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Abstract: Chemical sensing may be better suited than conventional smoke-based detectors for the 
detection of certain type of fires, in particular in fires where smoke appears after gas emissions. 
However, chemical-based systems also respond to non-fire scenarios that also release volatiles. For 
this reason, discrimination models need to be trained under different fire and non-fire scenarios. 
This is usually performed in standard fire rooms, the access to which is very costly. In this work, we 
present a calibration model combining experiments from standard fire room and small-scale setup. 
Results show that the use of small-scale setup experiments improve the performance of the system. 
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1. Introduction 

For some type of fires, volatiles are released before smoke [1]. Hence, fire detectors based on 
chemical sensing could provide a faster fire alarm than smoke-based detection systems [2]. The 
challenge, however, is the large number of situations (nuisances) that also generate volatiles and that 
may lead to false alarms [3-4]. In this way, chemical sensing systems for fire detection rely heavily on 
machine learning, signal processing and pattern recognition techniques to provide a reliable fire 
prediction [5-7].  To develop robust and reliable algorithms for fire detection, calibration and test 
datasets that include different fire types and nuisances experiments are fundamental [8]. 

 The systems used to provide fire alarms should be tested in standard rooms.  Chemical 
systems for fire detection also need to be exposed to the fire standard conditions. However, the 
availability of standard fire rooms to perform experiments is limited and expensive. For this reason, 
it would be desirable the acquisition of data at smaller scale setups that can be used in combination 
of data acquired at standard fire rooms to extend, at a moderate cost, the calibration dataset. 

  In this work, we present a calibration methodology for fire detection based on a Partial 
Least Squares Discriminant Analysis (PLS-DA). The model was trained using the combination of data 
experiments from standard fire room and data experiments from small-scale setup.  

2. Experimental 

2.1. Sensor board 

We built a multi-sensor system composed of a PID Sensor (PID-A1, Alphasense), a NDIR CO2 
sensor (IRC-AT, Alphasense), a CO electrochemical sensor (CO-B4, Alphasense) and 8-MOX sensors 
(AS-MLK, AS-MLC, AS-MLX, AS-MLN; provided by AMS, two units of each, at 337ºC and 436ºC). 
Signals were acquired and stored locally at a sampling frequency of 10Hz using a low-cost general-
purpose microcontroller coupled to the required signal conditioning electronics.  
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2.2. Datasets 

 
Figure 1. Signals captured for a TF3 experiment (smoldering cotton fire) in the small-scale set up (left) 
and in the fire room (right). Sensors detect volatiles released during the experiments, however, their 
reaction is different due to (mostly) the dimensions of the standard fire room. 

To assess this methodology we used two different datasets; i) Large-scale and ii) Small-scale 
dataset. To collect the first dataset, the sensing system was placed in the celling of a standard fire 
room while several experiments of fires and nuisance were performed.  

The large-scale dataset includes open and smoldering fire experiments described in the EN-54 
norm, other smoldering fire types and nuisance scenarios. Specifically, we performed two repetitions 
of: TF2 (smoldering), electrical fire (smoldering), PVC Fire (smoldering), PET Fire (smoldering), 
cables fire (smoldering), TF3 fire (smoldering), TF4 (open) and TF6 (open). The nuisance scenarios 
selected were based on the presentation of different products: air freshener, ethanol (96% purity), 
turpentine, vinegar, and gasoline. The total number of experiments included in the large-scale dataset 
is 25.  

The small-scale experiments were performed in a 272-liter chamber. Small-scale dataset 
includes: 4 repetitions of electrical fire, reduced TF2 and reduced TF3, and several nuisance scenarios: 
boiling water, air freshener, ethanol, rising temperature, and two commercial cleaning products 
(vinegar and floor cleaner). The total number of experiments included in the small-scale dataset is 32. 
The sensor array detects volatiles released in fire and nuisance experiments performed in both 
scenarios (small and large), though, signatures of fire and nuisances are different due to the different 
dimensions (Fig. 1). 

3. Methods and Results 

The prediction models are based on Partial Least Squares Discriminant Analysis (PLS-DA). A 
double cross validation methodology was implemented. Internal validation was used to optimize the 
parameters of the model and external validation was used to assess the performance of the classifier. 
The first model was trained using repetitions of the large-scale dataset and is able to classify all the 
fire experiments. However, the model confused 8 nuisance experiments with fire, resulting in false 
alarms. Table 1 shows the confusion matrix after 12 iterations. 

 
 
 
 
 



 

Table 1. Confusion matrix of the model when it is trained with data from standard fire room only. 
Although the system is able to detect all the fires, the number of false positive is unacceptable. 

 PREDICTED  

 ACTUAL FIRE NON FIRE 

FIRE 15 0 

   NON FIRE 8 2 
 
A second model was built adding to the calibration set the data captured in the small-scale setup. 

Along the 12 cross validation iterations, models classified 100% of the nuisance experiments and confused 
only the PVC fire experiment. Table 2 shows the confusion matrix 

Table 2. Confusion matrix of the model when it is trained with data from standard fire room and 
data acquired at smaller-scale setup. Additional measurements help to adjust alarm levels so none 

of the nuisances generates a false alarm. 

 PREDICTED 

 ACTUAL FIRE NON FIRE 

FIRE 14 1 

    NON FIRE 0 10 
 

3. Methods and Results 

PLS-DA models were built to classify different fire scenarios and discriminate non-fire scenarios 
that may produce false alarms. Models that only used large-scale datasets in the calibration set 
showed poor specificity. Nevertheless, results confirm that the model trained with the combination 
of the small-scale and large-scale dataset is capable of rejecting all the nuisances and detecting most 
of the fires. Further work is needed to keep sensitivity to fires at higher levels when false alarm 
immunity is increased. 
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