) is a moduli space under the following bijection

Yo(N) —— So(N)
Co(N)T —— [(E;, C,)]

Here E. = C/A, is a complex torus where A, = Z & Z7 and
C. = (1/N +A.)

is the N-cyclic subgroup of E, generated by Q. = 1/N + A..
In other words,

Proposition 3.16. Every enhanced elliptic curve is equivalent to [(E,,C.)] for some
T € 9, and the map above is a well-defined bijection.

Proof. Well-definedness: If To(N)7 = Io(N)7' then 7 = 7' for some v = (24) =
(5%) mod N. Let m = ¢’ 4 d so that mr = at’ + b and mQ, = (c7’ +d)/N + A, and
mA, = A as before. But (c,d) = (0,*) mod N so mQ, = d/N + A with d € (Z/NZ)X.
This implies that C/A, “=5° C/A, is an isogeny sending

<QT> = <d/N + AT’> = <QT’>

Surjectivity: Let (E,C) be an enhanced elliptic curve. We may suppose £ ~ C/A,.
for some 7 € §, so that C' maps to (@) for Q@ = (¢’ + d)/N under this isomor-
phism, but ged(c,d, N) = 1 so ad — bc — kN = 1 for some a,b,k € Z. Therefore
v = (‘;Z) € SLy(Z/N7Z) and we can suppose 7 € SLo(Z) because the natural map
SLo(Z) — SLo(Z/N7Z) surjects and @ depends only on the classes of ¢ and d modulo N.
Let 7 = 7" and m = ¢’/ +d so that m7 = ar’+b and mA, = A,,. Then C/A, gl C/A
is an isogeny sending @, — @ so (E.,Q.) ~ (E,C) as wanted.

Injectivity: Finally, suppose that [(C/A;, (Q.))] = [(C/Aw,(Q.))]. Then C/A, =%
C/A,s is an isogeny for some m € C and (”ﬁ{) = 7(7;) for some v = (‘; g) € SLy(Z). Let
m = ¢’ +d. Then mC, = O implies ¢ = 0 mod N hence d € (Z/NZ)X and v € I'o(N).
This shows Io(N)7 = To(N)7". O
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4 Heegner points on Xy(N)

The last two sections are an ad hoc approach to class field theory for quadratic imaginary
extensions, since we relied on the correspondence between elliptic curves and tori, and the
fact that the endomorphism ring of an elliptic curve is an order in a quadratic imaginary
field. We also constructed the ring class fields K analytically through the j-invariant.
Moreover, the First main theorem of CM (theorem 2.16) is just a weakening of Artin
reciprocity law (theorem 1.4) and while we proved theorem 2.16 using properties of elliptic
curves, theorem 1.4 usually requires Tate cohomology, which we will not discuss here.

In this section, by using the Modularity theorem we will show that with this approach one
can produce algebraic points on elliptic curves over Q, the Heegner points.

To explore all of these results, we will need to take others for granted since discussing
them in full detail is out of the scope of this thesis.

We consulted [4, 7, 2, 8].

4.1 The modularity theorem

The following is a very powerful result

Theorem 4.1 (Modularity theorem). Let E/Q be an elliptic curve. Then there exists®
N and a surjective morphism over Q of curves over Q

0 Xo(N)ag — E

Here Xo(N)ag denotes the algebraic curve over Q underlying the Riemann surface Xo(N)
which 1s given as the desingularization of the projective closure of the affine model

(I)N (l‘, y) =0
The morphism ¢ is called a modular parametrization of E.

In other words, every elliptic curve defined over Q can be parameterized by some modular
curve. Although it was thought to be inaccessible, an special case of theorem 4.1 proven
by Taylor and Wiles in 1994 was crucial to prove Fermat’s last theorem. The full proof
was completed in 2001 by Breuil et al.

The application of theorem 4.1 that we are interested in is to produce points of infinite
order on an elliptic curve, known as Heegner points. With these points one can prove
some special cases of the Birch and Swinnerton-Dyer conjecture.

4.2 The L-function

Given an elliptic curve E over a number field K, the rank of the abelian group E(K) is
known to be finite:

35The minimal N for which theorem 4.1 holds is now known to be the conductor of E.
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Theorem 4.2 (Mordell-Weil). If E and K are as above then one has
EK)~Z" T
where T is a finite abelian group and r is the rank of E(K).

The torsion subgroup 7' = FE(K ) for the case K = Q can be effectively found by using
Nagell-Lutz theorem. However, there is no known algorithm for computing the rank r.
To be true, the BSD conjecture would solve this problem by giving an effective procedure
to determine r. To state this conjecture we introduce the L-function, although discussing
more of its properties are out of the scope of this thesis. The L-function encodes all the
possible reductions of our elliptic curve F, so we have to define reduction.

4.2.1 Reduction over local fields

Here L is an arbitrary local field, for instance the p-adic numbers QQ,,. To reduce an elliptic
curve E over Q in L is to consider the equation defining F as an equation over L. In
order to do this, one first has to find a good equation for E that can be reduced over L.
Let R be the ring of integers of L, m an uniformizer i.e. a generator of the maximal ideal
m and £ = R/m the residue field.

In section 2.3 we claimed that every elliptic curve over C admits an Weierstrass equation
of the form

Er Y2 =4X3— g, X — g5

If £ is over an arbitrary field K, by the Riemann-Roch theorem every elliptic curve can
be put as follows

W Y?Z 4+ a1 XY Z+a3Y7Z? = X+ ay X*Z + ay X Z* + ag Z°

Then W is a minimal Weierstrass model for ' over R if a; € R and the discriminant
has minimal 7 valuation i.e. v;(A(W)) is minimal. The reduction E of E over k is the
algebraic subset of P?(k) defined by W ®g k i.e. it is obtained by reducing the a; modulo
m. The reduction is good if the discriminant is nonzero over k, and bad otherwise.
There are three cases of bad reduction: additive, split multiplicative or nonsplit multi-
plicative. These can be described geometrically since an irreducible cubic has at most
one singularity, which is either a cusp (additive reduction) or a node (multiplicative re-
duction). In the split multiplicative reduction case the tangents at the node are defined
over k, and in the nonsplit case they are not.

In particular, if we are given £/Q and we let L = Q, then a minimal model always exists,
and the conductor of F is an integer divisible only by the primes p for which the reduction
E of F/Q modulo k = Z,/pZ, ~ 7./pZ is bad.

4.2.2 Definition

Let F/K be an elliptic curve and v a nonarchimedean place of K. Then the completion
K, of K at v is a local field®®. Since k, = R,/m, is a finite field we may let g, = #k,

36Here K, R,,m,, k, and 7, are as in section 4.2.1 and depend on the place v.
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and a, = ¢, + 1 — #El,(k:,,) where F, is the reduction of E over k,. The local factor is
defined as follows, depending on the reduction type of E at v:

1—a,T+qT? if F has good reduction at v,

L(T) = 1-T if F has split multiplicative reduction at v,
1+T if ¥ has nonsplit multiplicative reduction at v,
1 if £ has additive reduction at v

Then the L-function of E/K is

Lg/k(s) = H Ly(q,*)™"

where v runs over the nonarchimedean places of K. The bound |a,| < 2,/g, implies that
the expression defining Lp,x(s) converges for Rs > 3/2. Since L, i (s) can be extended
to a meromorphic function in C one can consider the behavior of Lg/k(s) at s = 1. This
fact was®” unknown when Birch and Swinnerton-Dyer posed their conjecture:

Conjecture 4.3 (Birch and Swinnerton-Dyer). Let E/K be an elliptic curve of rank r.
Then Lg/k(s) has order r at s = 1.

There is also an stronger version of BSD which describes also the coefficient
lim Lg/k(s)(s —1)7"
s—1

in terms of additional arithmetical data of E/K, for instance the order of the Tate-
Shafarevich group HI(E/K) that we will define in section 4.5.1.

4.3 Modular forms and L-series

We discuss some results on modular forms®® and their connections with L-functions.
Recall the action of SLy(Z) on $) induced an action on the set of meromorphic functions
on §, and modular forms were invariant up to multiplication by a factor (c7 + d) . We
now extend this definition as follows. Let

GLH(Q) = {(gg) ca,b,c,d € Q and ad — be > o}
Then we redefine the weight-k operator as follows

FIle(r) = (dety)*(er + d) " f(7(7))

This is indeed a generalization since in SLy(Z) one has dety = 1.
Throughout this section we put My(N) = My(Iy(N)) and Si(Io(N)) = Sp(V) for
convenience.

37Tt was only known for E with CM or for E/Q having a modular parametrization.
38We defined them in section 3.5.2.
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4.3.1 Hecke operators
Let M(n, N) be the following set

M(n,N):{(“b) a,b,c,d € Z,ad — bc = n, N|c and ged(a N)zl}

Then I'g(V) acts on M(n, N) and we can consider representatives o of the finitely many
right cosets {T'o(N)a;} = [o(N)\M(n, N). Given f € My (N) we define Ti(n) by

= nE_IZf [k

The operators Ty (n) are the Hecke operators for I'g(IV), here defined through their action
on modular forms. They are C-linear and preserve modular and cusp forms:

Theorem 4.4. For any n one has Tj,(n)My(N) C Mg(N) and Ty,(n)Sp(N) C Sp(N).

Moreover, one can endow Si(/N) with an Hermitian inner product. The Petersson inner
product on Si(N) is Hermitian and defined by’

/ i dpda

where F is a fundamental domain for I'o(N) and 7 = o + ip. An eigenform f is a cusp
form which is an eigenvector of T, for all n. They suffice to generate Sy (V):

Theorem 4.5. There is a basis { f;}; of simultaneous eigenforms for Si,(N) i.e. for alln

Ti(n)fi € R- f;

The eigenvalues are real because the Hecke operators are Hermitian with respect to the
Petersson inner product. The algebra generated by the Hecke operators is the Hecke
algebra.

The Hecke operators for I'g(N) can also be defined in a natural way on Xy(/V). Since it
can be shown the 7, generate the full Hecke algebra it suffices to define 7}, for p prime.
By theorem 3.16 every point P € X,(N) is of the form P = (E,C) where E is an elliptic
curve and C' a cyclic subgroup of order N, or also as (F, ¢) where ¢ : E — E’ is a degree
N isogeny by theorem 3.14. We define T}, by

T,((E,C)) =) (E,4(C))

¢

where ¢ runs over the degree p isogenies ¢ : £ — F'.

39Tt is well-defined since the integral can be taken over a compact set and cusp forms have good
behaviour at the cusps of I'g(N). Note also that 0 ~2dpdo is the Poincaré metric for §$ and T'o(N) C SLy(Z)
preserves it.
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4.3.2 Oldforms and newforms

Some forms in Sx(N) come from forms in Sy, (M), in the following sense. If M|N and d|4;
then for any f € My (M) the function ¢(7) = f(d7) = vy na(f) verifies g € My (N). The
map tprn,q restricts to tpng @ Sp(M) — Sk(IV) since the natural map Xo(M) — Xo(N)
sends cusps to cusps. The set of oldforms is

old :
Sk(N)* = U im ey N g
M|N and d| %

and the set of newforms is the orthogonal complement S (N)*" = (Si(N )Old)l.

4.3.3 The Jacobian of a compact Riemann surface

Suppose X is a compact connected Riemann surface, for instance X = Xy(/V). Then
by singular homology over Z we know that Hy(X) ~ Z ~ Hy(X) and H(X) ~ Z*
where g is the genus of X. It turns out H;(X) can be thought as a subgroup of the set
of meromorphic differentials 2'(X), a family of objects which can be integrated that we
define now.

For an open subset V' C C a local meromorphic differential of degree n on V is an
expression of the form f(z)(dz)™ where f is meromorphic on V and z is a local variable
on V. The set of local meromorphic differentials on V' is denoted by Q"(V).

Let ¢; : U; — V; be the coordinate charts of X where j € J. Then a meromorphic differ-
ential w of degree n on X is an element w € [[;; Q"(V;) verifying ¢y ;(wilv; ;) = wjlv;,
for all j,k where ¢ ; is the pullback of the transition map ¢ ; : Vjr — Vi; and
Vie = ©;(U; NUg),Vi; = ¢i(U; N Uyg). This is essentially restricting w to be locally
integrable, regardless of the chosen coordinate chart. We denote by Q} (X) the set of
holomorphic differentials on X, in which the local meromorphic differentials are holomor-
phic.

The reason to introduce meromorphic differentials will become clear now, since the dual
space Q] (X)" = Hom(Q'(X),C) and H;(X) are related in the following sense. Recall
that H;(X) ~ Z? so there are 2g closed loops 71, , 72, in X whose homology class
generate H,(X). If we take a chain ¢ = 329, ¢y € Hy(X) and a 1-form w € Q} (X)

then the integral
2g
/ w = Z ¢ / weC
c =1 %

is a well-defined complex number. Thus the operator fc which integrates 1-forms over ¢
is an element of O} (X)". Moreover, it can be shown that Q) (X)" ~ @, Rf% and
that H(X) naturally identifies under the correspondence ¢ — [ to

H(X) ~ Zé:g?Z/%
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Thus there is a natural inclusion H;(X) C Q] (X)". The Jacobian of X is then defined
by
Jac(X) = QLy(X)"/Hy(X)

As an alternate motivation to introduce the Jacobian consider the following. If X is an
elliptic curve then we are in the genus g = 1 case and X is an abelian group, but for g > 1
this does not longer hold. The Jac(X) is an abelian group obtained from X, which in the
g = 1 case is isomorphic to X.

Abel’s theorem gives an easier description of Jac(X) in terms of classes of divisors in the
Picard group. The Picard group is Pic(X) = Div(X)/Pr(X) where

Div(X) = { Z n,x with n, # 0 for finitely many :I;}
zeX

is the set of divisors on X and Pr(X) = {(f) where f € C(X)} is the set of principal
divisors. Here C(X) is the function field of X and (f) is the principal divisor associated
to f. Then

Theorem 4.6 (Abel). Fiz a point xo € X and let Div’(X) be the kernel of the degree
map i.e. the divisors with .,y n, = 0. Then the map Div’(X) — Jac(X) sending
Yorex Mol = Yoy Ny f;; induces an isomorphism

Pic’(X) = Div’(X)/Pr(X) ~ Jac(X)

The Jacobian is also a complex torus (S*)?, since Z* is a lattice in R?9. It can be shown
that since the modular curve Xo(N) is defined over Q so is Jac(Xo(N)). This is important
for the next section.

We choose an inclusion Xo(N) — Jac(Xo(V)) that sends every point x to the divisor
class (z) — (0c0) where oo is the cusp of Xo(N) at co. This inclusion induces the Hecke
operators on Xo(N) to the Jacobian of Xy(N).

4.3.4 Eichler-Shimura theorem

The reason to introduce Hecke operators and the Jacobian is to discuss the Eichler-
Shimura theorem. This result is related to the Modularity theorem since it implies the
existence of a modular parametrization under certain conditions. To every cusp form f
having a g-expansion f = )" _, ¢,¢" with ¢; = 1 we can associate the L-function

Cn

L(f75> = E
n=1

The Eichler-Shimura theorem shows that if f € S(N) then L(f,s) is the L-function of
an elliptic curve Ey over Q (such L-functions appeared in section 4.2.2):
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Theorem 4.7 (Eichler-Shimura). Let f(7) = > " ¢,q" be a normalized cusp form of
weight 2 i.e. with ¢y = 1 and f € S3(N). Suppose the ¢, € Z are integers. Then there
exists a pair (Er,v) where E¢/Q is an elliptic curve defined over Q and a surjective

morphism of curves v : Jac(Xo(N)) — E; defined over Q such that

1. The Hecke operators on Jac(Xo(N)) leave ker v stable and act on E; as multiplica-
tion by c,.

2. The pullback v*(w) of the invariant differential w of E is a nonzero multiple of the
differential form on Jac(Xo(N)) defined by f(T)dr

8. The L-functions of the newform and Ey agree: L, o(s) = L(f,s)

If we compose the inclusion Xo(N) < Jac(Xo(NN)) with the map v : Jac(Xo(N)) — Ey
we obtain a modular parametrization ¢ : Xo(N) — Ef since ¢ is defined over Q. It can
be shown that N is the conductor of E;. There is also a converse by Wiles:

Theorem 4.8. If E/Q has conductor N then there ezists a newform f € Sa(N) with
Lpyo(s) = L(f,s).

4.4 Heegner points

Let E be an elliptic curve over Q without CM, and fix a modular parametrization ¢ :
Xo(N) — E. Note that ¢ exists by theorem 4.1. Let K = Q(+/D) an imaginary quadratic
field of discriminant D with?® D # —3, —4 and such that every prime p| N splits completely
in Og. This condition on NN is known as Heegner’s hypothesis, and it imposed so that the
following construction is valid.

There exists 91 with NOx = NN Let O be an order of K with conductor f coprime
with NV, and let 9t = O N 9. Recall that we can write O = (1, wg) and O = (1, w),
where wy is as in section 2.1.1 and w = fwg. Then M is proper O-ideal*? and the lattice
inclusion @ C M~! induces a degree N cyclic*® isogeny ¢ : Ep — Egp-1. By theorem
3.14 the point 2y = (5(0), (M ™1)) belongs to the modular curve Xo(N). We write z; to
remark that z; depends only on the conductor f. Moreover, both 9! and O have CM
by O because they are proper fractional O-ideals, so by theorem 2.14 the coordinates of
z; are algebraic integers, i.e. z; € Q. In fact, z; € L where L = K is the splitting field
of the Hilbert class polynomial Hp(X) of section 2.6.

The constructed point z; € X((N) is called a Heegner point. The modular parametriza-
tion ¢ is defined over Q and x has coordinates in Ky, so if we let y; = ¢(zf) then y; is
defined over Ky and yy € E, i.e. yy € E(K[). Then if we take the trace of y; we obtain

yrre = Tre, i (yy) (4.1)

40Then O} = {£1}.

UThat is, if N = [[;p;* then p;,Ox = p;p; and NOg = NN where N = [[,p". By the Chinese
Remainder theorem, O /N ~ [[, Ox /p;* ~ |1, Z/p*Z ~ Z/NZ.

42Because 9 = NN O is proper by the isomorphism in (2.2).

43Since (f, N) = 1 the natural morphism O — O /9 surjects so O/M ~ Ok /N
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But y; is Gal(K s/ K )-invariant if we consider the natural action of Gal(K/K) on E(K}),
so it is defined over K, ie. y; € E(K).

4.5 Group cohomology

We introduce some key concepts and define cohomology in simple terms, via cochains.
For a group G, the group ring of G is the ring

zZ|G) = P zg

geG

with the natural sum and the product defined by (3 , az9)(D_, buh) = (32, , agbugh).
Then an abelian group A is a G-module if it is a Z|G]-module.

The group of i-cochains of G with coefficients in A is the abelian group C/(G, A) = {f :
G' — A}, and the i-th differential is the map d' : C'(G, A) — C""(G, A) defined by

d(f) (g0, 91) = gof (g1, 9+ (=1 f(go, -+, gi—1gss -+~ 9)+(= 1) f(go, -+, gi-1)
j=1

The set of i-cocycles is Z{(G, A) = kerd’, and the set of i-coboundaries is B'(G,A) =
im d'~!.** Moreover, the sequence abelian groups

0 —— C%G, A) 5 ci(@, A) —L ...

forms a cochain complez, i.e. d'od; = 0. That is, every coboundary is a cocycle® so
one can define the i-th cohomology group by H (G, A) = Z/(G, A)/B (G, A).

Every morphism of G-modules f : A — B induces a natural morphism of groups f* :
Ci(G,A) — C!(G, B) that is compatible with the differentials, i.e. dif? = fi*'d,. Then
the natural map f? : H(G,A) — H'(G, B) induced by f* is well-defined because of this
compatibility. The following result is crucial for our purposes

Proposition 4.9. The short exact sequence

0— A5 B0 —o0

induces the long ezact sequence*®

0 — H(G,A) LN H°(G, B) 90, H(G,C) o, HY(G, A) LN H'(G, B) N HY(G,C) LN

44Here by definition B°(G, A) = 0.
45Note that H? = 0 only when the converse is true.
46The connecting morphisms §; are given by the Snake lemma and are natural.
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4.5.1 The Selmer and Tate-Shafarevich groups

Galois cohomology is the study of group cohomology when G is a Galois group, which may
be infinite. Because of this we need to modify our definition of cohomology; the groups
C*(G, A) are not convenient for our purposes when G is infinite. This issue can be solved
by introducing a topology. Here we endow G with the Krull topology and G becomes a
profinite group, and endow A with the discrete topology. Recall that a profinite group is
the inverse limit of an inverse system of finite groups,

=limG
We will not treat in detail this theory, but in the case of Galois groups the G; ranges over
the finite Galois extensions of K. Then the action map G x A — A can be shown to be
continuous, and if we take C% (G, A) = {f : G' — A continuous} instead of C*(G, A) all
the standard results remain to be true, in particular proposition 4.9.
Now fix an elliptic curve E over K and a prime number p, and consider the following
exact sequence®’

0—E, > E-XE—0 (4.2)
We set H(K, A) = H'(Gal(K/K), A). By proposition 4.9 one has
0 — B(K), %% B(K) &% B(K) %% H\(K,E,) % H(K,E) & H\(K,E) 2

because in general H(G, A) ~ AY is the group of G-invariants of A. By exactness we
obtain

0 — cokerpg = E(K)/pE(K) 2% H\(K,E,) % kerp} = H'(K, E), — 0

For any prime v of K, the restriction map embeds the Galois group Gal(K,/K,) <
Gal(K/K) into the absolute Galois group®®, so that the induced maps in the cohomology
make the diagram commute

0 —— E(K)/pE(K) % Hl(K E) —*— H (K,E), —— 0

| — |

0 — [, BE(K,)/pE(K,) — ]I, Hl(Ky,E — I, H' (K, E), —— 0
Then the p-Selmer group is Sel,(E/K) = ker o, and the Tate-Shafarevich group III(E/K)
is the kernel of the product of the restriction maps 5%, i.e.

p=11 <Res . HY(K, E) — H'(K,, E)>

That is, the kernel of p is the p-torsion of III(E/K). The following expression for dy can
be obtained by diagram chasing

4THere p is the multiplication-by-p map, E, = ker p is the p-torsion of E and ¢ the natural inclusion.
48Here K, is the completion of K at v.
“III(E/Q) is hard to compute in general, but it is conjectured to be finite.
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do: E(K)/pE(K) ——— HY(K, E,)
P+—— 65(P): Gal(K/K) ———— E,
o U(%P) - %P
This is shown by recalling how the connecting morphism of the Snake lemma was con-
structed. Given an exact sequence

0— AL B %00

let QF(G, M) = C*(G, A)/B*(G, A) and consider the following diagram of exact rows and

columns

TA B el
HY(G, A) —I HYG, B) —Z HY(G,C)
! . .

0 0 0

By the commutativity of the diagram and the exactness of the second and third rows, for
any ¢ € H°(G, C) there is b € Q°(G, B) with gob = tcc and there is a € Z'(G, A) with
fra = d%b. We™ define d(c) = m4(a). In our case (eq 4.2) this is to say that p-b = ¢ and
a = ob — b by the definition of d%.

Moreover, the Selmer and Tate-Shafarevich groups fit in the exact sequence

0 —— BE(K)/pE(K) —2 Sel,(E/K) —— 1I(E/K), — 0

/
where ! = L1|Selp(E/K)-

4.6 Kolyvagin’s theorem
Kolyvagin’s theorem relates the Tate-Shafarevich group with the group E(K)

Theorem 4.10 (Kolyvagin). Let E/Q be an elliptic curve. Let K be a quadratic imagi-
nary field and let y; x denote the Heegner point of conductor f =1 constructed in section
4.4. If y1.x has infinite order in E(K) then E(K) has rank 1 and ILI(E/K) is finite.

*0Proving the Snake lemma is showing that this is a well-defined morphism.
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4 HEEGNER POINTS ON X,(N) 4.6 Kolyvagin’s theorem

To relate Kolyvagin’s result with the BSD conjecture one makes use of the following
theorem, proven by Gross and Zagier showed in 1986:

Theorem 4.11 (Gross and Zagier). Let E and K be as above. Then y, x has infinite
order® if and only if the analytic rank of E/K is 1.

In other words, under the current hypotheses on £ and K the analytic and algebraic rank
over K agree.

The proof of theorem 4.10 is quite involved. There is weakening proven by Gross to
highlight the main ideas:

Theorem 4.12. Let p be an odd prime such that Q(E,)/Q has Galois group GLy(F,) and
p does not dwide®® yy ;¢ in E(K)/E(K)rs. Then E(K) has rank 1 and the p-torsion of
HI(F/K) is trivial.

This is weaker since III(E£/K) still could have nontrivial infinite subgroups.

From now on F will be an elliptic curve over Q of conductor N. Here the conductor is as
in section 4.2.1, a number divisible precisely by those rational primes p for which E has
bad reduction, i.e. the reduction modulo p is singular, although the precise definition of
the conductor is not essential in what follows.

4.6.1 Galois action on torsion points

If £/Q is an elliptic curve, the Galois group Gg = Gal(Q/Q) acts naturally on E(Q)
coordinatewise and this action is compatible with the group law®® of E, i.e. o(P + Q) =
o(P) + o(Q) for any 0 € Gg. In particular, a point is in the p-torsion P € E, if and
only if so does o(P). Here E, = F(Q), and the inclusion E(Q), C E(C) and theorem 2.5
imply® that |E,| = p?, because there are precisely p* p-torsion points in a lattice A C C.
Let Q(E,) be the field obtained by adjoining the = and y coordinates of points of £, and let
G(p) = Gal(Q(E,)/Q). Note that the action G(p) on E, is faithful. Then E, has a natural
structure of F,-vector space and so there exists a representation p, : G(p) — GLy(F,), not
surjective in general. However, if F¥ has no CM then by a corollary of Serre’s Uniformity

theorem p surjects, i.e. G(p) ~ GLy(F,). In other words, we claim

Theorem 4.13. The extension Q(E,)/Q has Galois group GLy(F,) for p sufficiently
large.

One may take p sufficiently large so that this is the case. Let L = K(E,) be the field
obtained by adjoining the z and y coordinates of points in E, to K. Note that the
extension L/K is Galois. The ramification of L/K is known,

Proposition 4.14. The extension L/K is unramified outside the primes that divide pN.

SHere f =1, so O = O is maximal.

2That is, there exists no point Q € E(K) with p- Q — y1.x € E(K)tors; since E(K)/E(K)ops is
a finitely generated free Z-module one can rewrite the equation pQ = y1 x = (c1,--- ,¢r) in terms of
matrices and take p 1 ¢; for all ¢ with ¢; # 0.

53Because it can be expressed in terms of Q-rational functions.

>The same is true in nonzero characteristic for all but finitely many primes p.
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Proof. Let S be the set of primes of K not dividing pN. Take p € S and P a prime of
L dividing p. Then it is clear that £ has good reduction over Ok,. The fundamental
identity for number fields of section 1.1 can be applied also to local fields®®, and it reads®®

€f = [Lgp . Kp]
Therefore L/K is unramified for p € S if so does Ly /K, for Plp and p € S or equivalently,

if [Ly : K] = f = [Fy : F,]. Now the reduction map E,, — E(Fg) injects, and the inertia

group A
In(Ly/K,) = {0 € Gal(Ly/K,) : ox = x mod P for all x € Ly}

is trivial since it fixes pointwise Ly because both Fy o~ Ly/ P and E (Fyp) are fixed. Thus
e=|I(Ly/K,)| =1 as wanted. O

In other words, a rational prime ¢ # p is unramified in L precisely when it is unramified
in K. Let us recall the current hypotheses - and impose some more - on the objects:

1. EF/Q has no CM and has conductor N and every prime ¢|N splits completely in Ok
(Heegner hypothesis).

2. The conductor f of O is squarefree and the rational prime ¢ considered throughout
this section divides f and is coprime with N Dp so ¢ is either inert or split in K.

3. The prime p we fixed to consider the short exact sequence in equation 4.2 is suffi-
ciently large so that p, surjects.

4. p does not divide y; i (equation 4.1) in E(K)/E(K )tors.

Additionally, we impose that the primes ¢ dividing f are Kolyvagin primes with respect
to (E, K,p) ie.

5. p divides the coefficient a, defined in section 4.2.2
6. p* divides £ + 1

7. 0 is inert’” in K

4.6.2 Constructing cohomology classes in H'(K, E,)

It can be shown that there are infinitely many Kolyvagin primes. These assumptions on
¢ are used to show the following

Theorem 4.15. The Heegner points form an Euler system, i.e.

Tryp = Y, olyy) = awy
O'EGal(Kz/Kﬂ

5Recall that Ly and K, are the completions of L and K by the places | - |s, | - |-

56Note that in local fields g = 1, because there is only one prime ideal.

5"Note that by Chebotarev density theorem applied to quadratic extensions there is a positive density
of inert primes, thus infinitely many.
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Each prime factor Ay of € in Ky divides an unique prime Ay of K4 and
Yyg = oys mod Ay

for all o € (N, K;/K). Here (A\g, Ky/K) is as in (1.6) and ay are the coefficients of the
L-function of E.

Proof. We show the first property. Let G = Gal(K;/K;) and G’ = Gal(K;/K). Recall
that for a prime ¢ with fg = f the subgroup G, = Gal(K,/K}) is cyclic of order £+ 1 (see
section 2.8.2).

Since our curve F is defined over Q there exists a newform f € Sy(N) with Lg/g(s) =
L(f,s) by theorem 4.8. It can be shown that the trace map

Tre: Jac(Xo(N))(Ky) —— Jac(Xo(V))(K,)
x > D ge, 0T

verifies Try(zy) = Ty(x,) where T, is the Hecke operator on the Jacobian Jac(Xy(N)).
Then by theorem 4.7 the Hecke operators act as multiplication by the coefficients a, of
the newform f, the same of the L-function of F

Tro(yy) = Trep(zs) = @(Tre(zs)) = ©(To(zy)) = ary,
Il

The first property is used below to construct Kolyvagin cohomology classes, that we
discuss now. The second property is used to show the local triviality of these classes.
This is discussed in section 4.6.3.
Now we define some elements in the group ring Z[G].
The augmentation ideal of the group ring Z[G,] is the kernel of the augmentation map
€: 2G| ——— Z
ZUEGZ no—o— ZU no-

Note that the kernel ker € is the Z-submodule generated by elements of the form o — o’
for 0,0’ € Gy. Now fix a generator o, € G, and write

t—s—1
/It s t—1 t—i—1 : "
o—0d =0,—0, = E o, ' —o, = (0y —id)o
i=0

for any 0,0’ and some ¢”. It follows that kere = Z[G,] - (0, — id) is principal. Let
Try=3",cq, 0 € Z|G,] and let S be a solution of the following equation in Z[G/]

(o —id) - Se = (£ + 1)id — Tx, (4.3)
We must show that at least some S, exists.

Lemma 4.16 (Kolyvagin). There exist solutions to equation 4.3.
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Proof. Write 7; =id+oy+07+- -+ 05_1 and note that (o, —id)-7; = O'Z —id. It follows

that
041 (41

(04 —id)ZTj = Zai —(l+1)=Tr,— ({+1)id
j=1 j=1

thus Sy = — ij 7; is a solution of equation 4.3. m

Note that the class of Sy in Z[Gy|/Z - Tr, is well-defined since (o, — id) - Tr, = 0. Let

Sr=1]5

o

Note that Sy is well-defined since the S; commute, because the S, are linear combinations
of powers of the same element o,. Recall the construction of y; in section 4.

We claim that the class of the point Spy; € E(Ky) in E(Ky)/pE(Ky) is invariant by G.
Since G =~ [],; G¢ by section 2.8.2 it suffices to show G invariance for ¢ | f i.e. that
Sty € ker (o; — id). Since p? divides £ + 1 by assumption 6 and equation 4.3 one has

(O'g — ld)Sfyf = (O‘g - id)SgSgyf = <(f + 1) id — TI“()Sny = (O — Tl"g)Sgyf mod pE(Kf)

But Tr, S, = S, Try so (op — id)Syy; = —S, Trey; mod pE(Ky). Since p divides a; by
assumption 5 and theorem 4.15 holds we have Tryy; = ay, € pE(K,) C pE(Ky) as
wanted. Thus it follows

Proposition 4.17 (Kolyvagin). The class [Py of the point

Pr= Y oSy
oceG' /G

in E(Ky)/pE(Ky) is invariant under natural the action of G'. Note that the class depends
on the choice of the generators oy.

Now, the restriction morphism Res : H' (K, E,) — H'(K;, E,) maps an element [ :
Gal(K/K) — E, to its restriction to Gal(K;/K;) C Gal(K/K). It can be shown that
under the current hypotheses on p (assumptions 3 and 4) and theorem 4.13; the p-torsion
E,(Ky) over Ky is trivial. Then if 0 € G' = Gal(K/K) then o(Res(f)) = Res f since the
image of Res(f) is contained in E, and the natural action of G’ on E,(K) is trivial. Thus
the map Res : H'(K, E,) — H' (K, E,)% is well-defined. In fact, Res is an isomorphism

HY(K,E,) ~ H'(K;, E,)*

The cohomology classes are built through this isomorphism - together with proposition
4.17 - and it can be proven using the inflation-restriction sequence, a general result on
group cohomology that we take for granted:

Theorem 4.18. If G acts on an abelian group A and N C G is a normal subgroup then
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0 — HYG/N,AN) 25 HYG, A) B HY(N, A)S/N — H2(G/N, AN) — H*(G, A)
1S an exact sequence.

The action of G/N on AN is natural gN - a := ga and well-defined®®. In our case, G =
Gal(K/K) and N = Gal(K;/K;) = Gal(K/K;) satisfy G/N ~ G’ = Gal(K;/K) since
N is normal by Galois theory, and A = E,. Thus both H'(G/N, A) and H*(G/N, AN)
are trivial since E,(K) is trivial.

Consider the diagram from section 4.5.1 for K

0 — E(Ky)/pE(Ky) —— H' (K4, E,) —— H'(K;, E), —— 0

We can apply the G' = Gal(Ky/K)-invariants functor - which is left-exact - to obtain

!

0 — (B(K)/pB(K )~ (H(Ky, B,)S — (H'(Ky, E),)

On the other hand, theorem 4.18 for G = Gal(K/K),N = Gal(K/K;) and A = E

implies®
0 — Hl(Kf/K7E<Kf)) — Hl(KaE) - Hl(KﬁE)Gl

Taking torsion is left-exact so we obtain

U

0 — H'(K;/K E(Ky)), — H'(K,E), — (H'(K;,E)*"), = (H'(K;, E),)¢

Putting everything together gives the following commuting diagram

-

HI(K /K, E(K))),

Inf

~

0 — BE(K)/pE(K) —>— H\(K,E,) —*— H\(K,E), —— 0

l Reslﬁ Res

’

0 —— (E(K;)/pE(K))¢ —1s (H'(K;, E,)¢ —Y— (H'(K}, E),)¢

Therefore, we can let ¢(f) € H' (K, E,) be the unique® class with

Res c(f) = 0y Fy]

981t is well-defined since gN = ¢’ N implies ¢’ = gn for some n € N so ¢’a = gna = ga as wanted.
Here H'(K;/K,FE) = H' (G, E).
60Tt is unique because Res is an isomorphism.
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where [Pf] is the class of proposition 4.17. Clearly, Py € pE(Ky) i.e. [Pf] =0 if and only
if ¢(f) =0. Let d(n) = t1(c(f)). And Res d(n) = 0 since

Res d(n) = Res t1¢(f) = J/Res ¢(f) = '04[Pf] =0

i.e. by the commutativity of the diagram and exactness of the bottom row. Thus, by the
exactness of the rightmost column there exists an unique® d(f) € H,(K;/K, E(K;)),
with 3

Inf d(f) = d(f)

Again, d(f) = 0 if and only if d(f) = 0 by the injectivity of Inf . But d(f) = 0 = v;c(f)
if and only if ¢(f) € kerty =imdy i.e. Py € pE(Ky) + E(K).

4.6.3 Idea of the rest of the proof

Recall from section 4.5.1 the following exact sequence

0 —— B(K)/pE(K) —2 Sel (E/K) —Y— II(E/K), — 0
and take the following for granted:

Theorem 4.19. Ifp satisfies assumptions 3 and 4 then Sel,(E/K) is cyclic and generated
by o(y1,x)-

Assuming theorem 4.19, the proof of 4.12 is as follows:

Proof. E has no p-torsion by assumption 4 the rank rank(E/K) of E/K verifies
rank(E/K) = dimg, (E(K) /pE(K))

Since ¢ injects and y; x is not zero in E(K)/pE(K) we must have rank(FE/K) # 0 and
rank(E, K) <1, thus rank(E/K) = 1. Therefore ¢y is an isomorphism and III(£/K), is
trivial by the exact sequence above. [l

To prove theorem 4.19 one first shows that the classes ¢(f) are in the p-Selmer group
Sel,(E/K) i.e. ¢(f) € ker o where « is as in section 4.5.1 i.e.

0 — E(K)/pE(K) —2— Hl(K E,) ——— HYK,E), —— 0

| — )

0 — 1, B(K,)/pE(K,) — 11, Hl(KwE — [[, H'(K,, E)y —— 0

Since f injects, ¢(f) € Sel,(E/K) if and only if Sc(f) = 0 i.e. ¢(f), is trivial at every
place v of K. To show this, the second property of theorem 4.15 and the theory of Néron
models and Tate local duality is used, but this is out of our scope.

S1Inf is injective.
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