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Abstract. A bitemporal deductive database is a deductive database that
supports valid and transaction time. A set of facts to be inserted and/or deleted
in a bitemporal deductive database can be done in a past, present or future
valid time. This circumstance causes that the maintenance of database
consistency becomes more hard. In this paper, we present a new approach to
reduce the difficulty of this problem, based on applying transition and event
rules, which explicitly define the insertions and deletions given by a database
update. Transition rules range over all the possible cases in which an update
could violate some integrity contraint. Although, we have a large amount of
transition rules, for each one we argue its utility or we eliminate it. We
augment a database with this set of transition and event rules and then standard
SLDNF resolution can be used to check satisfaction of integrity constraints.

1   Introduction

Two measures of time were distinguished in [21], called valid time and transaction
time. Valid time is the time when the fact is true in the modelled reality, while
transaction time is the time when the fact is stored in the database. In a consensus
glossary of temporal database concepts [8], a deductive database that supports valid
time and transaction time is called a bitemporal deductive database and we denote it
bt-ddb.

An integrity constraint is a condition that a database is required to satisfy at any
time. We deal with static and dynamic constraints formulated in a first order language.
A bt-ddb must be consistent, that is, when performing a past, present or future update,
that happens at some valid time point, it is necessary to validate whether this update
violates some integrity constraint, and if so the update must be rejected. The
possibility of past, present and future updates in a bt-ddb causes that the maintenance
of database consistency becomes more difficult.

Integrity constraint checking is an essential issue, which has been widely studied
in relational and deductive databases (see for example [4] for a comprehensive state of
the art survey), but not in the field of temporal deductive databases. The simplest
solution to integrity checking would be to evaluate each constraint whenever the
database is updated. However, it is usually too costly and highly redundant, since it
does not take advantage of the fact that the database satisfies the constraints prior to
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the update. In this paper, we present a new approach for consistency maintenance in
bt-ddb, that incorporates transaction time to our previous work (see [13] and [14]),
based on applying transition and event rules, which explicitly define the insertions and
deletions given by a database update. Transition rules range over all the possible cases
in which an update could violate some integrity contraint. Although, we have a large
amount of transition rules, for each one we argue its utility or we eliminate it. We
augment a database with this set of simplified transition rules and event rules and then
standard SLDNF resolution can be used to check satisfaction of integrity constraints.

The paper is organised as follows. The next section defines basic concepts of bt-
ddbs and introduces a simple example that will be used throughout the paper. Section
3 presents the concepts of events, transition and event rules. Section 4 describes the
application of transition rules for integrity constraint checking in bt-ddbs. Particularly,
this part shows the utility of the transition rules for the example presented in section 2.
Section 5 compares our approach with previous related work. Finally, section 6 gives
the conclusions and points out future work.

2   Bitemporal Deductive Databases

A bt-ddb D consists of three finite sets: a set F of facts, a set R of deductive rules, and
a set I of integrity constraints. The set of facts is called the extensional database
(EDB), and the set of deductive rules is called the intensional database (IDB). A base
predicate appears only in the extensional database and possibly in the body of
deductive rules. A derived predicate appears only in the intensional database. Every
bt-ddb can be defined in this form.

Facts, rules and integrity constraints are formulated in a first order language. We
will use names beginning with a lower case letter for predicate symbols and constants
and a capital letter for variables.

We consider a temporal domain t isomorphic to the set of natural numbers, over
which is defined the linear (total) order <t, where ti <t  tj means ti occurs before tj.
The set t  is used as the basis for incorporating the temporal dimensions into the
database.

We assume that database predicates are either base or derived. For example, the
base predicate offered(C,Tv) and the derived predicate some_enrol(C,Tv) both contain
a last term which is a valid time point ranging over the temporal domain t . Integrity
constraints use the usual operators =, >, <, ≥, ≤ and ≠ to compare a valid time points
and to express static and dynamic constraints. For example: ic4 ~ offered(C,Tv) å
¬many_students(C,Tv) å many_students(C,T1v) å T1v<Tv. The examples presented
here are explained in detail in subsection 2.3.

We adopt a closed time interval model based in the valid time representation
presented in [20], adding a transaction time dimension. Including transaction time we
ensure that every old state is preserved. If we store only valid time one cannot
remember if during a given period one knew another information different from the
current one. We are interested in the history of the database and we willing to pay a
high cost of the storage of old states. [20] uses two segments to representing current
and history data, in which two valid time points are added, named FROM and TO



(defining a valid time interval), valid time start and end in our case. We only use the
equivalent to one segment and we add two more time points (transaction time start
and end) to represent transaction time and to define a transaction time interval.

A fact is a ground atom. Last terms of any fact are four time points values ranging
over the temporal domain t: valid time-start (tvs), valid time-end (tve) corresponding
to the lower and upper bounds of the valid time interval and transaction time-start
(tts), transaction time-end (tte) corresponding to the lower and upper bounds of the
transaction time interval.

Each fact has a precise valid time-start tvs value stored from transaction time-start
tts to now (denoting the current time) or to transaction time-end tte when finally the
fact cannot be accessible from current time anymore. However, the valid time-end
value tve may not be known. In this case, tve is given the default value forever
denoting an artificial time point for the end of time ready to handle future information,
but that will change to precise value tve when the user knows it (see subsection 3.1).

2.1  Deductive Rules

A deductive rule is a formula of the form:
p ~ L1 å ... å Ln   with n ≥ 1,

where p is an atom, denoting the conclusion, L1 å ... å Ln are literals representing
conditions. Any variables in p, L1 å ... å Ln  are assumed to be universally quantified
over the whole formula.  A derived predicate p may be defined by means of one or
more deductive rules, but for the sake of simplicity, we only show the first case in this
paper.

Condition predicates may be ordinary or evaluable. The former are base or
derived predicates, while the latter are built-in predicates that can be evaluated
without accessing the database.

In this paper we deal with stratified databases [2] and, as usual we require the bt-
ddb before and after any updates to be allowed [11].

2.2  Integrity Constraints

An integrity constraint is a closed first order formula that the bt-ddb is required to
satisfy. We deal with constraints that have the form of a denial:

~ L1 å ... å Ln      with n ≥ 1,
where each Li is a literal. Any variables in L1 å ... å Ln are assumed to be universally
quantified over the whole formula.

For the sake of uniformity we associate with each integrity constraint an
inconsistency predicate Icn, and thus it has the same form as a deductive rule. We call
them integrity rules. Then, we rewrite the former denial as:

Icn ~ L1 å ... å L m   with m ≥ 1.
The evolution through time of a deductive database can be described by valid and

transaction time intervals for each predicate. According to this evolution scheme,
static and dynamic constraints can be distinguished: the former restrict the validity to
only one valid time of the bt-ddb, while the latter relate the validity to past and/or
future valid times in addition to another one.



2.3  Example

Base Predicates.

offered(C,Tv) expresses that "course C is offered at valid time Tv"
takes(S,C,Tv) expresses that "the student S is enrolled in course C at valid time Tv".

Deductive Rules.

R.1     some_enrol(C,Tv) ~ takes(S,C,Tv).
R.2     many_students(C,Tv) ~ takes(S1,C,Tv) å takes(S2,C,Tv) å S1 ≠ S2.

some_enrol(C,Tv) expresses that "the course C has one or more students at valid
time Tv", and many_students(C,Tv) expresses that "the course C has two students at
valid time Tv, at least".

Static Integrity Constraints.

IC.1     ic1 ~ takes(S,C,Tv) å ¬offered(C,Tv)
IC.2     ic2 ~ offered(C,Tv) å ¬some_enrol(C,Tv).

ic1 and ic2 , respectively, enforce the properties that "a student S can only be
enrolled in course C if course C is offered" and "for course C to be offered, it must
have at least one student enrolled".

Dynamic Integrity Constraints.

IC.3   ic3 ~ takes(S,software engineering,Tv) å takes(S,information systems,T1v) å 
    T1v≤Tv.

IC.4   ic4 ~ offered(C,Tv) å ¬many_students(C,Tv) å many_students(C,T1v) å T1v<Tv.

ic3 and ic4, respectively, enforce the properties that "if a student S is enrolled in
the course software engineering, this student cannot be enrolled or cannot have been
enrolled in the course information systems", "if two or more students were enrolled in
a course C, this course cannot have less than two students in the future".

3   Events, Transition and Event Rules

In this section, we begin by adapting the concepts of event, transition and event rules
that were formalised in [16] for the events model as an approach for the design of
information systems from deductive conceptual models, and was applied in [22] to
address database and transaction design decisions. In [16] and [22] valid and
transaction time are equivalent and the database can only be updated in the current
state. In our case, we explicitly distinguish between valid and transaction time and the
updates can be done in a past, present or future valid time.



3.1  Events

Let D be a deductive database at transaction time point tt-1, U an update and D' the
updated deductive database at transaction time point tt (now) as one can see in figure
3.1. We assume for the moment that U consists of an unspecified set of facts to be
inserted and/or deleted and the bt-ddb can only be updated in the transaction time
point now.

U

D

vt

tttt-1 tt

D' 

Fig. 3.1.

Let p(x,tv) be a predicate in D and let p'(x,tv) denote the same predicate evaluated
in D'. Assuming that p(x,tv) holds in D, where x is a vector of constants, and tv is a
valid time point, two cases are possible:
p'(x,tv) also holds in D' (both p(x,tv) and p'(x,tv) are true). (1)
p'(x,tv) does not hold in D' (p(x,tv) is true, but p'(x,tv) is false). (2)

And assuming that p'(x,tv) holds in D', two cases are also possible:
p(x,tv) also holds in D (both p(x,tv) and p'(x,tv) are true). (3)
p(x,tv) does not hold in D (p'(x,tv) is true, but p(x,tv) is false). (4)

In case (2) we say that a deletion event occurs in the transition at valid time point
tv, we denote it by δp(x,tv) and we store it at transaction time point tt as shown in
figure 3.2.
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Fig. 3.2.



In case (4) we say that an insertion event occurs in the transition at valid time
point tv, we denote it by ιp(x,tv) and we store it at transaction time point tt as shown
in figure 3.3.

D

vt

tttt

p'(x,tv)
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¬¬¬¬p(x,tv)

tt-1

D' 

Fig. 3.3.

Formally, we associate an insertion event predicate ιp with each derived or
inconsistency predicate p and a deletion event predicate δp with each derived
predicate, defined as:
∀ X,Tv (ιp(X,Tv) ∫ p'(X,Tv) å ¬p(X,Tv)).  (5)
∀ X,Tv (δp(X,Tv) ∫ p(X,Tv) å ¬p'(X,Tv)).  (6)
where X is a vector of variables and T is a valid time point variable.

From the above, we then have the equivalencies:
∀ X,Tv (p'(X,Tv) ∫ [p(X,T v) å ¬δp(X,Tv)] √ ιp(X,Tv)). (7)
∀ X,Tv (¬p'(X,Tv) ∫ [¬ p(X,Tv) å ¬ιp(X,Tv)] √ δp(X,Tv)). (8)
which relate the predicate p' at transaction time point tt to the predicate p a t
transaction time point tt-1 and the events given by the transaction.

If p is a derived predicate, then ιp  and δp represent induced insertions and
deletions respectively.

If p is an inconsistency predicate, then ιp that occur during the transition will
correspond to violations of its integrity constraint. For example, if a given transition
induces ιicn, this will mean that such a transition leads to a violation of integrity
constraint icn. Note that for inconsistency predicates δp cannot happen in any
transition, since we assume that the bt-ddb is consistent before the update, and thus
icn is always false.

We also use definitions (5) and (6) above for base predicates. In this case, ιp and
δp represent the events given by the update. Therefore, we assume from now on that
U consists of an unspecified set of insertion and/or deletion of events given by the
update.

Note that an event happens at some time instant, while we require time intervals
to express the changes produced by the transaction. Therefore, when an insertion
event ιp(x , t v )  happens in a transaction time tt we really represent:
pr(x,tv,forever,tt,now), and when a deletion event δp(x,tv) occurs in a transaction time
tt we modify pr(x,tvs,tve,tts,now) by pr(x,tvs,tv-1,tt,now) and pr(x,tvs,tve,tts,tt-1).
When a deletion event occurs we do not really remove information; instead we store
the fact that it has existed from one valid time to another valid time.



Example. Suppose the update U at transaction time 3:
 {ιoffered(databases,2), ιtakes(ton,databases,2), δtakes(maria,logic,2)}

on the bt-ddb as shown in figure 3.4.
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Fig. 3.4.

If this transaction does not violate any integrity constraint, at transaction time 3,
we have the bt-ddb as shown in figure 3.5, and their facts will be, including the
temporal information that appears in the figure 3.5 axis co-ordinates.

offeredr(logic,1,forever,2,now)
takesr(jaume,logic,1,forever,2,now)
takesr(jordi,logic,1,forever,2,now)
takesr(maria,logic,1,forever,2,2)
takesr(maria,logic,1,1,3,now)
offeredr(databases,2,forever,3,now)
takesr(ton,databases,2,forever,3,now)
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3.2  Transition Rules

Let p ~ L1, ..., Lm be a deductive or inconsistency rule. When the rule is to be
evaluated in the updated bt-ddb, its form is p' ~ L1', ..., Lm', where Li' (i = 1..m) is
obtained by replacing the predicate Q of Li with Q'. Now if we rewrite each literal in
the body by its equivalent definition, given in (7) or (8), we get a new rule called a
transition rule, which defines predicate p' in the updated bt-ddb in terms of
transaction time point now-1 of the predicates appearing in the body of the rule, and
the events that occur at transaction time point now.

More precisely, if Li' is an ordinary positive literal Qi'(Xi,Tvi) we apply (7) and
replace it with:

(Qi(Xi,Tvi) å ¬δQi(Xi,Tvi)) √ ιQi(Xi,Tvi)
and if Li' is an ordinary negative literal ¬Qi'(Xi,Ti) we apply (8) and replace it with:

(¬Qi(Xi,Tvi) å ¬ιQi(Xi,Tvi)) √ δQi(Xi,Tvi)
If Li is an evaluable predicate, we just replace Li'(positive or negative) by its

current Li.
It will be easier to refer to the resulting expressions if we denote by:
O(Li') = (Qi(Xi,Tvi) å ¬δQi(Xi,Tvi))          if Li' = Qi'(Xi,Tvi)

= (¬Qi(Xi,Tvi) å ¬ιQi(Xi,Tvi)) if Li' = ¬Qi'(Xi,Tvi)
= Li if Li is evaluable

N(Li')  = ιQi(Xi,Tvi) if Li' = Qi'(Xi,Tvi)
= δQi(Xi,Tvi) if Li' = ¬Qi'(Xi,Tvi)

Both O(Li') and N(Li') express conditions for which Li' is true. O(Li') corresponds
to the case that Li' holds because Li was already true in the Old transaction time point
now-1 and has not been deleted, while N(Li') corresponds to the case that N(Li') holds
because it is New, induced in the transition, and false before. Note that O(Li') μ Li
and N(Li') μ Li.

With this notation, the equivalencies (7) and (8) become:
∀ X,Tv (p'(X,Tv) ∫ O(p'(X,T v)) √ N(p'(X,Tv))).   (9)
∀ X,Tv (¬p'(X,Tv) ∫ O(¬p'(X,Tv)) √ N(¬p'(X,Tv))). (10)
and applying them to each of the Li' (i = 1...n) literals, we get:
  i=n
p'(X,Tv) ~ Å [O(Li') √ N(Li') | O(Li')] (11)

i=1

where the first option is taken if Li' is an ordinary literal, and the second one if Li' is
evaluable. After distributing å over √, we get an equivalent set of 2k transition rules,
each of them with the general form:
  i=n
pj'(X,Tv) ~ Å [O(Li') | N(Li')]            with j = 1, ..., 2k (12)

i=1

where k is the number of ordinary literals in the p'(X,T) rule, and
p'(X,Tv) ~ pj'(X,Tv)                             with j = 1, ..., 2k. (13)

We are conscious of the resulting amount of transition rules and we present
afterwards in this paper some simplifications to drastically reduce them.



Note that in the case of integrity constraints, ¬ici1' always holds because the bt-
ddb is assumed to be consistent at transaction time point now-1. For example,
takes(S,C,Tv) and ¬offered(C,Tv)  in:

      ic11' ~ takes(S,C,Tv) å ¬δtakes(S,C,Tv) å ¬offered(C,Tv) å ¬ιoffered(C,Tv),
are always false in a transaction time point now-1, and thus we can eliminate this
transition rule.

3.3  Insertion Event Rules

Let p be a derived or inconsistency predicate. Insertion events of p were defined in (5)
as:

∀ X,Tv (ιp(X,Tv) ∫ p'(X,Tv) å ¬p(X,Tv)).
And replacing p'(X,T) by its equivalent definition given in (13) we get:

ιp(X,Tv) ~  pi'(X,Tv) å ¬p(X,Tv)      with i = 1, ..., 2k.  (14)

By replacing pi'(X,Tv) with its equivalent definition given in (12), we get a set of
insertion events rules. They allow us to deduce which ιp (induced insertions)
happen in a transition. If p is an inconsistency predicate, ιp facts correspond to a
violation of the integrity constraint. Note that in the case of integrity constraints,¬ici
always holds because the bt-ddb was consistent at transaction time point now-1, and
we can simplify this literal:

ιici ~ icii'  i=2, ..., 2k  (15)

3.4  Deletion Event Rules

Let p be a derived predicate. Deletion events of p were defined in (6) as:
∀ X,Tv (δp(X,Tv) ∫ p(X,T v) å ¬p'(X,Tv)).

And replacing p'(X,T) by its equivalent definition given in (13) we get:

        δp(X,Tv) ~  p(X,Tv) å ¬p1'(X,Tv) å ... å ¬p i'(X,Tv) å ... å ¬ p2k'(X,Tv)  (16)

By replacing pi'(X,Tv) with its equivalent definition given in (12), we get a set of
deletion events rules. They allow us to deduce which δp (induced deletions) happen
in a transition. Note that in the case of integrity constraints, δicn cannot happen in any
transition, since we assume that the bt-ddb is consistent before the update, and thus
icn is always false.

3.5  The Augmented Database

Let D be a bt-ddb. We denote the augmented bt-ddb by A(D), based in the concept of
augmented deductive database defined in [17], to the bt-ddb consisting of D, its
transition rules and its event rules.

If SLDNF resolution is complete for D, then it will also be complete for A(D).
[17].



4   Applying Transition Rules for Integrity Constraint Checking in
Bitemporal Deductive Databases

The augmented bt-ddb described in the previous section can be used directly to check
if a transaction produces or not inconsistencies.

Let D be a bt-ddb, A(D) the augmented bt-ddb, and TR a transaction consisting of
a set of events at valid time point T. If TR leads to an inconsistency then some of the
ιicn will hold in the transition. Using SLDNF proof procedure, TR violates integrity
constraint icn if the goal ~ιicn succeeds from input set A(D) ˙ TR. If every branch of
the SLDNF-search space for A(D) ˙ TR ˙ {~ιicn} is a failure branch, then TR does
not violate icn, as show in figure 4.1.

A(D) ˙̇̇̇ TR ˙̇̇̇ {{{{~~~~ ιicn}}}}

Standard
SLDNF

 Resolution

TR violates some
 integrity constraint 

and it is rejected.

Every branch is
a failure brach.

Some branch
 succeeds.

TR does not violates 
integrity constraints and

 it is accepted.

Fig. 4.1.

From the insertion event rule ιicn for (15), we then use the transition rules of icn
to proof the consistency of the bt-ddb. Following, we illustrate the utility of the
transition rules for integrity constraints checking, but first we explain the
simplifications applied to them. We show some updates that can violate some
transition rules obtained for the constraints in the example presented in section 2.
Specifically, we select the constraints where we can apply the different types of
simplifications. Next subsections simulate (using a discontinuous line) what would
happen if the transaction were applied in the bt-ddb.  Note that we do not really apply
the transaction, we only simulate.

4.1  Simplifications of Transition Rules.

In the following subsections we are going to show the following types of
simplifications:

Inconsistent Rules Simplification: When we find ¬ιp(X,T) å ιp(p,T1) å T1<T in a
transition rule, we can eliminate it because ιp(p,T1) is from T1 to forever and that
includes T.



Null Effect Rules Simplification: When we find δp(X,T) å ιp(X,T1) å T1<T in a
transition rule, we can eliminate it because ιp(p,T1) is from T1 to forever and that
includes T, it does not matter that δp(X,T) .

Mutually Exclusive Rules Simplification: When we find ιp(X,T) å δq(X,T) in one
transtion rule, and δp(X,T) å ιq(X,T)  in another transition rule we can eliminate both
of them because if one of them holds then it means the other one happened in a
previous transaction time and the database is already inconsistent.

Our simplifications consider an assumption concerning data manipulation: In a
transaction we cannot insert and delete the same fact. We have to insert the fact in a
transaction at transaction time now and then we can delete it in another transaction in
a future transaction time. This restriction reduces considerably the difficulty of the
update in bt-ddb and it is not too unmanageable to the user.

4.2  Example with Ic1

Consider the integrity constraint:
ic1 ~ takes(S,C,T) å ¬offered(C,T).

The transition rules we obtain after replacing literals and distributing å over √
are:

ic12' ~ takes(S,C,T) å ¬δtakes(S,C,T) å δoffered(C,T).
ic13' ~ ιtakes(S,C,T) å ¬offered(C,T) å ¬ιoffered(C,T).
ic14' ~ ιtakes(S,C,T) å δoffered(C,T).
ic1' ~  ic1i'      i = 2,...,4

We show in figure 4.2 an example of a transaction that violates ic12' at
transaction time 3. And in figure 4.3 we show its derivation tree.
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  Note that jordi would be
  enrolled from valid time 
   3 to forever in a course
  that is not offered at this 

 valid time interval

TR1={δoffered(databases,3)}

ic12' ~ takes(jordi,databases,3) å ¬ δtakes(jordi,databases,3) å δoffered(databases,3)

Fig. 4.2.



~ιic1

            1                 ιic1~ ic1i'
   

  ~ic12'

                
~takes(S,C,T) å ¬δtakes(S,C,T) å δoffered(C,T)

                                   3                TR1, C = databases, T = 3

~takes(S,databases,3) å ¬δtakes(S,databases,3)

                             

~¬δtakes(jordi,databases,3)

                                            A                  ~δtakes(jordi,databases,3) fails

[ ] 

A

~δtakes(jordi,databases,3)

                          TR1

fails

TR1 violates ic1

TR1 = {δoffered(databases,3)}

 ic12' ~ takes(S,C,T) å ¬δtakes(S,C,T)
 å δoffered(C,T)

2 

            takesr(jordi,databases,2,forever,2,now), 
S = jordi

4 

Fig. 4.3.

Steps 1 and 2 are SLDNF resolution steps where rules of A(D) act as input
clauses. We may have several rules to resolve with, although only the failure branch
that shows the violation of the integrity constraint is shown here.

Note that at steps 3 and 4 the predicate references to the transaction and to the
database, respectively, and we go to the transaction or to the bt-ddb to find it,
respectively.

At step A, the selected literal is: ¬δtakes(jordi,databases,3). In order to get a
successful derivation, SLDNF search space must fail finitely for the subsidiary tree of:
{~δtakes(jordi,databases,3)}.

Note that in the third step we have selected literal δoffered(C,T) instead of
takes(S,C,T). Given that in most real databases the number of facts is likely to be
much greater than the number of events produced in a transition, it seems convenient
to use a strategy of selecting first the events (once fully instantiated if they are
negative).



We show in figure 4.4 an example of a transaction that violates ic13'.
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  2 to forever in a course 
 that is not offered at this 

  valid time interval

TR2={ιtakes(jaume,logic,2)}

ic13' ~ ιtakes(jaume,logic,2) å ¬offered(logic,2) å ¬ιoffered(logic,2)
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Fig. 4.4.

Note that transition rule ic14' ~ ιtakes(S,C,T) å δoffered(C,T) never holds because
the bt-ddb was consistent at transaction time now-1, ic2 requires for a course to be
offered it must have at least one student enrolled; if we delete a course C at valid time
T, for ic2 we must have one student enrolled in C at valid time T and that is ic12'.
Therefore, we can eliminate ic14'  which is mutually exclusive rule with ic24' ~
ιoffered(C,T) å δsome_enrol(C,T) and we finally obtain:

ic12' ~ takes(S,C,T) å ¬δtakes(S,C,T) å δoffered(C,T).
ic13' ~ ιtakes(S,C,T) å ¬offered(C,T) å ¬ιoffered(C,T).
ic1' ~  ic1i'      i = 2,3

4.3  Example with Ic4

Consider the integrity constraint:
            ic4 ~ offered(C,T) å ¬many_students(C,T) å many_students(C,T1) å T1<T.

The transition rules we obtain after replacing literals and distributing å over √
are:

ic42' ~ offered(C,T) å ¬δoffered(C,T) å ¬many_students(C,T) å 
   ¬ιmany_students(C,T) å ιmany_students(C,T1) å T1<T.

ic43' ~ offered(C,T) å ¬δoffered(C,T) å δmany_students(C,T) å         
    many_students(C,T1) å ¬δmany_students(C,T1) å T1<T.

ic44' ~ offered(C,T) å ¬δoffered(C,T) å δmany_students(C,T) å        
   ιmany_students(C,T1) å T1<T.

ic45' ~ ιoffered(C,T) å ¬many_students(C,T) å ¬ιmany_students(C,T) å
many_students(C,T1) å ¬δmany_students(C,T1) å T1<T.



ic46' ~ ιoffered(C,T) å  ¬many_students(C,T) å ¬ιmany_students(C,T) å  
    ιmany_students(C,T1) å T1<T.

ic47' ~ ιoffered(C,T) å δmany_students(C,T) å many_students(C,T1) å 
   ¬δmany_students(C,T1) å T1<T.

ic48' ~ ιoffered(C,T) å  δmany_students(C,T) å ιmany_students(C,T1) å T1<T.
ic4' ~  ic4i'      i = 2,...,8

where ιmany_students(C,T) and δmany_students(C,T) are:

ιmany_students(C,T) ~ many_students1'(C,T) å ¬many_students(C,T).
ιmany_students(C,T) ~ many_students2'(C,T) å ¬many_students(C,T).
ιmany_students(C,T) ~ many_students3'(C,T) å ¬many_students(C,T).
ιmany_students(C,T) ~ many_students4'(C,T) å ¬many_students(C,T).
δmany_students(C,T) ~ many_students(C,T) å ¬many_students1'(C,T) å

¬many_students2'(C,T) å ¬many_students3'(C,T) å

¬many_students4'(C,T).

and where many_students1'(C,T), many_students2'(C,T),
many_students3'(C,T) and many_students4'(C,T) are:

many_students(C,T)1' ~ takes(S1,C,T) å ¬δtakes(S1,C,T) å takes(S2,C,T) å 
 ¬δtakes(S2,C,T) å S1≠S2.

many_students(C,T)2' ~  takes(S1,C,T) å ¬δtakes(S1,C,T) å ιtakes(S2,C,T) å 
   S1≠S2.

many_students(C,T)3' ~ ιtakes(S1,C,T) å takes(S2,C,T) å ¬δtakes(S2,C,T) å 
  S1≠S2.

many_students(C,T)4' ~  ιtakes(S1,C,T) å ιtakes(S2,C,T) å S1≠S2.

We show in figure 4.5 an example of a transaction that violates ic43'.
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    Note that the course databases
   would have one student at valid
   time 3 but this course had more 
   than one student at valid time 2

TR3={δtakes(maria,databases,3)}

ic43' ~ offered(databases,3) å ¬ δoffered(databases,3) å δmany_students(databases,3)

          å many_students(databases,2) å ¬δ many_students(databases,2) å 2<3.
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Fig. 4.5.



We show in figure 4.6 an example of a transaction that violates ic45'.
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   Note that the course databases
  would have one student at valid 
  time 3 but this course had more 
   than one student at valid time 1

TR4={ιoffered(databases,3), ιtakes(maria,databases,3)}

ic45' ~ ιoffered(databases,3) å ¬many_students(databases,3) å ¬ ιmany_students(databases,3) å   
many_students(databases,1) å ¬δ many_students(databases,1) å 1<3.
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Fig. 4.6.

Note that integrity constraints ic42', ic44',ic46' ,ic47' and ic48' can be eliminated.
ic42' ~ offered(C,T) å ¬δoffered(C,T) å ¬many_students(C,T) å      

   ¬ιmany_students(C,T) å ιmany_students(C,T1) å T1<T .
and
ic46' ~ ιoffered(C,T) å  ¬many_students(C,T) å ¬ιmany_students(C,T) å 

    ιmany_students(C,T1) å T1<T.
can be eliminated in order to be inconsistent rules because if we

ιmany_students(C,T1) in a T1 <T, we ιmany_students(C,T) so when one insert at
valid time T1, insert from T1 to forever, including T.

ic44' ~ offered(C,T) å ¬δoffered(C,T) å δmany_students(C,T) å   
    ιmany_students(C,T1) å T1<T .

and
ic48' ~ ιoffered(C,T) å  δmany_students(C,T) å ιmany_students(C,T1) å T1<T .
can be eliminated in order to be null effect rules because if we

ιmany_students(C,T1), it does not matter the number of students that one can delete
so ic1 requires one student enrolled at least and we insert another one when
ιmany_students(C,T1) in T1<T .

ic47' ~ ιoffered(C,T) å δmany_students(C,T) å many_students(C,T1) å 
   ¬δmany_students(C,T1) å T1<T .

can be eliminated because the bt-ddb was consistent at transaction time now-1 and
ic1 requires for a student to be enrolled in a course, that this course has to be offered
so if we delete students of a course C at valid time T, for ic1 we must have this course
C at valid time T and that is ic43'. Therefore, we can eliminate ic47'  which is
mutually exclusive rule with ic14' ~ ιtakes(S,C,T) å δoffered(C,T).



After this simplifications we finally obtain:

ic43' ~ offered(C,T) å ¬δoffered(C,T) å δmany_students(C,T) å   
   many_students(C,T1) å ¬δmany_students(C,T1) å T1<T.

ic45' ~ ιoffered(C,T) å ¬many_students(C,T) å ¬ιmany_students(C,T) å
many_students(C,T1) å ¬δmany_students(C,T1) å T1<T.

ic4' ~  ic4i'        i =3,5

5   Comparison with Other Methods

Only a few methods for integrity checking in deductive databases incorporate
time, as you can see in the bibliography of this research area in [9].

There are methods, such as Chomicki’s method [5], [6] or Wüthrich’s method
[28], that use temporal logic to formulate integrity constraints. But these methods do
not contain temporal information explicitly as in our case.

We could have chosen a logic-based Event Calculus, such as [10], [19], [24] or
[27], to develop our method, but we think this choice is unimportant, considering that
the main thing presented in this paper is a new integrity constraint checking approach
for bt-ddb.

Plexousakis's method [18] formulates integrity constraints in a first order
language provided by Telos [12], a language for knowledge representation. Telos
adopts Allen’s [1] interval based time model for representing historical information.
The method consists in generating a parameterized simplified structure (PSS) for each
literal of the integrity constraints and the deductive rules that can be affected by an
update and it needs to construct a dependency graph for integrity constraint checking.
The method for finding the simplified form is an extension of Nicolas's method [15],
which includes temporal treatment.

Summarising, Plexousakis's method is focussed on temporal integrity constraint
simplification with a large number of the thirteen relationships which can exist
between two time intervals, defined by Allen [1]. Whereas in our case we do not have
Allen’s relationships. Furthermore, the method needs to use a meta-interpreter from
Telos's language to parameterize a simplified structure. In contrast, we use only
SLDNF proof procedure directly provided in a Prolog system.

6   Conclusions and Further Work

In this paper we have presented how and why to apply transition rules for integrity
constraints checking in bt-ddbs. Given an update, the transition rules define predicate
p' in the updated bt-ddb in terms of transaction time point now-1 of the predicates
appearing in the body of the rule, and the events that occur at transaction time point
now. Event rules define explicitly the changes induced by the update on the derived
predicates. We clarify that transition rules are important to recognise all the possible
cases that produce violations of integrity constraints.

Our further work consists in completing our approach for integrity constraints
checking in bt-ddbs with: updates of integrity constraints and deductive rules,



recursive rules, simplifications of the event rules and more simplifications of
transition rules to increase the efficiency incorporating related work in this area, for
example [7].

Like other temporal deductive database systems as ChronoLog [3] and
ChronoBase [23], we would try to incorporate our work in the FOLRE project [26].
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