
Mapping of mechanical properties at microstructural length scale in WC-Co 

cemented carbides: Assessment of hardness and elastic modulus by means of high 

speed massive nanoindentation and statistical analysis

J.J. Roa1,2,*, P. Sudharshan Phani3, W.C. Oliver4, L. Llanes1,2

1 Center for Research in Structural Integrity, Micromechanics and Reliability of Materials (CIEFMA), 

Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya 

(UPC), EEBE, 08019 Barcelona, Spain.
2 Barcelona Research Center in Multiscale Science and Engineering. Universitat Politècnica de Catalunya 

(UPC), 08019 Barcelona, Spain.
3 International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur 

PO, 500005, Telangana, India.
4 Nanomechanics, Inc. TN 37830 Oak Ridge, USA.

* Corresponding author, e-mail: joan.josep.roa@upc.edu 

Abstract: This paper studies the correlation between the microstructure and the 

mechanical properties at the nanometric length scale of individual WC grains as well as 

the metallic cobalt binder in cemented carbide systems. The local crystallographic 

orientation has been determined by electron backscattered diffraction and the 

microstructural analysis has been performed using field emission scanning electron 

microscopy. Small-scale hardness and elastic modulus have been assessed by means of 

high speed massive nanoindentation and subsequent statistical analysis. The attained 

mechanical property mappings present a clear correlation between local hardness and 

stiffness with chemical nature for each constitutive phase as well as with the 

crystallographic orientation for the WC particles. Besides expected findings associated 

with individual phases, such as clear anisotropy of the ceramic phase (basal plane being 

harder and stiffer than the prismatic one) and relatively high flow stress for constrained 

binder, the protocol implemented provides novel information on local mechanical 

response at interfaces between ceramic particles with different orientations as well as 

regions within the metallic cobalt binder close to the WC-Co interface.
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1. Introduction

The unique combination of hardness, toughness and wear resistance exhibited by 

tungsten carbide – cobalt (WC-Co) cemented carbides (usually referred to as 

hardmetals) has made them a preeminent material choice for extremely demanding 

applications, such as metal cutting/forming tools or mining bits, where improved and 

consistent performance together with high reliability are required [1]. This is a direct 

consequence of the composite character of these materials which permits to benefit from 

both: (1) outstanding intrinsic properties of the individual phases, including the plastic-

like nature of WC as compared with other monocarbides, as well as fcc-hcp phase 

transformation in the binder (Co-W-C eutectic) as an additional micromechanism for 

damage tolerance, and (2) synergic effects of their combined response, on the basis of 

optimal interface properties [2,3].

Regarding the mechanical response of the individual phases constituting hardmetals, 

earlier studies mainly concentrated on the assessment of plastic properties within 

isolated WC single crystals [4,5,6,7,8]. With the advent of micro- and nano-indentation 

techniques, investigations with similar objectives have been expanded towards 

measurement of local properties for the ceramic phase within the composite system 

itself [8,9,10,11,12,13,14,15,16]. In general, all of them report a clear hardness 

anisotropy behavior of WC particles at nanometric length scale, highlighted in recent 

studies by the novel combination of electron-backscattered diffraction (EBSD) and 

discrete nanoindentation events [14-16]. Recently, Roa et al. [17,18] have attained more 

detailed information on the small-scale properties of WC-Co materials by including 

statistical analysis of massive nanoindentation data. It has allowed (1) to get a 

statistically significant value of the intrinsic hardness of the Co-base binder constrained 

by the WC grains [17]; and (2) to validate the existence of a Hall-Petch relationship for 

these materials on the basis of the binder mean free path, pointing then out this 

parameter as the effective microstructural length scale for studying phase boundary 

strengthening [18]. 

Within the above framework, the present study aims for implementation of novel high-

speed and micromechanical mapping (hardness and elastic modulus) experimental 

upgrades in the massive nanoindentation approach, based on the use of smaller 

penetration depths, and thereby closer spacing of indents in order to enhance the 



accuracy in the micromechanical properties determination for each constitutive phase of 

heterogeneous hard materials (WC and Co). It finally allows to enhancing accuracy and 

statistical significance of the data attained, including assessment of values 

corresponding to smaller length scale regions than individual phases themselves, i.e. 

those where interface-related response takes place. 

2. Experimental procedure

An experimental WC-Co composite grade supplied by Sandvik Hyperion (Coventry, 

United Kingdom) was used in this study. Carbide contiguity and binder mean free path 

were deduced according to empirical relations from open literature [2,19,20]. The 

corresponding microstructural parameters are summarized in Table 1.

Nanoindentation tests were performed using a commercially available nanoindenter, 

iMicro® from Nanomechanics Inc., Oak Ridge, USA. Multiple large indentation maps 

with 10000 indents per map on a 50 x 50 m2 area was performed to a maximum load 

of 4mN. In all 200000 indents (90000 indents made in a region mapped by EBSD in 

order to determine the hardness and elastic modulus anisotropy, see Figure 1) were 

performed using a high speed mechanical property mapping technique, NanoBlitz, 

wherein each test takes less than 1 s to perform. This includes positioning the sample 

under the tip, approaching the surface, loading, unloading and retracting. From the load 

and depth data at each test location, contact stiffness, hardness and modulus can be 

calculated using the standard Oliver and Pharr method [21,22]. The fast testing 

capability enables mapping over large areas in a short amount of time and also access to 

large data sets for statistical analysis. A diamond Berkovich tip was used for all the tests 

because it allows to extract directly hardness and elastic modulus by using the 

methodology proposed by Oliver and Pharr [21,22]. The load frame stiffness 

determination and tip area calibration was done using the results of constant strain rate 

tests (0.2 s-1) on fused silica. For these tests, the contact stiffness was continuously 

measured as a function of depth using a phase lock amplifier oscillating at 100 Hz 

frequency and a 2 nm displacement amplitude.

WC grains chosen for these tests corresponded to those with well-defined crystal 

orientation, i.e. either basal or prismatic, with respect to indentation axis. Such 

orientation information was obtained through electron back-scattered diffraction 

(EBSD) analyses, carried out using a field emission scanning electron microscope 



(FESEM) JEOL 7001F equipped with an orientation imaging microscopy system. 

EBSD measurements were performed with a constant step size of 200 nm, at an 

accelerating voltage of 20 kV and beam probe current up to 9 nA (see Figure 1b). 

In order to directly determine the intrinsic mechanical properties in terms of hardness 

and elastic modulus for each constitutive phase, a statistical analysis was performed on 

a large data set comprising of 200000 indents, according to the method proposed by 

Ulm and coworkers [23,24,25,26], where the experimental data were treated with a 

Gaussian distribution. The maximum indentation load and the distance between two 

neighboring indents were chosen as 4 mN and 500 nm, respectively. Such parameters 

guarantee each indentation to be treated as an independent statistical event, as results 

were not affected by neighboring indents. In this particular case, the hardness and 

elastic modulus maps can be easily reconstructed from the large closely spaced 

indentation grid. The discrete values are interpolated using a bicubic interpolation 

between measurement points. Such an interpolation method was chosen since it leads to 

smoother images.

3. Results and discussion

3.1. Statistical analysis of indentation data

In this section, we present the results of the large number of indentation tests and the 

associated statistical analysis. Figure 2, shows the mechanical property histogram 

(hardness, Figure 2a, and elastic modulus, Figure 2b, with a constant bin size of 0.5 

and 25 GPa, respectively), calculated from 200000 indents. The histogram presents two 

peaks centered at around 10 and 25 GPa for the hardness histogram (Figure 2a) and 

around 230 and 470 GPa for the elastic modulus histogram (Figure 2b). The major peak 

is unambiguously attributed to the WC particles, while the other peak is related to the 

constrained metallic binder. This bimodal trend is in good agreement with results 

obtained by nanoindentation in WC-Co reported by Gee et al. [27]. Furthermore, by 

applying the statistical method proposed by Ulm and co-workers [23-26] on the 

experimental values shown in Figure 2, it is possible to further deconvolute the 

experimental data into five different peaks with different mean values as summarized in 

Table 2. The higher peak values for both histogram representations, at about 32.5 ± 3.5 

and 25.5 ± 5.0 GPa for the hardness and 650 ± 60 and 475 ± 80 GPa for the elastic 

modulus, are mainly attributed to the basal and prismatic planes. These results are in fair 



agreement with results reported in the literature [17,28,29,30,31,32,33] for the 

respective planes. The intermediate peaks (centered at around 18.0 ± 3.5 and 14.0 ± 4.5 

GPa and 350 ± 60 and 290 ± 45 GPa for the hardness and elastic modulus, respectively), 

are related to the hardness response for the interaction between the WC-Cocomposite and 

the WCprismatic plane which is the dominant WC phase heterogeneously distributed in the 

WC-Co system as clearly shown in the EBSD image (blue and green colors in the local 

crystallographic legend) reported in Figure  1b and the mechanical interaction between 

the WC particles and the metallic binder, respectively. Finally, the lowest values 

centered at 8.0 ± 5.0 GPa and 200 ± 75 GPa corresponds to the hardness and elastic 

modulus of the metallic binder. From the hardness of the metallic binder shown in 

Table 2 and by using a constraint factor of 3, the flow stress for the constrained binder 

is found to be around 2.6 GPa, which is in agreement with the data reported by Roa et 

al. [17,18] and Sigl and Fischmeister [34].

Figure 2c shows a SEM image of a representative indent (inside the white dashed 

circle) corresponding to each of the deconvoluted peaks shown in Figure 2a. Gaussian 

distribution was chosen for the deconvolution based on the earlier work of Ulm et al. 

[23-26].

It must be noted that the Gaussian peak deconvolution employing the methodology 

proposed by Ulm and co-workers [23-26] gives area fractions of 17 ± 3 % for the 

metallic binder and 83 ± 5 % for the WC particles. The value obtained for the metallic 

binder is slightly higher than the nominal weight fraction provided by the supplier and 

reported in Table 1 which may be due to the local variation of the distribution of the 

cobalt binder.

3.2 Mechanical property mapping

Hardness and elastic modulus maps are presented here for a better understanding of the 

mechanical properties histograms presented in Figure 2a and 2b. 9 different hardness 

and elastic modulus maps performed on the WC-Co specimen are presented in Figure 

3. EBSD maps at these locations were collected prior to indentation. Each map has 

10000 indents performed to 4 mN load organized in a regular square-shaped grid with a 

0.5 m spacing. These indents, as well as the grains of the sample, have been identified 

by optical microscopy as shown in Figure 1a. Hardness and elastic modulus maps, 



obtained from a bicubic interpolation in between measurement points, is plotted in 

Figure 3. A clear correlation between the mechanical properties and microstructure is 

evident from the figure. A zoomed view of a small region is presented in Figure 4, 

which shows three different regions distinguished by either different chemical nature 

(metallic binder and ceramic carbides) or distinct carbide crystal orientation (i.e. 

carbides with surface normal perpendicular to either basal or prismatic planes) and the 

corresponding hardness and elastic modulus maps which is in agreement with the 

different peaks presented in Figure 2a and 2b. 

From the direct observation of the hardness and elastic modulus maps presented in 

Figure 3, it is evident that the WC particles are strongly anisotropic, both in terms of 

hardness and elastic modulus; in agreement with hardness anisotropy reported in the 

literature for WC crystals [28-32,35]. Furthermore, the hardness and elastic modulus of 

the metallic binder (blue region corresponds to the metallic Co binder) are 8 ± 5.5 and 

200 ± 75 GPa, respectively. The hardness value is around eight times higher than that 

reported in the literature for the pure Co element as shown in Ref. [36]. This difference 

may be related to two different phenomena: (1) the unconstraint effect generated by the 

hard and stiff ceramic WC particles; and (2) the presence of C and W atoms dissolved 

as solid solution in the Co binder. On the other hand, the hardness value is also around 

1.5 and 5 times higher than those previously reported by Roa et al. [37] and Roebuck et 

al. [2] in model-like alloys, respectively. The main reason for such a difference is the 

constraining effect exerted on the metallic binder by the surrounding carbides. On the 

other hand, the elastic modulus values observed in the present study are in fair 

agreement with those determined on nanostructured cobalt [38]. Very interesting, near 

the WC/Co interface, both mechanical properties are slightly higher than in the metallic 

binder itself; reaching values of around 15 and 350 GPa for hardness and elastic 

modulus, respectively. This trend may be related to two different phenomena related to 

the WC-Co interface: (1) the presence of a 500 nm layer of cobalt with lower tungsten 

concentration than the bulk cobalt as predicted in Refs. [39,40], and (2) it could be due 

to the deformation fields not being confined to a single constitutive phase. The 

composite hardness directly observed from the maps (see Figure 3b) are in agreement 

with those reported by Roa et al. [17] and determined at the micrometric length scale at 

a maximum displacement into surface of 2000 nm (or until reaching the maximum 

applied load, 650 mN). However, the hardness and elastic modulus maps reported in the 



present study, provides valuable information at the interface between the ceramic WC 

particle and the constrained metallic binder. Furthermore, it may be noted that these 

values have never been reported for a ceramic/metallic composite system.

3.3. Mechanical anisotropy

In order to investigate the hardness and elastic modulus anisotropy observed in Figure 

3, four small indentation maps of 100 indents (10 by 10) at 4 mN of maximum applied 

load were analyzed along with the corresponding EBSD maps. Figure 5 shows the 

FESEM micrographs (Figure 5a and 5c) and the corresponding local crystallographic 

map overlaid on the image quality maps determined by means of EBSD for the WC 

particles showing the normal direction orientation, ND (Figure 5b and 5d), for two of 

the four maps used in this analysis (the other two maps to evaluate the anisotropy effect 

are not shown here). 

By combining the data presented in Figure 3 and 5, it may be concluded that the WC 

particles are strongly anisotropic in terms of hardness and elastic modulus. Within this 

context, the WC particles with an orientation near the basal plane are harder and at the 

same time stiffer than the particles with a prismatic orientation. The basal and prismatic 

particles have hardness around 28-35 and 20-28 GPa respectively and elastic modulus 

around 500-700 and 350-500 GPa, respectively. The different trends observed for the 

hardness and elastic modulus maps are in fair agreement with the values directly 

obtained by using the statistical method presented in section 3.1.

The mechanical property anisotropy can be analyzed by plotting the variation in 

hardness and elastic modulus with respect to the misorientation of each grain from the 

basal plane. This misorientation angle can be calculated using the following equation:
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where  is the angle between the basal plane (0001) and the grain of interest with Miller 

indexes (hkil), c and a are the lattice parameters for the WC grains taken as 0.2906 and 

0.2837 nm, respectively [2]. The subindex 1 and 2 denote the two planes between which 



the angle is calculated, one being the grain of interest and the other being the basal 

plane in this case. 

The mechanical property anisotropy for WC grains is summarized in Figure 6. In this 

figure, 0001 close to 0º represents the basal plane, while 0001 close to 90º represents the 

prismatic plane. The hardness values for the planes close to the basal plane (parallel to 

the surface) are slightly higher than those close to the prismatic plane (edge to the 

surface). The (0001) plane shows a value close to 31.5 GPa, while,  and (1 0 1 0)

 planes show hardness values between 22.5 and 27.5 GPa, for both (2 1 1 0)

crystallographic planes. This trend is in agreement with the data presented earlier as 

well as with a previous study by Roebuck et al. [41] using Vickers indentation. Between 

10º to 20º from the (0001) plane, the variation in the mechanical properties is quite 

significant. The mechanical response of the WC grains in the present study can be 

separated into three different trends based on the tilt relative to the basal plane as shown 

in Figure 6. The first region, denoted as (A) corresponds to the grains slightly 

misoriented from the basal plane. These grains are the hardest as the compression axis is 

normal to the slip plane. The second region, denoted as (B), corresponds to indents 

performed not entirely inside individual WC particles, but close to the interface between 

two different WC particles with different crystallographic orientations (one oriented in 

the basal plane “Region A” and the other in the pyramidal and/or prismatic one “Region 

C”). In this region, the hardness decreases when the tilt relative to the basal plane 

increases reaching a minimum value at around 22.3º. In that region, only one family of 

dislocations are responsible for the deformation mechanisms, which correspond to the 

basal plane traces. Beyond that, the mechanical properties remain mostly constant for a 

wide range of misorientation angles close to the pyramidal and prismatic planes of the 

WC grains. In terms of plastic deformation mechanisms, the region C has a lower and 

constant hardness value due to two different sets of active slip planes at the same time 

for a relative misorientation higher than 22.3º, which corresponds to (0001) and 

 planes. This results in lower hardness for the pyramidal and prismatic grains (1 1 2 0)

as reported in Refs. [42,43,44].

Prior works (see Refs. [2,17]) have reported that reliable assessment of the intrinsic 

hardness for the constrained metallic binder required further analysis due to the fact that 

length scale ratio between nanoindentation depth and binder mean free path being 

relatively high and the values reported were affected by the surrounding carbides 



particles. However, as it is clearly evident in the maps presented in this work, the 

hardness and also the elastic modulus increase when the residual impression is closer to 

the WC/Co interface as it is depicted in Figure 7. This phenomenon may be related to 

the elastic and plastic flow interaction with the harder and stiffer WC particles as well 

as the contact area which is function of the depth is not right due to difference on height 

between both phases.

4. Conclusions

From the main findings reported in this study, the following conclusions may be drawn:

(i) Extensive hardness and elastic modulus mapping has been carried out using 

high speed nanoindentation based mapping technique and compared with the 

WC-Co microstructure in the indented area determined by EBSD mapping.

(ii) Strong correlations have been observed between the mechanical properties 

(hardness and elastic modulus) and the constitutive phases as well as the 

crystallographic orientation for the ceramic particles. 

(iii) A statistical analysis of the large data set enables determination of the 

mechanical properties for each constitutive phase through peak 

deconvolution. 

(iv) The combination of mapping and statistical analysis enables determination 

of mechanical properties at the interface between two different orientations 

of the ceramic particles and the metallic cobalt binder near the WC-Co 

interface.
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Figure captions

Figure 1. (a) Optical micrograph showing the 9 different maps on which a total of 90000 indents were 

performed and (b) local crystallographic map obtained by means of EBSD of the same region

Figure 2. Mechanical property histogram determined from 200000 indents performed to a maximum 

applied load of 4 mN. The (a) hardness and (b) elastic modulus histograms are calculated with a constant 

bin size of 0.5 and 25 GPa, respectively. The deconvoluted distributions obtained by the statistical 

analysis (summarized in Table 2) are overlapped on both the histograms. (c) FESEM micrographs of 

representative indents for each deconvoluted peak labeled in Figure 2a.

Figure 3. (a) Hardness map and (b) elastic modulus map of the region of a large area mapped by EBSD.

Figure 4. Local crystallographic orientation and mechanical properties map (hardness and elastic 

modulus) for a WC particle (labelled as (a) and highlighted by a dash square in map 2, Figure 1a), 

oriented in a crystallographic orientation near the basal plane.

Figure 5. (a) and (c) FESEM micrograph, and (b) and (d) Local crystallographic orientation of two 

different indentation arrays of 100 indents (10 by 10) performed to 4 mN of maximum load. Pixel size: 50 

nm.

Figure 6. (a) Hardness and (b) elastic modulus as a function of misorientation angle with respect to the 

basal plane for WC particles.

Figure 7. (a) Hardness map and (b) elastic modulus map overlapped on the optical image clearly showing 

the locations of the indents.
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Table caption

Tabla 1. Summary of the main microstructural parameters for the specimen investigated here (nominal 

weight fraction of binder, %wt.; mean grain size of WC, dWC; mean free path in binder, Co and carbide 

contiguity, CWC).

Table 2. Summary of the hardness (H), elastic modulus (E) and standard deviation (S) for the different 

deconvoluted peaks (metallic binder and ceramic particle carbides with different crystallographic 

orientations) obtained through the statistical analysis.



Table 1

%wt. Co dWC (m) Co (m) CWC 

11 1.12 ± 0.71 0.42 ± 0.28 0.38 ± 0.07



Table 2

Phase Peak* H (GPa) SH (GPa) E (GPa) SE (GPa)

Cobalt 1 8.0 5.5 200 75

WC-Cocomposite 2 14.0 4.5 290 45

WC-Co/WCprismatic 3 18.0 3.5 365 60

WCprismatic plane 4 25.5 5.0 475 80

WCbasal plane 5 32.5 3.5 650 60

* Peak number employed to denote each phase in Figure 2.


