
1 
 

 

 

 

 

 

 

 

 

 

 

 

 

Study and optimization of core allocation 

 in multi-core optical fibers 

 

José Pedro Pile Mendes Pinto 

 

 
 Thesis to obtain the Master Science Degree in 

Telecommunications Engineering 

 

Supervisors: Professor Joan Gené Bernaus 

Professor Paulo Sérgio de Brito André 

 

 

 

 

 

 

November 2016 

 

http://fenix.tecnico.ulisboa.pt/cursos/meec


2 
 

Acknowledgements 

 

Firstly, I would like to express my sincere gratitude to Professor Joan Manuel Gené Bernaus. Your 

constant support, availability and patience made this work possible. Thank you for making the 

development of my dissertation an enjoyable experience. 

Secondly, for his concern and willingness to guide me on short notice, I thank Professor Paulo Sérgio 

de Brito André. Your pragmatic counsel has made this a better work. 

Lastly, I would like to thank my family for always being by my side, even from afar. To my father, for 

supporting my every decision, and my mother, for caring so much, I thank you. Without your love and 

support I wouldn’t be where I am today. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.it.pt/Members/Index/694
https://www.it.pt/Members/Index/694


3 
 

Resumo 

 

Multiplexagem por divisão de espaço (SDM) é vista como uma solução promissora para a iminente 

crise de escassez de capacidade. O crescimento exponencial do tráfego de rede que nos encaminha 

para esta crise criou a necessidade de sistemas ópticos de alta capacidade, que é onde as fibras 

homogéneas de múltiplos núcleos de modo único (SM-MCF) podem ser úteis. 

Apresenta-se um método para estimar a interferência dentro de uma fibra de múltiplos núcleos (MCF), 

bem como várias configurações que visam minimizar a interferência entre núcleos (XT). Um método 

para escolher a melhor configuração para os núcleos é concebido e três fibras com diferentes diâmetros 

de revestimento (𝐶𝑑 =  125, 260, 300 µ𝑚) são analisadas. 
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Abstract 

 

Space-division multiplexing (SDM) is regarded as a promising solution for the capacity crunch looming 

just around the corner. The exponential growth of network traffic that has us gravitating towards this 

crunch has created the need for high-capacity optical transmission systems, which is where 

homogeneous single-mode multi-core fibers (SM-MCF) step into the scene. 

A method for the estimation of crosstalk inside a MCF is introduced, along with several layouts that seek 

to minimize the inter-core crosstalk (XT) amongst the cores. A method for choosing the best layout for 

the cores on a given MCF is devised and three fibers differing only in cladding diameter                          

(𝐶𝑑 =  125, 260, 300 µ𝑚) are analysed. 
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Nomenclature 

 

𝜆  Wavelength 

𝛬  Core pitch 

𝑎1  Core radius 

𝑎2  Cladding radius 

𝑎3  Trench radius 

𝑤𝑡𝑟  Trench width 

𝑛1  Core refractive index 

𝑛2  Cladding refractive index 

𝑛3  Trench refractive index 

∆1  Core-Cladding relative refractive index 

∆2  Cladding-Trench relative refractive index 

𝑅𝑏  Bending Radius 

𝑑𝑐   Correlation Length 

𝐶𝑑  Cladding Diameter 

𝑂𝐶𝑇  Outer Cladding Thickness 

L  Fiber Length 

 

𝑋𝑇  Inter-core crosstalk 

𝑃(𝑍)  Power at the output of the interference core 

𝑃′(𝑍)  Power at the output of the reference core 

𝛽𝑚  Propagation Constant 

𝑘𝑚𝑛  Mode coupling coefficient 

𝑘′𝑚𝑛  Mode coupling coefficient for the trench-assisted case 

ℎ̅𝑚𝑛  Power coupling coefficient 

 

𝑁  Number of cores in the Layout 

𝑀1  Number of cores in the Outer Ring 

𝑀2  Number of cores in the second most outward ring 

𝑀3  Number of cores in the third most outward ring 

𝑟1  Radius of the Outer Circle 

𝑟2  Radius of the second most outward circle 

𝑟3  Radius of the third most outward circle 

𝛬1  Distance between Outer Cores 

𝛬2  Distance between cores on the second most outward circle 

𝛬3  Distance between cores on the third most outward circle 

𝛬𝑥   Distance between cores in different rings 
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Glossary 

 

BER   Bit Error Rate 

CMT   Coupled-Mode Theory 

CPT   Coupled-Power Theory 

DWDM   Dense Wavelength-Division Multiplexing  

FDM   Frequency-Division Multiplexing 

FTTH   Fiber to the Home 

Inner Circle   Circumference containing nuclei closest to the center of the fiber 

Inner Ring   Structure composed by nuclei laying on the Inner Circle 

Inner Cores   Cores composing the Inner Ring 

Layout Variations Different spatial distributions of the cores in a layout as a function of 𝑁 

Limiting Crosstalk Highest crosstalk in the structure 

MCF   Multi-Core Fiber 

Middle Circle  Circumference containing nuclei in-between the Inner and Outer Circles 

Middle Ring  Structure composed by nuclei laying on the Middle Circle 

Middle Cores  Cores composing the Middle Ring 

MMF   Multi-Mode Fiber 

Neighbour   Any of the closest cores also laying on a circumference of the same radius 

Outer Circle   Circumference containing nuclei the furthest from the center of the fiber 

Outer Ring  Structure composed by nuclei laying on the Outer Circle 

Outer Cores  Cores composing the Outer Ring  

OSNR   Optical Signal-to-Noise Ratio 

PAM   Pulse-Amplitude Modulation 

PDM   Polarization-Division Modulation 

QAM   Quadrature Amplitude Modulation 

QPSK   Quadrature Phase-Shift Keying 

SDM   Space-Division Multiplexing 

SM-MCF  Single-Mode Multi-Core Fiber 

SNR   Signal-to-Noise Ratio 

WDM   Wavelength-Division Multiplexing 
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1 Introduction 

 1.1 Scope of the Work 

 

Ever since the first “LO” message went through ARPANET’s first computer-to-computer link on October 

29, 1969, the need for capacity in packet switching networks has never ceased to increase. While Neil 

Armstrong had just taken a step on the moon, Mankind stepped into the Information Age. The Revolution 

was underway, with individuals able to instantly access information and freely transferring it through 

leased telephone lines at a rate of 50kb/s. 

By the end of 1973 there were thirty seven sites on the ARPANET [1], ranging from governmental entities 

such as NASA to private firms like Xerox PARC, where Ethernet technology had just been invented. 

This new technology quickly became prominent within corporations and institutions, providing data 

transfer rates up to 2.94 Mbit/s over coaxial cables. 

Marveled by these new tools of communication, many engineers and inventors wondered about ways 

to translate what was going on inside companies and organizations to a wider geography, as the existing 

labyrinth of copper wires making up the telephone network lacked the pure transmission speed enjoyed 

by corporate LANs. The solution was just outside the door, literally. 

For forty years the cable television industry had been mounting coaxial and fiber-optic cables through 

conduits and utility poles that ran straight to your door, with the single purpose of filling living rooms 

across America with even more television channels. Tens of thousands of kilometers of what this 

industry called plant, the network of coaxial and fiber optic cables, had been deployed to form this sleek, 

fast, multi-billion dollar data network that was surprisingly well-suited for data. 

Cable-television companies didn’t take long to realize the innate communication abilities of the plant 

they’d built, and soon businesses were being offered T1 speed (1544 Mbit/s) communication services 

with the use of a cable modem. It wasn’t, however, until the late-1990s that cable modems became 

mainstream, when the majority of U.S cable systems were activated for bidirectional signaling. 

Up until the 90s, optical fiber communications were only used in long-distance applications. Despite 

boasting much lower attenuation and interference than the existing copper wire, optical fibers were 

costly and complex to deploy, only fully exploited in big-data applications. As the use of the Internet 

exploded in the 1990s, the demand for such an infrastructure, capable of carrying heavy loads of digital 

data, led to the deployment of thousands of kilometers of fiber cable all around the world.  

Optical fiber had come a long way. From carrying its first live telephone traffic at 6 Mbit/s back in 1977 

across a California beach, to DWDM systems able of transmitting 100 wavelengths at 10Gbit/s each in 

the late 90’s, there were no doubts that optical fiber was the future. 

Today, sixteen years later, it still is. Although fiber transmission capacity has been increasing 20% per 

year since 2000 [2], new solutions are required as the demand for data bandwidth is showing no signs 

of slowing down. 
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1.2 Motivation 

 

In recent decades network traffic demand has been growing unceasingly, showing growth rates in-

between 20% and 60% per year in this last decade [3]. Forecasts show this demand isn’t likely to slow 

down the pace anytime soon, which is the result of a variety of factors. 

The emergence of new technologies and applications, changing the rate at which we consume data, 

combined with the recent rise of machine-to-machine communications and the advent of the so called 

“Internet of Things”, has caused demand to skyrocket to heights never before imagined by network 

engineers. 

Despite technologies such as Dense Wavelength-Division Multiplexing (DWDM) and Coherent detection 

that allowed for a multiplicative increase of capacity in optical systems, engineers still struggle to cope 

with the exponential growth traffic demand is experimenting nowadays. Furthermore, current systems 

are quickly approaching the limit for the maximum amount of information that can be transmitted over a 

given channel [4], leading to the looming capacity crunch. 

In order to overcome the capacity limits in the existing optical fiber communication infrastructure, 

increasing the spatial efficiency within the available fiber cross-section is the most effective solution. 

Multi-core fibers (MCFs), in the scope of space-division multiplexing (SDM), make up a promising 

solution to the aforementioned efficiency issue. 

Performing SDM, with the use of uncoupled MCFs, consists of a simple and robust solution that doesn’t 

require complex multiple-input multiple-output signal processing at the receiver side. The main issue 

and focus of this dissertation is, however, being able to increase the number of cores inside the fiber 

while keeping the inter-core crosstalk (XT) low. 

Note that keeping the crosstalk low is important not only for allowing data to reach longer distances, but 

also for being able to use high multi-level modulation formats. 

Different strategies have been employed to achieve this. The use of a trench, originally proposed to 

reduce the fiber bending loss in FTTH applications [5], has proven to be very effective for XT reduction 

in MCFs when applied to each core; making up the so called “trench-assisted” structures. 

By making use of these trench-assisted structures, we will analyze the XT of different proposed core 

arrangements (layouts) in an attempt to minimize the crosstalk in the fiber. Finally, in a bid to maximize 

the fiber’s capacity, we describe a method for spatially arranging identical cores inside a MCF using the 

layouts that were previously proposed. 
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1.3 Thesis Outline 

 

The purpose of this dissertation is to describe a way of spatially arranging identical cores inside a multi-

core fiber (MCF), in a bid to maximize its capacity by placing as many cores as possible inside. In an 

attempt to find an optimal solution, several layouts were proposed and analyzed from a crosstalk point 

of view, with the aid of a MatLab algorithm.  

The thesis is structured as follows: 

In Chapter 2, an explanation of the main concepts invoked throughout this dissertation is provided, from 

basic theory on MCF to the method used in the crosstalk estimation. 

In Chapter 3, a practical description of the different proposed layouts is given. These descriptions feature 

explanations on how the layout was build and the crosstalk estimated, and include the necessary 

information on how to reproduce its geometry. 

In Chapter 4, an illustration of the algorithm used in the crosstalk estimation is provided, followed by a 

brief validation in which the obtained results are proven consistent with those from a related paper. 

In Chapter 5, a description of the problem is provided along with an available state-of-the-art solution. 

An alternative solution, subject of this thesis, is then exposed for each of the three case studies 

considered.  

In chapter 6, the final conclusions and achievements are presented, as well as the potential 

improvements and future work. 

 

 

1.4 Original Contributions 

 

The main contributions of this work are: 

 

 Development of a functional crosstalk estimation algorithm for a set of layouts with adjustable 

fiber parameters. 

 Description of a method for selecting the most adequate layout for a MCF with a precise cladding 

diameter, envisioning crosstalk optimization. 

 Proposal of commercially viable low-crosstalk solutions for the core distribution in MCF’s. 

 Performance optimization, by means of a low-crosstalk layout, of three MCF’s varying only in 

size: 𝐶𝑑 =  125 / 260 / 300 µ𝑚. 
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2 Background 

 2.1 Space Division Multiplexing 

 

Data transmission, either through copper or fiber, makes use of electromagnetic waves, which are 

governed by Maxwell’s equations in a classical context. These equations describe an electromagnetic 

field that can vary across five physical dimensions, which can be used for modulation and multiplexing, 

as shown in figure 1. 

 

Time Dimension 

By creating a series of time slots and varying within each a single scalar quantity (such as the amplitude 

or phase) of the electromagnetic field according to a specific pattern allows the formation of 

communication symbols. 

These communication symbols are then transmitted in temporal succession at a certain rate, carrying 

often more than one bit per symbol depending on the amplitude modulation employed. 

 

Quadrature Dimension 

Many communication systems modulate pulses onto an electromagnetic carrier wave whose frequency 

is much larger than the symbol rate. Take the example of WDM networks, which use optical carrier 

frequencies in the 193-THz regime for the optical carrier and optical amplification bandwidths in the 5-

THz range; these systems boast a very small fractional bandwidth in which the electromagnetic field 

can be thought of having two independent components (a sine and a cosine component).   

These two components, often names quadratures, can then be modulated to form a two-dimensional 

symbol alphabet, such as the quadrature amplitude modulation (QAM), which in its simplest form may 

be perceived as two quadrature-multiplexed PAM signals.  

 

Frequency Dimension 

Transmitting multiple communication signals in parallel on different carrier frequencies over the same 

transmission medium is known as frequency division multiplexing (FDM), or wavelength division 

multiplexing (WDM) in the optical communications context. Carrier frequencies require a spacing in-

between them, which should be no less than the symbol rate used on each carrier so that the multiplexed 

QAM signals can be individually decodable without crosstalk. 

On an inherently shared medium (e.g., the mobile wireless channel), the capacity scalability of FDM 

systems is typically limited by regulatory bandwidth constraints, while fundamental physical or 

engineering limitations set such limits on waveguides (e.g., coaxial, twisted-pair, or fiber cables). 
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Polarization Dimension 

In some applications, such as coherent optical communications, the vector nature of electromagnetic 

waves may be exploited to simultaneously transmit two independent information streams on a set of two 

orthogonal polarizations. Polarization division multiplexing (PDM) doubles the transmission capacity 

compared to a single-polarization system; and with the introduction of correlation between symbols in 

the two polarizations the construction of four-dimensional modulation formats is made possible, which 

can be designed to optimize transmission performance at the cost of spectral efficiency [6]. 

 

Spatial Dimension 

The spatial dimension is exploited by sending information over different parallel spatial paths. This 

entails a wide variety of techniques across many communications segments, ranging from data buses 

on printed circuit boards to more complex multi-antenna techniques in cellular wireless systems. 

 

In recent years, optical communications research 

has focused on fibers with multiple parallel cores 

within a common cladding (MCFs) as well as on 

“few-mode fibers”, which support multiple 

independent spatial patterns of light (modes) 

across their core areas. A particular challenge 

with these systems, as well as with many other 

whether electrical or optical, is the presence of 

crosstalk among the parallel spatial paths. While 

in some applications this crosstalk can be dealt 

with interference cancellation and multiple-input-

multiple-output digital signal processing 

techniques, this dissertation will exploit low-

crosstalk waveguide designs. 

 

 

 

 

 

 

 

 

 

Figure 1: Physical dimensions for modulation and multiplexing 
of electromagnetic waves [3] 
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2.2 Optical Fibers 

 

SM optical fibers are the leading transmission medium for optical communication systems all around the 

world. Using a high-index core surrounded by a low-index cladding, light can be guided through an 

optical fiber by means of multiple total internal reflections at the core-cladding boundary. 

In most single-mode fibers and some multi-mode fibers the step-index profile is used, where the 

refractive index is uniformly distributed across the length of the core, facing a sharp decrease at the 

core-cladding interface as to guarantee a lower refractive index in the cladding. Most fibers have a low 

refractive index contrast (Δ<<1), causing the electric field to leak and travel through the cladding, 

resulting in weakly guided fiber modes that can be simplified using linear polarization (LP) modes. 

Multi-mode fibers, which are not in the scope of this dissertation, make use of the propagation modes 

to increase capacity by allowing several to be transmitted simultaneously. A MMF will generally boast a 

wider core diameter than its SMF counterpart, being used for short-distance communication links and 

for applications where high power must be transmitted 

 

 

2.2.1 Multi-Core Fibers 

 

First manufactured by Furakawa Electric in 1979, MCFs consist of a structure enclosing multiple cores 

in a single cladding. 

Presently a hot topic for its promising potential in improving the efficiency of SDM, MCFs can be 

classified into coupled-type and uncoupled-type fibers. The first type makes use of several cores placed 

in such a way that allows cores to couple with each other. Much like in MMFs, coupled-type MCF make 

use of the propagation modes to perform spatial multiplexing without requiring the complex index profiles 

of advanced MMFs. 

The latter, uncoupled-type MCFs, require each core to be properly arranged inside the fiber to keep the 

inter-core crosstalk low enough as to allow for long-distance transmission applications.  

Other than properly arranging the cores inside an uncoupled-type MCF, some other strategies have 

been proposed to further reduce the crosstalk. A trench-assisted structure, with strong light confining 

capabilities, will be used in the scenarios to be studied. As demonstrated in section 4.2, a trench-

assisted multi-core fiber (TA-MCF) will yield a lower inter-core crosstalk than a MCF with a step-index 

profile thanks to the existence of a low index trench layer that is able to reduce the overlap of 

electromagnetic fields between neighbouring cores. 

 

The number of cores to be placed inside such a fiber depends on the design parameters taken into 

consideration.  
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For illustration purposes, a seven core trench-assisted MCF has been chosen to represent the main 

parameters considered when computing the crosstalk for different proposed core arrangements (or 

layouts). 

 

 

 

 

 

 

 

 

 

 

 

Three different optical fibers will be considered in this work, all sharing the same set of parameters but 

for the Cladding Diameter (𝐶𝑑). This parameter, often named Fiber Diameter and measuring the distance 

between two opposite edges of the fiber, will take a different value for each one of the three considered 

scenarios. 

The Outer Cladding Thickness (𝑂𝐶𝑇), the distance between an Outer Core and the edge of the Outer 

Cladding cannot be any smaller than 30 µm, as to minimize the micro-bending loss [7]. The distance 

between the two ends of the optical fiber, not represented in figure 2, is defined as Fiber Length (𝐿). 

The homogeneous cores placed inside the fiber, all sharing the same size and refractive indexes, will 

be enclosed by a trench that further confines light into the center of the core. The thickness of the trench 

(𝑤𝑡𝑟) and of both Cladding and Core will be the same; making the radius of the Cladding (𝑎2) and Trench 

(𝑎3) two and three times larger than, respectively, the radius of the Core (𝑎1). The relative refractive 

indexes of the Core-Cladding (∆1) and Cladding-Trench (∆2) will be identical; and by setting a cladding 

refractive index (𝑛2) both the core refractive index (𝑛1) and the trench refractive index (𝑛3) can be 

deduced. 

As for the distance that separates two cores, the core pitch (Λ), it will vary in function of the different 

proposed layouts and number of cores integrating them. This parameter, directly correlated with XT, will 

be key in balancing the crosstalk values inside the fiber.  

Additionally, a minimum distance of 3 µm between trench edges must be ensured as to safeguard any 

contact between trenches when the fiber bends [8]. 

 

Figure 2: Main parameters of a multi-core fiber 

 

𝐶𝑑 
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2.3 Crosstalk Estimation 

 

Crosstalk, by definition, is the disturbance of a signal by the electric or magnetic field of another adjacent 

telecommunications signal. 

Considering the way in which cores are densely packed inside a single cladding of a MCF, it shouldn’t 

come as a surprise that crosstalk management is crucial when dealing with coupling and the consequent 

degradation of transmitted signals. 

 

Crosstalk can be described by the following expression; where 𝑃′(𝑍) is the power at the output of the 

reference core and 𝑃(𝑍) is the power at the output of the interfering core. 

 𝑋𝑇(𝑍) = 10× 𝑙𝑜𝑔10
𝑃′(𝑍)

𝑃(𝑍)
[𝑑𝐵] (2.1) 

Crosstalk mitigation can be a daunting task, but if not carried out, will prevent the fiber from achieving 

its maximum potential in terms of performance and capacity. 

For crosstalk to be properly dealt with, an accurate method for its estimation in MCFs is required. Two 

methods exist for doing so: Coupled-Mode Theory (CMT) and Coupled-Power Theory (CPT). 

 

Coupled-Mode Theory (CMT), a perturbational approach for the analysis of coupling in vibrational 

systems, takes into account the interference between optical modes from both waveguides when these 

are brought sufficiently close to each other. In those cases where the electromagnetic field distributions 

after mode coupling don’t substantially differ from those previous to it, this method can be used to 

analyze the propagation characteristics of the waveguides. 

While this method allows for an accurate estimation of the crosstalk while taking into account the twisting 

and bending effects that the fiber is subjected to, a large number of simulations are required to estimate 

the value of crosstalk. 

 

Coupled-power theory, on the other hand, is based on the principle of measuring the amount of power 

that the signal being transmitted in one core is transferring to its neighbouring core. Unlike CMT, CPT 

is able to provide a fast and accurate estimation of inter-core crosstalk in MCFs by averaging the bending 

and twisting effects along the fiber using a predetermined correlation length 𝑑𝑐 [9]. 
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Making use of CPT, the crosstalk between two cores within a fiber with length 𝐿 can be estimated as [10]: 

 𝑋𝑇 = tanh(ℎ̅𝑚𝑛𝐿) (2.2) 

Moreover, if the crosstalk is very small it can be approximated as [10]: 

 𝑋𝑇 = ℎ̅𝑚𝑛𝐿 (2.3) 

Where ℎ̅𝑚𝑛 is the average PCC between core m and core n. For the case of homogeneous fibers with 

a small bending radius, the average PCC can be expressed as [10]: 

  ℎ̅𝑚𝑛 =
2𝑘𝑚𝑛

2 𝑅𝑏
𝛽𝑚Λ𝑚𝑛

 (2.4) 

Where 𝑅𝑏 is the bending radius, Λ the core pitch and 𝛽𝑚 the propagation constant. 𝑘𝑚𝑛, the mode 

coupling coefficient, is given by: 

 𝑘𝑚𝑛 =
𝑤𝜀0 ∫ ∫ (𝑁2 −𝑁𝑛

2)𝐸𝑚
∗ ∙ 𝐸𝑚𝑑𝑥𝑑𝑦

+∞

−∞

+∞

−∞

∫ ∫ 𝑢𝑐 ∙ (𝐸𝑚
∗ × 𝐻𝑚 + 𝐸𝑚 × 𝐻𝑚

∗ )𝑑𝑥𝑑𝑦
+∞

−∞

+∞

−∞

 (2.5) 

Being 𝑤 the angular frequency of the electromagnetic field, 𝜀0 the vacuum permittivity, 𝑁2(𝑥, 𝑦) the 

refractive index distribution in the entire coupled region and 𝑁𝑛
2  the refractive index distribution of 

waveguide n. 

 

The case we’ll be considering is of a trench-assisted 

structure, in which three different refractive indexes can be 

identified: 𝑛1 for the core, 𝑛0 for the cladding and 𝑛2 for the 

trench. The relative refractive index difference between 

core and cladding is Δ1, while between trench and cladding 

is Δ2.  

The core, cladding and trench radii relative to the center of the core are given by 𝑎1, 𝑎2 and 𝑎3 

respectively; 𝑤𝑡𝑟 being the width of the trench.  

  

 

 

 

Figure 3: Refractive index profile and cross-sectional 
dimensions of trench-assisted structure 

𝑤𝑡𝑟 
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For this trench-assisted case, and having under consideration that the size of the first cladding and 

trench are not infinitely large, the mode coupling coefficient can be estimated by the following analytical 

approach [10]: 

 𝑘′𝑚𝑛 =
√𝑇 ∆1
𝑎1

𝑈1
2

𝑉1
3𝐾1

2(𝑊1)
√
𝜋𝑎1
𝑊1Λ

𝑒
[−
𝑊1Λ+2(𝑊2−𝑊1)𝑤𝑡𝑟

𝑎1
]
 (2.6) 

Where 𝑈1
2 = 𝑎1

2(𝑘2𝑛1
2 − 𝛽2), 𝑊1

2 = 𝑎1
2(𝛽2 − 𝑘2𝑛0

2),𝑉1 = 𝑘𝑎1𝑛1 ×√2 Δ1, 𝑊2 = √𝑉2
2 +𝑊1

2 and                    

𝑉2 = 𝑘𝑎1 ×√𝑛0
2 − 𝑛2

2. 𝑘 represents the wavenumber, λ the wavelength of light in the vacuum and 𝐾1(𝑊1) 

the modified Bessel function of the 2𝑛𝑑 kind with 1𝑠𝑡 order. 

Lastly, having outlined a method to estimate the mode coupling coefficient between two cores (2.6), it 

is possible to estimate the crosstalk by replacing (2.4) on (2.3): 

 XT =
2𝑘𝑚𝑛

′ 2
𝑅𝑏

𝛽Λ
𝐿 (2.7) 

 

 

2.4 Crosstalk Constraints 

 

In order to further increase transmission capacity, greater spectral efficiencies are sought by means of 

higher-level quadrature amplitude modulation (QAM) schemes. These modulations, along with the 

OSNR (Optical Signal-to-Noise Ratio) penalty they bring about, set some limitations for the maximum 

value of crosstalk allowed inside each core of a multi-core optical fiber. 

 

Figure 4(c) illustrates the OSNR penalty as a function of the crosstalk. This penalty, obtained with the 

aid of a Monte Carlo simulation with 217 symbols, represents the SNR per symbol required to achieve a 

bit error rate (BER) of 10−3 for ideal square 4-, 16-, 64- and 256-QAM constellations. Both Fig 4(a) and 

Fig 4(b) show the same 16-QAM constellation (open circles) with different interferer constellations (filled 

circles); the first figure featuring a 16-QAM interferer constellation in-phase with the signal and the latter 

a 16-QAM interferer constellation with a 45º rotation relative to the signal. As expected, the case with 

the rotated interferer is more strongly affected due to the minimal distance between symbols, as seen 

in figure 4(c). 
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Three different optical fibers will be analyzed in this dissertation and for each case one must set a limit 

on the maximum amount of crosstalk tolerated by any core of the fiber. Two scenarios for an optical 

fiber link are conceived, sharing the same fiber length and differing in the chosen modulation format. 

The first scenario, 1000 𝑘𝑚 in length, will feature QPSK and won’t tolerate more than 10 𝑑𝐵 of crosstalk 

in any of its cores (figure 4(c)). It will work with a 4 𝑑𝐵 OSNR penalty. 

The second scenario, also 1000 𝑘𝑚 in length, will feature 256-QAM and won’t tolerate more than 

30 𝑑𝐵 of crosstalk in any of its cores (figure 4(c)). This optical fiber link will also boast the same OSNR 

penalty as the previous. 

Knowing that all the simulations to be presented in this dissertation were made for a fiber 100 𝑘𝑚 in 

length, the value of crosstalk is always expressed as 𝑑𝐵/100𝑘𝑚. Considering that the two afore 

mentioned scenarios express the value of crosstalk for a signal having traveled a distance of 1000 𝑘𝑚, 

there is the need to convert the maximum tolerable crosstalk limits from 𝑑𝐵/1000𝑘𝑚 to the 𝑑𝐵/100𝑘𝑚. 

Throughout this dissertation the crosstalk will be defined with the negative sign, hence the crosstalk limits 

of the two previous scenarios are -10 𝑑𝐵 and -30 𝑑𝐵, for the link using QPSK and 256-QAM respectively. 

By taking (2.8), a formula that relates the unitary crosstalk with the crosstalk of a signal after traveling a 

certain fiber length (L); then replacing the values for the two fiber lengths in question (2.9): 

 𝑋𝑇(𝐿) = 𝑋𝑇(1 𝑘𝑚) + 10 × log(𝐿) (2.8) 

 
{
𝑋𝑇(100) = 𝑋𝑇(1 𝑘𝑚) + 10 × log (100)

𝑋𝑇(1000) = 𝑋𝑇(1 𝑘𝑚) + 10 × log (1000)
 

(2.9) 

It is possible to determine the relation between the crosstalk of a signal that has traveled 100𝑘𝑚 and 

the crosstalk of that same signal after traveling 1000 𝑘𝑚: 

 𝑋𝑇(100) = 𝑋𝑇(1000) − 10 (2.10) 

The crosstalk tolerance of the two described optical links is therefore -20 𝑑𝐵 for the link using QPSK 

modulation and -40 𝑑𝐵 for the link using 256-QAM. These two different crosstalk tolerances will make 

up for two different designs within each one of the three different fibers to be studied in this dissertation. 

Figure 4: Impact of in-band crosstalk on QAM formats; (a, b): crosstalk models; (c): Monte Carlo simulations of 
crosstalk penalties for ideal, square 4-, 16-, 64-, and 256-QAM [11] 
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Figure 5: Proposed Layouts 

3 Proposed Layouts 

 

There are countless ways of organizing the cores inside a SM-MCF such as placing them in rings, 

hexagonally, or simply without any geometrical form at all. The proposed layouts will strive to balance 

the crosstalk across the cores, making it as low as possible for every single one in the structure. Given 

that three different scenarios will be studied, each with a different fiber diameter, all the proposed layouts 

share the possibility of enlargement (addition of cores), by making use of a precise geometry when 

designed. Furthermore, as the layouts needs to be commercially viable, it’s highly convenient for them 

to be geometrically symmetric. 

Given that the crosstalk is heavily influenced by the core pitch, the logical approach for when designing 

the layouts would be to maximize the distance between neighbouring cores. In the light of this reasoning, 

circle packing theory was considered. Although circle packing theory states that the densest packing of 

identical circles in a plane is the hexagonal lattice of the bee’s honeycomb [12], many other geometries 

offer a denser packing for a specific number of circles to be packed. This being said, both these 

geometries and hexagonal placement will be considered. On an endnote, it is relevant to point out that 

unconsidered non-geometrical structures for the core allocation would sometimes produce better results 

for this problem of maximizing the distance between neighbouring cores. 
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3.1 One Ring 

 

Using the One Ring layout the cores are placed evenly spaced on 

a circle. The radius of the circle (𝑟1), which I will name Outer Circle, 

is made as big as possible as to guarantee the spacing between 

cores is the maximum allowed by the fiber parameters. A detailed 

explanation on how to obtain this circle is featured in Annex A. 

 

Initially two cores are placed in the fiber laying on the circle that 

was previously described, distanced by a diameter of that same circle. More cores are then added to 

the fiber, one at a time, always ensuring equal spacing between a core and its neighbours until the 

physical limitations of the fiber prevent us from adding more cores. 

 

Taking into consideration equation (2.7), the crosstalk calculation for each core will only take into 

account the interference from its two neighbours (3.1), which gives approximately the same crosstalk 

value as when taking all the cores into consideration. This approximation, also present in the crosstalk 

calculations of other Layouts, is explained in Annex B. 

For the case when only have two cores incorporate the fiber (𝑁 = 2), the crosstalk calculation will be 

done differently as there’s only one neighbour for each core. 

 

 𝑋𝑇𝐶𝑜𝑟𝑒 = 2 × 𝑋𝑇(Λ1), 𝐸𝑥𝑐𝑒𝑝𝑡 𝑓𝑜𝑟 𝑁 = 2   𝑤ℎ𝑒𝑟𝑒    𝑋𝑇𝐶𝑜𝑟𝑒 = 𝑋𝑇(Λ1) (3.1) 

 

Relevant dimensions Formula 

Outer Ring radius 𝑟1  

Distance between Outer Cores 𝛬1 = 2𝑟1 × 𝑠𝑖𝑛 (
2π

2𝑁
) 

Table 1: Relevant dimensions in “One Ring” Layout 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: One Ring 
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3.2 One Ring with Central Core 

 

One Ring with Central Core is characterized by having a set of 

equally spaced cores laying on the Outer Circle and a core in the 

center of the fiber; somewhat similar to the “One Ring” layout but 

with an additional core in the center. 

 

Initially a core is placed in the center of the fiber encircled by three 

other cores. More cores are then added to the fiber, one by one to 

the Outer Circle, always maintaining equal spacing between the cores in the Outer Circle until the 

physical limitations of the fiber prevent us from adding more cores. 

 

Taking equation (2.7) and knowing the crosstalk of the cores laying on the Outer Circle will mainly come 

from the central core and its two neighbours, the crosstalk of an Outer Core is determined (3.3). The 

crosstalk calculation for the central core will take into account all the cores encircling it (3.2). 

 

 
𝑋𝑇𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐶𝑜𝑟𝑒 = (𝑁 − 1) × 𝑋𝑇(𝑟1 ) (3.2) 

 
𝑋𝑇𝑂𝑢𝑡𝑒𝑟 𝐶𝑜𝑟𝑒 = 𝑋𝑇(𝑟1) + 2 × 𝑋𝑇(Λ1) (3.3) 

Relevant dimensions Formula 

Outer Ring radius 𝑟1 

Distance between Outer Cores 𝛬1 = 2𝑟1 × 𝑠𝑖𝑛 (
2π

2(𝑁 − 1)
) 

Table 2: Relevant dimensions in “One Ring with Central Core” Layout 

 

 

 

 

 

 

 

 

 

 

Figure 7: One Ring with Central Core 
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3.3 Two Rings 

 

In the Two Rings layout the nuclei lay in two circumferences with 

different radiuses, Inner Circle and Outer Circle, each containing 

the same amount of nuclei. To the structure of nuclei laying on 

each circle I will refer as rings, with the ring boasting the larger 

radius (𝑟1) being the Outer Ring while the other, the Inner Ring, 

with its radius (𝑟2) varying in order to maintain a certain condition. 

When having two rings with the same number of nuclei we 

expect the distance between Inner Cores (Λ2) to be smaller than the distance between Outer Cores 

(Λ1), thus having the Inner Cores with the highest values of crosstalk. 

In an attempt to balance the values of crosstalk, and knowing the distance between Inner Cores to be 

the smallest, we can move the Inner Cores further out until the distance between them is as big as the 

distance between two cores laying in different rings (Λ𝑥). The radius of the Inner Circle, containing the 

Inner Cores, will therefore be variable and dependent on the number of cores we decide to use in this 

layout.  By doing this radius adjustment we are able to obtain the best possible crosstalk results for this 

kind of structure, as explained in Annex C. 

 

Initially six cores are placed in the fiber, three in each ring in a way that maximizes the distance between 

cores in different rings. More cores are then added to the fiber, two at a time, increasing the number of 

cores in each ring one by one until the physical limitations of the fiber prevent us from adding more 

cores. 

 

Making use of equation (2.7), it’s possible to compute the crosstalk value of an Inner Core by considering 

both its two neighbours and two closest Outer Cores (3.4). Similarly, when computing the crosstalk value 

for an Outer Core, only its two neighbours and two closest Inner Cores are taken into consideration (3.5). 
 

 
𝑋𝑇𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑟𝑒 = 2 × 𝑋𝑇(Λ2) + 2 × 𝑋𝑇(Λ𝑥) (3.4) 

 𝑋𝑇𝑂𝑢𝑡𝑒𝑟 𝐶𝑜𝑟𝑒 = 2 × 𝑋𝑇(Λ1) + 2 × 𝑋𝑇(Λ𝑥) (3.5) 

Relevant dimensions Formula 

Outer Ring radius 𝑟1  

Distance between Outer Cores 𝛬1 = 2𝑟1 × 𝑠𝑖𝑛 (
2π

2𝑀1
)  

Inner Ring radius 𝑟2 =

(2𝑟1×𝑐𝑜𝑠(
2π

2𝑀1
))−√(−2𝑟1×𝑐𝑜𝑠(

2π

2𝑀1
))
2
−4×(1−4𝑠𝑖𝑛2(

2π

2𝑀1
))×(𝑟1

2)

2×(1−4𝑠𝑖𝑛2(
2π

2𝑀1
))

  

Distance between Inner Cores 𝛬2 = 2𝑟2 × 𝑠𝑖𝑛 (
2π

2𝑀2
)  

Inner-Outer Core distance 𝛬𝑥 = 𝛬2   

Table 3: Relevant dimensions in “Two Rings” Layout 

Figure 8: Two Rings 
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3.4 Two Rings with Central Core 

 

Two Rings with Central Core distributes its cores in two rings, 

each containing the same number of cores, with an additional core 

present in the center. The Outer Ring, with the larger radius, lays 

at a distance 𝑟1 from the center while the Inner Ring ranges 𝑟2. 

The Inner Ring radius will be dependent on the number of cores, 

always bigger than half the Outer Ring radius, varying to ensure 

the distance from an Inner to the Central core remains the same 

as the distance from an Inner to the closest Outer Core. By doing this we expect to better balance the 

values of crosstalk when comparing to a similar structure in which the Inner Cores would be placed at 

half the Outer Ring radius. This procedure is explained in Annex D. 

 

Initially seven cores are placed in the fiber, three in each ring in a way that maximizes the distance 

between cores in different rings, plus another core in the center. More cores are then added to the fiber, 

two at a time, increasing the number of cores in each ring one by one until the physical limitations of the 

fiber prevent us from adding more cores. 

 

From equation (2.7), we compute the crosstalk value of an Inner Core by considering its two neighbours, 

two closest Outer Cores and the central core (3.7). Similarly, when computing the crosstalk of an Outer 

Core we only take into account its two neighbours, closest Inner Core and the Central Core (3.8). The 

crosstalk calculation for the central core will take into account all the cores encircling it (3.6). 

 

 
𝑋𝑇𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐶𝑜𝑟𝑒 = 𝑀1 × 𝑋𝑇(𝑟1) + 𝑀2 × 𝑋𝑇(𝑟2)      (3.6) 

 
𝑋𝑇𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑟𝑒 = 𝑋𝑇(𝑟2) + 2 × 𝑋𝑇(Λ2) + 2 × 𝑋𝑇(Λ𝑥)      (3.7) 

 
𝑋𝑇𝑂𝑢𝑡𝑒𝑟 𝐶𝑜𝑟𝑒 = 𝑋𝑇(𝑟1 ) + 2 × 𝑋𝑇(Λ1) + 2 × 𝑋𝑇(Λ𝑥)      (3.8) 

Relevant dimensions Formula 

Outer Ring radius 𝑟1  

Distance between Outer Cores 𝛬1 = 2𝑟1 × 𝑠𝑖𝑛 (
2π

2𝑀1
)  

Inner Ring radius 𝑟2 =
𝑟1
2

𝑐𝑜𝑠(
2π

2𝑀1
)
  

Distance between Inner Cores 𝛬2 = 2𝑟2 × 𝑠𝑖𝑛 (
2π

2𝑀2
)  

Inner-Outer Core distance 𝛬𝑥 = 𝑟2  

Table 4: Relevant dimensions in “Two Rings with Central Core” Layout 

 

Figure 9: Two Rings with Central Core 



27 
 

3.5 Two Different Rings 

 

Two Different Rings organizes its cores in two rings, where the 

Inner Ring has half the number of cores than the Outer Ring. This 

new approach to the two ring layout comes as an attempt to more 

evenly balance the distance between neighbouring cores in both 

rings, in which the Outer Ring is placed at a distance 𝑟1 from the 

center and the Inner Ring at a distance 𝑟2.   

Similarly to the “Two Ring” layout, the Inner Core Crosstalk is the 

limiting factor in this layout. In order to minimize the Inner Core Crosstalk, we adjust the Inner Ring 

radius as to ensure that the distance between Inner Ring neighbours (Λ2) is the same as the distance 

between an Inner Core and the closest Outer Cores (Λ𝑥); in other words, we guarantee that an Inner 

Core is equally spaced to its closest neighbour and Outer Core. This procedure is explained in Annex 

E. 

 

Initially nine cores are placed in the fiber, six in the Outer plus three in the Inner Ring in a way that 

maximizes the distance between cores in different rings. More cores are then added to the fiber, three 

at a time, increasing respectively by one and two at a time the number of cores in the Inner and Outer 

Ring until the physical limitations of the fiber prevent us from adding more cores. 

 

Making use of equation (2.7), it’s possible to compute the crosstalk value of an Inner Core by considering 

its two neighbours and two closest Outer Cores (3.9). When computing the crosstalk of an Outer Core, 

its two neighbours and closest Inner Core are considered (3.10). 

 

 
𝑋𝑇𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑟𝑒 = 2 × 𝑋𝑇(Λ2) + 2 × 𝑋𝑇(Λ𝑥) (3.9) 

 
𝑋𝑇𝑂𝑢𝑡𝑒𝑟 𝐶𝑜𝑟𝑒 = 2 × 𝑋𝑇(Λ1) + 𝑋𝑇(Λ𝑥) (3.10) 

Relevant dimensions Formula 

Outer Ring radius 𝑟1  

Distance between Outer Cores 𝛬1 = 2𝑟1 × 𝑠𝑖𝑛 (
2π

2𝑀1
)  

Inner Ring radius 𝑟2 =

(2𝑟1×𝑐𝑜𝑠(
2π

2𝑀1
))−√(−2𝑟1×𝑐𝑜𝑠(

2π

2𝑀1
))
2
−4(1−4𝑠𝑖𝑛2(

2π

2𝑀2
))×(𝑟1

2)

2×(1−4𝑠𝑖𝑛2(
2π

2𝑀2
))

  

Distance between Inner Cores 𝛬2 = 2𝑟2 × 𝑠𝑖𝑛 (
2π

2𝑀2
)  

Inner-Outer Core distance 𝛬𝑥 = 𝛬2 

Table 5: Relevant dimensions in “Two Different Rings” Layout 

 

Figure 10: Two Different Rings 
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3.6 Two Different Rings with  

Central Core 

 

Two Rings with Central Core organizes its cores in two rings plus 

another core in the center, where the Inner Ring has half the cores 

the Outer Ring has. The Outer Ring, with the larger radius, laying 

at a distance r1 and the Inner Ring at a distance r2 from the 

center. 
The Inner Ring radius will be dependent on the number of cores, always bigger than half the Outer Ring 

radius, varying to ensure the distance from an Inner to the Central core remains the same as the distance 

from an Inner to the closest Outer Cores. By doing so we expect to better balance the values of Crosstalk 

when comparing to a similar structure in which the Inner Cores would be placed at half the Outer Ring 

radius. This procedure is explained in Annex F. 

 

Initially seven cores are placed in the fiber, one in the center, four in the Outer and two in the Inner Ring 

in a way that maximizes the distance between cores in different rings. More cores are then added to the 

fiber, three at a time, increasing respectively by one and two at a time the number of cores in the Inner 

and Outer Ring until the physical limitations of the fiber prevent us from adding more cores. 

 

Taking equation (2.7) into account, it’s possible to compute the crosstalk value of an Inner Core by 

taking into consideration its two neighbours, two closest Outer Cores and the Central core (3.12). 

Similarly, when computing the crosstalk value for an Outer Core only its two neighbours, closest Inner 

Core and central core are considered (3.13). The crosstalk calculation for the central core will take into 

account all the cores encircling it (3.11). 

 

 
𝑋𝑇𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐶𝑜𝑟𝑒 = 𝑀1 × 𝑋𝑇(𝑟1 ) + 𝑀2 × 𝑋𝑇(𝑟2) (3.11) 

 
𝑋𝑇𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑟𝑒 = 𝑋𝑇(𝑟2) + 2 × 𝑋𝑇(Λ2) + 2 × 𝑋𝑇(Λ𝑥) (3.12) 

 
𝑋𝑇𝑂𝑢𝑡𝑒𝑟 𝐶𝑜𝑟𝑒 = 𝑋𝑇(𝑟1 ) + 2 × 𝑋𝑇(Λ1) + 𝑋𝑇(Λ𝑥) (3.13) 

Relevant dimensions Formula 

Outer Ring radius 𝑟1  

Distance between Outer Cores 𝛬1 = 2𝑟1 × 𝑠𝑖𝑛 (
2π

2𝑀1
)  

Inner Ring radius 𝑟2 =
𝑟1
2

𝑐𝑜𝑠(
2π

2𝑀1
)
  

Distance between Inner Cores 𝛬2 = 2𝑟2 × 𝑠𝑖𝑛 (
2π

2𝑀2
)  

Inner-Outer Core distance 𝛬𝑥 = 𝑟2  

Table 6: Relevant dimensions in “Two Different Rings with Central Core” Layout 

Figure 11: Two Different Rings with Central Core 
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3.7 Three Different Rings 

 

Three Different Rings has its cores organized in three rings, 

where both the Inner and Middle Rings have, respectively, a third 

and two thirds of the cores composing Outer Ring. The Outer 

Ring, boasting the largest radius, lays at a distance r1 from the 

center while the Inner Ring at a distance r3 from the center. The 

ring that lays in-between these two goes by Middle Ring, and lays 

at a distance r2 from the center of the layout. 

Both the Middle and Inner Ring radii will be dependent on the number of cores, changing in order to 

maintain the distance between Inner Ring neighbours the same as both the distance between an Inner 

Core and its closest Middle Core and between a Middle Core and the Outer Circle. 

It is important to note that the distance between an Outer Core and its closest Middle Core will depend 

on the Outer Core we pick, which is why it is necessary to make the distance between Inner Ring 

neighbours the same as the distance between a Middle Core and the Outer Circle, to ensure this latter 

is either the same or smaller than the distance between a Middle and an Outer Core. This algorithm 

produces better crosstalk results when comparing to a similar structure where the rings are equally 

spaced, as explained in Annex G. 

  

Initially eighteen cores are placed in the fiber, nine in the Outer Ring, six in the Middle Ring and three in 

the Inner Ring in a way that maximizes the distance between cores in different rings. More cores are 

then added to the fiber, six at a time, increasing respectively by one, two and three at a time the number 

of cores in the Inner, Middle, and Outer Ring until the physical limitations of the fiber prevent us from 

adding more cores. 

  

From equation (2.7), we can compute the crosstalk of an Inner Core by taking into account both its 

neighbours and two closest Middle Cores (3.14). For the crosstalk of a Middle Core, its two neighbours 

are considered as well as its closest Inner and Outer Core (3.15). As for the crosstalk of an Outer Core, 

its two neighbours and closest Middle Core are taken into account (3.16). 

It is important to note that due to the variable distance between different Middle Cores and their closest 

Outer Cores, when I refer to that distance I’m actually considering the distance between a Middle Core 

and the Outer Circle, thus always guaranteeing the former distance to be equal or greater than the one 

considered. 

 

 
𝑋𝑇𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑟𝑒 = 2 × 𝑋𝑇(Λ3) + 2 × 𝑋𝑇(Λ𝑥) (3.14) 

 
𝑋𝑇𝑀𝑖𝑑𝑑𝑙𝑒 𝐶𝑜𝑟𝑒 = 𝑋𝑇(Λ𝑥) + 𝑋𝑇(Λ𝑥) + 2 × 𝑋𝑇(Λ2) (3.15) 

 
𝑋𝑇𝑂𝑢𝑡𝑒𝑟 𝐶𝑜𝑟𝑒 = 2 × 𝑋𝑇(Λ1) + 𝑋𝑇(Λ𝑥) (3.16) 

Figure 12: Three Different Rings 
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Relevant 
dimensions 

Formula 

Outer Ring 

radius 
𝑟1 

Distance 

between 

Outer Cores 

𝛬1 = 2𝑟1 × 𝑠𝑖𝑛 (
2π

2𝑀1

) 

Inner Ring 

radius 𝑟3 =

2𝑟1×𝑐𝑜𝑠(
2π

2𝑀2
)+4𝑟1×𝑠𝑒𝑛(

2π

2𝑀3
)−√(−2𝑟1×𝑐𝑜𝑠(

2π

2𝑀2
)−4𝑟1×𝑠𝑒𝑛(

2π

2𝑀3
))
2
−4×(1+4𝑠𝑖𝑛(

2π

2𝑀3
) 𝑐𝑜𝑠(

2π

2𝑀2
))×(𝑟1

2)

2×(1+4𝑠𝑖𝑛(
2π

2𝑀3
)𝑐𝑜𝑠(

2π

2𝑀2
))

  

Distance 

between Inner 

Cores 

𝛬3 = 2𝑟3 × 𝑠𝑖𝑛 (
2π

2𝑀3

) 

Middle Ring 

radius 
𝑟2 = 𝑟1 − 𝛬3 

Distance 

between 

Middle Cores 

𝛬2 = 2𝑟2 × 𝑠𝑖𝑛 (
2π

2𝑀2

) 

Inner-Middle-

Outer Core 

distance 

𝛬𝑥 = 𝛬3 

Table 7: Relevant dimensions in “Three Different Rings” Layout 

 

 

 

3.8 Three Different rings with Central 

Core 

 

Three Different Rings with Central Core is a layout in which the 

nuclei are organized in three rings and a central core, where both 

the Inner and Middle Rings have, respectively, a third and two 

thirds of the cores composing the Outer Ring. The Outer Ring, 

boasting the largest radius, lays at a distance 𝑟1 from the center 

while the Middle and Inner Ring at a distance of, respectively, 𝑟2 and 𝑟3 from the center. 

Both the Middle and Inner Ring radii will be dependent on the number of cores, varying in order to 

maintain constant the distance from the Central Core to an Inner Core, from an Inner Core to a Middle 

Core and from a Middle Core to the Outer Circle. It is important to note that the distance between an 

Figure 13: Three Different Rings with Central Core 
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Outer Core and its closest Middle Core will depend on the Outer Core we pick, which is why it is 

necessary to make the distance from the Central Core to an Inner Core the same as the distance 

between a Middle Core and the Outer Circle, to ensure this latter is either the same or smaller than the 

distance between a Middle and an Outer Core. This algorithm produces better crosstalk results when 

comparing to a similar structure in which the rings are equally spaced, as explained in Annex H. 

  

Initially nineteen cores are placed in the fiber, one in the center, nine in the Outer Ring, six in the Middle 

Ring and three in the Inner Ring in a way that maximizes the distance between cores in different rings. 

More cores are then added to the fiber, six at a time, increasing respectively by one, two and three at a 

time the number of cores in the Inner, Middle, and Outer Ring until the physical limitations of the fiber 

prevent us from adding more cores. 

  

Making use of equation (2.7), it’s possible to determine the crosstalk of an Inner Core taking under 

consideration its two neighbours, two closest Middle Cores and the central core (3.18). For the crosstalk 

of a Middle Core, its two neighbours are considered as well as its closest Inner and Outer Cores (3.19). 

As for the crosstalk of an Outer Core, its two neighbours and closest Middle Core are taken into account 

(3.20). The crosstalk calculation for the central core will take into account all the cores encircling it (3.17). 

It is important to note that due to the variable distance between different Middle Cores and their closest 

Outer Cores, when I refer to that distance I’m actually considering the distance between a Middle Core 

and the Outer Circle, thus always guaranteeing the former distance to be equal or greater than the one 

considered. 

 

 
𝑋𝑇𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐶𝑜𝑟𝑒 = 𝑀1 × 𝑋𝑇(𝑟1 ) + 𝑀2 × 𝑋𝑇(𝑟2) + 𝑀3 × 𝑋𝑇(𝑟3 ) (3.17) 

 
𝑋𝑇𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑟𝑒 = 𝑋𝑇(𝑟3 ) + 2 × 𝑋𝑇(Λ3) + 2 × 𝑋𝑇(Λ𝑥) (3.18) 

 
𝑋𝑇𝑀𝑖𝑑𝑑𝑙𝑒 𝐶𝑜𝑟𝑒 = 𝑋𝑇(Λ𝑥) + 𝑋𝑇(Λ𝑥) + 2 × 𝑋𝑇(Λ2) (3.19) 

 
𝑋𝑇𝑂𝑢𝑡𝑒𝑟 𝐶𝑜𝑟𝑒 = 2 × 𝑋𝑇(Λ1) + 𝑋𝑇(Λ𝑥) (3.20) 

Relevant dimensions Formula 

Outer Ring radius 𝑟1  

Distance between Outer Cores 𝛬1 = 2𝑟1 × 𝑠𝑖𝑛 (
2π

2𝑀1
)  

Middle Ring radius 𝑟2 =
𝑟1

1+2𝑐𝑜𝑠 (
2π

2𝑀2
)
  

Distance between Middle Cores 𝛬2 = 2𝑟2 × 𝑠𝑖𝑛 (
2π

2𝑀2
)  

Inner Ring radius 𝑟3 = 𝑟1 − 𝑟2  

Distance between Inner Cores 𝛬3 = 2𝑟3 × 𝑠𝑖𝑛 (
2𝜋

2𝑀3
)  

Inner-Middle-Outer Core 
distance 

𝛬𝑥 = 𝑟3  

Table 8: Relevant dimensions in “Three Different Rings with Central Core” Layout 
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3.9 Hexagonal Placement 

 

With Hexagonal Placement the cores are organized in different 

rings, all having a hexagonal shape. Different nuclei in the same 

ring can have different distances to the center, meaning that rings 

are not, unlike in previous layouts, characterized by having all its 

nuclei equidistant to the center. There’s always a ways a central 

core present in this layout and the inter-core distance between any 

two adjacent cores is constant. 

The way in which we add cores to this layout is more complex than one might think. Rings cannot be 

simply added to the fiber until the physical limitations of the fiber allow, since some cores in the same 

ring may differ in distance to the central core; meaning some cores may fit inside the fiber while others 

don’t. For this reason, whenever cores are added to the fiber they all share the same radius; meaning 

rings are built in one, two, three and sometimes more phases. 

 

Initially seven cores are placed in the fiber, as all the six cores composing the first ring have the same 

radius 𝑅1. We then construct part of the second ring by adding those cores that are closest to the center 

(𝑅21) before being able to complete it by adding the remaining cores at a distance 𝑅22 from the center. 

Having the second ring in place, built in two iterations, we persist adding more cores a few at a time 

crafting only part each rings on each iteration until we can no longer fit any more cores in the fiber. 

The colored hexagons in figure 15, in which the cores will be inscribed, mark the different iterations. 

     

Relevant dimensions Formula 

Core pitch 𝛬 

1𝑠𝑡𝑅𝑖𝑛𝑔 − 𝐺𝑟𝑒𝑒𝑛 𝑅1 = 𝛬 

2𝑛𝑑𝑅𝑖𝑛𝑔(1) – 𝐵𝑙𝑢𝑒 𝑅21 = 2𝛬 × 𝑐𝑜𝑠 (30) 

2𝑛𝑑𝑅𝑖𝑛𝑔(2) – 𝑅𝑒𝑑 𝑅22 = 2𝛬 

3𝑟𝑑𝑅𝑖𝑛𝑔(1) − 𝐶𝑦𝑎𝑛 𝑅31 = √7𝛬 

3𝑟𝑑𝑅𝑖𝑛𝑔(2) − 𝑌𝑒𝑙𝑙𝑜𝑤 𝑅32 = 3𝛬 

4𝑡ℎ𝑅𝑖𝑛𝑔(1) − 𝑂𝑟𝑎𝑛𝑔𝑒 𝑅41 = 4𝛬 × 𝑐𝑜𝑠 (30) 

4𝑡ℎ𝑅𝑖𝑛𝑔(2) − 𝑃𝑖𝑛𝑘 𝑅42 = √13𝛬 

4𝑡ℎ𝑅𝑖𝑛𝑔(3) − 𝐿𝑖𝑔ℎ𝑡 𝐺𝑟𝑒𝑒𝑛 𝑅43 = 4𝛬 

Table 9: Relevant dimensions in "Hexagonal Placement” Layout 

 

Given that the inter-core distance is the same between any two adjacent cores in the structure, for the 

crosstalk calculation we only need to multiply the value of crosstalk between any two cores with the 

number of adjacent cores to it: 

 𝑋𝑇𝐺𝑖𝑣𝑒𝑛 𝐶𝑜𝑟𝑒 = 𝑁º𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝐶𝑜𝑟𝑒𝑠 × 𝑋𝑇(𝛬) (3.21) 

Figure 14: Hexagonal Placement 

Figure 15: Different iterations in “Hexagonal 
Placement” construction process 
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4 Implementation 

 4.1 Numerical Model 

 

A MatLab algorithm was used to determine and plot, for each proposed layout, the different crosstalk 

values as a function of the number of cores featured in it. 

Figure 16 describes the use of this algorithm for the first theoretical model, the “One Ring” layout. In this 

model, the initial number of cores is two and the way to add more cores is one at a time. 

 

 

  

 

 

 

Figure 16: Crosstalk estimation algorithm’s block diagram 
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4.2-Verification and Validation 

 

Having developed an algorithm to predict the crosstalk in each core of a given layout, it is necessary to 

ensure the results it produces are in accordance with the results from other related papers. For doing 

so, a comparison with a 2014 paper [8] on homogeneous TA-MCF was made. 

 

Plots of the crosstalk as a function of the core pitch were extracted from this paper; figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

Three lines can be seen in figure 17; a dotted blue one for the step-index profile and two purple ones 

for the trench-assisted profile, which requires a slightly different calculation method. For the trench-

assisted profile two cases with different relative refractive indexes are presented; one with ∆2= −0.7% 

and another with ∆2= −1.4% having 21 𝑑𝐵 less crosstalk. 

It becomes clear that the use of a trench drastically reduces the inter-core crosstalk. As the relative 

refractive index of the cladding-trench increases, the more confined light becomes in the cores and the 

less inter-core crosstalk is verified. 

As for the crosstalk computing algorithm previously presented in this dissertation, its results are depicted 

in figure 18: 

 

 

 

Figure 17: Crosstalk as a function of the core pitch extracted from [8] for three different scenarios 
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Both simulations yield nearly identical results, with the gaps between plots differing less than 1 𝑑𝐵. 

Having proven the validity and accuracy of the proposed crosstalk calculation algorithm, it is safe to 

proceed and make use of it to analyze the crosstalk behavior of the proposed layouts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Crosstalk as a function of the core pitch generated by the section 4.1 algorithm for three different scenarios 
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5 Results 

 5.1 Problem Description 

 

Single-mode optical fiber transmission systems are rapidly 

approaching its fundamental limit, reaching capacities up to 

roughly 100Tb/s per fiber [13] by employing various state-

of-the-art multiplexing techniques (figure 19). 

In order to overcome the impending capacity crunch we turn 

to space-division multiplexing, more precisely single-mode 

multi-core optical fibers, as a solution to overcome these 

capacity limits.  

Fibers containing multiple cores with reasonable values of 

crosstalk will achieve larger capacities than those with only one. This being said, a method to spatially 

set up the cores and minimize their crosstalk is sought. 

In accordance with the fiber parameters mentioned in table 10, several layouts were proposed and their 

crosstalk results generated by means of a MatLab simulation. An analysis of these results will now help 

determine the number of cores that should be placed inside the fiber to maximize its capacity. 

Three different scenarios will be considered and analyzed. One in which the cladding diameter is          

260 µ𝑚, another in which it is 300 µ𝑚 and one last in which it is 125 µ𝑚. 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Unit Value 

𝐶𝑑 [µ𝑚] 125, 260, 300 

𝑂𝐶𝑇 [µ𝑚] 30 

𝐿 [𝑘𝑚] 100 

𝑎1 [µ𝑚] 4.5 

𝑎3/𝑎1 -- 3 

𝑎2/𝑎1 -- 2 

𝑤𝑡𝑟/𝑎1 -- 1 

𝑛1 -- 1.4551 

∆1 % 0.35 

∆2 % 0.35 

λ [𝑛𝑚] 1550 

𝑅𝑏 [𝑚𝑚] 140 

Table 10: Structural Parameters of the considered TA-MCF 

Figure 19: Evolution of Optical Fiber Transmission Capacity 
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5.2 Baseline Solution 

 

When trying to maximize the number of cores inside a fiber, several are the possible layouts. This section 

will focus on a particular one [14], published on the 16th of May 2016, that makes use of an hexagonal 

structure to distribute thirty-one homogeneous trench-assisted cores inside a 230 µ𝑚 fiber (figure 20). 

 

This layout, presenting a high core-count homogeneous MCF solution, was employed on a fiber with 

different parameters from those used in this dissertation’s simulations. In order to allow for a fair 

comparison to be made between this layout and those previously proposed in this dissertation, a new 

simulation is required. 

Considering the same fiber parameters as those used in all simulations throughout this dissertation 

(Table 10) and choosing 260 µ𝑚 as the cladding diameter, it is possible to obtain the crosstalk values 

of each core in the layout (figure 21). 

Despite the appearance, figure 21 show this layout has a very 

balanced distribution amongst the cores, which is a very good 

indicator that it is suited for the placement of this many cores 

in a fiber. 

Given that the distance between any two given cores in the 

layout is constant, the amount of crosstalk present on each 

will be proportional to the number of adjacent cores. Having 

said so, it is now clear that the cores in layer four have the 

smallest value of crosstalk, followed by those in layer three 

that only have five neighbours. The remaining cores, in layers 

one, two and three, share the highest value of crosstalk as all 

of them are surrounded by six cores.  

 

Figure 20: (a): A fabricated homogeneous 31-core fiber; (b): The definition of layer and core numbers [14] 

Figure 21: Crosstalk of different layers – 31 
Core Hexagonal layout from [14] 

𝑪𝒅 
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5.3 Enhanced Solution 

  

Providing an optimal solution for the problem of core allocation in MCF’s is an elusive task. Many layouts 

were proposed for the core distribution inside the fiber but only after a thorough study of the crosstalk 

behavior in each is it possible to conclude which should be chosen. 

Three different cases will be studied separately, each featuring an optical fiber with a well-defined set 

of parameters. Cladding diameter, the only parameter varying between cases, will be 260 µ𝑚 in the first 

one for it’s the highest value manufacturers are currently able to achieve. 

The proposed layouts will then be used to spatially distribute the cores in the fiber, and with the help of 

MatLab, their crosstalk results compared. 

After having figured out what the best layout is for the first case, two more will be studied. One case 

featuring a fiber 300 µ𝑚 in cladding diameter, as deemed feasible in a near future, and another 125 µ𝑚 

much like most single mode fibers employed nowadays. 

 
 

5.3.1 First Case: 𝑪𝑫 = 𝟐𝟔𝟎 𝝁𝒎 

 

In order to determine which layout suits best for a given number of cores, it is necessary to analyze 

the behavior of crosstalk as a function of the number of cores for all the proposed layouts. In the 

following analysis the filled circles represent the values of crosstalk for a given number of cores 

whereas the solid lines illustrates the trend described by a given set of crosstalk values. 
 

 

One Ring 

The crosstalk of a core, expressed in 𝑑𝐵, increases as more and more cores integrate the structure, 

being inversely proportional to the inter-core distance. We can see that when placing the cores this way 

no more than twenty cores can fit inside the fiber.   

Figure 22: Crosstalk vs Number of cores- One Ring 
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One Ring with Central Core 

 

Using a dotted line we plot the best results so far obtained from previous layouts, so that a comparison 

can be made with the current one. As only “One Ring” layout has been previously presented, the dotted 

line will be coincident with its results. 

The plots in color represent the different values of crosstalk for this layout. Initially the crosstalk of the 

central core is approximately the same as of its neighbours. However, as more cores are added to the 

layout, the closer the Outer Cores become to each other resulting in a drastic increase of crosstalk in 

the Outer Cores. Given that the crosstalk of the central core comes from its interaction with the Outer 

Cores and that these always remain at the same distance from it, the crosstalk of the central core will 

only slightly increase as more cores integrate that Outer Ring. 

We can see that this layout outperforms the previous whenever seven or more cores integrate the fiber. 

 

 

 

 

 

Figure 23: Crosstalk vs Number of cores - One Ring with Central Core 
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Two Rings 

The two lines in color represent the crosstalk of a core in each ring, while the dotted line gives us the 

best results we’ve so far achieved. By analyzing the figure it’s clear this layout outperforms the previous 

for twelve or more cores. 

The crosstalk in both rings is very similar for any given number of cores, which was made possible by 

having adjusted the radius of the Inner Ring (see Annex C). 

 

Two Rings with Central Core 

 

Three plots are required to analyze this layout’s performance, each representing a different type of core 

in the structure. We can see that this layout is better than any previous for 13, 15, 17, 19 and 21 cores. 

When this layout comprises seven cores, it assumes the same structure as the “One Ring with Central 

Core”, thus rendering exactly the same crosstalk results. This occurrence is due to the crosstalk 

minimization algorithm employed when adjusting the Inner Ring radius (see annex D); its attempt to 

place the Inner cores at the same distance to the Central and Outer Cores causes this core arrangement. 

Figure 24: Crosstalk vs Number of cores - Two Rings 

Figure 25: Crosstalk vs Number of cores - Two Rings with Central Core 
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Two Different Rings 

The crosstalk of the Inner and Outer Cores is represented by the green and red lines, respectively. It 

has a balanced distribution as both lines don’t drift too far apart. 

This layout is the preferred one in almost all its variations, outperforming all the previous from twelve 

cores onwards. 

 

Two Different Rings with Central Core 

 

This layout shows promise, as the majority of the results it yields are visibly better than those 

previously obtained. Despite its unbalanced appearance, it provides great results outperforming any 

previous layout from sixteen cores and onwards. 

Figure 26: Crosstalk vs Number of cores - Two Different Rings 

Figure 27: Crosstalk vs Number of cores - Two Different Rings with Central Core 
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Three Different Rings 

Using three different rings is only preferred for thirty and thirty-six cores, though both variations already 

yield a higher crosstalk value than the one deemed reasonable. This layout, although not viable for the 

260 µ𝑚 case, shows promise for use in fibers with a bigger cladding diameter as given that all its cores 

yield a visibly balanced crosstalk. 

 

Three Different Rings with Central Core 

This layout has little place on a 260 µ𝑚 optical fiber, as its crosstalk values are considerably high. When 

fitting thirty-one and thirty-seven cores it performs better than any of the previous layouts, although 

these core geometries are only expected to yield practical results for larger optical fibers. 

 

Figure 28: Crosstalk vs Number of cores - Three Different Rings 

Figure 29: Crosstalk vs Number of cores – Three Different Rings with Central Core 
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Hexagonal Placement 

This layout consistently provides good results. Placing the cores according to a hexagonal structure 

guarantees extremely balanced values of crosstalk independently of the number of cores we decide to 

place inside the fiber. 

When fitting seven and thirteen cores inside the fiber, this layout assumes the same structure as in “One 

Ring with Central Core” and “Two Rings with Central Core”, respectively, rendering the same crosstalk 

results. For nineteen cores it is slightly worse than “Two Different Rings with Central Core” layout, and 

for thirty one it’s better than any of the previous.  

Finally, having obtained the crosstalk results for all proposed layouts, it is now possible to make a 

comparison between them. In order to do so, a more encompassing way of looking at the obtained 

results is provided (figure 31). 

Figure 30: Crosstalk vs Number of cores – Hexagonal Placement 

Figure 31: Crosstalk vs Number of cores – Overview for 𝐶𝑑 = 260 µm 
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The dots represent the best crosstalk results obtained for a given number of cores. Their color identifies 

the layout employed to achieve this crosstalk value. It’s of importance to recall that these values stand 

for the crosstalk of those core performing worse in each layout; the highest value of crosstalk in the 

layout. Given that we want to maximize the fiber capacity while complying with the crosstalk limits of the 

two scenarios proposed in section 2.4, it’s time to determine how many cores can the fiber shelter in 

each.. 

If we want to use QPSK over a distance of 1000 𝑘𝑚 with a 4 𝑑𝐵 OSNR penalty we cannot tolerate more 

than -20 𝑑𝐵 of crosstalk in any core of the fiber. In this case, “Two Different Rings with a Central Core” 

should be the chosen layout as with no other is it possible to fit as many cores (twenty-five) in the fiber 

(figure 31). 

This layout would be composed of sixteen cores in the Outer Ring 

and eight in the Inner Ring, all with approximately the same value of 

crosstalk: -23 𝑑𝐵 (figure 32). 

Only the central core in this layout would yield a crosstalk value 

considerably different from the other cores, of approximately -53𝑑𝐵. 

 

 

 

If we want to use 256-QAM over a distance of 100 𝑘𝑚 with a 4 𝑑𝐵 OSNR penalty, we cannot tolerate 

more than −40 𝑑𝐵 of crosstalk in any core of the fiber. In this case, we should also use the “Two Different 

Rings with a central core” layout but this time only featuring twenty-two cores (figure 31). 

This layout would be composed by fourteen cores in the Outer Ring 

and seven in the Inner Ring, all with approximately -40 𝑑𝐵 of crosstalk 

(figure 33). 

The central core, boasting -55𝑑𝐵 of crosstalk, is still considerably 

different than the crosstalk values of the rest of the cores in the 

structure, much like in the previous link using QPSK modulation. 

 

 

 

Having chosen the adequate layouts for each scenario, a couple of remarks regarding the Baseline 

Solution must be made. The hexagonal distribution of thirty-one cores (as suggested in the Baseline 

Solution) is indeed a great way of minimizing the crosstalk, proving to be the best available solution for 

the placement of that exact number of cores. Unfortunately, placing that exact number of cores with the 

afore mentioned parameters (Table 10) on a fiber 260 µ𝑚 in diameter produces higher crosstalk values 

than those deemed tolerable. For that reason, and without the intent to undervalue this very effective 

layout, new ones had to be sought as to assure compliance with the different crosstalk tolerances. 

Figure 32: Two Different Rings - 25 

Cores – 𝐶𝑑 = 260 µm 

Figure 33: Two Different Rings - 22 

Cores – 𝐶𝑑 = 260 µm 



45 
 

5.3.2 Second Case: 𝑪𝑫 = 𝟑𝟎𝟎 𝝁𝒎 

 

Making use of a fiber with a larger cladding diameter allows for more cores to be placed inside the fiber, 

which directly correlates with an increase in capacity. In order to choose the best core arrangement for 

the two proposed scenarios featuring different modulations, various simulations were conducted. 

Knowing the crosstalk tolerances for each scenario and having a figure summarizing the best crosstalk 

results obtained for this fiber 300 𝜇𝑚 in diameter (figure 34), we can proceed to draw some conclusions. 

For the optical fiber link using QPSK that could only tolerate crosstalk values up to -20 𝑑𝐵, “Three Rings 

with Central Core” is the layout yielding the best results. By choosing this layout, it is possible to fit thirty-

seven cores in the fiber while complying with the crosstalk limit previously set for this link (figure 36). It 

is interesting to mention that this layout outperforms “Hexagonal Placement” when trying to fit thirty-

seven cores in the fiber, which is a pretty good indication that this way of arranging this many cores is 

nearly optimal given that placing the cores hexagonally always renders nearly optimal results. 

The crosstalk in all the cores will be extremely balanced, never greater than -24 𝑑𝐵, as seen in figure 

35.  

Figure 34: Crosstalk vs Number of cores – Overview for 𝐶𝑑 = 300 µm 

Figure 35: Three Different Rings - 37 

Cores – 𝐶𝑑 = 300 µm Figure 36: Crosstalk vs Number of cores – Three Different Rings (𝐶𝑑 =300 µm) 
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As for the other scenario, featuring 256-QAM with a mere -40 𝑑𝐵 limit for the maximum tolerable 

crosstalk, “Two Rings with Central Core” should be the chosen layout (figure 38). 

This layout perfectly balances the crosstalk in both rings while leaving the central core with a slightly 

different crosstalk. Cores in both rings will have -47 𝑑𝐵 of crosstalk, whereas the central core will only 

have -84.5 𝑑𝐵 (figure 37). 

It’s relevant to mention that if the crosstalk limit for this scenario was slightly lower, -37.7 𝑑𝐵, it would be 

possible to accommodate thirty-one cores hexagonally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Two Different Rings - 25 Cores – 𝐶𝑑 = 300 µm 

 

Figure 38: Two Different Rings - 25 Cores – 

𝐶𝑑 = 300 µm 
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 5.3.3 Third Case: 𝑪𝑫 = 𝟏𝟐𝟓 𝝁𝒎 

 

For a fiber as small as this one only two layouts are deemed relevant, their crosstalk results can be 

seen in figure 39 along with the dashed line that follows their trend.5 

 

For a fiber using QPSK with a limit of -20 𝑑𝐵, “One Ring” layout should be employed with five cores 

each having a crosstalk of approximately -20.5 𝑑𝐵. 

For a fiber using 256-QAM with a limit of -40 𝑑𝐵, “One Ring” should also be the chosen layout as with 

four cores the crosstalk would be of -44.5 𝑑𝐵 in each. 

Both these structures, one for the link using QPSK (figure 41) and another for the link using QAM-256 

(figure 40) can be seen below: 

 

 

 

 

 

 

 

 

Figure 38: Crosstalk vs Number of cores – Overview for 𝐶𝑑 = 125 µm 

Figure 39: One Ring - 4 Cores – 𝐶𝑑 = 125 µm Figure 40: One Ring - 5 Cores – 𝐶𝑑 = 125 µm 
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6 Conclusions and Future Work 

 

A method for maximizing the throughput of a SM-MCF was proposed, describing how to best spatially 

arrange the cores inside three different fibers (𝐶𝑑 =  125, 260, 300 µ𝑚). 

A crosstalk estimation algorithm was designed, and the nine layouts that were proposed for doing this 

spatial arrangement of the cores were analyzed from a crosstalk perspective. From this analysis the 

best layouts for placing any given number of cores in the fiber were determined. 

Two 1000 𝑘𝑚 long optical fiber links using different modulations were given realistic crosstalk limits of   

-10𝑑𝐵 and -30𝑑𝐵 and, in accordance with these pre-established crosstalk limits, were attributed a layout 

for the spatial distribution of their cores. A different layout was attributed to both optical fiber links for 

each one of the three different fibers studied. For the fiber most intensively analyzed in this dissertation, 

the 260 µ𝑚 fiber, twenty-five cores could be placed in the fiber when using QPSK whereas only twenty-

two when using 256-QAM; in both cases making use of the Two Rings with Central Core layout for 

distributing the cores. On the biggest fiber, 300 µ𝑚 in cladding diameter, 37 cores were able to fit inside 

using a QPSK modulation whereas only 25 using 256-QAM modulation. As for the smallest fiber, 125 µ𝑚 

in cladding diameter, “One Ring” layout should always be the chosen layout for arranging the cores with 

either modulation. 

Comparing with state-of-the-art solutions for this problem of core allocation, namely the hexagonal 

placement of thirty-one cores [14] considered in section 5.2, we conclude that the method for core 

allocation devised in this dissertation is functionally sound given its results are well-aligned with available 

cutting-edge solutions. 

 

Consequently to the developed work, several suggestions for future work are presented: 

 

 Development of a crosstalk optimization algorithm for heterogeneous MCF’s and few-mode 

fibers that, based on the layouts proposed in this dissertation, is able to determine which one 

best suits a fiber with a specified cladding diameter. 

 

 Integration of a parameter optimization algorithm capable of further reducing the crosstalk of 

the cores following the choice of a layout. 

 

 Development of a crosstalk estimation algorithm for spatial multiplexers/demultiplexers that, 

making use of the layouts as well as the method for choosing them presented in this dissertation, 

is able to minimize the crosstalk in these devices. 
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8 Appendix 

 A – Method to determine the radius of the Outer Circle 

 

Given a fiber diameter, and considering that no core can be closer than 30 µ𝑚 to the edge of the outer 

cladding, we determine the radius of the circumference containing the center of the cores furthest from 

the center; the Outer Core. 

 

Knowing the fiber radius to be: 

 𝐹𝑖𝑏𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 =
𝐶𝑑
2

 (8.1) 

We know we can place the cores in the Outer Circle in a way that their core remains 30 µm away from 

the edge of the fiber: 

 𝑟 = 𝐹𝑖𝑏𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 − 30𝜇𝑚 (8.2) 

 

 

 

 

 

 

Figure 41: Fiber parameters representation for a 260 µm fiber 
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B – Crosstalk Approximation 

 

For a given core, the crosstalk is the undesirable interference that every other core produces on its 

signal. Every single core, other than the reference one, must be taken into account in order to properly 

compute the crosstalk. 

Knowing that the interference between cores (XT) quickly decays with a slight increase of the distance 

between them (𝛬) at an approximate rate of 31 𝑑𝐵 for each µm, it might make some sense to look into 

some kind of simplification. 

The considered approximation for the crosstalk calculation meant only 

considering the interference from those cores closest to the reference 

core. This procedure is illustrated in figure 42, in which the green 

arrows represent the cores that were considered in the crosstalk 

calculation while the red arrows represent those that weren’t. By not 

taking into account all the cores in the structure we’re able to greatly 

simplify the crosstalk calculation task. 

A comparison between the results obtained using this approximation and the results when taking into 

consideration all the cores in the structure can be seen in figure 44. 

 

For the same reasons that led to the use of this approximation, only for a few cases were the calculations 

made while taking into account all the cores in the layout. 

It is clear that the use of this approximation has nearly no impact on the crosstalk calculation. Out of 

these four cases, it was for twenty cores that the crosstalk values differed the most from those featuring 

the approximation, varying 0.198716 × 10−8𝑑𝐵. 

Figure 42: Approximation in One Ring 

Figure 43: Crosstalk vs Number of cores – One Ring with approximation vs One Ring without approximation 
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Figure 44: Two Rings adjustment 

C – Method for adjusting the Inner Ring radius in layout 3.3 

 

In order to minimize the Inner Core crosstalk, we adjust the radius of 

the Inner Ring in a way that guarantees that the distance between an 

Inner Core and its neighbours is the same as the distance between 

an Inner Core and its closest Outer Core (8.3). 

Note that both the Inner and Outer Rings contain the same number 

of cores in each ring; 𝑀1 = 𝑀2. 

 

 

{
 

 Λ2 = 2𝑟2 × sin (
2𝜋

2𝑀2

) 

Λ𝑥 = 𝑟1
2 + 𝑟2

2 − (2𝑟1 ∗ 𝑟2 × cos (
2𝜋

2𝑀1

))

 (8.3) 

 𝑟2 =

(2𝑟1 × cos (
2𝜋
2𝑀1

)) − √(−2𝑟1 × cos (
2𝜋
2𝑀1

))
2

− 4 × (1 − 4𝑠𝑖𝑛2 (
2𝜋
2𝑀1

)) × (𝑟1
2)

2 × (1 − 4𝑠𝑖𝑛2 (
2𝜋
2𝑀1

))

 (8.4) 

We should note that having the Inner Cores at this radius is optimal, since a larger radius would bring 

them closer to the Outer Cores while a smaller one would bring them closer to their neighbours.  

By setting this value as the radius, instead of having the Inner Ring with half the radius of the Outer 

Ring, we are able to bring the Inner Core crosstalk to a minimum at the expense of slightly increasing 

the Outer Core Crosstalk. 

Being the Inner Core crosstalk the highest across all variations of this layout, we will refer to it as the 

limiting crosstalk. Given that this limiting crosstalk was brought to a minimum, we can state there is no 

adjustment to the structure that would improve the overall crosstalk. 

Figure 45: Crosstalk vs Number of cores – Two Rings with (solid line) and without (dotted line) adjustment 
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Figure 46: Two Rings with Central Core 
adjustment 

D - Method for adjusting the Inner Ring radius in layout 3.4 

 

In order to reduce the Inner Core Crosstalk, we place the Inner Cores 

at a distance greater than half the Outer Ring radius, where the Inner 

Cores lay equidistant both to the Central and Outer Cores (8.5). 

 

 
𝑟2 =

𝑟1
2

cos (
2𝜋
2𝑀1

)
  (8.5) 

By choosing this value for the radius, instead of having the Inner Ring with half the radius of the Outer 

Ring, we are able to reduce both the Central and Inner Core crosstalk at the expense of slightly 

increasing the Outer Core Crosstalk. 

Up until thirteen cores the limiting crosstalk is the central Core’s, meaning we might be able to produce 

slightly better results by placing the Inner Cores still further away from the central core, breaking this 

layout’s equidistance condition and increasing both the Inner and Outer Core crosstalk. From thirteen 

cores onwards we could hardly achieve better results as the limiting crosstalk is the Inner Core’s, and it 

already sits at a minimum or very close to it.  

Note: For seven cores we come across an interesting result in which every single crosstalk value is 

lower than those from the equidistant rings scenario due to the structure morphing into a “One Ring” 

layout, thus fulfilling the condition of equidistance to both Outer and central cores.  

 

 

Figure 47: Crosstalk vs Number of cores – Two Rings with Central Core with (solid line) and without (dotted line) 
adjustment 
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Figure 48: Two Different Rings Adjustment 

E - Method for adjusting the Inner Ring radius in layout 3.5 

 

In order to minimize the Inner Core crosstalk, we adjust the radius of 

the Inner Ring in a way that guarantees that the distance between an 

Inner Core and its neighbours is the same as the distance between 

an Inner Core and its closest Outer Core (8.6). 

 

{
 

 Λ2 = 2𝑟2 × sin (
2𝜋

2𝑀2

)

Λ𝑥 = 𝑟1
2 + 𝑟2

2 − (2𝑟1 × 𝑟2 × cos (
2𝜋

2𝑀1

))

    (8.6) 

 

 𝑟2 =

(2𝑟1 × cos (
2𝜋
2𝑀1

)) − √(−2𝑟1 × cos (
2𝜋
2𝑀1

))
2

− 4(1 − 4𝑠𝑖𝑛2 (
2𝜋
2𝑀2

)) × (𝑟1
2)

2 × (1 − 4𝑠𝑖𝑛2 (
2𝜋
2𝑀2

))

 (8.7) 

We should note that having the Inner Cores at this radius is optimal, since a larger radius would bring 

them closer to the Outer Cores while a smaller one would bring closer to their neighbours. By setting 

this value as the radius, instead of having the Inner Ring with half the radius of the Outer Ring, we are 

always able to reduce the Inner Core crosstalk. 

In those cases where the number of cores present in the structure is fifteen or less, the new radius will 

be smaller than half the radius of the Outer Cores, which will reduce both Inner and Outer Core Crosstalk 

when compared to the case in which the rings are equally spaced. In those cases where the number of 

Cores is higher than fifteen cores, the new radius will be greater than half the radius of the Outer Cores; 

which will slightly increase the Outer Core crosstalk while reducing the Inner Core’s. 

Figure 49: Crosstalk vs Number of cores – Two Different Rings with (solid line) and without (dotted line) adjustment 
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Given that up until eighteen cores the limiting crosstalk is the Inner Cores’, and knowing a crosstalk 

minimization algorithm was employed for those cores, we can state there is no adjustment to the 

structure that would improve the overall crosstalk up until eighteen cores. For nineteen and more cores 

the Outer Core crosstalk is the limiting one, and although it always takes smaller values than those of 

the case in which the rings are equally spaced, there is still little room for improvement. 

 

 

F – Method for adjusting the Inner Ring radius in layout 3.6 

 

In order to reduce the Inner Core Crosstalk, we place the Inner Cores 

at a distance greater than half the Outer Ring radius, where the Inner 

Cores lay equidistant both to the Central and Outer Cores (8.8). 

 𝑟2 =

𝑟1
2

cos (
2𝜋
2𝑀1

)
    (8.8) 

 

By choosing this value for the radius, instead of having the Inner Ring with half the radius of the Outer 

Ring, we are able to reduce both the Central and Inner Core crosstalk at the expense of slightly 

increasing the Outer Core Crosstalk. 

Up until nineteen cores the limiting crosstalk is the central Core’s, meaning we might have been able to 

produce slightly better results by placing the Inner Cores further away from the central core.  From 

nineteen core onwards, the limiting crosstalk of this layout is Inner Core’s; and since this radius 

adjustment envisioned to reduce the Inner Core crosstalk as much as possible, we can hardly achieve 

better results. 

 

 

Figure 50: Two Different Rings with 
Central Core adjustment 

Figure 51: Crosstalk vs Number of cores – Two Different Rings with Central Core with (solid line) and 
without (dotted line) adjustment 
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G – Method for adjusting both the Inner and Middle Ring 

radii in layout 3.7 

 

In order to reduce the levels of crosstalk all across this layout we 

proceed to determine new values for the radius of the Inner and 

Middle Rings. The values for the radii ensure the distance between 

Inner Ring neighbours is the same as both the distance from an Inner 

Core to a Medium Core, and from a Medium Core to the Outer Circle 

(8.9).  

 

{
 
 

 
 Λ3 = 2𝑟3 × sin (

2𝜋

2𝑀3

)

Λ𝑥 = 𝑟2
2 + 𝑟3

2 − (2𝑟2 × 𝑟3 × cos (
2π

2𝑀2

)

𝑑 = 𝑟1 − 𝑟2

                                      (8.9) 

 
𝑟3 =

2𝑟1×cos(
2𝜋

2𝑀2
)+4𝑟1×sen(

2𝜋

2𝑀3
)−√(−2𝑟1×cos(

2𝜋

2𝑀2
)−4𝑟1×sen(

2𝜋

2𝑀3
))
2
−4×(1+4sin(

2𝜋

2𝑀3
) cos(

2𝜋

2𝑀2
))×(𝑟1

2)

2×(1+4sin(
2𝜋

2𝑀3
) cos(

2𝜋

2𝑀2
))

  
(8.10) 

It is important to note that the distance between an Outer Core and its closest Middle Core will depend 

on the Outer Core we pick, which is why it is necessary make the distance between Inner Ring 

neighbours the same as the distance between a Middle Core and the Outer Circle, to ensure this latter 

is either the same or smaller than the distance between a Middle and an Outer Core.  

By setting these values as the radii, instead of having the Inner and Middle Rings laying at, respectively, 

one third and two thirds of the Outer Ring radius, we are able to reduce the crosstalk of both Outer and 

Medium Cores while increasing the Inner Cores’. 

Although this layout produces great results across all variations of itself, there is a minor room for 

improvement given that we can still reduce the value of the limiting crosstalk. This crosstalk, the Inner 

Cores’, can be slightly reduced by increasing the radius of both Inner and Medium Rings, which would 

the other hand increase both Outer and Medium core crosstalk values. This extra crosstalk adjustment 

wasn’t performed as it brings little benefit while requiring an individual adjustment for both rings for each 

variation of this layout. 

 

 

Figure 52: Three Different Rings 
adjustment 
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H –Method for adjusting both the Inner and Middle Ring 

radii in layout 3.8 

 

In order to balance the levels of crosstalk in this layout, we proceed 

to determine new values for the radius of the Inner and Middle Rings. 

The values for the radii ensure the distance from the Central Core to 

an Inner Core is the same as both the distance from an Inner Core to 

a Middle Core and from a Middle Core to the Outer Circle (8.11).  

 {
𝑟3 =

𝑟2

2cos (
2𝜋
2𝑀2

)

𝑟1 = 𝑟3 + 𝑟2

 (8.11) 

 

 

𝑟2 =
𝑟1

1 + 2𝑐𝑜𝑠 (
2𝜋
2𝑀2

)
 

                                   (8.12) 

It is important to note that the distance between an Outer Core and its closest Middle Core will depend 

on the Outer Core we pick, which is why it is necessary make the distance between a Central and an 

Inner Core the same as the distance between a Middle Core and the Outer Circle, to ensure this latter 

is either the same or smaller than the distance between a Middle and an Outer Core.  

By setting these values as the radii, instead of having the rings equally spaced, we are able to reduce 

all the values of crosstalk. 

 

Figure 54: Three Different Rings with 
Central Core Adjustment 

Figure 53: Crosstalk vs Number of cores – Three Different Rings with (solid line) and without (dotted line) 
adjustment 
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Although this layout produces great results across all variations of itself, there is still room for 

improvement given that we can still reduce the value of the limiting crosstalk at the expense of increasing 

the others, this is valid both when the limiting is the central core’s and Inner Core’s. Although this extra 

crosstalk adjustment can be achieved choosing different values for the radii, it wasn’t performed as it 

brings little benefit while requiring an individual adjustment for each ring for each variation of this layout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55: Crosstalk vs Number of cores – Three Different Rings with Central Core with (solid line) 
and without (dotted line) adjustment 

 


