
Robot motion adaptation through user intervention and

reinforcement learning∗

Aleksandar Jevtić†, Adrià Colomé, Guillem Alenyà, and Carme Torras

Abstract

Assistant robots are designed to perform specific
tasks for the user, but their performance is rarely
optimal, hence they are required to adapt to user
preferences or new task requirements. In the pre-
vious work, the potential of an interactive learning
framework based on user intervention and reinforce-
ment learning (RL) was assessed. The framework al-
lowed the user to correct an unfitted segment of the
robot trajectory by using hand movements to guide
the robot along a corrective path. So far, only the
usability of the framework was evaluated through ex-
periments with users. In the current work, the frame-
work is described in detail and its ability to learn
from a set of sample trajectories using an RL algo-
rithm is analyzed. To evaluate the learning perfor-
mance, three versions of the framework are proposed
that differ in the method used to obtain the sam-
ple trajectories, which are: human-guided learning,
autonomous learning, and combined human-guided
with autonomous learning. The results show that the
combination of the human-guided and autonomous
learning achieved the best performance, and although
it needed a higher number of sample trajectories than
the human-guided learning, it required less user in-
volvement. Autonomous learning alone obtained the
lowest reward value and needed the highest number
of sample trajectories.

∗Pattern Recognition Letters. Accepted for publication:
June 16, 2017. doi: 10.1016/j.patrec.2017.06.017
†The authors are with the Institut de Robòtica i In-

formàtica Industrial, CSIC-UPC, C/ Llorens i Artigas 4-6,
Barcelona 08028, Spain. Email: {ajevtic, acolome, galenya,
torras} @iri.upc.edu

1 Introduction

Recent studies have shown a growing interest in ser-
vice robots for various application domains [1]. How-
ever, very few robots of this kind can be found in
real commercial settings because of their limited abil-
ity to adapt to new requirements. Learning from in-
teraction is an attractive strategy for robot learners
because it can speed up the learning process and im-
prove its accuracy [2]. Moreover, it allows a user
to decide what part of robot’s behavior needs to be
modified.

Machine learning (ML) is an inseparable compo-
nent of robotics research. Many ML algorithms were
specifically designed for applications in robot vision
[3], action planning [4], and motion learning [5]. Ini-
tially, a robot’s ability to adapt depended on au-
tonomous learning [6], but the advances in human-
robot interaction led to development of learning from
demonstration algorithms that place the user in the
role of a teacher [7].

Learning from demonstration has certain advan-
tages over autonomous robot learning. Most impor-
tantly, it allows the user to decide when and how to
modify the robot’s behavior. In case of robot mo-
tion learning, which is the focus of this work, user
demonstration can speed up the learning process by
reducing the trajectory exploration space. Teaching
a robot to optimally perform a task usually requires a
lot of data about the task at hand, the environment,
or the user preferences on how to perform the task.
In such cases, a combination of user demonstration
and autonomous learning can produce better results
than each of the methods separately.

Robot companions are service robots designed to

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/159630576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Robot assisted-dressing tasks developed
under the I-DRESS project. The assistance with
putting on a shoe shown on the left is an example of
a single-arm robot task, and it is intended for users
with reduced mobility. The assistance with gown
dressing shown on the right is a dual-arm robot task
and represents the case of medical staff whose physi-
cal contact with the garments must be limited during
dressing to avoid contamination.

help a specific group of users, such as people with dis-
abilities, to live independently [8]. Support to users
with the activities of daily living (ADLs) is important
but challenging, and the ability to learn from the
interaction may improve robot’s performance while
bringing more comfort to the users [9]. The work pre-
sented in this paper was developed under the frame-
work of the I-DRESS project1 whose main goal is de-
velopment of a robot assistant for support in dressing
(see Fig. 1). Limited sensing and cognitive abilities
can significantly reduce robot’s performance or even
prevent it from executing such task. However, cer-
tain aspects of human-robot interaction, such as the
robot motion, can be improved with ML.

In the previous work [10], we assessed the usability
of an interactive learning framework based on user
intervention and reinforcement learning (RL), to al-
low users to modify an unfitted segment of a robot’s
trajectory. The motion adjustment was done using
hands’ gestures to guide the robot along a corrective
path. The framework was implemented on a Barrett
WAM robot and its performance and user workload
were compared in the single-arm and dual-arm set-
ting through a series of experiments with non-expert
users. In the current work, besides describing the

1I-DRESS project: http://www.i-dress-project.eu/

framework in detail, its ability to learn an improved
trajectory from a set of modified sample trajectories
is studied. Comparison is made for different levels
of user involvement, i.e., autonomous learning, in ob-
taining the sample trajectories that were used as in-
put for an RL algorithm to produce a new trajectory.

Due to complexity of assisted dressing, at the ini-
tial stage the proposed framework was implemented
on a simpler robot guidance task, as a proof of con-
cept. This task is shown in Fig. 6, and it is described
in detail in the following sections.

1.1 Relevant work

Adaptation of personal robots depends on their abil-
ity to naturally interact with users and learn new
skills and behaviors from interaction. Communica-
tion between the robot and the user is performed
through common modalities [11], such as gestures,
which are used to recognize user’s intentions. Ges-
tures can be used to initiate or stop a robot task,
switch between different tasks, but also give insight
into the user’s behavior. Numerous methods for ges-
ture recognition have been proposed in literature and
they were based on statistical modelling, computer
vision, pattern recognition, and so forth [12]. Release
of affordable RGB-D cameras such as the Microsoft
Kinect allowed development of novel algorithms for
human body segmentation [13], which improved the
performance of the state-of-the-art gesture recogni-
tion methods, also for robotics applications [14]. In
the current work, a hands-tracking algorithm was ap-
plied to robot manipulators teleoperation and was
combined with RL to develop a system that is able
to learn from user intervention.

Robot learning can be performed at different lev-
els of task hierarchy, such as actions or motions [15].
Some authors suggest that the user teaching and
robot learning processes are coupled and proposed
scaffolding as a method for user’s support in robot
learning [16]. It was also shown that the learning
performance can be improved by allowing the users
to structure the robot task, which allows them to se-
lect a task segment they regard as relevant [17].

Learning from a user demonstration can lead to
better and more stable robot behaviors, and it can

2

also speed up the learning process. Since the intro-
duction of linearly parameterized trajectories like Dy-
namic Movement Primitives (DMP) [18], the learn-
ing of robot motion has been dominated by Policy
Search (PS) algorithms [5], in which the motion pol-
icy is directly encoded as the trajectory parametriza-
tion. Generally, in PS approaches, the robot is taught
an initial trajectory that is then improved through
autonomously-generated rollouts and policy updates
[7]. A model-based RL proved to be efficient for learn-
ing action sequences with the user in the role of a
teacher [19]. Instead of applying RL to teach the
robot new actions and their effects, in this work, RL
is applied to modify the robot trajectory segment se-
lected by the user. In this way, PS can produce a
new solution from the user-generated rollout, which
is a rather unexploited domain for RL.

In order to apply RL approaches, it is very com-
mon to use ad hoc evaluations of performance, i.e.:
task-oriented reward functions that will provide the
relative value of motion executions [7]. The field
of Inverse Reinforcement Learning (IRL) [20] finds
a proper characterization of a reward function, but
most IRL approaches rely on the perfect teacher hy-
pothesis, considering human demonstrations as op-
timal solutions. In the current study, user demon-
strations were not considered optimal and the re-
ward function was empirically chosen to minimize the
length of the trajectory that avoids the obstacles.

2 Algorithms

The proposed interactive learning framework has two
components: interaction and learning. Interaction
was implemented through a user intervention algo-
rithm that relies on user’s hands-tracking and robot-
control algorithms. An RL algorithm is responsi-
ble for learning a new robot trajectory from a set
of sample trajectories. For the case when the sam-
ple trajectories were generated by the user, a time-
alignment algorithm was developed to align the tra-
jectories in time, which is a requirement for RL based
on policy search. The RL algorithm was implemented
in Matlab. The other algorithms were implemented
in C++ using the Robot Operating System (ROS)

framework.
Three versions of the proposed framework were de-

veloped and compared and they differ in the method
that was used to generate sample trajectories for
the RL algorithm. The first method applies human-
guided learning (HGL), in which the sample trajec-
tories were generated by the user, through teleopera-
tion. For each sample trajectory, the user would stop
the robot during the execution of the initial trajec-
tory and modify a selected segment using hand ges-
tures. This is represented by the user intervention
block in the HGL diagram shown in Fig. 2.

The second method applies the autonomous learn-
ing (AL), which represents the case when user inter-
vention is not available (e.g., in case of a user with
reduced mobility). AL searches for solutions around
the initial trajectory by applying different magni-
tudes of exploration, which are set empirically by the
system designer. The diagram in Fig. 3 shows one
policy update of the AL. The AL can be performed
for a preset number of policy updates. This num-
ber is empirically set and its effect on the learning
performance is discussed in Section 4.

Finally, the third method combines human-guided
and autonomous learning (HGAL), in which the au-
tonomous learning exploration magnitude is obtained
from the user’s input. Again, HGL takes several user-
generated trajectories to produce a new trajectory,
which is then used as input for AL that performs ad-
ditional trajectory tuning. AL performs a number of
policy updates to produce the final new trajectory.
The diagram of the HGAL is obtained by connecting
the HGL and AL diagrams, in that order, and closing
the loop around the AL block, as shown in Fig. 4.

2.1 Robot control

To allow the robot to correctly mimic the human mo-
tion, a method based on DMPs was used, similar to
the one described in [21]. A diagram of the method is
shown in Fig. 5. The forcing term of the DMPs was
removed to simplify the shape of the robot trajectory
between the directional points. The user’s hands-
tracking algorithm provided directional points, which
were transformed to joints positions that satisfy the
kinematics constraints implemented through an in-

3

Reinforcement

learning

Time

alignment

User

intervention

New

trajectory

Initial

trajectory

User-modified

trajectories

Time-aligned

trajectories

… …

Figure 2: Diagram of the human-guided learning (HGL) method.

Reinforcement

learning

Autonomous

learning

trajectory

generator

New

trajectory

Initial

trajectory

Modified

trajectories

…

Figure 3: Diagram of the autonomous learning (AL)
method.

verse kinematics (IK) algorithm, as in [22]. Joints
positions were not provided at the control loop’s exe-
cution rate, hence a dynamic system was used to in-
terpolate the missing values. In particular, a second-
order attractor that works similarly to a DMP [18]
tracks the desired joint acceleration p̈ that is sent
as a reference to the robot controller. The reference
acceleration is a function of the current position p,
velocity ṗ, and joint goal g provided by the IK algo-
rithm, multiplied by proportional-derivative gains:

p̈ = K p(g− p)−K dṗ. (1)

Such dynamic system characterization permits on-
line trajectory modifications, while keeping all the
advantages of the DMPs. The trajectory was
recorded as a sequence of Cartesian points obtained
from the camera and equally distributed in time,
pt = (xt, yt, zt), t = 1 . . . Nt, making it easy to repro-
duce the user’s hands motions. Cartesian represen-
tation also allowed affine transformations of the tra-
jectory, a useful feature for robot motion adaptation
in space. Given the joint position reference obtained
in (1), a compliant feed-forward controller that com-
bines a friction model with a PID error compensation
was used to generate the torque commands, as in [23].
The compliant controller made the robot safer in case

AL HGL

New

trajectory

Initial

trajectory

N iterations

Figure 4: Diagram of the human-guided with au-
tonomous learning (HGAL) method. HGAL com-
bines human-guided learning (HGL) and autonomous
learning (AL) by using the new trajectory of HGL as
input for AL. The closed loop around the AL block
indicates that AL can be executed for an arbitrary
number of policy updates (iterations) to improve the
final new trajectory.

of an unexpected physical contact with the user or
the surrounding objects. The points pt stored in this
manner are directional points, meaning that they are
not necessarily reached by the robot, but only define
robot’s motion direction before the next directional
point is sent. In practice, these points are provided
at a 10Hz rate and the gains used in (1) are tuned
to provide a smooth transition between directional
points.

In the case of AL, DMPs were initialized by fitting
a set of Gaussian weights along the trajectory. Tele-
operation by the user consisted of in-real-time mod-
ification of the robot trajectory, and equally-spaced

Inverse

Kinematics
Robot

Compliant

Controller

Dynamical

System

Desired

pose

Desired

joints

Joint

reference

Torque

commands

Figure 5: Robot control diagram.

4

trajectory points were chosen as directional points to
represent the robot motion.

2.2 User’s hands tracking

User’s hands-tracking algorithm was implemented us-
ing the OpenNITMand NiTETMopen source libraries.
The positions of the user’s joints were provided in the
camera frame of reference. Since relative joints dis-
placements were used, no transformation of the joints
positions to the robot frame of reference was needed.

To start modifying a segment of the robot’s initial
trajectory, the user would stand in front of the robot
and raise the right hand to stop the robot and change
its state from ”EXECUTE” to ”FOLLOW”. This
simple implementation avoided possible deployment
issues with, for example, a speech recognition inter-
face. Although speech could allow a more intuitive
human-robot interaction, our initial tests showed no
considerable impact on the delay when stopping the
robot by gesture.

In the ”FOLLOW” state, the user could teleop-
erate the robot by using hand movements. The
hands-tracking algorithm recorded the positions of
the user’s hands that served as directional points for
the robot control algorithm described in Section 2.1.
The points were reproduced, in real time, by the cor-
responding robot’s end-effector in a two-dimensional
horizontal plane above the table, as shown in Fig.
6. The same gesture was used to make the transi-
tion back to the ”EXECUTE” robot state to stop
the teleoperation.

2.3 User intervention

The implementation of the proposed user interven-
tion is given in the Algorithm 1. The user was ex-
pected to observe the robot while performing the
task, stop it at a desired position by raising the right
hand and then, within the next 2 seconds, place the
hands in a comfortable posture similar to holding a
wheel when driving a car (see Fig. 6).

When switching to the teleoperation mode, i.e., the
”FOLLOW” state, the robot would store the initial
position of the user’s hand p0

h and the corresponding

end-effector’s trajectory cut point, pIcut

. The cut

Algorithm 1 User intervention

1: while not end of trajectory τ 0 do
2: if FOLLOW signal then . user intervention
3: Icutk ← current point index
4: τ k ← points 1 . . . Icutk from τ 0

5: while not EXECUTE signal do
6: pt ← move robot to follow user hands
7: τ k ← append pt

8: Iconk ← find closest connect point to τ 0

9: τ k ← append points Iconk . . . Nt from τ 0

10: else
11: move robot to next τ 0 point

point is a directional point from the original trajec-
tory that is closest to the location where the robot
was stopped by the user; this point is saved by its in-
dex in the trajectory points sequence, Icut. All sub-
sequent displacements of a hand were reproduced by
the robot’s end-effector towards the new directional
points:

pt
new = pIcut

+ (pt
h − p0

h) (2)

where pt
h is the hand position in moment t recog-

nized by the camera with respect to the initial hand
position, p0

h.
To stop the intervention and relieve control of the

robot, the user would again raise the right hand and
the current position of the robot end-effector would
be stored as the final point of the modified trajec-
tory segment, pNt

new. The robot end-effector would
then move to the closest connect point on the origi-
nal trajectory, pIcon

, stored by its index Icon in the
trajectory points sequence, and execute the remain-
ing points of the original sequence until finishing the
task.

Original trajectory points were indexed and had
associated timestamps to always ensure the identi-
cal execution. As previously mentioned, the cut and
connect points were stored by their indexes; however,
while the cut point was stored as the last trajectory
point before the user raised the right hand, the con-
nect point was selected by the minimal distance from
the point in which the user relieved control of the
robot, as shown in Fig. 7. In the single-arm exper-
iment this calculation was performed for one robot

5

Figure 6: A user guiding a dual-arm robot by using hands’ gestures tracked by a Microsoft Kinect camera.
The original robot trajectory is shown in green (left image). Red arrows show the user’s hands’ gestures and
the corresponding robots’ motion in the teleoperation mode (right image).

Figure 7: Computation of the connect point between
the user trajectory and the original robot trajectory.
Blue points belong to the original trajectory, and the
final point generated by user teleoperation is shown
in black. The curved line represents a general case.
In this work, the trajectory used in the experiments
was a straight line.

arm only, but in the second experiment involving a
dual-arm robot, the connect points were calculated
for each robot arm and the index of the one closer
to their original trajectories, respectively, was chosen
for both robot arms.

The result of the user intervention was a new robot
trajectory made of three segments: the unmodified
trajectory sequence preceding the cut point, a modi-
fied trajectory sequence between the cut and connect
points, and the final unmodified trajectory sequence

that follows after the connect point. This trajectory,
after being aligned in time with other user-modified
trajectories, was used as a sample trajectory for the
RL algorithm.

2.4 Reinforcement learning

For the trajectories created using the HGL, RL was
applied to find an improved trajectory solution by
compensating for the perturbations that can result
from defective trajectories supplied by the user. The
secondary effect was to smooth out the noise in both
hands-tracking and robot-control loops. In AL case,
due to absence of user intervention, the sample tra-
jectories were generated using an initial variance em-
pirically set by the system designer. The variance
was updated after each policy update by a weighted
maximum likelihood estimation of a Gaussian distri-
bution. For the combined HGAL, a new trajectory
obtained from the user intervention, i.e., the HGL,
was used to set the initial variance for the AL explo-
ration.

The reward function defined in (5) was applied to
evaluate the performance of the proposed method
and the RL policy updates. The directional points
trajectory representation chosen in Section 2.1 is very
suitable for Policy Search (PS) algorithms [5], where
a policy is defined by trajectory parameters (rele-

6

vant components of the desired poses) and the best
policy is obtained by adequately updating these pa-
rameters. In particular, the Relative Entropy Policy
Search (REPS) was used [24], and for the HGL, only
one policy update was performed.

In a group of N modified trajectories τ k =
{p1

k, ...,p
Nt

k }, k = 1..N , each trajectory has its own
cut and connect points with associated indexes Icutk ,
Iconk , which were obtained as described in Algorithm
1. The REPS algorithm was applied only to the mod-
ified segments of the trajectories, between these two
points. However, the modified segments were not of
the same length since they were not aligned in time.
In order to apply RL, these segments were aligned
to have the same number of points marked with the
same timestamps, as shown in Fig. 8.

First, the minimal cut index, Icutmin =
mink=1..Nrollouts

(Icutk), and the maximal con-
nect index, Iconmax = maxk=1..Nrollouts

(Iconk), were
found among all the sample trajectories. For each
trajectory, the segments before Icutmin and after Iconmax

were marked as unmodified (shown in black in
Fig. 8). Before applying the time alignment and sub-
sequently the RL algorithm, unmodified trajectory
segments were removed from the trajectories, leaving
only the trajectory segments between the common
cut and connect points (shown in blue in Fig. 8),

Tk = {pIcut
min

k , . . . ,p
Icon
max

k }, for k = 1, . . . , Nrollouts.

Points p
Icut
min

k and p
Icon
max

k were included in both modi-
fied and unmodified trajectory segments to ensure
smooth merging of the segments after applying the
time-alignment and RL algorithms.

For the modified trajectories’ segments, Tk, a func-
tion of time was parametrized with a sum of weighted
Gaussians and by using the reward function with the
square of the difference from the reference trajectory
segment (empirically set to be the first sample tra-
jectory) a gradient descent was performed on the
time-deformation function to obtain a better time-
aligned trajectory (see Appendix for more details).
The time-aligned trajectories are displayed in green
color in Fig. 8. The REPS algorithm was used to
compute trajectory weights wk for time-aligned tra-
jectory segments and produce a new trajectory seg-
ment (displayed as a thin black curve in Fig. 8),

Algorithm 2 Reinforcement learning of new trajec-
tories

1: Input: HGL or AL sample trajectories τ k =
{p1

k, ...,p
Nt

k }, for k = 1 . . . Nrollouts; cut and con-
nect points indexes Icutk , Iconk , ∀k; reward values
of the trajectories Rk, ∀k.

2: Find common cut and connect point indexes for
all the sample trajectories (rollouts), Icutmin and
Iconmax.

3: For all rollouts, extract trajectory segments that

will be modified by RL: Tk = {pIcut
min

k , ...,p
Icon
max

k },
∀k.

4: Apply time alignment to Tk, ∀k, using the initial
rollout as a reference; re-sample to have the same
number of points in modified segments from all
rollouts.

5: Apply REPS to compute the relative importance
weight for each rollout: wk = REPS (R), ∀k

6: Obtain a new trajectory segment by a weighted
sum of the time-aligned, resampled rollouts,
Tnew

7: Merge the unmodified trajectory segments from
step 2 with the modified trajectory segment from
step 6 to obtain the RL-modified trajectory, τnew

Tnew = {pIcut
min

new , . . . ,p
Icon
max

new }, whose points are ob-
tained as follows:

pt
new =

Nrollouts∑
k=1

wkp
t
k,∀t = Icutmin, . . . , I

con
max. (3)

This trajectory segment was then merged with two
unmodified segments of the original trajectory that
were removed before applying RL, to obtain a com-
plete trajectory:

τnew = {p1, ...,pIcut
min−1,p

Icut
min

new , ...,p
Icon
max

new ,

pIcon
max+1, ...,pNt}.

(4)

The data processing steps are summarized in Algo-
rithm 2.

7

Figure 8: Time alignment of user-modified trajectory segments. Human-guided trajectories (blue) from 5
trials are time-aligned (green) and used as input for the RL algorithm to produce a new trajectory (black).

3 Experimental setup

The proposed algorithms were implemented on two
Barrett’s 7-DOF Whole Arm Manipulator (WAM)
robots and a first-generation Microsoft Kinect cam-
era, which was used for user tracking (see Fig. 6).
The experiments included a single-arm and dual-arm
robot tasks with a variable level of user intervention.
In both tasks, the goal was to modify the robot end-
effector trajectory to avoid two obstacles placed on
the tabletop. The two robot arms were positioned to
face one another from the opposite sides of a square-
shaped 1.3m× 1.3m table. The Kinect was mounted
on a tripod at the height of 140cm facing the user
from the opposite side of the table.

For the single-arm task, the robot executed a pre-
recorded motion along a straight line (shown in green
in Fig. 9), at a constant height from the tabletop,
from the point A1 = (0.5m, 0.4m) to the point B1 =
(0.5m,−0.4m), in the robot frame of reference. Two
obstacles, i.e., plastic bottles shown as blue circles in
Fig. 9, were placed along the same line at the point

A1

C1

D1

B1

A2

C2

D2

B2

Robot 1 Robot 2

Figure 9: The experimental setup scheme (top view).
Obstacles are shown as blue circles and green lines
represent the original robots end-effectors trajecto-
ries.

C1 = (0.5m, 0m) and the point D1 = (0.5m,−0.2m).
Without modifying the original trajectory, the robot
would knock over both bottles, so the goal was to
modify a segment of the trajectory to guide the robot
around the bottles in an ”S”-shaped motion.

The second task, also represented in Fig. 9, in-

8

volved two robot arms that simultaneously performed
motions along two parallel lines. The first robot arm
followed the linear trajectory from the point A1 to
the point B1, while the second robot arm performed
a parallel motion from the point A2 = (0.5m,−0.4m)
to the point B2 = (0.5m, 0.4m), in the first robot
and second robot frames of reference, respectively.
Four plastic bottles were placed on the tabletop, two
along the each of the robot arm’s trajectories, at the
points C1 and D1 and the points C2 = (0.5m, 0m)
and D2 = (0.5m, 0.2m), in the first robot and sec-
ond robot frames of reference, respectively. As for
the first experiment, the goal was to guide the robot
arms around the bottles in a symmetrical ”S”-shaped
motion. In both experiments, the robot end-effectors
had fixed orientation facing down towards the table-
top, and their distance from the tabletop was con-
stant during the whole experiment.

3.1 Performance evaluation

The evaluation of the experimental results was per-
formed using two metrics: task success rate and tra-
jectory reward value.

The task was considered successful if the new tra-
jectory did not knock over any obstacles. The task
success rate represents the percentage of the success-
ful trajectories for the same experimental setting (e.g.
number of robot arms, policy updates, rollouts per
update).

The trajectory reward value obtained with a re-
ward function was also used to assess the performance
of our method in each experiment and simulation
trial. The reward value penalized the trials that in-
volved longer robot arm trajectories or knocked over
the obstacles:

R = −α ·Dtotal −B (5)

where B is the number of knocked-down obstacles
during the modified task execution and Dtotal is the
total distance travelled by the robot end-effectors.
Both B and Dtotal values were normalized (i.e., di-
vided by 2) for the dual-arm robot setting. The fac-
tor α is a relative weight chosen to keep the value
of B at around 80% of the total reward value; this

ratio was suitable to achieve the primary task, i.e.,
obstacle avoidance, while minimizing the trajectory
length. Similar empirical approaches can be found in
previous PS applications [5].

4 Results and Discussion

The experiments with all three versions of the
proposed interactive learning framework were per-
formed, and their results are here compared using
the metrics defined in Section 3.1.

4.1 Human-guided learning (HGL)

In this experiment, a user with no experience in
robotics performed 20 trials of modifying the origi-
nal robot arms trajectories for both single-arm and
dual-arm tasks, as described in Algorithm 1. Before
the experiment, the user was allowed to test the basic
robot features. The new trajectories were obtained
using Algorithm 2 with only one policy update after
5, 10, 15, and 20 trials.

Both single-arm and dual-arm tasks were per-
formed with a 100% task success rate, with the ex-
ception of the single-arm experiment when Algorithm
2 was applied after only 5 trials.

The performance of the new trajectories was fur-
ther evaluated using the reward function defined in
(5) and the obtained values are shown in Table 1.

Both experiments yielded high reward values, with
the exception of the single-arm experiment when
Algorithm 2 was applied after only 5 trials (R =
−1.127). This was a consequence of lower reward
values in the initial trials in which the user was be-
coming familiar with the robot. Still, even this trajec-
tory was a reasonably good solution because it only
slightly touched one of the bottles. Importantly, for

Table 1: Reward values obtained by HGL for differ-
ent number of trials

Task N = 5 N = 10 N = 15 N = 20
Single-arm -1.127 -0.116 -0.103 -0.099
Dual-arm -0.635 -0.109 -0.105 -0.103

9

Table 2: Task success rate over 100 simulations for AL after different number of trials (rollouts per policy
update)

Task N = 5 N = 10 N = 15 N = 20 N = 50 N = 100 N = 200 N = 500 N = 1000
Single-arm 24% 34% 42% 75% 90% 98% 100% 100% 100%
Dual-arm 4% 12% 12% 24% 30% 42% 64% 76% 100%

both tasks, the increasing trend of the reward values
after each policy update shows a continuous learning
process toward a better solution.

4.2 Autonomous learning (AL)

AL method was tested in a simulated environment,
using the same setup as for the HGL, and the trajec-
tory representation described in Section 2.1. In the
initial tests, white and red noise were added to the
original trajectory points to generate modified tra-
jectories. However, this approach failed and the RL
algorithm was unable to produce a trajectory that
would circle around the obstacles without knocking
them over.

For this reason, DMP was applied as more suitable
for random generation of trajectories. Note that the
DMP characterization of the whole trajectory was
not used in case of the HGL because modification
of trajectories was performed during task execution;
DMP parameters are usually obtained by means of
least squares minimization applied to the whole tra-
jectory, which prevented re-parametrization in real
time. In each simulation, 100 REPS policy updates
were performed with different numbers of rollouts per
update.

Table 2 shows the success rate of the single-arm
and dual-arm tasks over 100 simulations. For exam-
ple, 24% rate for the single-arm task, in case of 5

Table 3: Task success rate over 100 simulations for
HGAL (N is the number of rollouts used for HGL
while AL was performed with 100 policy updates and
20 rollouts per update)

Task N = 1 N = 5 N = 10 N = 15 N = 20
1-arm 98.8% 100% 100% 100% 100%
2-arm 49.9% 84% 90% 92% 96%

rollouts per policy update, means that 24 out of 100
simulations produced trajectories that were success-
ful and did not knock over the obstacles. A trend of
improving the task success rate can be noted when
the number of rollouts was increased. Interestingly,
the dual-arm task proved to be complex and required
1000 rollouts per policy update to obtain a 100% suc-
cess rate. The generation of random trajectories for
the two arms is seen as independent events; there-
fore, the probability of not knocking down an obstacle
with two arms is the product of probabilities of not
knocking down an obstacle with each arm. For the
tasks that require symmetrical motion of the arms,
the learning process could be simplified to single-arm
learning (while the other arm performs a mirror mo-
tion) to improve the results. However, this would
affect the generalization of such results.

The simulation results after applying AL to single-
arm and dual-arm tasks are shown in Fig. 10a and
10b, respectively. Learning curves represent the av-
erage reward values obtained over 100 simulations,
for different numbers of policy updates and rollouts
per update. Dashed lines represent the reward val-
ues obtained after applying HGL (see Table 1). The
results show that even one policy update for HGL
yields higher reward values than what was obtained
as the average of 100 AL simulations, except for the
initial 5 trials of the single-arm task when the user
was unfamiliar with the robot.

4.3 Human-guided with autonomous
learning (HGAL)

In the combined approach of HGL and AL, the out-
put trajectory of the HGL was used as the initial
trajectory for the AL. Table 3 shows the average per-
formance of the single-arm and dual-arm tasks over
100 simulations. Note that the number of rollouts

10

number of policy updates
0 20 40 60 80 100

re
w

a
rd

 v
a

lu
e

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

N=5
N=10
N=15
N=20

(a) Single-arm task, AL vs. HGL

number of policy updates
0 20 40 60 80 100

re
w

a
rd

 v
a

lu
e

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

N=1
N=5
N=10
N=15

(b) Dual-arm task, AL vs. HGL

number of policy updates
0 20 40 60 80 100

re
w

a
rd

 v
a
lu

e

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

N=1
N=5
N=10
N=15
N=20

(c) Single-arm task, HGAL vs. HGL

number of policy updates
0 20 40 60 80 100

re
w

a
rd

 v
a

lu
e

-1.2

-1

-0.8

-0.6

-0.4

-0.2

N=1
N=5
N=10
N=15
N=20

(d) Dual-arm task, HGAL vs. HGL

Figure 10: Comparison of the learning curves showing reward values obtained from AL and HGAL executions
after different numbers of policy updates, and rollouts per update. Horizontal lines represent reward values
obtained from the HGL experiments given in Table 1. Note that some of these lines overlap, and that in
the figure (c) the value R = −1.127 obtained after a policy update with 5 rollouts is not shown due to space
limitation. Figures (c) and (d) also show (in black) the average learning curve after applying HGAL when
only one human-guided rollout was used to generate the initial trajectory for the autonomous learning part.

11

represents the total number of HGL rollouts used to
generate the initial trajectory for AL, but AL was
performed with the 20 rollouts per policy update.
This produced a sufficiently high task performance
rate; for example, in case of the dual-arm task, after
using the trajectory obtained using HGL with 1 pol-
icy update and 20 rollouts per update as input, the
task performance of the AL applying 100 policy up-
dates and 20 rollouts per update increased from 24%
to 96%.

Comparison of the reward values obtained after ap-
plying HGAL and HGL is shown in Fig. 10c and
10d. The learning curves show average reward values
over 100 simulations with different numbers of pol-
icy updates and rollouts per update. It can be noted
that, in case of the single-arm task, the HGAL easily
outperforms the HGL, or in other words, improves
the solution of the HGL. However, for the dual-arm
task this was not the case, and although some tra-
jectories obtained by the HGAL were better than the
solution of the HGL on average the HGAL yielded
slightly lower reward values than the HGL. On the
same figures, displayed as a black solid curve, the
average reward values are shown that were obtained
after using the HGL with 1 rollout per update; how-
ever, these results were unsatisfactory because of the
limited learning potential of only one rollout.

Finally, the best trajectories for the single-arm and
dual-arm tasks obtained after applying all three ap-
proaches are shown in Fig. 11. As mentioned ear-
lier, the best results were obtained after 1 policy
search update with 20 rollouts (HGL), 100 policy
search updates with 1000 simulated rollouts (AL),
and 100 policy search updates with 20 simulated roll-
outs (HGAL). It is important to note that, for the
REPS algorithm, better solutions can be obtained
by increasing the number of rollouts and policy up-
dates. The quality of trajectories was evaluated using
Eq. (5), i.e., the best trajectories are those that avoid
the obstacles while performing the shortest path, re-
gardless of their smoothness (see Fig. 11).

HGAL combines HGL and AL in a way that an
approximation of the HGL result is used as input
for AL. This strategy substantially increased the task
success rate, as well as the average rewards, as shown
in Fig. 10. Moreover, Fig. 10c and 10d show how

the HGAL approach is capable of strongly improving
some trajectories, especially in case of unsuccessful
(N = 1) or poor-performing (N = 5) HGL trials.

5 Conclusions

Learning through interaction is a must-have ability
of personal robot assistants as they must be able to
adapt to their users’ needs. In this work, an interac-
tive learning framework was proposed that combines
user intervention and reinforcement learning, and al-
lows such adaptation. The framework was compared
using three learning methods that differ in the level
of user intervention, i.e., autonomous learning. The
objective was to find the most efficient method to im-
prove the robot motion trajectory and yield the best
task performance. The framework was implemented
on single-arm and dual-arm robots in the experiment
with an untrained user.

The results show that human-guided learning could
yield a better solution after using only 1% of the total
number of policy updates required for autonomous
learning (HGL using 1 policy update vs. AL us-
ing 100 policy updates). In some cases, a combined
approach of human-guided and autonomous learning
could lead to better solutions, but this depended on
the quality of the initial solution provided by the user.

The current work is a proof of concept. Impor-
tantly, the results showed that the autonomous learn-
ing relies on a larger size of input data, i.e., sample
trajectories, and that the user input can speed up the
learning process. Whether the human-guided learn-
ing can be improved with autonomous learning will
depend on the robot task complexity and the quality
of the initial user input. Nevertheless, the proposed
framework is suitable for life-long learning as it allows
additional inputs from the user, which has proved to
yield better solutions.

As a part of the future work, the proposed frame-
work will be further developed for assistance in activ-
ities of daily living, such as dressing. For customiza-
tion of such tasks to each individual user require-
ments, an input from the user will be of great value.

12

x [m]
0 0.2 0.4 0.6 0.8 1

y
 [

m
]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
AL
HGL
HGAL
obstacles
no-collision zone

(a) Single-arm experiment

x [m]
-0.2 0 0.2 0.4 0.6 0.8

y
 [

m
]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
AL
HGL
HGAL
obstacles
no-collision zone

(b) Dual-arm experiment

Figure 11: Comparison of the best trajectories for human-guided learning (HGL), autonomous learning
(AL) and combined human-guided and autonomous learning (HGAL). The no-collision zone adds the robot
arm radius around obstacles.

Acknowledgments

This work was funded by the EU CHIST-ERA I-
DRESS project, reference num. PCIN-2015-147, and
partially supported by the Spanish national project
RobInstruct, reference num. TIN2014-58178-R.

References

[1] C. Torras, “Service robots for citizens of the fu-
ture,” European Review, vol. 24, pp. 17–30, 002
2016.

[2] M. Cakmak, C. Chao, and A. L. Thomaz, “De-
signing interactions for robot active learners,”
IEEE Transactions on Autonomous Mental De-
velopment, vol. 2, pp. 108–118, June 2010.

[3] C. M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics).
Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[4] L. P. Kaelbling and T. Lozano-Pérez, “Inte-
grated task and motion planning in belief space,”

The International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1194–1227, 2013.

[5] M. P. Deisenroth, G. Neumann, and J. Peters,
“A survey on policy search for robotics,” Found.
Trends Robot, vol. 2, pp. 1–142, Aug. 2013.

[6] R. S. Sutton and A. G. Barto, Introduction to
Reinforcement Learning. Cambridge, MA, USA:
MIT Press, 1st ed., 1998.

[7] B. D. Argall, S. Chernova, M. Veloso, and
B. Browning, “A survey of robot learning from
demonstration,” Robot. Auton. Syst., vol. 57,
pp. 469–483, May 2009.

[8] T. J. Prescott, T. Epton, V. Evers, K. McKee,
W. Hawley, M., T., and P. Dario, “Robot com-
panions for citizens: roadmapping the potential
for future robots in empowering older people,”
in Bridging Research in Ageing and ICT Devel-
opment (BRAID), may 2012.

[9] G. Canal, G. Alenyà, and C. Torras, Personal-
ization Framework for Adaptive Robotic Feeding

13

Assistance, pp. 22–31. Cham: Springer Interna-
tional Publishing, 2016.

[10] A. Jevtić, A. Colomé, G. Alenyà, and C. Tor-
ras, User Evaluation of an Interactive Learn-
ing Framework for Single-Arm and Dual-Arm
Robots, pp. 52–61. Cham: Springer International
Publishing, 2016.

[11] M. N. Nicolescu and M. J. Mataric, “Learning
and interacting in human-robot domains,” IEEE
Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, vol. 31, pp. 419–
430, Sep 2001.

[12] S. Mitra and T. Acharya, “Gesture recogni-
tion: A survey,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and
Reviews), vol. 37, pp. 311–324, May 2007.

[13] J. Shotton, T. Sharp, A. Kipman, A. Fitzgib-
bon, M. Finocchio, A. Blake, M. Cook, and
R. Moore, “Real-time human pose recognition
in parts from single depth images,” Commun.
ACM, vol. 56, pp. 116–124, Jan. 2013.

[14] A. Jevtić, G. Doisy, Y. Parmet, and Y. Edan,
“Comparison of interaction modalities for mo-
bile indoor robot guidance: Direct physical in-
teraction, person following, and pointing con-
trol,” IEEE Transactions on Human-Machine
Systems, vol. 45, pp. 653–663, Dec 2015.

[15] J. Saunders, D. S. Syrdal, K. L. Koay, N. Burke,
and K. Dautenhahn, “Teach me – show me:
End-user personalization of a smart home
and companion robot,” IEEE Transactions on
Human-Machine Systems, vol. 46, pp. 27–40,
Feb 2016.

[16] A. L. Thomaz and C. Breazeal, “Teachable
robots: Understanding human teaching behav-
ior to build more effective robot learners,” Artif.
Intell., vol. 172, pp. 716–737, Apr. 2008.

[17] N. Otero, J. Saunders, K. Dautenhahn, and
C. L. Nehaniv, “Teaching robot companions:
The role of scaffolding and event structuring,”
Connect. Sci, vol. 20, pp. 111–134, June 2008.

[18] A. J. Ijspeert, J. Nakanishi, and S. Schaal,
“Movement imitation with nonlinear dy-
namical systems in humanoid robots,” in
Proceedings 2002 IEEE International Con-
ference on Robotics and Automation (Cat.
No.02CH37292), vol. 2, pp. 1398–1403, 2002.

[19] D. Mart́ınez, G. Alenyà, and C. Torras, “Re-
lational reinforcement learning with guided
demonstrations,” Artificial Intelligence, pp. –,
2015.

[20] S. Zhifei and E. Meng Joo, “A survey of in-
verse reinforcement learning techniques,” Inter-
national Journal of Intelligent Computing and
Cybernetics, vol. 5, no. 3, pp. 293–311, 2012.

[21] F. Husain, A. Colomé, B. Dellen, G. Alenyà, and
C. Torras, “Realtime tracking and grasping of a
moving object from range video,” in 2014 IEEE
International Conference on Robotics and Au-
tomation (ICRA), pp. 2617–2622, May 2014.

[22] A. Colomé and C. Torras, “Closed-loop in-
verse kinematics for redundant robots: Com-
parative assessment and two enhancements,”
IEEE/ASME Transactions on Mechatronics,
vol. 20, pp. 944–955, April 2015.

[23] A. Colomé, A. Planells, and C. Torras, “A
friction-model-based framework for reinforce-
ment learning of robotic tasks in non-rigid en-
vironments,” in 2015 IEEE International Con-
ference on Robotics and Automation (ICRA),
pp. 5649–5654, May 2015.

[24] J. Peters, K. Mülling, and Y. Altün, “Relative
entropy policy search,” in Proceedings of the
Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI 2010) (M. Fox and D. Poole,
eds.), pp. 1607–1612, AAAI Press, 2010.

[25] S. Ruder, “An overview of gradient descent
optimization algorithms,” Computing Research
Repository (CoRR), vol. abs/1609.04747, 2016.

14

A Time-alignment algorithm

The steps of the time-alignment algorithm applied in
Section 2.4 are here described:

1. The algorithm input is a set of Nrollots trajec-
tories with different number of points, Nk, in
each trajectory, Tk = {p1

k, ...,p
Nk

k }. Using the
first trajectory in the set, T1, as a reference, the
minimum and maximum values of each coordi-
nate j and for each trajectory k are obtained:
pk
min(j),pk

max(j), ∀j, ∀k.

2. Each trajectory Tk, k = 1..Nrollouts is normal-
ized with respect to the reference trajectory,
T1, to obtain a normalized trajectory, T̂k =
{p̂k

1 , ..., p̂
k
Nk
}, where p̂k

t is

p̂k
t (j) =

[
pk
t (j)− pk

min(j)
]
·

· p1
max(j)−p

1
min(j)

pk
max(j)−pk

min(j)
+ pk

min(j)
(6)

The reason for normalization is putting trajec-
tories with relative offsets into a common scale,
this way giving priority to the shape alignment
instead of the magnitude alignment.

3. Once rescaled trajectories, T1, T̂2, ..., T̂Nrollouts
,

are computed, a cubic spline Sk is fitted through
all the points of each trajectory k. This allows
the normalization of the time scale to [0, 1] and
for trajectories to be evaluated at any point in
time.

4. Once all trajectories have been normalized with
respect to the reference trajectory, T1, and en-
capsulated as splines, each trajectory , T̂k, k =
2..Nrollouts is aligned with the reference one, in-
dependently. To do so, the reference spline,
S1, is matched with Sk by matching S1(t) and
Sk(h(t)), for several time values, where h(t,ω)
is a time transformation parametrized with ω,
whose derivative is a weighted sum of Gaussians
equally-spaced in time, φ(t):

h′(t) =

10∑
s=1

ωsφ(t), (7)

where the weights ω = [w1, ...w10], s = 1..10 are
initialized so that h′(t,ω0) ∼ 1, ∀t.

5. Gradient descent is performed on the weights us-
ing the following cost function C:

C =
∑it=Nt

it=0 ‖S1(dt · it)− Sk(dt · it)‖2+
+ 10 · 1h(dtit)<h(dt(it−1))·
· abs (h(dtit)− h(dt(it − 1))) ,

(8)
where 1 is the indicator function. The cost func-
tion minimizes the vertical difference between
both trajectories, but also ensures that the re-
sulting time transformation h is monotonically
growing. The gradient descent is performed such
that:

ωnew = ω + α∇wC, (9)

where α is initialized with a small value of 0.1
and increased by a factor of 1.05 if the cost is
reduced, while decreased by a factor of 0.8 if the
cost is increased. This ensures that the gradi-
ent descent algorithm do not oscillate around a
solution, hence it converges faster [25].

6. The resulting weights, ωk, computed from (9)
are obtained for each trajectory k = 2..Nrollouts.
The weights are used to evaluate the splines cal-
culated in step 4, Sk(h(t;ωk)), at the time steps
corresponding to the reference trajectory. The
final time-aligned trajectories are displayed in
green in Fig. 8.

15

