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†Institut de Robótica i Informática Industrial, Departamento de Ingenierı́a de Sistemas, Automática e Informática Industrial,
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Abstract—In this paper, we propose to use Model Predictive
Control techniques to reduce the energy consumption in an indus-
trial process by incorporating energy consumption restrictions in
the problem formulation. We propose to use a Model Predictive
Control supervisor to calculate the optimum references for simple
control loops regulated by individual PID controllers. The results
obtained are compared against those obtained when a traditional
control strategy exclusively based on PID controllers was used.
By using this supervisory control strategy a reduction on energy
consumption of about 10% was achieved.

Index Terms—Model Predictive Control, Energy Reduction,
System Identification, PID control.

I. INTRODUCTION

In the past, the control of industrial processes was mainly
based on maintaining a stable operation and reducing the
influence of external disturbances. To achieve these objectives,
proportional integral derivative (PID) controllers have been
successfully used. However, nowadays due to the globalization
of markets, the changing needs and demands from customers,
and the growing social interest in environmental problems
related to production processes, industries are also forced to
adopt control strategies to remain competitive and profitable.
One powerful tools to address these challenges is Model
Predictive Control (MPC) [1]. MPC control allows to also
incorporate economic and environmental criteria in the control
strategy, since the modeling of the problem may accept any
type of models, objective functions and restrictions, thus
improving therefore the production results from the economic
point of view and quality in the industry process. On the other
hand, industrial processes are always complex. For example,
the presence of delay times and physical constraints specific
to the nature of the system, and the behavior of its variables,
need to be considered by the control strategy. The design of a
predictive controller allows to incorporate delay times and to
improve the regulation or tracking of perturbation trajectories.

In this paper, we propose to use a MPC supervisor, where
the MPC controller calculates the optimum references for
simple control loops regulated by individual PID controllers,
to reduce energy consumption in an industrial process. In order
to determine the success of the predictive control strategy, the
reduction of the mean square error, the establishment time of

the controlled variable, and the process energy consumption
resulting of the application of the predictive control topology
will be compared against the results obtained when a control
strategy exclusively based on PID controllers was used.

II. PROCESS DESCRIPTION

The process to be controlled is a scale model of a real
pasteurizing plant (Armfield- PCT23 MKII Process Control
Trainer) [2]. An schematic of the PCT23-MKII process plant
is shown in Fig. 2 and consists of: a miniature 3-stage plate
heat exchanger (3) heated from a hot water circulator (4), two
independent feed tanks (A or B) (1), a holding tube (2) with
product divert valve and two variable-speed peristaltic pumps.
Temperature, level, flow and conductivity control loops can be
implemented within the plant.

Fig. 1. Schema of the PCT23-MKII process plant [2].

The energy for the pasteurization process comes from the
hot water tank, the temperature of which is controlled by the
power dissipated in a resistance. This hot liquid is pumped
into the heat exchanger to heat the liquid. The process liquid
(water) is pumped at a pre-set flow rate from one of the
two storage tanks (A or B) to the heat exchanger, where its
temperature is raised to a predetermined value. The liquid
is maintained at this temperature for a determined period
of time using the holding tube, effectively a volume/flow
delay or time-out. The fluid exiting the maintenance tube
passes through a valve (SOL1) which allows only the correct
temperature liquid to advance in the process, the remaining
being rejected.
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Fig. 2. Process flow diagram for the pasteurizing process [2].

The process fluid advances through the regeneration phase
and finally through the cooling phase where it is cooled using
cold water supplied from the outside [2]. The process unit has
built-in solenoid valves that allow remote control from the
control console or from a remote computer, these include: a
solenoid valve for deflecting the product (SOL1), a supply
solenoid valve selector, either from tank A/B (SOL2), a
solenoid valve for cooling the product (SOL3), a solenoid
valve for filling tank A (SOL4), a solenoid valve for filling
tank B (SOL5). Two peristaltic pumps are also included:
a feed pump (N1) and a hot water supply pump (N2). A
pressure reducing valve (PRV 1) and a flow control valve (V 1)
control the flow of cold water to the feed tanks and the cooling
section of the heat exchanger.

Temperatures are monitored by four temperature sensors
(T1, T2, T3 and T4) at key points in the process. The
sensor signal of each sensor gives a direct measurement of
the temperature in the process pipeline in the range (0 - 150)
◦C. The usual positions of these sensors provide the following
Temperature information: T1 , located at the product output of
the maintenance tube; T2 of hot water; T3 at the output of the
product and T4 at the output of the heat product exchanger.

A conductivity sensor (C1), measures the conductivity of
the process fluid in the range (0 - 200) mS/cm. This measure
will not be used in the process. It would be important to
work with saline liquids where the conductivity changes with
temperature. A flow turbine type sensor is also installed in the
product path to measure the product flow (F1), at the entrance
to the maintenance tube within the range (0 - 500) mL/min.
An in-line filter is incorporated to prevent debris from entering
the sensor. A level sensor (L1), is connected to a socket at the
bottom of tank A. This sensor gives a direct measurement of
the level in the tank in the range (0 - 250) mm. Two float
switches LL and HL in tank B are used to detect low and
high levels in the tank.

III. PROCESS CONTROL

The process addressed in this paper has highly coupled
temperature and flow variables. The variation of any of them
affects the others. Hence, it is important to set controls for
each one of the variables involved. In addition, the presence
of disturbances and the imprecision of the models obtained

make it necessary to apply controllers in order to achieve the
proposed control objectives.

A. Control loops
The pasteurization plant contains three inputs: Velocity in

the pumps (N1 ) and (N2 ) and the power (P ) applied to the
resistor of the heather and five measured outputs: F1 , T1 , T2 ,
T3 and T4 . For the temperature T3, which is the temperature
at which the liquid from the cooling phase exits, there is not a
control loop, since the liquid is manipulated by an all-nothing
valve, also its control does not have the same importance as the
other outputs. For other outputs a control loop is required. The
following are the control loops required and the importance
of each one of them.

In both cases, the PID and MPC controllers to be imple-
mented, the flow F1 must be kept constant for a major reason:
in a pasteurization process, the liquid to be treated must be
kept in the coil for a certain period of time (ie, pasteurization
time). For this time span to be always the same, it is necessary
that the flow must be constant. To do this, a PI-type control
loop of F1 by the speed of N1 is needed in order to reject
any perturbations and keep the flow constant. One of the
disturbances is the wear of the rubber tube of the pump N1 ,
another could be caused by the filling process of the tanks A
and B that can introduce air bubbles that affect the flow rate,
among others.

On the other hand, the hot water tank is the source of
energy for heating the liquid to be treated. The stored energy
is expressed in function of its temperature T2 , therefore it is
necessary to control this temperature in order to guarantee
the energy supply for the process. The control of T2 is
achieved by the energy power P applied to the resistance
of the heater. The most important variable to control is
temperature T1 . Keeping the product temperature at a value
T1ref means that the product has been pasteurized correctly.
In the opposite case, the product must be subjected to the
pasteurization process again and this implies loss of time
and additional energy consumption. Temperature control T1 is
controlled by a cascade control with an internal control loop
of T4, since its value depends strongly on the value of T4

(temperature considered at the entrance of the coil). Then, an
internal control loop of T4 by N2 is first needed and then
an external controller, similar to Fig. 3. In summary, three
PI-type control loops are proposed. Two simple control loops
and one cascade control loop. The performance indicator used
to provide a quantitative measurement of the performance of
each controller implemented.

IV. MPC AS SUPERVISORY CONTROL

The aim of the MPC controller is to improve the perfor-
mance of the process from an energetic point of view. In this
MPC control topology, it is desired to perform a T1 trajectory
tracking control by means of the PI controls described above,
but optimizing the energy consumption, basically in the hot
water tank. Fig. 4 shows the configuration used for this
topology. The Process Models block contains the models that
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Fig. 3. Scheme of the cascade control for temperature T1.

relate the temperatures T2 and T1 to the set-points T2ref and
T1ref , respectively, for the PI control loops. These models
are used to calculate the prediction outputs (T ∗

1 and T ∗
2 ) to

Hp steps in the future. The predictions are calculated by
taking into account the information sampled in the present time
(T1 (k) y T2 (k)) and also the sequence of applied instructions
(T1ref and T2ref ). The optimization algorithm computes the
sequence of {T2ref (k−1+i), i = 1, ..., Hc} that minimizes the
cost function specified in the problem, subject to constraints.
The value of Hc is considered equal to Hp, which gives
the maximum possible number of degrees of freedom in the
controller. Hc and Hp are the control and prediction horizons
respectively. Following the philosophy of predictive control,
only the first element of the optimized control sequence is
applied. This is repeated at each sampling instant taking into
account the new measurement of the model states (feedback)
by recalculating the optimal sequence.

Fig. 4. Model Predictive Control as Supervisor Topology.

The cost function is formed by the control objectives, among
which is the minimization of the energy consumption of the
process, penalization of the variations of the calculated control
actions and the penalization of the term that softens the restric-
tion [3]–[5]. Whereas the restrictions are the conditions that
must be fulfilled in order for the PI control of the temperature
T1 to function properly [6], such as having sufficient energy
in the hot water tank.

A. Identification of Models for the MPC Supervisor

Mathematical models were identified and validated from
experimental data from the PI control loops for T1 and T2

using the Matlab System Identification Toolbox [7], [8]. T2ref

and T1ref set-point were used as input and the temperatures

T2 and T1 of the PI controls were used as output. Fig. 5 shows
the inputs and outputs used for both: model identification and
validation of the model that relates T2 to T2ref . T2δ and T2δref

are the increments of T2 and T2ref after applying the control
action at t = 10 s. Three models were obtained as candidates
for best fit, as it can be seen in the bottom graph of Fig. 5. The
models that best approximate are two of the second order OE
type and one delay, and one of the first order ARX type with
a delay. Table I, shows the fit values for the Loss Function
(Lf) and Akaikes Final Prediction Error (FPE) observed [7].
The model that best approximate is the OE121 model, which
is of second order and with a pure delay of 1s. Accordingly,
the transfer function that relates T2δ to T2δref is:

GT 2 (z) =
0.00358z− 1

1− 1.937z− 1 + 0.9406z− 2
. (1)

Fig. 5. Upper graphs: data used for the model identification and its validation.
Bottom graph: model validation for three structures found.

TABLE I
LF AND FPE VALUES FOR THE MODELS RELATING T2 TO T2ref .

OE121 OE221 ARX211
Lf 0.00526923 0.00606671 0.00536532

FPE 0.00532131 0.00614641 0.00548756

Similarly, Fig. 6 shows the inputs and outputs used for the
identification and validation of the the model that relates T1

to T1ref , T1δ and T1δref are the increments of T1 and T1ref

after applying the control action at t = 0 s. Two models are
best fitted (bottom graph of Fig. 6). The models that are best
approximated are of the second order OE type and with a pure
delay of 30 s. The setting (Fits) is similar for both models.
Table II shows the values observed for the parameters Lf
and FPE. Therefore, the OE1230 model was selected and the
transfer function that relates T1δ to T1δref is:

GT1(z) =
0.0008008z− 30

1− 1.963z− 1 + 0.9639z− 2
. (2)

B. Restrictions for the MPC control formulation
The energy to heat the product comes from the hot water

tank. This energy depends directly on the temperature T2 . At
high temperatures, a large amount of energy will be stored and
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Fig. 6. Upper graphs: data used for the model identification and its validation.
Bottom graph: model validation for three structures found.

TABLE II
LF AND FPE VALUES FOR THE MODELS RELATING T1 TO T1ref .

OE1230 OE2230
Lf 0.00277185 0.00277795

FPE 0.00282708 0.00283421

vice versa. Having sufficient energy is fundamental for the PI
control of T1 , hence the MPC Supervisor control algorithm
must incorporate this requirement. This requirement is fulfilled
by maintaining the temperature T2 above the temperature at
the output of the serpent T1 at a value D, as expressed in the
following inequality:

T2 (k + i)− T1 (k + i) ≥ D, (3)

Where D is the minimum temperature difference that must
exist between T2 and T1 so that the control loop PI of T1

reaches the desired set-points without having to keep the
control inputs in the pump N2 at high values and i = 1, .., Hp.

For any disturbance in the plant or noise, the difference
T2 (k)−T1 (k) may become less than the value D. In that case,
the optimizer calculates T2ref relatively large with the aim of
fulfilling (3), generating therefore oscillations in temperature
T2 . To remedy this effect, a term ξ should be added to make
the restriction smooth. Thus (3) can be rewritten as:

T2 (k + i)− T1 (k + i) ≥ D + ξ(k + i). (4)

For the present design, D will be the temperature difference
when the system reaches the working point with F1 = 163
mL / min, N2 = 65% and P = 270 W. Therefore, around
the working point, we have:

T2δ(k + i)− T1δ(k + i) ≥ ξ(k + i). (5)

The restriction must be met for each prediction instant, i.e.,

T2δ(k + 1|k)− T1δ(k + 1|k) ≥ ξ(k + 1|k),
T2δ(k + 2|k)− T1δ(k + 2|k) ≥ ξ(k + 2|k),

...
T2δ(k +Hp|k)− T1δ(k +Hp|k) ≥ ξ(k +Hp|k).

summarizing, in vector form we have:

ZT2(k)− ZT1(k) ≥ Ξ. (6)

The vector ZT2 contains the outputs T2δ through Hp, i.e.,

ZT2(k) = Ψx(k) +ΘU(k), (7)

Where Ψ = CZSx and Θ = CZSu. The matrices Sx and
Su are calculated using the state space found in the modeling
of T2δ with T2δref . The matrix CZ is a diagonal matrix
whose elements are C. The vector U(k) contains the entries
{T2δref (k|k), . . . , T2δref (k+Hu− 1|k)} . x(k) is the state of
temperature T2δ at time k.

The vector ZT1 is calculated from the transfer function (2)
by knowing at the instant k the value of T1δ(k) and its set-
points to follow. This function could have been expressed in
state space and raise the problem as done for T2 , however
since there is a considerable time delay, the number of
states increases, so also the dimension of the matrices for
the MPC problem, causing the optimization time to increase
considerably.

Replacing the terms described above, we arrive at:

Ψ x(k) + Θ U(k)− ZT1(k) ≥ Ξ. (8)

Defining the vectors:

U =

[
U(k)

Ξ(k)

]
, A = [−ΘI], B = Ψx(k)− ZT1(k),

with I been an identity matrix of dimension Hp, The
restriction can be expressed as:

AU ≤ B. (9)

This inequality is one of the constraints of the quadratic
optimization problem after the design of the predictive con-
troller.

C. Cost function
It is desired that the outlet temperature of the serpent T1 fol-

low a reference trajectory, minimizing the power consumption.
The energy consuming elements are the N1 and N2 pumps and
the electrical resistance that heats the water in the tank. The
speed in the pump N1 is directly related to the feeding flow of
the product F1 and this determines the time the liquid remains
in the coil. Because in the pasteurizing process it is necessary
for the liquid to be maintained for a certain time in the coil,
a constant flow is required, i.e. a constant pump speed N1 .
So the energy optimization will be related to the speed of the
pump N2 and the power in the resistance, P . According to the
technical data sheets of the N2 peristaltic pump, the energy
consumption is approximately 35 VA for flow rates ranging
from 100 − 350 mL/min [9], indicating therefore, the low
dependence of the electrical power consumed as a function
of the flow rate. This leads us to think of optimizing the
energy consumption only in the electrical resistance, whose
value is about 300 W. The temperature of the hot water tank
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T2 is related to the electrical power applied to the resistor. For
T2 temperatures greater than 65◦C, higher electrical power is
required than for T2 temperatures below 65 ◦C, due to factors
such as loss of energy to the environment, loss of energy
from the rubber in contact with the pump N2 , etc. Then,
minimizing the energy consumption equates to minimizing the
temperature T2 . Therefore, the MPC controller must calculate
the minimum T2ref set-points for the control loop PI by
considering the constraint (9). Thus, the approach to the MPC
problem involves the penalization of these parameters. The
term that softens the restriction should also be penalized. It
is desired that this parameter should be very close to 0; how
close will depend on the priority it has in the cost function
of the multi-objective problem. As such, the variations in the
T2ref set-points are penalized. This helps to decrease certain
oscillations of the temperature T2 .

Finally, the cost function proposed has the form:

V (k) = ∥U(k)∥2WR1
+∥∆U(k)∥2WR2

+∥Ξ(k)∥2WR3
, (10)

Where U(k) contains the set-points
T2δref (k|k), . . . , T2δref (k + Hu − 1|k), WR1 is the matrix
of weights to penalize U(k), WR2 is the matrix of weights
to penalize ∆U(k) and WR2 is the matrix of weights to
penalize Ξ.

Considering that:

U(k) = F∆U(k) + Ua, (11)

where: F and Ua are defined as:

F =

⎡

⎢⎢⎢⎢⎣

I 0 . . . 0

I I . . . 0

...
...

. . .
...

I I . . . I

⎤

⎥⎥⎥⎥⎦
, Ua =

⎡

⎢⎢⎢⎢⎢⎣

u(k − 1)

u(k − 1)

...
u(k − 1)

⎤

⎥⎥⎥⎥⎥⎦
,

where I is an identity matrix of dimension l, F ∈
Rl(Hp× Hp), Ua ∈ RlHp× 1 .

by defining F1 = F − 1 , ∆U(k) can be rewritten from (11)
as

∆U(k) = F1U(k)− F1Ua. (12)

therefore, the cost function can be rewritten as:

V (k) =U(k)T
(
WR1 + FT

1 WR2 F1

)
U(k)

− 2UT
a FT

1 WR2F1U(k) + Ξ(k)TWR3Ξ(k) + α.
(13)

The term α is a constant, so it does not influence the
optimization problem solution. Now, defining:

U =

[
U(k)

Ξ(k)

]
, H = 2

[
WR1 + FT

1 WR2 F1 O

O WR3

]
,

fT =
[
−2UT

a FT
1 WR2 F1 O

]
,

we have,

V (k) =
1

2
U(k)T H U(k) + fTU(k). (14)

D. Tuning MPC-Supervisor parameters
In the MPC it is necessary to tune in certain parameters

that will determine the fulfillment of the control objectives.
The parameters to tune are basically the weights in the cost
function and the control and prediction horizons. For this
topology, the control horizon is considered to be equal to the
prediction horizon, i.e. Hc = Hp, whereby a greater degree
of freedom is obtained in the control actions. The value of
the forecast horizon that was applied was Hp = 35. Several
horizon values were tested in the simulation. For smaller
values the response of the system was slow, whereas for higher
values the response in time did not improve remarkably. In the
same way, the weights in the cost function were determined
by try and error in simulation and then applied to the real
system. The tuned values for the diagonal elements of the
weight matrices WR1 , WR2 ,WR3 are: R1 = 0.1, R2 = 0.1 y
R3 = 10. The weight R3 at the end of Ξ is about two or more
orders of magnitude greater than the others terms because the
term that softens the restriction must be close to zero, its only
function is to soften the restriction and not to allow very large
values of T2ref compared to the working temperature (around
65 ◦C), in possible situations where T2 − T1 < D.

V. RESULTS AND DISCUSSION

The optimization problem to be solved for finding the
optimum references in T2ref is stated by (14) and (9). The
experimental results obtained are shown in Fig. 7, where the
blue trace represents the temperature value T1 that follows the
set-point path given by the red curve. As it can be seen, when
applying a perturbation at about 550 s there is a pure delay
of about 30 s which is expected, since no action has been
taken to correct it, but the steady-state error tends to zero. At
each sampling second, a vector of optimum values T2ref is
calculated and the first element of said vector is applied to the
plant. The T2ref values applied to the plant are shown in the
orange trace. As it can be seen, as soon as the set-point T1ref

changes, also T2ref changes. The changes are smooth and
remain around a certain value, when T1 has already reached
the desired set-point. Changes in T2ref allow temperature T2

(in black) to always be above T1 at least at a value D. This
allows to provide the necessary energy so that the PI control
loop controlling T1 is not affected. The value D is taken as
the difference of T2 (k)− T1 (k) in t = 40 s (when T1 control
starts), giving a value D = 11 ◦C.

In Fig. 8, the results obtained by applying the MPC Supervi-
sor are compared against to the results obtained when applying
only the PI control. In the test shown, the temperature T2 was
maintained at 75 ◦C in order to guarantee sufficient energy for
trajectory tracking.

As it can be seen from Fig. 8, the control curves of T1 with
both topologies are practically overlapped and stabilized in
the desired set-point, the temperature T2 in the MPC topology
is kept lower than in the control with PI controllers only.
Working with lower T2 temperatures represents savings in
energy consumption. The percentage of energy saved for the
1800 s of experimentation was about 10%. In the lower graph,
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Fig. 7. Evolution of temperatures T1 and T2 with MPC Supervisory topology.

Fig. 8. Upper graph: values of T1 and T2 for the MPC Supervisor (blue
traces) and for control based only on PI controllers (red traces). Bottom graph:
speed applied to the pump N2 for both control topologies.

the value for the actuator N2 is shown for both cases. The
red curve has oscillations of considerable amplitude, which
affects the T2 control. This explains the oscillations of T2 .
Robust controllers should be designed to correct such effect
in the future. The mean square error (MSE) obtained for the
trajectory tracking of T1 when using the supervisor MPC
control is 0.94, which is similar to the value of 0.92 obtained
with the PID control.

Table III shows a comparative analysis for the two types of
control implemented, based on the steady-state error (mean
quadratic error) (MSE), settling time (Ts), and Savings in
Energy Consumption (SEC). As it can be seen, the error for
the control based exclusively on PID controllers is practically
equal to the error obtained by using the supervisor MPC con-
trol, even though the latter works with lower temperatures in
the hot water tank. This is due to the fact that in the supervisor
MPC control, the same PI control loop is responsible for the
control of T1 , as in the case of the PI control based solely on
PID controllers. However, by using the MPC control strategy
an energy saving of about 10% was achieved, as it can be seen
in Fig. 9.

TABLE III
COMPARISON OF CONTROL STRATEGIES.

Topology MSE Ts (s) SEC(%)
based on PID Only 0.92 250

MPC as Supervisory Control 0.94 250 10

Fig. 9. Heater power consumption for both control topologies. Total energy
consumption was computed as the area under the curve.

VI. CONCLUSION

In this work, it was show that by incorporating energy cri-
teria in the design of control strategies, such as the predictive
controller described in this paper, allows the optimal use of
resources. The implemented predictive controller allows to
reduce energy consumption by about 10%. If these type of
controllers are extended to a larger process plant, a similar
percentage of energy consumption reduction would imply
significant economic savings impact for the industry. The pre-
dictive control strategy developed in this paper can be extended
to applications of larger plants, since they consider dead zones,
delay times and interconnections among subsystems typical of
larger scale plants.

We have also investigated the behavior of MPC under
other types of configuration topologies, such as MPC multi-
variable which directly regulates the process variables, and
MPC with PID where the PID controls cooperate with the
MPC controller, obtaining similar energy saving results, please
refer to [10] and [11] for details.
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