

JRC REFERENCE MATERIALS REPORT

CERTIFICATION REPORT Preparation and Certification of Large-Sized Dried (LSD) Spike – IRMM-1027s

Certified reference material for the masses of ²³⁹*Pu*, ²³⁵*U*, ²³⁸*U and Pu and U isotope amount ratios*

Jakopič, R., Bauwens, J., Buják, R., Hennessy, C., Kehoe, F., Jacobsson, U., Richter, S., Aregbe, Y.

2018

This publication is a Reference Materials report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication.

Contact information

Name: Rožle Jakopič Address: Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium Email: rozle.jakopic@ec.europa.eu Tel.: + 32 (0) 14 571 617

JRC Science Hub

https://ec.europa.eu/jrc

JRC111871

EUR 29274 EN

PDF ISBN 978-92-79-87992-0 ISSN 1831-9424 doi:10.2760/221796

Luxembourg: Publications Office of the European Union, 2018

© European Atomic Energy Community, 2018

Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39).

For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders.

How to cite this report: Jakopic, R. et all, Certified reference material for the masses of 239Pu, 235U, 238U and Pu and U isotope amount ratios, EUR 29274 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-87992-0, doi 10.2760/221796, JRC111871

All images © European Atomic Energy Community, 2018

Table of contents

Abs	stract	6
1.	Introduction	. 8
	1.1 Background	8
	1.2 Choice of the material	8
	1.3 Design of the project	8
2.	Participants	. 9
3.	Material processing and process control	. 9
	3.1 Origin and purity of the starting material	9
	3.2 Processing	9
	3.3 Process control	.13
4.	Homogeneity	13
	4.1 Between-unit homogeneity	.13
	4.2 Homogeneity of the U and Pu isotope ratios	.16
	4.3 Within-unit homogeneity and minimum sample intake	.16
5.	Stability	16
	5.1 Short-term stability	.16
	5.2 Long-term stability	.16
6.	Characterisation	17
	6.1 Purity of the starting materials	. 17
	6.2 U and Pu isotope amount ratios and their uncertainties	. 17
	6.3 Masses of ²³⁵ U, ²³⁸ U, ²³⁹ Pu and their uncertainties	. 18
	6.4 Weighing and associated uncertainties	.21
	6.5 Verification measurements	.22
7.	Value Assignment	26
	7.1 Certified values and their uncertainties	.26
	7.2 Additional material information	. 27
8.	Metrological traceability and commutability	28
	8.1 Metrological traceability	.28
	8.2 Commutability	. 29
9.	Instructions for use	29
	9.1 Safety information	. 29
	9.2 Storage conditions	. 29
	9.3 Preparation and use of the material	. 29
	9.4 Minimum sample intake	. 29
	9.5 Use of the certified value	. 30
10.	Conclusions	30
Ref	erence	31
List	t of abbreviations and definitions	33
List	t of figures	35
List	t of tables	37

nnexes

Acknowledgement

The authors would like to thank C. Venchiarutti and R. Middendorp from the JRC-Geel and the experts of the Certification Advisory Panel, S. D. Balsley from the International Atomic Energy Agency (IAEA), Vienna, Austria, Danièle Roudil from the Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de l'Energie Nucléaire (CEA/DEN), Marcoule, France and Richard Essex (National Institute of Standards and Technology, Gaithersburg, U.S.A.) for reviewing the certification report.

The authors would like to thank U. Repinc, M. Sturm and S. Shoichi from the IAEA, Vienna, Austria and colleagues from the JRC-Karlsruhe, Germany, C. Andor, R. Buda, R. Carlos Marquez, L. Commin, F. D'amati, J. Horta Domenech, S. Mialle, C. Nourry, A. Sanchez Hernandez, H. Schorlé, G. Suurkuusk, M.Vargas Zuniga and E. Zuleger for carrying out external verification measurements on the selected units of the IRMM-1027s LSD spikes.

Authors

R. Jakopič, J. Bauwens, R. Buják, C. Hennessy, F. Kehoe, U. Jacobsson, S. Richter and Y. Aregbe

European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, G.2 – Standards for Nuclear Safety, Security and Safeguards, Geel, Belgium

Abstract

Large-Sized Dried (LSD) spikes are used as a fundamental part of the fissile material control of irradiated nuclear fuel and have been provided on a regular basis to safeguards authorities and industry for more than 10 years. This report describes the preparation and certification of a new batch of LSD spikes. IRMM-1027s is a dried nitrate material in cellulose acetate butyrate (CAB), certified for the mass of uranium and plutonium and the uranium and plutonium isotope amount ratios per unit. The material was produced in compliance with ISO/IEC 17034:2016 [1] and certified in accordance with ISO Guide 35:2006 [2].

The certified reference materials uranium metal EC NRM 101, enriched uranium metal NBL CRM 116-A and plutonium metal CETAMA MP2 were used as starting materials to prepare the mother solution. This solution was dispensed into individual units by means of an automated robot system and dried down. A solution of an organic substance, cellulose acetate butyrate (CAB) was dried on the spike material as a stabiliser to retain the dried material at the bottom of the vial. In total 950 units were produced.

Between-unit homogeneity was quantified and stability during dispatch and storage were assessed in accordance with ISO Guide 35:2006 [2].

The certified values for the uranium and plutonium isotope amount ratios were obtained from the gravimetric preparation of the mother solution, taking into account the mass, purity and isotopic composition of the starting materials.

The certified values for the mass of plutonium and uranium per unit were established by isotope dilution thermal ionisation mass spectrometry (ID-TIMS) on randomly selected units. External verification measurements were performed by isotope dilution mass spectrometry (IDMS) and thermal ionisation mass spectrometry (TIMS) on randomly selected units of IRMM-1027s.

Uncertainties of the certified values were estimated in compliance with the Guide to the Expression of Uncertainty in Measurement (GUM) [3] and include uncertainties related to possible inhomogeneity and to characterisation.

The main purpose of this material is for use as a spike isotopic reference material to measure the plutonium and uranium amount content of spent nuclear fuel solutions using IDMS. Each unit contains about 55 mg of uranium with a relative mass fraction $m(^{235}\text{U})/m(\text{U})$ of 19.0 % and 1.7 mg of plutonium with a relative mass fraction $m(^{239}\text{Pu})/m(\text{Pu})$ of 97.8 % as dried nitrates in CAB.

The whole amount of sample per unit has to be used for analysis.

The following values were assigned:

	Isotope amount ratios				
	Certified value 1)	Uncertainty ²⁾			
	[mol/mol]	[mol/mol]			
n(²³⁴ U)/n(²³⁸ U)	0.0027303	0.000023			
n(²³⁵ U)/n(²³⁸ U)	0.238155	0.000031			
n(²³⁵ U)/n(²³⁸ U)	0.0021905	0.0000018			
n(²⁴⁰ Pu)/n(²³⁹ Pu)	0.0224154	0.0000051			
n(²⁴¹ Pu)/n(²³⁹ Pu)	0.0001478	0.0000019			
n(²⁴² Pu)/n(²³⁹ Pu)	0.00007572	0.0000078			
The certified masses and t	The certified masses and the uncertainties of ²³⁵ U, ²³⁸ U and ²³⁹ Pu per unit are listed in Annex 1.				
¹⁾ The certified values (Annexes 2-6). The refere	¹⁾ The certified values are traceable to the values on the respective metal certificates (Annexes 2-6). The reference date for the certified values is November 1, 2016.				
²⁾ The uncertainty is the expanded uncertainty with a coverage factor $k = 2$ corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO, 2008.					
The atomic masses of radionuclides were obtained from M. Wang et al. [4]					
The half-lives of radionuclides were obtained from DDEP-BIPM (Table of radionuclides) [5] and R. Wellum et al. [6].					

1. Introduction

1.1 Background

The International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials (ITVs) are uncertainties to be considered in judging the reliability of the measurement results of analytical techniques applied to industrial nuclear and fissile materials, which are subject to safeguards verification. ITVs should be achievable under the conditions normally encountered in typical industrial laboratories or during actual safeguards inspections. In 2010, the International Atomic Energy Agency (IAEA) together with the European Safeguards Research and Development Association (ESARDA), international standardisation organisations and regional safeguards authorities published a revised version of the ITVs [7]. The ITVs-2010 are intended to be used by nuclear plant operators and safeguards organisations as a reference of the quality of measurements necessary for nuclear material accountancy.

The series of IRMM-1027 Large-Sized Dried (LSD) spikes are prepared by the Joint Research Centre of the European Commission (EC-JRC) to meet the existing requirements for reliable isotope reference materials for the accountancy measurements of uranium and plutonium by isotope dilution mass spectrometry (IDMS) in compliance with the ITVs-2010 in spent nuclear fuel. These spikes contain relatively large amounts of uranium and plutonium (55 mg U and 1.7 mg Pu), isotopically different to the uranium and plutonium in the test sample and are in dried nitrate form. Up to 1200 units of IRMM-1027 LSD spikes are prepared annually to fulfil the demands for fissile material control from European Safeguards Authorities and industry [8].

1.2 Choice of the material

The IRMM-1027s batch of LSD spikes was prepared from natural uranium (EC NRM 101), enriched uranium (NBL CRM 116-A) and plutonium (CETAMA MP2) certified reference metals. Each unit of IRMM-1027s contains about 55 mg of uranium with a relative mass fraction $m(^{235}\text{U})/m(\text{U})$ of 19.0 % and 1.7 mg of plutonium with a relative mass fraction $m(^{239}\text{Pu})/m(\text{Pu})$ of 97.8 %. The relative mass fraction $m(^{235}\text{U})/m(\text{U})$ is below 20 %, so that for accountability purposes the uranium is classified as "low enriched".

Individual units are certified for the mass of plutonium and uranium and for the plutonium and uranium isotope amount ratios. The uranium and plutonium amount content in a single IRMM-1027 LSD spike is such that no dilution of a typical sample of dissolved nuclear fuel is needed prior to measurement. As the dried nitrates could flake off the vial surface over time or during transport, an organic polymer in the form of cellulose acetate butyrate (CAB) is added to retain the material at the bottom of the penicillin vial.

1.3 Design of the project

The individual units of IRMM-1027s LSD spikes were prepared by dispensing aliquots (about 2.5 g) of the mother solution into penicillin vials and dried down. The mother solution was prepared gravimetrically by dissolving uranium and plutonium certified reference metals in hydrochloric, hydrofluoric and nitric acid. Finally, the dried nitrates were treated with CAB for preservation during storage and transport. The certified values of the uranium and plutonium isotope amount ratios are based on the data given by the weighing certificates and the certificates of the starting materials. The certified masses of plutonium and uranium, along with the assessment of homogeneity and stability, were established by ID-TIMS on randomly selected vials.

2. Participants

Project management and evaluation, processing, homogeneity study, stability study and characterisation have been performed at the European Commission, Joint Research Centre, Directorate G – Nuclear Safety and Security, G.2 - Standards for Nuclear Safety, Security and Safeguards in Geel, Belgium.

3. Material processing and process control

3.1 Origin and purity of the starting material

CRMs of high purity uranium (EC NRM 101, Geel, Belgium and NBL CRM 116-A, Argonne, USA) and plutonium (CETAMA MP2, Marcoule, France) metals were used as starting materials for the preparation of the IRMM-1027s LSD spikes. The isotopic composition and the purity of the metals are given in Annexes 2 - 6.

3.2 Processing

Cleaning and dissolution of the Pu metal

The certificate of the plutonium MP2 metal provided by CETAMA (Annex 4) does not recommend any pre-treatment of the metal prior to dissolution. Nevertheless, precleaning of the plutonium by electro-polishing as described below was performed to remove any surface oxidation products. This additional step has shown to improve the dissolution procedure of the Pu MP2 metal applied at the JRC-Geel. Consequently, the masses and associated uncertainties of the respective units of MP2 provided on the certificate were not used. Instead, the cleaned Pu metal pieces were weighed (by substitution method) prior to dissolution.

The cleaning was carried out in a dedicated glove box equipped with an electrolytic cell. The cell consisted of two Pt rods, the power supply (set to 4.5 V) and a Teflon beaker. Potassium carbonate solution (20 g $K_2CO_3/100$ g H_2O) was used as a conducting media. The metal piece (one at a time) was put inside a Teflon beaker and covered with potassium carbonate solution. Cleaning was performed by touching the sides of the metal piece with a Pt electrode attached to the positive terminal for about 20-30 s, while the other Pt electrode was in contact with the solution. The reaction proceeded with evolution of hydrogen gas and formation of a soluble green plutonium carbonate complex. The cleaning procedure was repeated until the metal was thoroughly cleaned and the colour of the metal changed from black to grey. The cleaned metal pieces (three pieces in total) were rinsed with deionised water, ethanol (p.a., Merck, Darmstadt, Germany) and dried down. The cleaning of Pu MP2 metal is shown in Figure 1.

Figure 1 Cleaning of Pu MP2 metal by electro-polishing: a) an electrolytic cell with Pt rods, b) cleaning of the Pu metal piece and c) rinsing of the cleaned Pu metal piece with deionised water and ethanol

The cleaned Pu metal pieces were weighed (by substitution method) and transferred into an Erlenmeyer flask with 20 mL hydrochloric acid ($c = 6 \mod L^{-1}$, *p.a.*, Merck, Darmstadt, Germany). The dissolution of the plutonium metal in hydrochloric acid was completed within 5 minutes and resulted in a clear blue solution. The Erlenmeyer flask was washed with about 50 mL nitric acid solution ($c = 8 \mod L^{-1}$, *p.a.*, Merck, Darmstadt, Germany). 4 mL of hydrofluoric acid ($c = 1 \mod L^{-1}$, *p.a.*, Merck, Darmstadt, Germany) were added to dissolve any remaining pieces of the Pu metal. The solution with the dissolved plutonium was transferred into a pre-cleaned 3L borosilicate flask for the preparation of IRMM-1027s mother solution using a funnel. Both the Erlenmeyer flask and the funnel were thoroughly rinsed with nitric acid solution ($c = 8 \mod L^{-1}$, *p.a.*, Merck, Darmstadt, Germany) and the rinsed solution collected in the flask with the dissolved plutonium. About 200 mL of nitric acid solution ($c = 8 \mod L^{-1}$) was used to rinse the Erlenmeyer flask and the funnel to make sure that all of the plutonium solution was quantitatively transferred into the flask. No precipitate or residue was observed. The dissolution of Pu MP2 metal is shown in Figure 2.

Figure 2 Dissolution of Pu metal: a) dissolution of Pu MP2 metal in hydrochloric acid, b) transferring of the dissolved Pu into the borosilicate flask c) rinsing of the Erlenmeyer flask with nitric acid solution

Dissolution of the U metals

The respective units of enriched uranium metal (NBL CRM 116-A) and of natural uranium metal (EC NRM 101) were weighed (by substitution method) and added into the prepared plutonium solution. Prior to weighing, the units of NBL CRM 116-A metal were etched with nitric acid ($c = 8 \text{ mol L}^{-1}$) to remove surface oxidation products as described in the certificate, and subsequently rinsed with deionised water and acetone (*p.a.*, Merck, Darmstadt, Germany) and dried down. The units of the EC NRM 101 uranium metal were weighed as provided without any cleaning, as the material was stored in an inert atmosphere. The final amounts of concentrated nitric acid and deionised water were added to adjust the concentration of the nitric acid solution ($c = 6 \text{ mol L}^{-1}$). The solution was left to homogenise for a few days with occasional stirring by hand, and weighed to determine the final mass of the mother solution, taking into account the necessary corrections for air buoyancy effects. The dissolution of the uranium metals is shown in Figure 3.

Prior to dispensing the mother solution into individual penicillin vials five aliquots were analysed by isotope dilution thermal ionisation mass spectrometry (ID-TIMS) to verify the gravimetrically determined amount contents of plutonium and uranium and five aliquots by thermal ionisation mass spectrometry (TIMS) to verify the uranium and plutonium isotope amount ratios (see Process Control, Section 3.3)

Figure 3 Dissolution of U metals: a) addition of the NBL 116-A enriched U metal into the Pu solution, b) addition of the EC NRM 101 natural U metals into the Pu solution c) the mother solution of IRMM-1027s

Dispensing, drying and application of CAB

Dispensing and weighing of the mother solution into individual penicillin vials were performed by a validated automated system, which was installed at the JRC Geel in collaboration with Nucomat (Lokeren, Belgium) [9]. The major components of the system are a robot, two balances and a dispenser. The robot is software driven and designed to control all movements inside the glove box, such as identifying the vial with a barcode reader, dispensing and weighing of an aliquot of the solution (2.5 g) into the penicillin vials. The weighing component is equipped with an analytical balance (Sartorius TE124S, Göttingen, Germany) and a 5 kg balance (Sartorius TE6101, Göttingen, Germany) to monitor the mass of the mother solution during dispensing. The whole solution (about 3 kg) was dispensed into 950 units over four consecutive working days.

The drying of the dispensed solution contained in the units was carried out on a hot plate. This temperature was increased to a maximum of 60 °C and the units were kept at this temperature for several days (typically 4-5 days continuous heating) to evaporate the solution completely. After the solution had dried, about 0.7 mL of CAB solution in acetone (10 g CAB/100g acetone, 35-39 g/100 g butyryl content, Acros, New Jersey, USA) was added. This solution was evaporated at room temperature and then heated to about 45 °C to dry completely. Two separate glove boxes were used for drying and CAB application, allowing the preparation of up to 48 units per week. The vials were closed with a stopper and an aluminium cap, sealed in PVC package and labelled.

CAB was added to retain the dried material at the bottom of the penicillin vial so that it can resist physical shocks that might be encountered during transport and to avoid flaking of the material during long-term storage. This cellulose matrix dissolves readily in warm nitric acid solution and has no significant effect on the subsequent IDMS analysis. This has been demonstrated by measurements performed both on the vials (containing CAB) and on the mother solution (without CAB). The units of IRMM-1027s LSD spikes can be seen in Figure 4.

Figure 4 Units of IRMM-1027 s LSD spike

The processing steps are shown in Figure 5.

3.3 Process control

This section describes the measurements performed on the mother solution of IRMM-1027s prior to dispensing into vials to verify the amount contents of uranium and plutonium in the solution from gravimetric preparation (see Annex 13).

Five aliquots of the mother solution (about 1.0 g each) were individually spiked with a mixed $^{233}U/^{242}Pu$ spike CRM (three aliquots with ca 2.85g IRMM-046b and two with ca. 5.0 g IRMM-046c) for ID-TIMS analysis. The certificate of IRMM-046b and IRMM-046c can be found in Annex 7 and Annex 8.

Five un-spiked aliquots of the IRMM-1027s mother solution were analysed to verify the uranium and plutonium isotope amount ratios by thermal ionisation mass spectrometry (TIMS).

The U/Pu separation of the spiked and un-spiked samples was performed using anionexchange columns (Bio-Rad AG1-X4, 100-200 mesh, Bio-Rad, Hercules, USA) as described in detail in [10].

The results of the process control measurements for ²³⁸U, ²³⁵U and ²³⁹Pu amount contents as well as the uranium and plutonium isotope amount ratios in the mother solution of IRMM-1027s agreed within the uncertainties with the values from the gravimetric preparation (Annex 14 and Annex 15), except for the $n(^{^{238}Pu})/n(^{^{239}Pu})$ amount ratio. A higher value for the $n(^{^{238}Pu})/n(^{^{239}Pu})$ ratio was measured by TIMS compared to the value from the gravimetric preparation of the mother solution. This is due to an isobaric interference with ²³⁸U coming from the incomplete removal of uranium in the plutonium fraction. This isotope amount ratio will not be certified and will be given in the certificate as additional material information. The results of the confirmation measurements for the mother solution of IRMM-1027s are shown in Annex 9 and Annex 10.

4. Homogeneity

A key requirement for any reference material is the equivalence between the various units. In this respect, it is relevant whether the variation between units is significant compared to the uncertainty of the certified value. In contrast to that it is not relevant if this variation between units is significant compared to the analytical variation. Consequently, ISO/IEC 17034:2016 [1] requires reference material (RM) producers to quantify the between unit variation. This aspect is covered in between-unit homogeneity studies.

The within-unit inhomogeneity does not influence the uncertainty of the certified value when the minimum sample intake is respected, but determines the minimum size of an aliquot that is representative for the whole unit.

4.1 Between-unit homogeneity

The between-unit homogeneity was evaluated to ensure that the certified values of the CRM are valid for all 950 units of the material, within the stated uncertainty.

Ten units were selected (unit No.: 53, 134, 208, 341, 418, 496, 617, 730, 794 and 888) to assess the homogeneity for the amount content of ²³⁵U, ²³⁸U and ²³⁹Pu using a random stratified sampling scheme covering the whole batch for the between-unit homogeneity test. The number of selected units corresponds to approximately the cubic root of the total number of the produced units (950). The batch was divided into ten groups (with a similar number of units) and one unit was selected randomly from each group.

For this project, the homogeneity and characterisation studies were performed on the same units (see Section 6). The data obtained from the homogeneity study were also used for the material characterisation.

The whole amount of sample per unit (equals minimum sample intake) was taken for analysis. Selected units of IRMM-1027s were spiked with a mixed $^{233}U/^{242}Pu$ spike CRM (IRMM-046c) and the solution in the vials evaporated to dryness. The U/Pu separation was carried out prior to isotope ratio measurements on each unit in the same way as for the process control measurements (see Section 3.3) [10].

Each sample was measured in three replicates together with isotopic standards (IRMM-074/10 for U and IRMM-290/A3 for Pu) to correct for instrumental mass fractionation. This enabled five independent samples to be measured on the same TIMS turret on the same day. Therefore, the measurements for all ten units of IRMM-1027s were performed under intermediate precision conditions rather than repeatability conditions within short intervals of time.

The respective fractions of the samples were measured in a randomised manner to be able to separate a potential analytical drift from a trend in the filling sequence. The results of the homogeneity study are shown in Annex 11.

Regression analyses were performed to evaluate potential trends in the analytical sequence as well as trends in the filling sequence. No trends in the filling sequence or the analytical sequence were visible at a confidence level of 95 %. The data were tested for consistency using Grubbs outlier test at a confidence level of 99 % on the individual results and on the unit means. One outlying individual result (No. 14) was found for the amount content of ²³⁹Pu. Since no technical reason was found to exclude this data point, it was retained for statistical evaluation.

Quantification of between-unit inhomogeneity was accomplished by analysis of variance (ANOVA), which can separate the between-unit standard deviation (s_{bb}) from the withinunit standard deviation (s_{wb}). The latter is equivalent to the method intermediate precision) if the individual samples are representative for the whole unit.

Evaluation by ANOVA requires unit means that follow at least a unimodal distribution and results for each unit that follow unimodal distributions with approximately the same standard deviations (homoscedasticity). Distribution of the unit means was visually tested using histograms and normal probability plots. Minor deviations from unimodality of the individual values do not significantly affect the estimate of between-unit standard deviations. The results of all statistical evaluations are given in Table 1.

	Trends 1)		Outliers ²⁾		Distribution	
	Analytical	Filling	Individual	Unit	Individual	Unit
	sequence	sequence	results	means	results	means
²³⁵ U amount content	no	no	none	none	unimodal	unimodal
²³⁸ U amount content	no	no	none	none	unimodal	unimodal
²³⁹ Pu amount content	no	no	one	none	unimodal	unimodal

Table 1 Results of the statistical evaluation of the homogeneity studies of the amount
content of ²³⁵ U, ²³⁸ U and ²³⁹ Pu in IRMM-1027s

¹⁾ at 95 % confidence level

²⁾ at 99 % confidence level

One has to bear in mind that $s_{\rm bb,rel}$ (between-unit relative standard deviation) and $s_{\rm wb,rel}$ (within-unit relative standard deviation) are estimates of the true standard deviations and therefore subject to random fluctuations. Therefore, the mean square between groups ($MS_{\rm between}$) can be smaller than the mean squares within groups ($MS_{\rm within}$), resulting in negative arguments under the square root used for the estimation of the between-unit variation, whereas the true variation cannot be lower than zero. In this case, $u_{\rm bb}^*$, the maximum inhomogeneity that could be hidden by method repeatability, was calculated as described by Linsinger et al. [11]. $u_{\rm bb}^*$ is comparable to the limit of

detection of an analytical method, yielding the maximum inhomogeneity that might be undetected by the given study setup (alpha risk).

Relative within-unit standard deviation of method intermediate precision ($s_{wb,rel}$), relative between–unit standard deviation ($s_{bb,rel}$) and relative maximum inhomogeneity ($u^*_{bb,rel}$) were calculated as:

$$s_{wb,rel} = \frac{\sqrt{MS_{within}}}{\overline{y}}$$
Equation 1
$$s_{bb,rel} = \frac{\sqrt{\frac{MS_{between} - MS_{within}}{N}}}{\overline{y}}$$
Equation 2
$$u_{bb,rel}^* = \frac{\sqrt{\frac{MS_{within}}{N}}\sqrt[4]{\frac{2}{v_{MSwithin}}}}{\overline{y}}$$
Equation 3

*MS*_{within} mean square within-unit from an ANOVA

MS_{between} mean squares between-unit from an ANOVA

 \overline{y} mean of all results of the homogeneity study

N mean number of replicates per unit

 $v_{MSwithin}$ degrees of freedom of MS_{within}

The uncertainty contribution for homogeneity was determined under intermediate precision conditions as described earlier in this section. Consequently, day-to-day effects can occur that could mask the between-unit variation. Therefore, the data were first checked using one way-ANOVA for any significant difference in between-day means. A significant day-to-day difference was observed for the amount content of ²³⁹Pu. For that reason, the data for the amount content of ²³⁹Pu were first normalised by the respective day mean and the resulting data evaluated using one way-ANOVA. The results of the evaluation of the between-unit variation are summarised in Table 2.

	S _{wb,rel} [%]	S _{bb,rel} [%]	u [*] _{bb,rel} [%]
²³⁵ U amount content	0.014	0.021	0.0045
²³⁸ U amount content	0.034	0.010	0.011
²³⁹ Pu amount content	0.033	0.020	0.011

Table 2 Results of the homogeneity studies of the amount content in IRMM-1027s

The homogeneity study showed no outlying unit means at a 99 % confidence level and no trends in the filling sequence at a 95 % confidence level. Therefore, the between-unit standard deviation can be used as estimate of u_{bb} . As $u^*_{\ bb}$ sets the limits of the study to detect inhomogeneity, the larger value of s_{bb} or $u^*_{\ bb}$ is adopted as uncertainty contribution to account for potential inhomogeneity.

4.2 Homogeneity of the U and Pu isotope ratios

The homogeneity assessment of the uranium and plutonium isotope amount ratios was deemed unnecessary. The IRMM-1027s LSD spikes were prepared by dissolution of the plutonium and uranium metals, dispensing of the solution into individual units and drying. Any differences in the isotope amount ratios could only stem from a contamination with plutonium and uranium of a different isotopic composition, from the isotope fractionation during the evaporation of the nitrate solution in the vial and from an incomplete mixing of the uranium metals. Dedicated glove boxes were used for the preparation of the spikes with no other sources of uranium and plutonium, so the contamination can be excluded. The drying temperature was less than 60 °C, where the fractionation effects are negligible. Moreover, the results of the process control measurements (see Section 3.3) for the uranium and plutonium isotope amount ratios agreed with the values from the gravimetric preparation, confirming the isotope mixing of the metals. For these reasons, no heterogeneity of the plutonium and uranium isotope amount ratios is to be expected in the vials of IRMM-1027s.

4.3 Within-unit homogeneity and minimum sample intake

The within-unit homogeneity is closely related to the minimum sample intake. The minimum sample intake is the minimum amount of sample that is representative for the whole unit and thus should be used in an analysis. Using sample sizes equal to or above the minimum sample intake guarantee the certified value within its stated uncertainty.

The whole amount of sample per unit has to be used for analysis and thus equals the minimum sample intake. Quantification of within-unit inhomogeneity to determine the minimum sample intake for IRMM-1027s is therefore not necessary.

5. Stability

Stability testing is necessary to establish conditions for storage (long-term stability) as well as conditions for dispatch to the customers (short-term stability). The IRMM-1027s is a mixed U/Pu reference material, consisting of U and Pu radionuclides. It should be noted that the term stability in this context does not refer to radioactive decay. It is self-evident that the radionuclides are decaying according to their half-lives, a process which is quantitatively predictable using the decay data [5, 6].

5.1 Short-term stability

In the scope of the preparation and certification of the IRMM-1027q, a thorough shortterm stability study of the CAB was carried out [12]. The same CAB and chemical treatment were applied for the preparation of IRMM-1027s LSD spikes; therefore, the reassessment of the short-term stability was not necessary.

IRMM-1027s LSD spikes are packed and shipped to customers following the legal requirements related to radioprotection measures for transport of radioactive materials [13]. IRMM-1027s LSD spikes are considered stable regarding its isotopic composition and the amount content during dispatch and can be shipped to customers under normal temperature conditions. No additional uncertainty component ($u_{\text{sts, rel}} = 0$) was applied.

5.2 Long-term stability

The long-term stability of IRMM-1027 LSD spikes has been demonstrated via the results of the stability monitoring of previous batches of LSD spikes for the period of three years [14] and the verification results of IRMM-1027m over a period of four years after the certification in the context of the inter-calibration of JRC-IRMM spike CRMs [15, 16, 17]. Furthermore, the JRC-Geel (Belgium), the JRC-Karlsruhe (Germany) and the IAEA are engaged in mutual verification measurements of mixed uranium/plutonium spike

reference materials via EC support task to the IAEA [18]. In the frame of this support task, verification measurements of randomly selected IRMM-1027 LSD spikes from different batches are performed up to two years after the issuance of the certificate. This is not only an external verification of the certified values but also a demonstration of the long-term stability of the IRMM-1027 series of LSD spikes. Taking all these considerations into account, no additional uncertainty component ($u_{\rm lts, rel} = 0$) was applied.

After the certification campaign, IRMM-1027s material will be subjected to the stability monitoring programme to control its stability. Two units of IRMM-1027s will be analysed every year to verify the certified values. The validity of the material certificate is 3 years and may be extended after further stability test are carried out.

6. Characterisation

The material characterisation is the process of determining the property values of a reference material.

The material characterisation for the uranium and plutonium isotope amount ratios was based on gravimetric preparation of the mother solution (see Section 6.2) and by ID-TIMS for the mass of uranium and plutonium (see Section 6.3), verified by independent analysis. The IRMM-1027s series of LSD spikes was prepared by dispensing an aliquot (about 2.5 g) of the mother solution into individual units by an automated system and subsequent drying. The masses of dispensed aliquots per unit before drying are given in Annex 12. The mother solution was prepared by gravimetric mixing of uranium and plutonium metals (see Section 3.2).

Each unit of IRMM-1027s LSD spike is certified for the mass of ²³⁹Pu, ²³⁵U and ²³⁸U and the $n(^{234}U)/n(^{238}U)$, $n(^{235}U)/n(^{238}U)$, $n(^{236}U)/n(^{238}U)$, $n(^{240}Pu)/n(^{239}Pu)$, $n(^{241}Pu)/n(^{239}Pu)$, and $n(^{242}Pu)/n(^{239}Pu)$ amount ratios.

6.1 Purity of the starting materials

The purity of the starting materials (metals) was taken from the corresponding certificates (Annexes 2 - 4). The purity of the Pu MP2 metal was calculated for November 1, 2016 from the original purity of the CETAMA certificate (Annex 4).

6.2 U and Pu isotope amount ratios and their uncertainties

The U and Pu isotope amount ratios in each individual unit of IRMM-1027s are calculated from the gravimetric preparation of the mother solution, taking into account the mass of the metals, their purity and isotopic composition (e.g. isotope amount ratios) see Annex 14 and Annex 15. In Table 3 the data supporting the calculation of the Pu and U amount ratios of IRMM-1027s are summarised.

	MP2	EC NRM 101	NBL CRM116-A	Mother solution
Mass ¹⁾ [g]	1.65903	41.65132	10.24309	2460.69
Purity ²⁾ [g/g]	0.9990	0.99985	0.99945	
Isotope amount ratios ³⁾ [mol/mol]	n(²³⁸ Pu)/n(²³⁹ Pu) 0.00003083	n(²³⁴ U)/n(²³⁸ U) 0.00005548	n(²³³ U)/n(²³⁵ U) 0.0000003863	
[]	n(²⁴⁰ Pu)/n(²³⁹ Pu) 0.0224324	n(²³⁵ U)/n(²³⁸ U) 0.0072593	n(²³⁴ U)/n(²³⁵ U) 0.0115836	
	n(²⁴¹ Pu)/n(²³⁹ Pu)	n(²³⁶ U)/n(²³⁸ U)	n(²³⁶ U)/n(²³⁵ U)	

Table 3	Gravimetric	mixing to	nrenare	the	mother	solution	of IRMM-1027s
I able 3	Gravimetric	mixing to	prepare	uie	moulei	Solution	0110110275

0.0002378	0.000000151	0.0094713	
n(²⁴² Pu)/n(²³⁹ Pu) 0.00007570		n(²³⁸ U)/n(²³⁵ U) 0.051277	

¹⁾ The masses of the metals are obtained from the weighing certificate, see Annex 13.

 $^{2)}$ The purity of the metals is obtained from the metal certificates, see Annexes 2 – 4, 15.

 $^{3)}$ The isotope amount ratios are obtained from the metal certificates; see Annexes 3, 5 – 6.

The plutonium and uranium isotope amount ratios obtained from the gravimetric preparation were confirmed by TIMS measurements on selected aliquots of the mother solution for all the U and Pu isotope amount ratios, except for the $n(^{238}Pu)/n(^{239}Pu)$ ratio. As explained in section 3.3, this is due to an isobaric interference with 238 U during the isotope ratio measurement, most likely coming from the incomplete removal of the uranium in the plutonium fraction. This isotope amount ratio will only be provided on the certificate as additional material information (see Section 3.3 and Annex 10).

The results of the process control measurement on the mother solution confirmed the complete mixing of the uranium and plutonium metals, and therefore enable the characterisation of the isotope amount ratios in IRMM-1027s based on the gravimetric preparation. In addition, the gravimetric values for the uranium and plutonium isotope amount ratios were also verified by external measurements performed on the selected units of IRMM-1027s by the NML-IAEA and JRC-Karlsruhe (Tables 9 and 10, Section 6.5).

The uncertainties of the certified U and Pu isotope amount ratios are composed of several contributions i.e. the uncertainty on the mass determination of the metals, the uncertainty on the purity of the metals, and the uncertainty on the isotope amount ratios. The complete and detailed calculations of the uranium and plutonium isotope amount ratios and their uncertainty budgets are given in Annex 14 and Annex 15. The results of the characterisation assessment for the uranium and plutonium isotope amount ratios in IRMM-1027s are summarised in Table 4.

	Value 1)	U _{char}	U _{char} , _{rel}
	[mol/mol]	[mol/mol]	[%]
n(²³⁴ U)/n(²³⁸ U)	0.0027303	$1.14 \cdot 10^{-6}$	0.042
n(²³⁵ U)/n(²³⁸ U)	0.238155	16.2·10 ⁻⁶	0.0068
n(²³⁶ U)/n(²³⁸ U)	0.0021905	8.95·10 ⁻⁷	0.041
n(²⁴⁰ Pu)/n(²³⁹ Pu)	0.0224154	2.55·10 ⁻⁶	0.011
n(²⁴¹ Pu)/n(²³⁹ Pu)	0.0001478	9.65·10 ⁻⁷	0.65
n(²⁴² Pu)/n(²³⁹ Pu)	0.00007572	3.90·10 ⁻⁷	0.52

Table 4 The U and Pu isotope amount ratios and their standard uncertainties from the
characterisation assessment of IRMM-1027s

¹⁾ The reference date for the isotope amount ratios is November 1, 2016.

6.3 Masses of ²³⁵U, ²³⁸U, ²³⁹Pu and their uncertainties

The results of the homogeneity assessment for the amount content of ²³⁵U, ²³⁸U, ²³⁹Pu on the ten selected units of IRMM-1027s showed somewhat lower values compared to the values from the gravimetric preparation. The results are shown in Figures 6-8.

Figure 6 The amount content of 235 U in the selected vials of IRMM-1027s measured by ID-TIMS (blue diamonds) expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted lines show the relative expanded uncertainty (k = 2) of the gravimetric value

Figure 7 The amount content of ²³⁸U in the selected vials of IRMM-1027s measured by ID-TIMS (blue diamonds) expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted lines show the relative expanded uncertainty (k = 2) of the gravimetric value

Figure 8 The amount content of ²³⁹Pu in the selected vials of IRMM-1027s measured by ID-TIMS (blue diamonds) expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted lines show the relative expanded uncertainty (k = 2) of the gravimetric value

On average, this relative difference was about -0.08 % for the ²³⁵U amount content and about -0.12 % for the ²³⁹Pu and ²³⁸U amount contents. Consequently, the IDMS results did not agree with the gravimetric values within measurement uncertainties at a 95% confidence level. On the other hand, the process control measurements performed on the mother solution prior to dispensing and drying (see 3.3 and Annex 9) did confirm the values for the amount contents of ²³⁵U, ²³⁸U and ²³⁹Pu from the gravimetric preparation. Therefore, some uncontrolled effects influencing the whole batch uniformly might have occurred during the processing of the mother solution after the dissolution (e.g. dispensing, drying, CAB application, etc.). The reason for the discrepancy in the selected units of IRMM-1027s was not found, despite a thorough review of the measurement results, and the balances and reference weights used for weighing. For this reason, the characterisation of the amount contents of ²³⁵U, ²³⁸U and ²³⁹Pu was based on the IDMS results from the homogeneity assessment and not from the gravimetric preparation of the mother solution. These IDMS results on the individual units of IRMM-1027s were also supported by the external verification measurements performed by the IAEA and JRC-Karlsruhe (see Section 6.5).

The masses of ²³⁵U, ²³⁸U and ²³⁹Pu in each individual unit of IRMM-1027s are calculated from the mass fractions of the plutonium and uranium established by ID-TIMS analysis using IRMM-046c as a spike CRM on the ten randomly selected units (as given in Section 4.1), taking into account the mass of the aliquot taken from the mother solution in each vial (Annex 12), the mass of the spike in each blend (Annex 16), the amount content and the isotope amount ratios of the spike (Annex 8) and the isotope amount ratios of the blend (Annex 17). A general IDMS equation is shown below:

$$C_{x} = C_{y} \frac{m_{y}}{m_{x}} \frac{R_{y} - R_{b}}{R_{b} - R_{x}} \frac{\Sigma(R_{i})_{x}}{\Sigma(R_{i})_{y}}$$

where C_y is the element amount content of the spike (IRMM-046c), m_x and m_y are the masses of sample and spike, respectively, R_x , R_y and R_b are the isotope amount ratios of the sample, the spike and the blend, respectively, $\Sigma(R_i)_x$ and $\Sigma(R_i)_y$ are the sums of all isotope amount ratios in sample and in spike, respectively.

Equation 4

isotope amount ratios in sample and in spike, respectively.

The results of the characterisation of $^{235}\text{U},~^{238}\text{U}$ and ^{239}Pu amount contents are summarised in Table 5.

	·		· · · · · · · · · · · · · · · · · · ·
Unit	²³⁵ U amount content [µmol/g]	²³⁸ U amount content [µmol/g]	²³⁹ Pu amount content [µmol/g]
134	16.9934 ± 0.0073	71.330 ± 0.052	2.7490 ± 0.0031
341	17.0052 ± 0.0080	71.367 ± 0.055	2.7499 ± 0.0033
496	16.9979 ± 0.0077	71.339 ± 0.060	2.7495 ± 0.0034
730	16.9998 ± 0.0069	71.365 ± 0.049	2.7479 ± 0.0040
888	16.9996 ± 0.0072	71.353 ± 0.053	2.7494 ± 0.0031
53	16.9981 ± 0.0078	71.340 ± 0.060	2.7499 ± 0.0031
208	17.0046 ± 0.0074	71.354 ± 0.046	2.7517 ± 0.0031
418	16.9948 ± 0.0072	71.329 ± 0.053	2.7498 ± 0.0031
617	16.9970 ± 0.0071	71.332 ± 0.050	2.7497 ± 0.0031
794	16.9971 ± 0.0067	71.323 ± 0.043	2.7502 ± 0.0032
Mean	16.9987 ± 0.0040	71.343 ± 0.031	2.7497 ± 0.0025

Table 5 Results for the amount contents of 235 U, 238 U and 239 Pu and their expanded uncertainties (coverage factor, k = 2) from the characterisation assessment. The reference date for the amount content of 235 U, 238 U and 239 Pu is November 1, 2016

The uncertainties on the mass (u_{char}) of ²³⁵U, ²³⁸U and ²³⁹Pu in the vials are composed of several contributions, i.e. the uncertainties on the mass determination of the sample and the spike, the uncertainties on the amount content and isotope amount ratio of the spike (IRMM-046c), the uncertainty on the isotope amount ratio measurements of the blend and the uncertainty on the isotope amount ratio of the sample.

Detailed calculations of the mass fractions, amount contents and their uncertainty budgets (e.g. propagation of various uncertainty contributions) of IRMM-1027s are given in Annex 18-20.

The uncertainty for the mass of 235 U, 238 U and 239 Pu in vial No.53 as an example are summarised in Table 6.

Table 6 The 235 U, 238 U and 239 Pu masses and their standard uncertainties in vial No.53 of IRMM-1027s as an example. The reference date for the masses of 235 U, 238 U and 239 Pu is November 1, 2016

Vial No. 52	Value	U _{char}	U _{char} , rel
	[mg]	[mg]	[%]
²³⁵ U mass	10.038	0.0017	0.017
²³⁸ U mass	42.666	0.011	0.025
²³⁹ Pu mass	1.65135	0.00068	0.041

6.4 Weighing and associated uncertainties

Masses of dispensed aliquots of the mother solution per unit used for the calculation of the certified values can be found in Annex 12. The dispensed masses were corrected for air buoyancy, taking into account the density of the air and the sample, the ambient humidity, temperature and pressure inside the glove box, and for the evaporation losses. Traceability to the SI is ensured by weighing a reference weight before and after dispensing a series of 96 units. The uncertainties on the dispensed mass (\pm 0.0006 g, coverage factor k = 2) are composed of several contributions, i.e. the uncertainty on the mass determination by an automated system, the uncertainty on the buoyancy correction, the uncertainty due to evaporation correction, and the uncertainty associated with the variability of the balance [6].

For the determination of the mass of the starting materials (metals) and the mother solution, substitution weighing was used. In the substitution weighing, the mass of a sample is determined through a series of mass determinations of an unknown (U) and a reference weight (S). The so called "SUUS" method was applied. The uncertainty contributions in substitution weighing of the metals are the uncertainties associated with the calibrated reference weights (certificate), air buoyancy correction and the variability of the balance used in "SUUS" method.

6.5 Verification measurements

Verification measurements were performed by the Nuclear Material Laboratory of the International Atomic Energy Agency (NML-IAEA) and by the Analytical Services of the JRC-Karlsruhe in the frame of the EC support task to the IAEA [18]. Several units of IRMM-1027s were randomly selected from the whole batch and analysed by ID-TIMS to verify the uranium and plutonium amount contents and by TIMS to verify the plutonium and uranium isotope amount ratios from the gravimetric preparation of the mother solution. Details about the verification measurements are summarised in Table 7.

	NML-IAEA	JRC-Karlsruhe
Number of samples (IRMM-1027s)	8 for IDMS (amount content) and 2 for TIMS (isotope amount ratios)	4 for IDMS (amount content) and 2 for TIMS (isotope amount ratios)
U spike for IDMS	²³³ U (NBL CRM 111-A)	²³⁸ U (EC NRM-110)
Pu spike for IDMS	²⁴² Pu (KRI-RM1-662-2004)	²⁴⁰ Pu in-house spike SM4, calibrated with MP2
U/Pu separation	UTEVA (valence adjustment with H_2O_2)	UTEVA (valence adjustment with H_2O_2)
Mass spectrometer	Triton TIMS	Triton TIMS
Quality Control	IAEA LSD-28 for U and Pu amount content	In-house prepared for U and Pu amount content
	NBL CRM 137 and NBL CRM 138 for Pu and IRMM-185 and IRMM-186 for U isotope amount ratios	IRMM-290F for Pu and IRMM- 185 for U isotope amount ratios

Table 7 Spikes and procedures for the analysis of the IRMM-1027s by the IAEA and JRC-Karlsruhe

The results of the verification measurements for the uranium and plutonium amount contents in the selected units of IRMM-1027s by the NML-IAEA and JRC-Karlsruhe are shown in Figures 9-11, together with the characterisation results from the JRC-Geel. All results are shown as the relative difference from the gravimetric value of the mother solution.

Figure 9 The amount content of ²³⁹Pu in the selected vials of IRMM-1027s measured by ID-TIMS expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted line shows the relative expanded uncertainty (k = 2) of the gravimetric value and the black dotted line shows the relative expanded uncertainty (k = 2.3) of the IDMS value

Figure 11 The amount content of ²³⁸U in the selected vials of IRMM-1027s measured by ID-TIMS expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted line shows the relative expanded uncertainty (k = 2) of the gravimetric value and the black dotted line shows the relative expanded uncertainty (k = 2.3) of the IDMS value

The results of the verification measurements for the ²³⁵U, ²³⁸U and ²³⁹Pu amount contents from the NML-IAEA and JRC-Karlsruhe agreed with the IDMS results (red squares) from the characterisation assessment (as given in Section 6.3) within measurement uncertainties. Quality control samples (see Table 7) were successfully measured by the IAEA and JRC-Karlsruhe together with the samples of IRMM-1027s on the same turret to exclude any biases in their analytical procedures.

Furthermore, the compatibility check was performed for the results of the verification measurements performed by the NML-IAEA and JRC-Karlsruhe using the compatibility equation [19] below:

$$compatibility = \frac{|X_{lab} - X_{IDMS}|}{\sqrt{u_{lab}^2 + u_{IDMS}^2}}$$

Equation 5

X_{lab}	individual result of the external laboratory
X_{IDMA}	IDMS mean value established by the JRC-Geel
U_{lab}	standard uncertainty reported by the external laboratory
UIDMS	standard uncertainty of the IDMS value

The results of the compatibility evaluations are summarised in Table 8.

Table 8 Results of the compatibility evaluation for the $^{235}\text{U},~^{238}\text{U}$ and ^{239}Pu amount content

Vial No.	Laboratory	²³⁵ U amount content	²³⁸ U amount content	²³⁹ Pu amount content
252	NML-IAEA	1.02	1.88	0.78
375	NML-IAEA	0.34	0.53	1.43
474	NML-IAEA	0.34	1.20	1.68
653	NML-IAEA	0.14	0.72	0.78

719	NML-IAEA	1.60	2.45	0.78
761	NML-IAEA	0.63	1.49	0.86
54	NML-IAEA	0.44	1.30	1.16
163	NML-IAEA	1.11	0.24	1.32
477	JRC-Karlsruhe	0.16	0.43	0.24
605	JRC-Karlsruhe	0.75	1.00	0.01
710	JRC-Karlsruhe	0.08	0.34	0.63
915	JRC-Karlsruhe	0.82	1.08	0.12

From Table 8 it can be seen that the compatibility is found to be \leq 2 at a 95 % CI for the ²³⁵U, ²³⁸U and ²³⁹Pu amount contents. It can be concluded that there is no significant difference between the results of the external verification measurements from the NML-IAEA and JRC-Karlsruhe and the IDMS values established by the JRC-Geel for characterisation of the IRMM-1027s batch.

The results of the verification measurements for the uranium and plutonium isotope amount ratios in the selected units of IRMM-1027s by the NML-IAEA and JRC-Karlsruhe are summarised in Table 9.

Isotope ratio ¹⁾	Vial No. 539 [mol/mol]	Vial No. 898 [mol/mol]	Vial No. 119 [mol/mol]	Vial No. 322 [mol/mol]	Gravimetric value [mol/mol]
n(²³⁴ U)/n(²³⁸ U)	0.0027306 ± 0.0000028	0.0027303 ± 0.0000026	0.002734 ± 0.000054	0.002733 ± 0.000054	0.0027303 ± 0.0000023
n(²³⁵ U)/n(²³⁸ U)	0.23818 ± 0.00012	0.23815 ± 0.00012	0.23815 ± 0.00021	0.23817 ± 0.00024	0.238155 ± 0.000031
n(²³⁶ U)/n(²³⁸ U)	0.0021913 ± 0.0000030	0.0021915 ± 0.0000037	0.002195 ± 0.000043	0.002196 ± 0.000043	0.0021905 ± 0.0000018
n(²⁴⁰ Pu)/n(²³⁹ Pu)	0.022419 ± 0.000027	0.022419 ± 0.000028	0.022418 ± 0.000012	0.022419± 0.000012	0.0224154 ± 0.0000051
n(²⁴¹ Pu)/n(²³⁹ Pu)	0.0001487 ± 0.0000046	0.0001493 ± 0.0000046	0.0001493 ± 0.0000090	0.000147 ± 0.000017	0.0001478 ± 0.0000019
n(²⁴² Pu)/n(²³⁹ Pu)	0.0000762 ± 0.0000045	0.0000760 ± 0.0000044	0.000077 ± 0.000012	0.0000781 ± 0.0000064	0.00007572 ± 0.00000078

Table 9 The results of the verification measurements for the U and Pu isotope amount ratios

¹⁾ The reference date for the isotope amount ratios is November 1, 2016.

The results of the verification measurements by the NML-IAEA and JRC-Karlsruhe for the uranium and plutonium isotope amount ratios agreed with the characterisation values from the gravimetric preparation of the mother solution and with the results from the process control measurements of the mother solution by TIMS (see Section 3.3 and Annex 10). A compatibility check was also performed for the uranium and plutonium isotope amount ratios. The results are summarised in Table 10.

Isotope ratio	Vial No. 539 NML-IAEA	Vial No. 898 NML-IAEA	Vial No. 119 JRC-Karlsruhe	Vial No. 322 JRC-Karlsruhe
n(²³⁴ U)/n(²³⁸ U)	0.17	0.00	0.14	0.10
n(²³⁵ U)/n(²³⁸ U)	0.40	0.08	0.05	0.12
n(²³⁶ U)/n(²³⁸ U)	0.46	0.49	0.21	0.26
n(²⁴⁰ Pu)/n(²³⁹ Pu)	0.26	0.25	0.40	0.55
n(²⁴¹ Pu)/n(²³⁹ Pu)	0.36	0.60	0.33	0.09
n(²⁴² Pu)/n(²³⁹ Pu)	0.21	0.13	0.21	0.74

Table 10 Results of the compatibility evaluation for the U and Pu isotope amount ratios

This demonstrated that there was no significant difference (compatibility \leq 2 at a 95 % CI) observed between the measured isotope ratios in the mother solution and in the dried spikes [12, 20].

7. Value Assignment

Certified values are values that fulfil the highest standards of accuracy. Certified values for IRMM-1027s were assigned on the basis of the gravimetric preparation for the uranium and plutonium isotope amount ratios and by IDMS on ten randomly selected IRMM-1027s units for the masses of 235 U, 238 U and 239 Pu from the homogeneity assessment. Full uncertainty budgets in accordance with the 'Guide to the Expression of Uncertainty in Measurement' [4] were established.

7.1 Certified values and their uncertainties

The assigned uncertainty consists of uncertainties related to characterisation, u_{char} (Section 6), potential between-unit inhomogeneity, u_{bb} (Section 3) and potential degradation during transport (u_{sts}) and long-term storage, u_{lts} (Section 5). As described in Section 5 the uncertainty related to degradation during transport and long-term storage was found to be negligible. These different contributions were combined to estimate the expanded uncertainty of the certified value (U_{CRM}) with a coverage factor k as:

$$U_{\rm CRM} = k \cdot \sqrt{u_{\rm char}^2 + u_{\rm bb}^2}$$

Equation 6

- u_{char} was estimated as described in Section 6
- $u_{\rm bb}$ was estimated as described in Section 3.

Because of sufficient degrees of freedom of the different uncertainty contributions, a coverage factor k of 2 was applied to obtain the expanded uncertainties for the U and Pu isotope amount ratios. A coverage factor of 2.3 (degrees of freedom was applied for the masses of 235 U, 238 U and 239 Pu. The certified masses and their uncertainties for unit No. 53 are summarised in Table 11. The certified values of all 950 units are given in Annex 1.

Mass	Certified value [mg]	U _{char, rel} [%]	s _{bb, rel} or $u^*_{_{bb,rel}}$ [%]	U _{CRM, rel} 1) [%]	U _{CRM} ¹⁾ [mg]
²³⁵ U mass	10.038	0.017	0.021	0.062	0.0062
²³⁸ U mass	42.666	0.025	0.011	0.063	0.027
²³⁹ Pu mass	1.6513	0.041	0.020	0.11	0.0017

Table 11 Certified masses and their uncertainties in vial No.53 of IRMM-1027s (as an example)

¹⁾ Expanded (k = 2.3) uncertainty

The certified isotope amount ratios of uranium and plutonium are summarised in Table 12.

Table 12 C	ertified isotope amo	unt ratios in IRM	M-1027s and the	eir uncertainties

Isotope amount	Certified value 1)	U _{char} , rel	$U_{\rm CRM, \ rel}$ 2)	$U_{\rm CRM}$ ²⁾
ratios	[mol/mol]	[%]	[%]	[mol/mol]
n(²³⁴ U)/n(²³⁸ U)	0.0027303	0.041	0.083	0.0000023
n(²³⁵ U)/n(²³⁸ U)	0.238155	0.0066	0.013	0.000031
n(²³⁶ U)/n(²³⁸ U)	0.0021905	0.041	0.082	0.0000018
n(²⁴⁰ Pu)/n(²³⁹ Pu)	0.0224154	0.011	0.023	0.0000051
n(²⁴¹ Pu)/n(²³⁹ Pu)	0.0001478	0.65	1.30	0.0000019
n(²⁴² Pu)/n(²³⁹ Pu)	0.00007572	0.52	1.03	0.0000078

¹⁾ The reference date for the plutonium and uranium isotope amount ratios is November 1, 2016.

²⁾ Expanded (k = 2) uncertainty.

7.2 Additional material information

As additional information, the values for the plutonium and uranium amount contents, mass fractions and isotopic composition of the mother solution (see Annexes 18-20) are summarised in Table 13.

Table 13 Uranium and plutonium isotopic mass fraction, amount content, mass fraction andisotope amount ratios for the nitrate solution of IRMM-1027s

	Isotope mass fraction (·100)			
	Value ¹⁾ Uncertainty ²⁾			
	[9/9]	[9/9]		
m(²³⁴ U)/m(U) ³⁾	0.21648	0.00018		
m(²³⁵ U)/m(U) ³⁾	18.9634	0.0021		
m(²³⁶ U)/m(U) ³⁾	0.17516	0.00014		
m(²³⁸ U)/m(U) ³⁾	80.6450	0.0021		
m(²³⁸ Pu)/m(Pu) ³⁾	0.002778	0.000026		

m(²³⁹ Pu)/m(Pu) ³⁾	97.77432	0.00053
m(²⁴⁰ Pu)/m(Pu) ³⁾	2.20084	0.00049
m(²⁴¹ Pu)/m(Pu) ³⁾	0.01457	0.00019
<i>m</i> (²⁴² Pu)/ <i>m</i> (Pu) ³⁾	0.007497	0.000077
	Amount	content
	Value 1)	Uncertainty ²⁾⁴⁾
	[µmol/g solution]	[µmol/g solution]
²³⁵ U	16.9987	0.0046
²³⁸ U	71.343	0.035
U	88.727	0.027
²³⁹ Pu	2.7497	0.0025
Pu	2.8120	0.0026
	Mass fr	action
	Mass fr Value ¹⁾	action Uncertainty ^{2) 4)}
	Mass fr Value ¹⁾ [mg/g solution]	action Uncertainty ^{2) 4)} [mg/g solution]
²³⁵ U	Mass fr Value ¹⁾ [mg/g solution] 3.9955	action Uncertainty ^{2) 4)} [mg/g solution] 0.0011
²³⁵ U ²³⁸ U	Mass fr Value ¹⁾ [mg/g solution] 3.9955 16.9833	action Uncertainty ^{2) 4)} [mg/g solution] 0.0011 0.0084
²³⁵ U ²³⁸ U U	Mass fr Value ¹⁾ [mg/g solution] 3.9955 16.9833 21.0693	action Uncertainty ^{2) 4)} [mg/g solution] 0.0011 0.0084 0.0063
²³⁵ U ²³⁸ U U ²³⁹ Pu	Mass fr Value ¹⁾ [mg/g solution] 3.9955 16.9833 21.0693 0.65732	action Uncertainty ^{2) 4)} [mg/g solution] 0.0011 0.0084 0.0063 0.00060
²³⁵ U ²³⁸ U U ²³⁹ Pu Pu	Mass fr Value ¹⁾ [mg/g solution] 3.9955 16.9833 21.0693 0.65732 0.67228	action Uncertainty ^{2) 4)} [mg/g solution] 0.0011 0.0084 0.0063 0.00060 0.00061
²³⁵ U ²³⁸ U U ²³⁹ Pu Pu	Mass fr Value ¹⁾ [mg/g solution] 3.9955 16.9833 21.0693 0.65732 0.67228 Isotope amo	action Uncertainty ^{2) 4)} [mg/g solution] 0.0011 0.0084 0.0063 0.00060 0.00061
²³⁵ U ²³⁸ U U ²³⁹ Pu Pu	Mass fr Value ¹⁾ [mg/g solution] 3.9955 16.9833 21.0693 0.65732 0.67228 Isotope amo Value ¹⁾	action Uncertainty ^{2) 4)} [mg/g solution] 0.0011 0.0084 0.0063 0.00060 0.00061 bunt ratios Uncertainty ²⁾
²³⁵ U ²³⁸ U U ²³⁹ Pu Pu	Mass fr Value ¹⁾ [mg/g solution] 3.9955 16.9833 21.0693 0.65732 0.67228 Isotope ame Value ¹⁾ [mol/mol]	action Uncertainty ^{2) 4)} [mg/g solution] 0.0011 0.0084 0.0063 0.00060 0.00061 Dunt ratios Uncertainty ²⁾ [mol/mol]

¹⁾ The reference date for the plutonium and uranium isotope mass fraction, amount content, mass fractions and isotope amount ratios of the mother solution of IRMM-1027s is November 1, 2016.

²⁾ Expanded uncertainty with a coverage factor k = 2 for the isotope mass fractions and the $n(^{238}\text{Pu})/n(^{239}\text{Pu})$ ratio and a coverage factor k = 2.3 for the amount content and mass fractions of ^{235}U , ^{238}U , ^{239}Pu , U and Pu.

 $^{3)}$ Isotope mass fraction is expressed as $^{xxx}U/^{tot}U$ and $^{xxx}Pu/^{tot}Pu.$

⁴⁾ Dispensed nitrate solution before drying and application of CAB

The atomic masses of radionuclides were obtained from M. Wang et al. [4]

The half-lives of radionuclides were obtained from DDEP-BIPM (Table of radionuclides) [5] and R. Wellum et al. [6]

8. Metrological traceability and commutability

8.1 Metrological traceability

Identity

The measurands are structurally defined and independent of the measurement method.

Quantity value

The certified masses of the 235 U, 238 U and 239 Pu are traceable to the SI via the IRMM-046c spike CRM. The certified values for the U and Pu isotope amount ratios are traceable to the values on the respective metal certificates (EC NRM 101, CETAMA MP2 and NBL CRM 116-A).

8.2 Commutability

Many measurement procedures include one or more steps, which are selecting specific analytes (or specific groups of analytes) from the sample for the subsequent steps of the whole measurement process. Often the complete identity of these 'intermediate analytes' is not fully known or taken into account. Therefore, it is difficult to mimic all the analytically relevant properties of real samples within a CRM. The degree of equivalence in the analytical behaviour of real samples and a CRM with respect to various measurement procedures (methods) is summarised in a concept called 'commutability of a reference material'. There are various definitions expressing this concept. For instance, the CLSI Guideline C-53A [21] recommends the use of the following definition for the term *commutability*:

"The equivalence of the mathematical relationships among the results of different measurement procedures for an RM and for representative samples of the type intended to be measured."

The commutability of a CRM defines its fitness for use and, thus, is a crucial characteristic in case of the application of different measurement methods. When commutability of a CRM is not established in such cases, the results from routinely used methods cannot be legitimately compared with the certified value to determine whether a bias does not exist in calibration, nor can the CRM be used as a calibrant.

The IRMM-1027s is a dried nitrate in CAB certified for uranium and plutonium isotope amount ratios and masses of ²³⁵U, ²³⁸U and ²³⁹Pu per unit. This CRM is tailor-made by the JRC for its intended use and serves as a spike for determination of uranium and plutonium content by IDMS measurements of samples from input solutions at reprocessing plants and is not intended to be used for other measurement methods.

9. Instructions for use

9.1 Safety information

The IRMM-1027s series contains radioactive material. The vials should be handled with great care and by experienced personnel in a laboratory suitably equipped for the safe handling of radioactive materials.

9.2 Storage conditions

The vials should be stored at + 18 °C \pm 5 °C in an upright position.

Please note that the European Commission cannot be held responsible for changes that happen during storage of the material at the customer's premises, especially for opened vials.

9.3 Preparation and use of the material

The spike CRM has to be dissolved in the appropriate amount of acid (e.g. nitric acid with an amount of substance concentration $c = 5 \text{ mol } L^{-1}$) or sample solution to ensure the isotopic equilibrium between the spike and the sample. Heating on a hotplate (avoid boiling) may be applied to facilitate the dissolution process.

9.4 Minimum sample intake

The whole amount of sample per unit has to be used for analysis.

9.5 Use of the certified value

This spike CRM is for use as a spike isotopic reference material to measure the plutonium and uranium amount content in an unknown sample of dissolved nuclear fuel solution using IDMS. The amount content (C_x) of plutonium or uranium can be calculated using the Equation 4 (see 6.3).

10. Conclusions

A new batch of IRMM-1027s LSD spikes was prepared and certified in compliance with international guidelines. The material is certified for the U and Pu isotope amount ratios and for the mass of ²³⁵U, ²³⁸U and ²³⁹Pu per vial. This tailor-made CRM is applied for the determination of the U and Pu amount content of dissolved spent nuclear fuel by nuclear safeguards authorities and industry worldwide. Certified values for the masses of ²³⁵U, ²³⁸U and ²³⁹Pu and for the U and Pu isotope amount ratios were established by ID-TIMS and by gravimetric preparation, respectively. The uncertainties of the certified values were estimated in compliance with the Guide to the Expression of Uncertainty in Measurement (GUM). They are fit for purpose and enable laboratories to meet the The International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials (ITVs) ITV2010. A unit of IRMM-1027s contains about 55 mg of uranium with a relative mass fraction $m(^{235}\text{U})/m(\text{Pu})$ of 97.8 % as dried nitrates in CAB.

Reference

- 1 ISO 17034, General requirements for the competence of reference materials producers, International Organization for Standardization, Geneva, Switzerland, 2016
- 2 ISO Guide 35, Reference materials General and statistical principles for certification, International Organization for Standardization, Geneva, Switzerland, 2006
- 3 ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM, 1995), International Organization for Standardization, Geneva, Switzerland, 2008
- 4 M. Wang et al., The AME 2012 atomic mass evaluation (II). Tables, Graphs and References, Chinese Physics C, Vol. 36, No. 12, 1603-2014, 2012
- 5 <u>http://www.nucleide.org/DDEP_WG/DDEPdata.htm</u> "last checked on May 4, 2018"
- 6 R. Wellum, A. Verbruggen, R. Kessel, A new evaluation of the half-life of ²⁴¹Pu, J. Anal. At. Spectrom., 24, 801-807, 2009
- 7 International Target Values 2010 for Measurement Uncertainties in Safeguarding Nuclear Materials, IAEA-STR-368, Vienna, November 2010
- 8 K. Casteleyn, L. Duinslaeger, M. Boella, P. Chare, F. Lipcsei, P. Schwalbach, S. Synetos, T. Enright, A. Le Terrier, K. Luetzenkirchen, P. Van Belle, E. Zuleger, Y. Aregbe, On-site Laboratories of Euratom: Ten Years of Excellent Results and Time to Renew, 52nd Annual Meeting of the Institute of Nuclear Materials Management (INMM), Palm Springs, USA, 2011
- 9 A. Verbruggen, J. Bauwens, N. van De Steene, U. Jacobsson, R. Eykens, R. Wellum, Y. Aregbe, An automated system for the preparation of Large Size Dried (LSD) spikes, ATALANTE, Montpellier, France 2008
- 10 R. Jakopič, J. Bauwens, R. Buják, R. Eykens, C, Hennessy, F. Kehoe, H. Kühn, S. Richter, Y. Aregbe, Preparation and certification of Large-Sized Dried (LSD) spike IRMM-10270, EUR 25857 EN, 2013
- 11 T.P.J. Linsinger, J. Pauwels, A.M.H. van der Veen, H. Schimmel, A. Lamberty, Homogeneity and stability of reference materials, Accred. Qual. Assur., 6, 20-25, 2001
- 12 R. Jakopič, J. Bauwens, C, Hennessy, F. Kehoe, U. Jacobsson, S. Richter, Y. Aregbe, Preparation and certification of Large-Sized Dried (LSD) spike IRMM-1027q, EUR 27211 EN, 2015
- 13 IAEA Regulations for the Safe Transport of Radioactive Material, 1996 Edition, "Requirements", IAEA Safety Standards Series No. TS-R-1 (ST-1, Revised), IAEA, Vienna, 2000
- 14 R. Jakopič, J. Bauwens, C, R. Bujak, Hennessy, F. Kehoe, U. Jacobsson, S. Richter, Y. Aregbe, Preparation and certification of Large-Sized Dried (LSD) spike IRMM-1027r, EUR 28081 EN, 2016
- 15 A. Verbruggen, J. Bauwens, R. Eykens, U. Jacobsson, R. Jakopič, F. Kehoe, H. Kühn, Y. Kushigeta, S. Richter, Y. Aregbe, Preparation and certification of IRMM-1027m, Large-sized Dried (LSD) spike, EUR 24119 EN, 2009
- 16 R. Jakopič, J. Bauwens, S. Richter, M. Sturm, A. Verbruggen, R. Wellum, R. Eykens, F. Kehoe, H. Kühn, Y. Aregbe, Preparation and development of new Pu spike isotopic reference materials at IRMM, ESARDA Bulletin, No. 46, 2011

- 17 R. Jakopič, A. Verbruggen, R. Eykens, F. Kehoe, H. Kühn, Y. Kushigeta, U. Jacobsson, J. Bauwens, S. Richter, R. Wellum, Y. Aregbe, An inter-calibration campaign using various selected Pu spike isotopic reference materials, J. Radioanal. Nucl. Chem., 286, 449-454, 2010
- 18 R. Jakopič, Y. Aregbe, S. Richter, E. Zuleger, S. Mialle, S. D. Balsley, U. Repinc and J. Hiess, Verification measurements of the IRMM-1027 and the IAEA large-sized dried (LSD) spikes, J. Radioanal. Nucl. Chem., 311, 1781-1791, 2017
- 19 JCGM 200:2012, International vocabulary of metrology Basic and general concepts and associated terms (VIM), 2012
- 20 R. Jakopič, J. Bauwens, R. Buják, R. Eykens, C, Hennessy, F. Kehoe, S. Mialle, C. Venchiarutti, S. Richter, Y. Aregbe, Preparation and certification of Large-Sized Dried (LSD) spike IRMM-1027p, EUR 26520 EN, 2014
- 21 H. Vesper, H. Emons, M. Gnezda, C. P. Jain, W. G. Miller, R. Rej, G. Schumann, J. Tate, L. Thienpont, J. E. Vaks, Characterization and Qualification of Commutable Reference Materials for Laboratory Medicine; Approved Guideline, CLSI document C53-A, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2010

List of abbreviations and definitions

ANOVA	Analysis of variance
BIPM	Bureau International des Poids et Mesures (International Bureau of Weights and Measures)
с	amount of substance concentration
CAB	Cellulose acetate butyrate
CETAMA	Commission d'Etablissement des Methodes d'Analyse
CI	Confidence interval
CLSI	Clinical and Laboratory Standards Institute
CRM	Certified reference material
EC	European Commission
ESARDA	European Safeguards Research and Development Association
GUM	Guide to the Expression of Uncertainty in Measurement
IAEA	International Atomic Energy Agency
IDMS	Isotope dilution mass spectrometry
ID-TIMS	Isotope dilution thermal ionisation mass spectrometry
ISO	International Organization for Standardization
ITVs	International Target Values
JRC	Joint Research Centre of the European Commission
k	Coverage factor
LSD	Large-Sized dried
т	mass
Μ	Molar mass
MS _{between}	Mean of squares between-unit from an ANOVA
$MS_{ m within}$	Mean of squares within-unit from an ANOVA
п	amount of substance
NBL	New Brunswick laboratory
NML	Nuclear Material Laboratory
p.a.	pro analysis
R _b	Isotope amount ratio in the blend
R _x	Isotope amount ratio in the un-spiked sample
R _v	Isotope amount ratio in the spike
rel	Index denoting relative figures (uncertainties etc.)
RM	Reference material
S	Standard deviation
S _{bb}	Between-unit standard deviation; an additional index "rel" is added when appropriate

SI	International System of Units
$s_{\sf wb}$	Within-unit standard deviation
T _{1/2}	Half life
TE	Total evaporation
TIMS	Thermal Ionisation Mass Spectrometry
и	Standard uncertainty
U	Expanded uncertainty
<i>u</i> [*] _{bb}	Standard uncertainty related to a maximum between-unit inhomogeneity that could be hidden by method repeatability; an additional index "rel" is added as appropriate
U _{bb}	Standard uncertainty related to a possible between-unit inhomogeneity; an additional index "rel" is added as appropriate
U _{char}	Standard uncertainty of the material characterisation; an additional index "rel" is added as appropriate
<i>U</i> _{CRM}	Combined standard uncertainty of the certified value; an additional index "rel" is added as appropriate
$U_{\rm CRM}$	Expanded uncertainty of the certified value; an additional index "rel" is added as appropriate
U _{lts}	Standard uncertainty of the long-term stability; an additional index "rel" is added as appropriate
U _{sts}	Standard uncertainty of the short-term stability; an additional index "rel" is added as appropriate
y y	Arithmetic mean
${\cal V}_{MSwithin}$	Degrees of freedom of MS _{within}

List of figures

Figure 1 Cleaning of Pu MP2 metal by electro-polishing: a) an electrolytic cell with Pt rods, b) cleaning of the Pu metal piece and c) rinsing of the cleaned Pu metal piece with deionised water and ethanol......9 Figure 2 Dissolution of Pu metal: a) dissolution of Pu MP2 metal in hydrochloric acid, b) transferring of the dissolved Pu into the c) rinsing of the Erlenmeyer flask with nitric acid solution10 Figure 3 Dissolution of U metals: a) addition of the NBL 116-A enriched U metal into the Pu solution, b) addition of the EC NRM 101 natural U metals into the Pu solution c) the mother solution of IRMM-1027s......11 Figure 4 Units of IRMM-1027 s LSD spike......12 Figure 5 Preparation of IRMM-1027s LSD spikes12 Figure 6 The amount content of ²³⁵U in the selected vials of IRMM-1027s measured by ID-TIMS (blue squares) expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted Figure 7 The amount content of ²³⁸U in the selected vials of IRMM-1027s measured by ID-TIMS (blue squares) expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted Figure 8 The amount content of ²³⁹Pu in the selected vials of IRMM-1027s measured by ID-TIMS (blue squares) expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted Figure 9 The amount content of ²³⁹Pu in the selected vials of IRMM-1027s measured by ID-TIMS expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted line shows the relative expanded uncertainty (k = 2) of the gravimetric value and the black dotted line Figure 10 The amount content of ²³⁵U in the selected vials of IRMM-1027s measured by ID-TIMS expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted line shows the relative expanded uncertainty (k = 2) of the gravimetric value and the black dotted line Figure 11 The amount content of ²³⁸U in the selected vials of IRMM-1027s measured by ID-TIMS expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainty (coverage factor k = 2). Red dotted line shows the relative expanded uncertainty (k = 2) of the gravimetric value and the black dotted line shows the relative expanded uncertainty (k=2.3) of the IDMS value......23 Figure 12 The amount content of ²³⁵U in the mother solution of IRMM-1027s measured by ID-TIMS using IRMM-046b (blue squares) and IRMM-046c (black triangles) spike CRM expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainties (coverage factor k = 2). Red dotted lines show the by ID-TIMS using IRMM-046b (blue squares) and IRMM-046c (black triangles) spike CRM expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainties (coverage factor k = 2). Red dotted lines show the **Figure 14** The amount content of 239 Pu in the mother solution of IRMM-1027s measured by ID-TIMS using IRMM-046b (blue squares) and IRMM-046c (black triangles) spike CRM expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainties (coverage factor k = 2). Red dotted lines show the

Figure 15 The $n(^{234}\text{U})/n(^{238}\text{U})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue squares and the average value with a green square). Error bars show the expanded uncertainties (coverage factor $k = 2$)
Figure 16 The $n(^{235}\text{U})/n(^{238}\text{U})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue squares and the average value with a green square). Error bars show the expanded uncertainties (coverage factor $k = 2$)
Figure 17 The $n(^{250}\text{U})/n(^{250}\text{U})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue squares and the average value with a green square). Error bars show the expanded uncertainties (coverage factor $k = 2$)
Figure 18 The $n(^{238}\text{Pu})/n(^{239}\text{Pu})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue squares and the average value with a green square). Error bars show the expanded uncertainties (coverage factor $k = 2$)
Figure 19 The $n(^{240}\text{Pu})/n(^{239}\text{Pu})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue squares and the average value with a green square). Error bars show the expanded uncertainties (coverage factor $k = 2$)
by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue squares and the average value with a green square). Error bars show the expanded uncertainties (coverage factor $k = 2$)
by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue squares and the average value with a green square). Error bars show the expanded uncertainties (coverage factor $k = 2$)
rigure 22 The amount content of ²³⁵ U from homogeneity study for the 30 replicate measurements (10 selected units, 3 replicates each) are shown as a function of the analytical sequence
units (filling sequence). The unit means are plotted with 95 % CI of the means
Figure 25 Mean amount contents of ²³⁰ U from homogeneity study as a function of the units (filling sequence). The unit means are plotted with 95 % CI of the means
function of the units (filling sequence). The unit means are plotted with 95 % CI of the means
List of tables

Table 1 Results of the statistical evaluation of the homogeneity studies of the amount content of ²³⁵U, ²³⁸U and ²³⁹Pu in IRMM-1027s......14
 Table 2 Results of the homogeneity studies of the amount content in IRMM-1027s

 Table 3 Gravimetric mixing to prepare the mother solution of IRMM-1027s
Table 4 The U and Pu isotope amount ratios and their standard uncertainties from the Table 6 The ²³⁵U, ²³⁸U and ²³⁹Pu masses and their standard uncertainties in vial No.53 of IRMM-1027s as an example. The reference date for the masses of ²³⁵U, ²³⁸U and ²³⁹Pu is Table 7 Spikes and procedures for the analysis of the IRMM-1027s by the IAEA and JRC-**Table 9** The results of the verification measurements for the U and Pu isotope amount **Table 10** Results of the compatibility evaluation for the U and Pu isotope amount ratios Table 11 Certified masses and their uncertainties in vial No.53 of IRMM-1027s (as an
 Table 12 Certified isotope amount ratios in IRMM-1027s and their uncertainties
Table 13 Uranium and plutonium isotopic mass fraction, amount content, mass fraction and isotope amount ratios for the nitrate solution of IRMM-1027s27

Annexes

Annex 1 The certified masses of ²³⁵ U, ²³⁸ U and ²³⁹ Pu per unit (Vial No. 001 - 950) of
IRMM-1027s
Annex 2 The certificate of EC NRM 101 uranium metal
Annex 3 The certificate of NBL CRM 116-A uranium metal
Annex 4 The certificate of CETAMA MP2 plutonium metal
Annex 5 The certificate of isotopic abundances of CETAMA MP2
Annex 6 The certificate of ISOtopic composition of EC NRM 101
Annex 7 The certificate of IRMM-0460
Annex 8 The Certificate of IRMM-040C
238 L and 239 Pu amount content in the mother solution of IRMM-1027s 76
Anney 10 Results of the process control measurements (5 aliquots 3 replicates) for the
uranium and plutonium isotope amount ratios in the mother solution of IRMM-1027s78
Annex 11 Results of the homogeneity assessment for IRMM-1027s
Annex 12 The weighing certificate of the aliguots of dispensed solution of IRMM-1027s
per unit before drying
Annex 13 The weighing certificate for the preparation of the mother solution of IRMM-
1027s
Annex 14 The uranium isotope amount ratios and their associated uncertainties for the
uranium gravimetric mixture of IRMM-1027s 92
Annex 15 The plutonium isotope amount ratios and their associated uncertainties for
the plutonium gravimetric mixture of IRMM-1027s106
Annex 16 The weighing certificate of the blend mixtures for the characterisation of ²³⁵ U,
²³⁵ U and ²³⁵ Pu amount content by ID-TIMS using IRMM-046c
Annex 17 The internal test report (3802) for the selected units of IRMM-102/s 11/
Annex 18 Determination of 200 In 10 randomly selected vials (turrets A and B) for the
1 2016)
Appendix 19 Determination of ²³⁸ IL in 10 randomly selected vials (turrets A and B) for the
characterisation IRMM-1027s by ID-TIMS with IRMM-046c (reference date November 1
2016) 129
Annex 20 Determination of ²³⁹ Pu in 10 randomly selected vials (turrets C and D) for the
characterisation in IRMM-1027s by ID-TIMS with IRMM-046c (reference date November
1, 2016)
-

Annex 1 The certified masses of $^{235}\text{U},~^{238}\text{U}$ and ^{239}Pu per unit (Vial No. 001 - 950) of IRMM-1027s

		²³⁸ U		²³⁵ U		²³⁹ Pu
Vial Na	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)
VIAI NO.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
001	42.656	0.016	10.0352	0.0062	1.6510	0.0017
002	42.641	0.016	10.0316	0.0062	1.6504	0.0017
003	42.632	0.016	10.0296	0.0062	1.6500	0.0017
004	42.663	0.016	10.0368	0.0062	1.6512	0.0017
005	42.668	0.016	10.0380	0.0062	1.6514	0.0017
006	42.639	0.016	10.0312	0.0062	1.6503	0.0017
007	42.666	0.016	10.0376	0.0062	1.6513	0.0017
008	42.622	0.016	10.0272	0.0062	1.6496	0.0017
009	42.654	0.016	10.0348	0.0062	1.6509	0.0017
010	42.659	0.016	10.0360	0.0062	1.6511	0.0017
011	42.666	0.016	10.0376	0.0062	1.6513	0.0017
012	42.619	0.016	10.0264	0.0062	1.6495	0.0017
013	42.673	0.016	10.0392	0.0062	1.6516	0.0017
014	42.644	0.016	10.0324	0.0062	1.6505	0.0017
015	42.659	0.016	10.0360	0.0062	1.6511	0.0017
016	42.627	0.016	10.0284	0.0062	1.6498	0.0017
017	42.659	0.016	10.0360	0.0062	1.6511	0.0017
018	42.653	0.016	10.0344	0.0062	1.6508	0.0017
019	42.668	0.016	10.0380	0.0062	1.6514	0.0017
020	42.593	0.016	10.0204	0.0062	1.6485	0.0017
021	42.697	0.016	10.0447	0.0062	1.6525	0.0017
022	42.600	0.016	10.0220	0.0062	1.6488	0.0017
023	42.673	0.016	10.0392	0.0062	1.6516	0.0017
024	42.700	0.016	10.0455	0.0062	1.6527	0.0017
025	42.048	0.010	10.0332	0.0062	1.0500	0.0017
020	42.041	0.010	10.0310	0.0062	1.0004	0.0017
027	42.020	0.010	10.0208	0.0062	1.0490	0.0017
028	42.030	0.016	10.0304	0.0002	1.6502	0.0017
028	42.005	0.016	10.0410	0.0002	1.6507	0.0017
030	42.048	0.016	10.0330	0.0062	1.6510	0.0017
022	42.000	0.016	10.0408	0.0002	1 8400	0.0017
032	42.000	0.016	10.0220	0.0002	1.6509	0.0017
034	42.671	0.016	10.0388	0.0062	1 6515	0.0017
035	42.636	0.016	10.0304	0.0062	1 6502	0.0017
036	42.671	0.016	10.0388	0.0062	1.6515	0.0017
037	42.648	0.016	10.0332	0.0062	1.6506	0.0017
038	42.639	0.016	10.0312	0.0062	1.6503	0.0017
039	42.625	0.016	10.0280	0.0062	1.6498	0.0017
040	42.688	0.016	10.0427	0.0062	1.6522	0.0017
041	42.617	0.016	10.0260	0.0062	1.6494	0.0017
042	42.649	0.016	10.0336	0.0062	1.6507	0.0017
043	42.615	0.016	10.0256	0.0062	1.6494	0.0017
044	42.619	0.016	10.0264	0.0062	1.6495	0.0017
045	42.663	0.016	10.0368	0.0062	1.6512	0.0017
046	42.629	0.016	10.0288	0.0062	1.6499	0.0017
047	42.641	0.016	10.0316	0.0062	1.6504	0.0017
048	42.586	0.016	10.0188	0.0062	1.6483	0.0017
049	42.632	0.016	10.0296	0.0062	1.6500	0.0017
050	42.608	0.016	10.0240	0.0062	1.6491	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 4 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
051	42.614	0.016	10.0252	0.0062	1.6493	0.0017
052	42.612	0.016	10.0248	0.0062	1.6492	0.0017
053	42.666	0.016	10.0376	0.0062	1.6513	0.0017
054	42.564	0.016	10.0136	0.0062	1.6474	0.0017
055	42.597	0.016	10.0212	0.0062	1.6487	0.0017
056	42.634	0.016	10.0300	0.0062	1.6501	0.0017
057	42.566	0.016	10.0140	0.0062	1.6475	0.0017
058	42.591	0.016	10.0200	0.0062	1.6485	0.0017
059	42.600	0.016	10.0220	0.0062	1.6488	0.0017
060	42.581	0.016	10.0176	0.0062	1.6481	0.0017
061	42.597	0.016	10.0212	0.0062	1.6487	0.0017
062	42.581	0.016	10.0176	0.0062	1.6481	0.0017
063	42.608	0.016	10.0240	0.0062	1.6491	0.0017
064	42.597	0.016	10.0212	0.0062	1.6487	0.0017
065	42.542	0.016	10.0084	0.0062	1.6465	0.0017
066	42.636	0.016	10.0304	0.0062	1.6502	0.0017
007	42.540	0.016	10.0080	0.0062	1.0405	0.0017
008	42.590	0.010	10.0196	0.0062	1.0484	0.0017
070	42.071	0.016	10.0152	0.0062	1.04/7	0.0017
070	42.040	0.016	10.0080	0.0062	1.6400	0.0017
071	42.512	0.016	10.0246	0.0062	1.8454	0.0017
072	42.615	0.016	10.0256	0.0062	1 6404	0.0017
074	42 496	0.016	9 9976	0.0062	1 6448	0.0017
075	42.554	0.016	10.0112	0.0062	1.6470	0.0017
076	42.614	0.016	10.0252	0.0062	1.6493	0.0017
077	42.563	0.016	10.0132	0.0062	1.6473	0.0017
078	42.544	0.016	10.0088	0.0062	1.6466	0.0017
079	42.574	0.016	10.0160	0.0062	1.6478	0.0017
080	42.546	0.016	10.0092	0.0062	1.6467	0.0017
081	42.573	0.016	10.0156	0.0062	1.6477	0.0017
082	42.542	0.016	10.0084	0.0062	1.6465	0.0017
083	42.527	0.016	10.0048	0.0062	1.6460	0.0017
084	42.551	0.016	10.0104	0.0062	1.6469	0.0017
085	42.571	0.016	10.0152	0.0062	1.6477	0.0017
086	42.512	0.016	10.0012	0.0062	1.6454	0.0017
087	42.534	0.016	10.0064	0.0062	1.6462	0.0017
088	42.561	0.016	10.0128	0.0062	1.6473	0.0017
089	42.571	0.016	10.0152	0.0062	1.6477	0.0017
090	42.525	0.016	10.0044	0.0062	1.6459	0.0017
091	42.564	0.016	10.0136	0.0062	1.64/4	0.0017
092	42.071	0.010	10.0152	0.0062	1.04//	0.0017
093	42.010	0.010	10.0020	0.0062	1.0400	0.0017
095	42.042	0.016	10.0064	0.0062	1.6460	0.0017
096	42.528	0.016	10.0002	0.0062	1 6470	0.0017
097	42.575	0.016	10.0044	0.0062	1 6450	0.0017
098	42 488	0.016	9 9956	0.0062	1 6444	0.0017
099	42.513	0.016	10.0016	0.0062	1.6454	0.0017
100	42.558	0.016	10.0120	0.0062	1.6471	0.0017
				0.0002		

Annex 1 The certified masses of ²³⁸U, ²³⁵U and ²³⁹Pu per unit of IRMM-1027s

Page 5 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
101	42.532	0.016	10.0060	0.0062	1.6462	0.0017
102	42.556	0.016	10.0116	0.0062	1.6471	0.0017
103	42.508	0.016	10.0004	0.0062	1.6452	0.0017
104	42.558	0.016	10.0120	0.0062	1.6471	0.0017
105	42.488	0.016	9.9956	0.0062	1.6444	0.0017
106	42.527	0.016	10.0048	0.0062	1.6460	0.0017
107	42.576	0.016	10.0164	0.0062	1.6479	0.0017
108	42.525	0.016	10.0044	0.0062	1.6459	0.0017
109	42.573	0.016	10.0156	0.0062	1.6477	0.0017
110	42.518	0.016	10.0028	0.0062	1.6456	0.0017
111	42.532	0.016	10.0060	0.0062	1.6462	0.0017
112	42.503	0.016	9.9992	0.0062	1.6450	0.0017
113	42.510	0.016	10.0008	0.0062	1.6453	0.0017
114	42.524	0.016	10.0040	0.0062	1.6458	0.0017
115	42.580	0.016	10.0172	0.0062	1.6480	0.0017
116	42.515	0.016	10.0020	0.0062	1.6455	0.0017
117	42.501	0.016	9.9988	0.0062	1.6450	0.0017
118	42.527	0.016	10.0048	0.0062	1.6460	0.0017
119	42.573	0.016	10.0156	0.0062	1.6477	0.0017
120	42.522	0.016	10.0036	0.0062	1.6458	0.0017
121	42.508	0.016	10.0004	0.0062	1.6452	0.0017
122	42.520	0.016	10.0032	0.0062	1.6457	0.0017
123	42.000	0.010	10.0140	0.0062	1.04/0	0.0017
124	42.483	0.010	9.9908	0.0062	1.0440	0.0017
120	42.073	0.010	10.0150	0.0062	1.04/7	0.0017
120	42.010	0.016	0.0000	0.0002	1.6430	0.0017
128	42.532	0.016	10.0060	0.0002	1.6462	0.0017
120	42 595	0.016	10.0208	0.0062	1.6486	0.0017
130	42 460	0.016	9 9912	0.0062	1 6437	0.0017
131	42.515	0.016	10.0020	0.0062	1.6455	0.0017
132	42.507	0.016	10.0000	0.0062	1.6452	0.0017
133	42.563	0.016	10.0132	0.0062	1.6473	0.0017
134	42.518	0.016	10.0028	0.0062	1.6456	0.0017
135	42.498	0.016	9.9980	0.0062	1.6448	0.0017
136	42.573	0.016	10.0156	0.0062	1.6477	0.0017
137	42.493	0.016	9.9968	0.0062	1.6446	0.0017
138	42.522	0.016	10.0036	0.0062	1.6458	0.0017
139	42.503	0.016	9.9992	0.0062	1.6450	0.0017
140	42.491	0.016	9.9964	0.0062	1.6446	0.0017
141	42.539	0.016	10.0076	0.0062	1.6464	0.0017
142	42.552	0.016	10.0108	0.0062	1.6469	0.0017
143	42.484	0.016	9.9948	0.0062	1.6443	0.0017
144	42.512	0.016	10.0012	0.0062	1.6454	0.0017
145	42.495	0.016	9.9972	0.0062	1.6447	0.0017
146	42.505	0.016	9.9996	0.0062	1.6451	0.0017
147	42.529	0.016	10.0052	0.0062	1.6460	0.0017
148	42.012	0.010	10.0012	0.0062	1.0404	0.0017
149	42.012	0.010	10.0012	0.0062	1.0404	0.0017
100	42.041	0.010	10.0080	0.0002	1.0400	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 6 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
· · · · ·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty ²⁾
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
151	42.508	0.016	10.0004	0.0062	1.6452	0.0017
152	42.522	0.016	10.0036	0.0062	1.6458	0.0017
153	42.473	0.016	9.9920	0.0062	1.6439	0.0017
154	42.586	0.016	10.0188	0.0062	1.6483	0.0017
155	42,490	0.016	9,9960	0.0062	1.6445	0.0017
156	42.467	0.016	9.9908	0.0062	1.6437	0.0017
157	42.527	0.016	10.0048	0.0062	1.6460	0.0017
158	42.532	0.016	10.0060	0.0062	1.6462	0.0017
159	42.571	0.016	10.0152	0.0062	1.6477	0.0017
160	42.503	0.016	9.9992	0.0062	1.6450	0.0017
161	42.484	0.016	9.9948	0.0062	1.6443	0.0017
162	42.534	0.016	10.0064	0.0062	1.6462	0.0017
163	42.512	0.016	10.0012	0.0062	1.6454	0.0017
164	42.505	0.016	9.9996	0.0062	1.6451	0.0017
165	42.541	0.016	10.0080	0.0062	1.6465	0.0017
166	42.559	0.016	10.0124	0.0062	1.6472	0.0017
167	42.483	0.016	9.9944	0.0062	1.6442	0.0017
168	42.501	0.016	9.9988	0.0062	1.6450	0.0017
169	42.498	0.016	9.9980	0.0062	1.6448	0.0017
170	42.518	0.016	10.0028	0.0062	1.6456	0.0017
171	42.561	0.016	10.0128	0.0062	1.6473	0.0017
172	42.488	0.016	9.9956	0.0062	1.6444	0.0017
173	42.510	0.016	10.0008	0.0062	1.6453	0.0017
174	42.564	0.018	10.0138	0.0062	1.6474	0.0017
1/5	42.541	0.016	10.0080	0.0062	1.6465	0.0017
1/6	42.449	0.016	9.9864	0.0062	1.6429	0.0017
170	42.030	0.010	10.0050	0.0062	1.0401	0.0017
170	42.028	0.016	0.0069	0.0062	1.0400	0.0017
100	42.485	0.010	10.0120	0.0002	1.8471	0.0017
181	42.000	0.016	0.0976	0.0002	1.6431	0.0017
182	42.530	0.016	10.0076	0.0002	1.6464	0.0017
183	42.5584	0.016	10.0136	0.0062	1 6474	0.0017
184	42.512	0.016	10.0012	0.0062	1.6454	0.0017
185	42.518	0.016	10.0028	0.0062	1.6456	0.0017
186	42.454	0.016	9,9876	0.0062	1.6431	0.0017
187	42.552	0.016	10.0108	0.0062	1.6469	0.0017
188	42.498	0.016	9.9980	0.0062	1.6448	0.0017
189	42.585	0.016	10.0184	0.0062	1.6482	0.0017
190	42.488	0.016	9.9956	0.0062	1.6444	0.0017
191	42.505	0.016	9.9996	0.0062	1.6451	0.0017
192	42.559	0.016	10.0124	0.0062	1.6472	0.0017
193	42.465	0.016	9.9903	0.0062	1.6436	0.0017
194	42.481	0.016	9.9939	0.0062	1.6442	0.0017
195	42.567	0.016	10.0143	0.0062	1.6475	0.0017
196	42.477	0.016	9.9931	0.0062	1.6440	0.0017
197	42.520	0.016	10.0031	0.0062	1.6457	0.0017
198	42.482	0.016	9.9943	0.0062	1.6442	0.0017
199	42.542	0.016	10.0083	0.0062	1.6465	0.0017
200	42.537	0.016	10.0071	0.0062	1.6463	0.0017

Annex 1 The certified masses of ²³⁸U, ²³⁵U and ²³⁹Pu per unit of IRMM-1027s

Page 7 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty ²⁾
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
201	42.554	0.016	10.0111	0.0062	1.6470	0.0017
202	42.474	0.016	9.9923	0.0062	1.6439	0.0017
203	42.511	0.016	10.0011	0.0062	1.6454	0.0017
204	42.581	0.016	10.0175	0.0062	1.6481	0.0017
205	42.465	0.016	9.9903	0.0062	1.6436	0.0017
206	42.544	0.016	10.0087	0.0062	1.6466	0.0017
207	42.503	0.016	9.9991	0.0062	1.6450	0.0017
208	42.537	0.016	10.0071	0.0062	1.6463	0.0017
209	42.479	0.016	9.9935	0.0062	1.6441	0.0017
210	42.516	0.016	10.0023	0.0062	1.6456	0.0017
211	42.556	0.016	10.0115	0.0062	1.6471	0.0017
212	42.499	0.016	9.9983	0.0062	1.6449	0.0017
213	42.493	0.016	9.9967	0.0062	1.6446	0.0017
214	42.530	0.016	10.0055	0.0062	1.6461	0.0017
215	42.501	0.016	9.9987	0.0062	1.6450	0.0017
216	42.510	0.016	10.0007	0.0062	1.6453	0.0017
217	42.540	0.016	10.0079	0.0062	1.6465	0.0017
218	42.498	0.016	9.9979	0.0062	1.6448	0.0017
219	42.540	0.016	10.0079	0.0062	1.6465	0.0017
220	42.516	0.016	10.0023	0.0062	1.6456	0.0017
221	42.499	0.016	9.9983	0.0062	1.6449	0.0017
222	42.537	0.016	10.0071	0.0062	1.6463	0.0017
223	42.508	0.016	10.0003	0.0062	1.6452	0.0017
224	42.533	0.016	10.0063	0.0062	1.6462	0.0017
225	42.494	0.016	9.9971	0.0062	1.6447	0.0017
226	42.578	0.016	10.0167	0.0062	1.6479	0.0017
227	42.530	0.016	10.0055	0.0062	1.6461	0.0017
228	42.491	0.016	9.9963	0.0062	1.0440	0.0017
229	42.501	0.016	9.9987	0.0062	1.0400	0.0017
230	42.083	0.010	10.0179	0.0002	1.0481	0.0017
231	42.008	0.016	0.0080	0.0002	1.04/0	0.0017
202	42.480	0.016	0.0084	0.0002	1.6448	0.0017
200	42.481	0.016	10,0000	0.0062	1.6452	0.0017
235	42.507	0.016	10.0000	0.0062	1 6484	0.0017
236	42.478	0.016	9 9932	0.0062	1 6441	0.0017
237	42,500	0.016	9 9984	0.0062	1 6449	0.0017
238	42,539	0.016	10 0076	0.0062	1 6464	0.0017
239	42.512	0.016	10.0012	0.0062	1.6454	0.0017
240	42.524	0.016	10.0040	0.0062	1.6458	0.0017
241	42 485	0.016	9,9948	0.0062	1.6443	0.0017
242	42,517	0.016	10.0024	0.0062	1.6456	0.0017
243	42.452	0.016	9.9872	0.0062	1.6431	0.0017
244	42.485	0.016	9.9948	0.0062	1.6443	0.0017
245	42.585	0.016	10.0184	0.0062	1.6482	0.0017
246	42.571	0.016	10.0152	0.0062	1.6477	0.0017
247	42.474	0.016	9.9924	0.0062	1.6439	0.0017
248	42.551	0.016	10.0104	0.0062	1.6469	0.0017
249	42.415	0.016	9.9784	0.0062	1.6416	0.0017
250	42.519	0.016	10.0028	0.0062	1.6456	0.0017

Annex 1 The certified masses of ²³⁸U, ²³⁵U and ²³⁹Pu per unit of IRMM-1027s

Page 8 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)	Mass 1)	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
251	42.510	0.016	10.0008	0.0062	1.6453	0.0017
252	42.505	0.016	9.9996	0.0062	1.6451	0.0017
253	42.532	0.016	10.0060	0.0062	1.6462	0.0017
254	42.548	0.016	10.0096	0.0062	1.6468	0.0017
255	42.529	0.016	10.0052	0.0062	1.6460	0.0017
256	42.503	0.016	9.9992	0.0062	1.6450	0.0017
257	42.463	0.016	9.9896	0.0062	1.6435	0.0017
258	42.515	0.016	10.0020	0.0062	1.6455	0.0017
259	42.527	0.016	10.0048	0.0062	1.6460	0.0017
260	42.498	0.016	9.9980	0.0062	1.6448	0.0017
261	42.508	0.016	10.0004	0.0062	1.6452	0.0017
262	42.474	0.016	9.9924	0.0062	1.6439	0.0017
263	42.527	0.016	10.0048	0.0062	1.6460	0.0017
264	42.519	0.016	10.0028	0.0062	1.6456	0.0017
265	42.541	0.016	10.0080	0.0062	1.6465	0.0017
266	42.520	0.016	10.0032	0.0062	1.6457	0.0017
267	42.461	0.016	9.9892	0.0062	1.6434	0.0017
268	42.498	0.016	9.9980	0.0062	1.6448	0.0017
269	42.440	0.016	9.9844	0.0062	1.6426	0.0017
270	42.531	0.016	10.0056	0.0062	1.6461	0.0017
271	42.561	0.016	10.0128	0.0062	1.6473	0.0017
272	42.539	0.016	10.0076	0.0062	1.6464	0.0017
2/3	42.480	0.010	9.9948	0.0062	1.0443	0.0017
2/4	42.041	0.010	10.0080	0.0062	1.0400	0.0017
279	42.478	0.010	9.9932	0.0062	1.0441	0.0017
270	42.003	0.016	9.9992	0.0062	1.0400	0.0017
270	42.405	0.010	10.0020	0.0002	1.6455	0.0017
270	42.515	0.016	10.0056	0.0002	1.6461	0.0017
280	42.001	0.016	0.0012	0.0002	1.6437	0.0017
281	42,580	0.016	10 0172	0.0002	1.6480	0.0017
282	42 442	0.016	9 9848	0.0062	1.6427	0.0017
283	42 500	0.016	9 9984	0.0062	1.6449	0.0017
284	42.529	0.016	10.0052	0.0062	1.6460	0.0017
285	42.502	0.016	9.9988	0.0062	1.6450	0.0017
286	42.480	0.016	9.9936	0.0062	1.6441	0.0017
287	42.480	0.016	9.9936	0.0062	1.6441	0.0017
288	42.459	0.016	9.9889	0.0062	1.6433	0.0017
289	42.560	0.016	10.0124	0.0062	1.6472	0.0017
290	42.578	0.016	10.0168	0.0062	1.6479	0.0017
291	42.459	0.016	9.9889	0.0062	1.6433	0.0017
292	42.442	0.016	9.9849	0.0062	1.6427	0.0017
293	42.524	0.016	10.0040	0.0062	1.6458	0.0017
294	42.558	0.016	10.0120	0.0062	1.6472	0.0017
295	42.517	0.016	10.0025	0.0062	1.6456	0.0017
296	42.473	0.016	9.9921	0.0062	1.6439	0.0017
297	42.483	0.016	9.9945	0.0062	1.6443	0.0017
298	42.441	0.016	9.9845	0.0062	1.6426	0.0017
299	42.578	0.016	10.0168	0.0062	1.6479	0.0017
300	42.492	0.016	9.9965	0.0062	1.6446	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 9 of 23

Vial No. Mass ¹ Uncertainty ⁴ Mass ¹ Uncertainty ⁴ Mass ¹ Uncertainty ⁴ 301 42.507 0.016 10.0001 0.0062 1.6452 0.0017 302 42.500 0.016 9.9985 0.0062 1.6445 0.0017 303 42.488 0.016 9.9967 0.0062 1.6445 0.0017 304 42.509 0.016 10.0005 0.0062 1.6452 0.0017 306 42.688 0.016 10.0380 0.0062 1.6413 0.0017 307 42.407 0.016 9.9765 0.0061 1.6413 0.0017 308 42.571 0.016 9.9899 0.0062 1.6443 0.0017 310 42.459 0.016 9.9929 0.0062 1.6449 0.0017 311 42.505 0.016 9.9923 0.0062 1.6449 0.0017 314 42.541 0.016 10.0124 0.0062 1.6454 0.0017 <th></th> <th></th> <th>²³⁸U</th> <th></th> <th>²³⁵U</th> <th></th> <th>²³⁹Pu</th>			²³⁸ U		²³⁵ U		²³⁹ Pu
Vial No. [mg]	· · · ·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)
301 42.507 0.016 10.0001 0.0062 1.6452 0.0017 302 42.500 0.016 9.9985 0.0062 1.6449 0.0017 303 42.488 0.016 9.9985 0.0062 1.6445 0.0017 304 42.509 0.016 10.0005 0.0062 1.6452 0.0017 305 42.429 0.016 9.9817 0.0062 1.6452 0.0017 306 42.688 0.016 10.0380 0.0062 1.6514 0.0017 307 42.407 0.016 9.8765 0.0061 1.6433 0.0017 308 42.571 0.016 9.9899 0.0062 1.6433 0.0017 310 42.478 0.016 9.9929 0.0062 1.6441 0.0017 311 42.505 0.016 9.9933 0.0062 1.6441 0.0017 314 42.507 0.016 10.0014 0.0062 1.6455 0.0017 315 <th>Vial No.</th> <th>[mg]</th> <th>[mg]</th> <th>[mg]</th> <th>[mg]</th> <th>[mg]</th> <th>[mg]</th>	Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
302 42.500 0.016 9.9985 0.0062 1.6449 0.0017 303 42.488 0.016 9.9957 0.0062 1.8452 0.0017 304 42.509 0.016 10.0005 0.0062 1.8452 0.0017 305 42.429 0.016 9.9817 0.0062 1.8422 0.0017 306 42.688 0.016 10.0380 0.0062 1.8414 0.0017 307 42.407 0.016 9.9765 0.0061 1.6413 0.0017 308 42.571 0.016 9.9889 0.0062 1.6433 0.0017 310 42.459 0.016 9.9829 0.0062 1.6440 0.0017 311 42.505 0.016 10.0224 0.0062 1.6451 0.0017 313 42.478 0.016 9.9933 0.0062 1.6449 0.0017 314 42.507 0.016 10.0017 0.0062 1.6454 0.0017 316 <td>301</td> <td>42.507</td> <td>0.016</td> <td>10.0001</td> <td>0.0062</td> <td>1.6452</td> <td>0.0017</td>	301	42.507	0.016	10.0001	0.0062	1.6452	0.0017
303 42.488 0.016 9.9957 0.0062 1.6445 0.0017 304 42.509 0.016 10.0005 0.0062 1.6452 0.0017 306 42.688 0.016 10.0380 0.0062 1.6412 0.0017 307 42.407 0.016 9.0765 0.0061 1.6413 0.0017 308 42.571 0.016 9.0892 0.0062 1.6443 0.0017 309 42.459 0.016 9.9889 0.0062 1.6433 0.0017 310 42.476 0.016 9.9929 0.0062 1.6451 0.0017 311 42.605 0.016 9.9933 0.0062 1.6469 0.0017 313 42.478 0.016 9.971 0.0062 1.6469 0.0017 314 42.551 0.016 10.0014 0.0062 1.6465 0.0017 315 42.396 0.016 9.971 0.0062 1.6465 0.0017 317	302	42.500	0.016	9.9985	0.0062	1.6449	0.0017
304 42.509 0.016 10.0005 0.0062 1.6452 0.0017 305 42.429 0.016 9.0817 0.0062 1.6412 0.0017 306 42.668 0.016 10.0380 0.0062 1.6614 0.0017 307 42.407 0.016 9.9765 0.0061 1.6413 0.0017 308 42.571 0.016 9.9889 0.0062 1.6477 0.0017 309 42.459 0.016 9.9899 0.0062 1.6433 0.0017 310 42.476 0.016 9.9929 0.0062 1.6440 0.0017 311 42.602 0.016 10.0224 0.0062 1.6489 0.0017 313 42.478 0.016 9.9933 0.0062 1.6469 0.0017 314 42.541 0.016 10.0014 0.0062 1.6465 0.0017 316 42.541 0.016 10.0017 0.0062 1.6465 0.0017 317 </td <td>303</td> <td>42.488</td> <td>0.016</td> <td>9.9957</td> <td>0.0062</td> <td>1.6445</td> <td>0.0017</td>	303	42.488	0.016	9.9957	0.0062	1.6445	0.0017
305 42.429 0.016 9.817 0.0062 1.8422 0.017 306 42.668 0.016 10.0380 0.0062 1.6514 0.0017 307 42.407 0.016 9.9765 0.0061 1.6413 0.0017 308 42.571 0.016 9.9889 0.0062 1.6477 0.0017 309 42.459 0.016 9.9889 0.0062 1.6433 0.0017 310 42.478 0.016 9.9929 0.0062 1.6440 0.0017 311 42.602 0.016 10.0224 0.0062 1.6441 0.0017 313 42.478 0.016 9.9933 0.0062 1.6469 0.0017 314 42.551 0.016 10.0104 0.0062 1.6469 0.0017 316 42.541 0.016 10.0010 0.0062 1.6465 0.0017 316 42.541 0.016 10.0017 0.0062 1.6462 0.0017 317 <td>304</td> <td>42.509</td> <td>0.016</td> <td>10.0005</td> <td>0.0062</td> <td>1.6452</td> <td>0.0017</td>	304	42.509	0.016	10.0005	0.0062	1.6452	0.0017
306 42.688 0.016 10.0380 0.0062 1.8514 0.0017 307 42.407 0.016 9.9765 0.0061 1.6413 0.0017 308 42.571 0.016 9.9765 0.0062 1.6477 0.0017 309 42.459 0.016 9.9889 0.0062 1.6433 0.0017 310 42.476 0.016 9.9929 0.0062 1.6451 0.0017 311 42.602 0.016 9.9929 0.0062 1.6451 0.0017 312 42.602 0.016 9.9933 0.0062 1.6451 0.0017 313 42.478 0.016 9.9741 0.0062 1.6469 0.0017 316 42.541 0.016 10.0010 0.0062 1.6452 0.0017 318 42.514 0.016 10.0017 0.0062 1.6452 0.0017 319 42.478 0.016 9.9933 0.0062 1.6452 0.0017 321 <td>305</td> <td>42.429</td> <td>0.016</td> <td>9.9817</td> <td>0.0062</td> <td>1.6422</td> <td>0.0017</td>	305	42.429	0.016	9.9817	0.0062	1.6422	0.0017
307 42.407 0.016 9.9765 0.0061 1.8413 0.0017 308 42.571 0.016 10.0152 0.0062 1.8477 0.0017 309 42.459 0.016 9.9889 0.0062 1.8433 0.0017 310 42.478 0.016 9.9929 0.0062 1.8431 0.0017 311 42.505 0.016 9.9929 0.0062 1.8451 0.0017 312 42.478 0.016 10.0224 0.0062 1.8489 0.0017 313 42.478 0.016 10.0124 0.0062 1.8489 0.0017 314 42.551 0.016 10.0104 0.0062 1.8469 0.0017 316 42.541 0.016 10.0010 0.0062 1.8465 0.0017 318 42.514 0.016 10.0017 0.0062 1.8465 0.0017 318 42.544 0.016 10.0064 0.0062 1.84452 0.0017 32	306	42.668	0.016	10.0380	0.0062	1.6514	0.0017
308 42.571 0.016 10.0152 0.0062 1.8477 0.0017 309 42.459 0.016 9.9889 0.0062 1.6433 0.0017 310 42.476 0.016 9.9929 0.0062 1.6441 0.0017 311 42.505 0.016 10.0224 0.0062 1.6481 0.0017 312 42.602 0.016 10.0224 0.0062 1.6489 0.0017 313 42.478 0.016 9.9933 0.0062 1.6489 0.0017 314 42.551 0.016 9.9741 0.0061 1.6409 0.0017 315 42.396 0.016 9.9741 0.0061 1.6465 0.0017 316 42.541 0.016 10.0011 0.0062 1.6465 0.0017 318 42.514 0.016 10.0017 0.0062 1.6452 0.0017 320 42.534 0.016 9.9983 0.0062 1.6462 0.0017 321 </td <td>307</td> <td>42.407</td> <td>0.016</td> <td>9.9765</td> <td>0.0061</td> <td>1.6413</td> <td>0.0017</td>	307	42.407	0.016	9.9765	0.0061	1.6413	0.0017
309 42.459 0.016 9.9889 0.0062 1.6433 0.0017 310 42.476 0.016 9.9929 0.0062 1.6440 0.0017 311 42.602 0.016 10.0224 0.0062 1.6451 0.0017 313 42.478 0.016 9.9933 0.0062 1.6489 0.0017 314 42.551 0.016 9.9933 0.0062 1.6441 0.0017 316 42.551 0.016 9.9741 0.0062 1.6469 0.0017 316 42.541 0.016 10.0080 0.0062 1.6452 0.0017 317 42.507 0.016 10.0011 0.0062 1.6454 0.0017 319 42.478 0.016 10.0017 0.0062 1.6454 0.0017 320 42.534 0.016 10.0084 0.0062 1.6462 0.0017 321 42.493 0.016 9.9833 0.0062 1.6447 0.0017 321 </td <td>308</td> <td>42.571</td> <td>0.016</td> <td>10.0152</td> <td>0.0062</td> <td>1.6477</td> <td>0.0017</td>	308	42.571	0.016	10.0152	0.0062	1.6477	0.0017
310 42.476 0.016 9.9929 0.0062 1.6440 0.0017 311 42.505 0.016 9.9997 0.0062 1.6451 0.0017 312 42.602 0.016 10.0224 0.0062 1.6489 0.0017 313 42.478 0.016 9.9933 0.0062 1.6441 0.0017 314 42.551 0.016 10.0104 0.0062 1.6469 0.0017 316 42.541 0.016 10.0010 0.0062 1.6465 0.0017 318 42.541 0.016 10.0011 0.0062 1.6452 0.0017 319 42.478 0.016 10.0017 0.0062 1.6454 0.0017 320 42.534 0.016 10.0017 0.0062 1.6462 0.0017 321 42.493 0.016 10.0064 0.0062 1.6462 0.0017 322 42.585 0.016 10.0184 0.0062 1.6462 0.0017 32	309	42.459	0.016	9.9889	0.0062	1.6433	0.0017
311 42.505 0.016 9.9997 0.0062 1.6451 0.0017 312 42.602 0.016 10.0224 0.0062 1.6489 0.0017 313 42.478 0.016 9.9933 0.0062 1.6441 0.0017 314 42.551 0.016 10.0104 0.0062 1.6469 0.0017 315 42.396 0.016 9.9741 0.0061 1.6409 0.0017 316 42.541 0.016 10.0080 0.0062 1.6465 0.0017 317 42.507 0.016 10.0017 0.0062 1.6452 0.0017 318 42.514 0.016 10.0017 0.0062 1.6454 0.0017 319 42.478 0.016 9.9933 0.0062 1.6462 0.0017 320 42.534 0.016 10.0184 0.0062 1.6462 0.0017 321 42.493 0.016 9.9821 0.0062 1.64432 0.0017 324	310	42.476	0.016	9.9929	0.0062	1.6440	0.0017
312 42.602 0.016 10.0224 0.0062 1.6489 0.0017 313 42.478 0.016 9.9933 0.0062 1.6441 0.0017 314 42.551 0.016 10.0104 0.0062 1.6469 0.0017 315 42.396 0.016 9.9741 0.0061 1.6469 0.0017 316 42.541 0.016 10.0080 0.0062 1.6465 0.0017 317 42.507 0.016 10.0001 0.0062 1.6452 0.0017 318 42.514 0.016 10.0017 0.0062 1.6454 0.0017 319 42.478 0.016 9.9933 0.0062 1.6464 0.0017 320 42.534 0.016 10.0064 0.0062 1.6467 0.0017 321 42.493 0.016 10.0184 0.0062 1.6447 0.0017 322 42.553 0.016 10.0108 0.0062 1.6443 0.0017 32	311	42.505	0.016	9.9997	0.0062	1.6451	0.0017
313 42.478 0.016 9.9933 0.0062 1.6441 0.0017 314 42.551 0.016 10.0104 0.0062 1.6469 0.0017 315 42.396 0.016 9.9741 0.0061 1.6409 0.0017 316 42.541 0.016 10.0080 0.0062 1.6465 0.0017 317 42.507 0.016 10.0001 0.0062 1.6452 0.0017 318 42.514 0.016 10.0017 0.0062 1.6454 0.0017 319 42.478 0.016 9.9933 0.0062 1.6461 0.0017 320 42.534 0.016 10.0064 0.0062 1.6467 0.0017 321 42.493 0.016 9.9969 0.0062 1.6447 0.0017 322 42.585 0.016 10.0184 0.0062 1.6443 0.0017 323 42.430 0.016 9.9949 0.0062 1.6443 0.0017 325<	312	42.602	0.016	10.0224	0.0062	1.6489	0.0017
314 42.551 0.016 10.0104 0.0062 1.6469 0.0017 315 42.396 0.016 9.9741 0.0061 1.6409 0.0017 316 42.541 0.016 10.0080 0.0062 1.6465 0.0017 317 42.507 0.016 10.0001 0.0062 1.6452 0.0017 318 42.514 0.016 10.0017 0.0062 1.6454 0.0017 319 42.478 0.016 9.9933 0.0062 1.6441 0.0017 320 42.534 0.016 9.9969 0.0062 1.6447 0.0017 321 42.493 0.016 9.9821 0.0062 1.6482 0.0017 323 42.430 0.016 9.9821 0.0062 1.6443 0.0017 324 42.553 0.016 10.0108 0.0062 1.6443 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 </td <td>313</td> <td>42.478</td> <td>0.016</td> <td>9.9933</td> <td>0.0062</td> <td>1.6441</td> <td>0.0017</td>	313	42.478	0.016	9.9933	0.0062	1.6441	0.0017
315 42.396 0.016 9.9741 0.0061 1.6409 0.0017 316 42.541 0.016 10.0080 0.0062 1.6465 0.0017 317 42.507 0.016 10.0001 0.0062 1.6452 0.0017 318 42.514 0.016 10.0017 0.0062 1.6454 0.0017 319 42.478 0.016 9.9933 0.0062 1.6441 0.0017 320 42.534 0.016 9.9969 0.0062 1.6462 0.0017 321 42.493 0.016 9.9969 0.0062 1.6482 0.0017 322 42.585 0.016 10.0184 0.0062 1.6482 0.0017 323 42.430 0.016 9.9821 0.0062 1.6447 0.0017 324 42.553 0.016 10.0108 0.0062 1.6443 0.0017 325 42.485 0.016 9.9949 0.0062 1.6444 0.0017 326 </td <td>314</td> <td>42.551</td> <td>0.016</td> <td>10.0104</td> <td>0.0062</td> <td>1.6469</td> <td>0.0017</td>	314	42.551	0.016	10.0104	0.0062	1.6469	0.0017
316 42.541 0.016 10.0080 0.0062 1.6465 0.0017 317 42.507 0.016 10.0001 0.0062 1.6452 0.0017 318 42.514 0.016 10.0017 0.0062 1.6454 0.0017 319 42.478 0.016 9.9933 0.0062 1.6461 0.0017 320 42.534 0.016 10.0064 0.0062 1.6447 0.0017 321 42.493 0.016 9.9969 0.0062 1.6482 0.0017 322 42.585 0.016 10.0184 0.0062 1.6482 0.0017 323 42.430 0.016 9.9821 0.0062 1.6422 0.0017 324 42.553 0.016 10.0108 0.0062 1.6443 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6444 0.0017 326	315	42.396	0.016	9.9741	0.0061	1.6409	0.0017
317 42.507 0.016 10.0001 0.0062 1.6452 0.0017 318 42.514 0.016 10.0017 0.0062 1.6454 0.0017 319 42.478 0.016 9.9933 0.0062 1.6454 0.0017 320 42.534 0.016 10.0064 0.0062 1.6462 0.0017 321 42.493 0.016 9.9969 0.0062 1.6447 0.0017 322 42.585 0.016 10.0184 0.0062 1.6482 0.0017 323 42.430 0.016 9.9821 0.0062 1.6422 0.0017 324 42.553 0.016 10.0108 0.0062 1.6443 0.0017 325 42.485 0.016 9.9949 0.0062 1.6444 0.0017 326 42.539 0.016 10.0076 0.0062 1.6464 0.0017 326 42.549 0.016 10.0000 0.0062 1.6464 0.0017 326	316	42.541	0.016	10.0080	0.0062	1.6465	0.0017
318 42.514 0.016 10.0017 0.0062 1.6454 0.0017 319 42.478 0.016 9.9933 0.0062 1.6441 0.0017 320 42.534 0.016 10.0064 0.0062 1.6462 0.0017 321 42.493 0.016 9.9969 0.0062 1.6447 0.0017 322 42.585 0.016 10.0184 0.0062 1.6482 0.0017 323 42.430 0.016 9.9821 0.0062 1.6422 0.0017 324 42.553 0.016 10.0108 0.0062 1.6443 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6464 0.0017 327 42.478 0.016 9.9933 0.0062 1.6464 0.0017 329 42.492 0.016 10.0040 0.0062 1.6468 0.0017 330<	317	42.507	0.016	10.0001	0.0062	1.6452	0.0017
319 42.478 0.016 9.9933 0.0062 1.6441 0.0017 320 42.534 0.016 10.0064 0.0062 1.6462 0.0017 321 42.493 0.016 9.9969 0.0062 1.6447 0.0017 322 42.585 0.016 10.0184 0.0062 1.6482 0.0017 323 42.430 0.016 9.9821 0.0062 1.6422 0.0017 324 42.553 0.016 10.0108 0.0062 1.6470 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6444 0.0017 327 42.478 0.016 9.9933 0.0062 1.6464 0.0017 328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 9.9965 0.0062 1.6468 0.0017 330 </td <td>318</td> <td>42.514</td> <td>0.016</td> <td>10.0017</td> <td>0.0062</td> <td>1.6454</td> <td>0.0017</td>	318	42.514	0.016	10.0017	0.0062	1.6454	0.0017
320 42.534 0.016 10.0064 0.0062 1.6462 0.0017 321 42.493 0.016 9.9969 0.0062 1.6447 0.0017 322 42.585 0.016 10.0184 0.0062 1.6447 0.0017 323 42.430 0.016 9.9821 0.0062 1.6422 0.0017 324 42.553 0.016 10.0108 0.0062 1.6470 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6444 0.0017 327 42.478 0.016 9.9933 0.0062 1.6444 0.0017 328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 10.0040 0.0062 1.6468 0.0017 330 42.524 0.016 10.0040 0.0062 1.6437 0.0017 331	319	42.478	0.016	9.9933	0.0062	1.6441	0.0017
321 42.493 0.016 9.9969 0.0062 1.6447 0.0017 322 42.585 0.016 10.0184 0.0062 1.6482 0.0017 323 42.430 0.016 9.9821 0.0062 1.6482 0.0017 324 42.553 0.016 10.0108 0.0062 1.6470 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6444 0.0017 327 42.478 0.016 9.9933 0.0062 1.6444 0.0017 328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 9.9965 0.0062 1.6468 0.0017 330 42.524 0.016 10.0040 0.0062 1.6437 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 333 </td <td>320</td> <td>42.534</td> <td>0.016</td> <td>10.0064</td> <td>0.0062</td> <td>1.6462</td> <td>0.0017</td>	320	42.534	0.016	10.0064	0.0062	1.6462	0.0017
322 42.585 0.016 10.0184 0.0062 1.6482 0.0017 323 42.430 0.016 9.9821 0.0062 1.6422 0.0017 324 42.553 0.016 10.0108 0.0062 1.6470 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6443 0.0017 327 42.478 0.016 9.9933 0.0062 1.6444 0.0017 328 42.549 0.016 10.0100 0.0062 1.6488 0.0017 329 42.492 0.016 10.0100 0.0062 1.6488 0.0017 330 42.524 0.016 9.9965 0.0062 1.6458 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 333 42.554 0.016 10.0152 0.0062 1.6477 0.0017 334<	321	42.493	0.016	9.9969	0.0062	1.6447	0.0017
323 42.430 0.016 9.9821 0.0062 1.6422 0.0017 324 42.553 0.016 10.0108 0.0062 1.6470 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6443 0.0017 327 42.478 0.016 9.9933 0.0062 1.6444 0.0017 328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 9.9965 0.0062 1.6468 0.0017 330 42.524 0.016 10.0040 0.0062 1.6458 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0152 0.0062 1.6470 0.0017 334<	322	42.585	0.016	10.0184	0.0062	1.6482	0.0017
324 42.553 0.016 10.0108 0.0062 1.6470 0.0017 325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6443 0.0017 327 42.478 0.016 9.9933 0.0062 1.6441 0.0017 328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 9.9965 0.0062 1.6446 0.0017 330 42.524 0.016 9.9965 0.0062 1.6458 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0152 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6470 0.0017 335 </td <td>323</td> <td>42.430</td> <td>0.016</td> <td>9.9821</td> <td>0.0062</td> <td>1.6422</td> <td>0.0017</td>	323	42.430	0.016	9.9821	0.0062	1.6422	0.0017
325 42.485 0.016 9.9949 0.0062 1.6443 0.0017 326 42.539 0.016 10.0076 0.0062 1.6464 0.0017 327 42.478 0.016 9.9933 0.0062 1.6441 0.0017 328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 9.9965 0.0062 1.6446 0.0017 330 42.524 0.016 10.0040 0.0062 1.6458 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0112 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.0062 1.6461 0.0017	324	42.553	0.016	10.0108	0.0062	1.6470	0.0017
326 42.539 0.016 10.0076 0.0062 1.6464 0.0017 327 42.478 0.016 9.9933 0.0062 1.6441 0.0017 328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 9.9965 0.0062 1.6468 0.0017 330 42.524 0.016 10.0040 0.0062 1.6458 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0112 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.0082 1.6461 0.0017	325	42.485	0.016	9.9949	0.0062	1.6443	0.0017
327 42.478 0.016 9.9933 0.0062 1.6441 0.0017 328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 9.9965 0.0062 1.6446 0.0017 330 42.524 0.016 9.9965 0.0062 1.6458 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0152 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.0082 1.6461 0.0017	326	42.539	0.016	10.0076	0.0062	1.6464	0.0017
328 42.549 0.016 10.0100 0.0062 1.6468 0.0017 329 42.492 0.016 9.9965 0.0062 1.6446 0.0017 330 42.524 0.016 10.0040 0.0062 1.6458 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0112 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.0062 1.6461 0.0017	327	42.478	0.016	9.9933	0.0062	1.6441	0.0017
329 42.492 0.016 9.9965 0.0062 1.6446 0.0017 330 42.524 0.016 10.0040 0.0062 1.6458 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0112 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.082 1.6461 0.0017	328	42.549	0.016	10.0100	0.0062	1.6468	0.0017
330 42.524 0.010 10.0040 0.0062 1.0438 0.0017 331 42.469 0.016 9.9913 0.0062 1.6437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0112 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.0082 1.6461 0.0017	329	42.492	0.016	9.9965	0.0062	1.0440	0.0017
331 42.409 0.010 9.9913 0.0002 1.0437 0.0017 332 42.571 0.016 10.0152 0.0062 1.6477 0.0017 333 42.554 0.016 10.0112 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.082 1.6461 0.0017	330	42.024	0.010	0.0040	0.0062	1.0408	0.0017
332 42.571 0.010 10.0132 0.002 1.0477 0.0017 333 42.554 0.016 10.0112 0.0062 1.6470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.082 1.6461 0.0017	222	42.408	0.010	10.0152	0.0062	1.0437	0.0017
333 42.534 0.010 10.0112 0.0002 1.0470 0.0017 334 42.439 0.016 9.9841 0.0062 1.6425 0.0017 335 42.531 0.016 10.0056 0.062 1.6461 0.0017	222	42.071	0.010	10.0152	0.0002	1.0477	0.0017
335 42.531 0.016 10.0056 0.062 1.6461 0.0017	224	42.004	0.016	0.0941	0.0002	1.6470	0.0017
333 72.331 0.010 10.0030 0.0002 1.0401 0.0017	335	42.531	0.016	10.0058	0.0002	1.6481	0.0017
336 42 517 0 018 10 0025 0 0062 1 6456 0 0017	336	42.531	0.016	10.0025	0.0002	1.6456	0.0017
337 42.485 0.016 9.9949 0.0062 1.6433 0.0017	337	42.485	0.016	9,9949	0.0062	1.6443	0.0017
338 42 484 0.016 9.9901 0.0062 1.6435 0.0017	338	42.464	0.016	9,9901	0.0062	1.6435	0.0017
339 42.636 0.016 10.0304 0.0062 1.6502 0.0017	339	42.636	0.016	10.0304	0.0062	1.6502	0.0017
340 42 439 0.016 9.9841 0.0062 1.6425 0.0017	340	42 439	0.016	9,9841	0.0062	1.6425	0.0017
341 42.575 0.016 10.0160 0.0062 1.6478 0.0017	341	42.575	0.016	10.0160	0.0062	1.6478	0.0017
342 42.505 0.016 9.9997 0.0062 1.6451 0.0017	342	42.505	0.016	9.9997	0.0062	1.6451	0.0017
343 42.531 0.016 10.0056 0.0062 1.6461 0.0017	343	42.531	0.016	10.0056	0.0062	1.6461	0.0017
344 42.458 0.016 9.9885 0.0062 1.6433 0.0017	344	42.458	0.016	9.9885	0.0062	1.6433	0.0017
345 42.568 0.016 10.0144 0.0062 1.6475 0.0017	345	42.568	0.016	10.0144	0.0062	1.6475	0.0017
346 42.400 0.016 9.9749 0.0061 1.6410 0.0017	346	42.400	0.016	9.9749	0.0061	1.6410	0.0017
347 42.597 0.016 10.0212 0.0062 1.6487 0.0017	347	42.597	0.016	10.0212	0.0062	1.6487	0.0017
348 42.488 0.016 9.9957 0.0062 1.6445 0.0017	348	42.488	0.016	9.9957	0.0062	1.6445	0.0017
349 42.575 0.016 10.0160 0.0062 1.6478 0.0017	349	42.575	0.016	10.0160	0.0062	1.6478	0.0017
350 42.517 0.016 10.0025 0.0062 1.6456 0.0017	350	42.517	0.016	10.0025	0.0062	1.6456	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 10 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
· ·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
351	42.461	0.016	9.9893	0.0062	1.6434	0.0017
352	42.621	0.016	10.0268	0.0062	1.6496	0.0017
353	42.434	0.016	9.9829	0.0062	1.6424	0.0017
354	42.531	0.016	10.0056	0.0062	1.6461	0.0017
355	42.515	0.016	10.0021	0.0062	1.6455	0.0017
356	42.561	0.016	10.0128	0.0062	1.6473	0.0017
357	42.447	0.016	9.9861	0.0062	1.6429	0.0017
358	42.629	0.016	10.0288	0.0062	1.6499	0.0017
359	42.442	0.016	9.9849	0.0062	1.6427	0.0017
360	42.510	0.016	10.0009	0.0062	1.6453	0.0017
361	42.583	0.016	10.0180	0.0062	1.6481	0.0017
362	42.546	0.016	10.0092	0.0062	1.6467	0.0017
363	42.493	0.016	9.9969	0.0062	1.6447	0.0017
364	42.441	0.016	9.9845	0.0062	1.6426	0.0017
365	42.548	0.016	10.0096	0.0062	1.6468	0.0017
366	42.468	0.016	9.9909	0.0062	1.6437	0.0017
367	42.656	0.016	10.0352	0.0062	1.6510	0.0017
368	42.512	0.016	10.0013	0.0062	1.6454	0.0017
309	42.002	0.010	9.9989	0.0062	1.0400	0.0017
370	42.427	0.010	10,0128	0.0062	1.0421	0.0017
372	42.000	0.016	0.0077	0.0062	1.6449	0.0017
373	42.558	0.016	10.0116	0.0002	1.6471	0.0017
374	42.500	0.016	0 0080	0.0002	1.6450	0.0017
375	42.002	0.016	0.00081	0.0062	1 6445	0.0017
376	42.551	0.016	10.0104	0.0062	1.6469	0.0017
377	42.422	0.016	9,9801	0.0062	1.6419	0.0017
378	42.611	0.016	10.0244	0.0062	1.6492	0.0017
379	42.588	0.016	10.0192	0.0062	1.6483	0.0017
380	42.480	0.016	9.9937	0.0062	1.6441	0.0017
381	42.556	0.016	10.0116	0.0062	1.6471	0.0017
382	42.369	0.016	9.9677	0.0061	1.6399	0.0017
383	42.643	0.016	10.0320	0.0062	1.6504	0.0017
384	42.429	0.016	9.9817	0.0062	1.6422	0.0017
385	42.621	0.016	10.0269	0.0062	1.6496	0.0017
386	42.480	0.016	9.9937	0.0062	1.6441	0.0017
387	42.548	0.016	10.0097	0.0062	1.6468	0.0017
388	42.439	0.016	9.9841	0.0062	1.6426	0.0017
389	42.587	0.016	10.0189	0.0062	1.6483	0.0017
390	42.475	0.010	9.9925	0.0062	1.0439	0.0017
202	42.401	0.010	10.0401	0.0062	1.6510	0.0017
302	42.077	0.010	10.0401	0.0062	1.6459	0.0017
304	42.507	0.016	10.0037	0.0002	1.6452	0.0017
395	42,458	0.016	9,9885	0.0062	1.6433	0.0017
396	42.512	0.016	10.0013	0.0062	1.6454	0.0017
397	42.529	0.016	10.0053	0.0062	1.6460	0.0017
398	42.536	0.016	10.0069	0.0062	1.6463	0.0017
399	42.485	0.016	9.9949	0.0062	1.6443	0.0017
400	42.538	0.016	10.0073	0.0062	1.6464	0.0017
400	42.038	0.010	10.0073	0.0002	1.0404	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 11 of 23

		²³⁸ U		²³⁵ U	•	²³⁹ Pu
	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
401	42.560	0.016	10.0125	0.0062	1.6472	0.0017
402	42.532	0.016	10.0061	0.0062	1.6462	0.0017
403	42.498	0.016	9.9981	0.0062	1.6449	0.0017
404	42.510	0.016	10.0009	0.0062	1.6453	0.0017
405	42.585	0.016	10.0185	0.0062	1.6482	0.0017
406	42.512	0.016	10.0013	0.0062	1.6454	0.0017
407	42.532	0.016	10.0061	0.0062	1.6462	0.0017
408	42.497	0.016	9.9977	0.0062	1.6448	0.0017
409	42.517	0.016	10.0025	0.0062	1.6456	0.0017
410	42.555	0.016	10.0113	0.0062	1.6470	0.0017
411	42.529	0.016	10.0053	0.0062	1.6460	0.0017
412	42.454	0.016	9.9877	0.0062	1.6431	0.0017
413	42.519	0.016	10.0029	0.0062	1.6456	0.0017
414	42.612	0.016	10.0249	0.0062	1.6493	0.0017
415	42.461	0.016	9.9893	0.0062	1.6434	0.0017
416	42.556	0.016	10.0117	0.0062	1.64/1	0.0017
41/	42.524	0.010	10.0041	0.0062	1.0408	0.0017
410	42.030	0.016	0.0002	0.0062	1.6404	0.0017
418	42.401	0.010	10,0085	0.0062	1.6462	0.0017
420	42.004	0.016	10.0005	0.0002	1.6478	0.0017
422	42.500	0.016	10.0140	0.0002	1.6453	0.0017
423	42 521	0.016	10.0033	0.0002	1.6457	0.0017
424	42.551	0.016	10.0105	0.0062	1.6469	0.0017
425	42 437	0.016	9,9837	0.0062	1.6425	0.0017
426	42.575	0.016	10.0161	0.0062	1.6478	0.0017
427	42.536	0.016	10.0069	0.0062	1.6463	0.0017
428	42.565	0.016	10.0137	0.0062	1.6474	0.0017
429	42.473	0.016	9.9921	0.0062	1.6439	0.0017
430	42.553	0.016	10.0109	0.0062	1.6470	0.0017
431	42.492	0.016	9.9965	0.0062	1.6446	0.0017
432	42.539	0.016	10.0077	0.0062	1.6464	0.0017
433	42.430	0.016	9.9821	0.0062	1.6422	0.0017
434	42.655	0.016	10.0349	0.0062	1.6509	0.0017
435	42.515	0.016	10.0021	0.0062	1.6455	0.0017
436	42.553	0.016	10.0109	0.0062	1.64/0	0.0017
437	42.481	0.016	9.9941	0.0062	1.0442	0.0017
438	42.487	0.016	9.9977	0.0062	1.0448	0.0017
439	42.077	0.016	10.0105	0.0002	1.04/9	0.0017
440	42.002	0.016	0.0001	0.0062	1.6402	0.0017
442	42.400	0.016	10 0261	0.0002	1 6405	0.0017
443	42.500	0.016	9 9985	0.0062	1 6440	0.0017
444	42.504	0.016	9,9993	0.0062	1.6451	0.0017
445	42.502	0.016	9.9989	0.0062	1.6450	0.0017
446	42.543	0.016	10.0085	0.0062	1.6466	0.0017
447	42.570	0.016	10.0149	0.0062	1.6476	0.0017
448	42.464	0.016	9.9901	0.0062	1.6435	0.0017
449	42.553	0.016	10.0109	0.0062	1.6470	0.0017
450	42.498	0.016	9.9981	0.0062	1.6449	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 12 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
· · · ·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
451	42.532	0.016	10.0061	0.0062	1.6462	0.0017
452	42.475	0.016	9.9925	0.0062	1.6439	0.0017
453	42.583	0.016	10.0181	0.0062	1.6481	0.0017
454	42.590	0.016	10.0197	0.0062	1.6484	0.0017
455	42,424	0.016	9,9805	0.0062	1.6420	0.0017
456	42.563	0.016	10.0133	0.0062	1.6474	0.0017
457	42.534	0.016	10.0065	0.0062	1.6462	0.0017
458	42.466	0.016	9.9905	0.0062	1.6436	0.0017
459	42.595	0.016	10.0209	0.0062	1.6486	0.0017
460	42.468	0.016	9.9909	0.0062	1.6437	0.0017
461	42.481	0.016	9.9941	0.0062	1.6442	0.0017
462	42.556	0.016	10.0117	0.0062	1.6471	0.0017
463	42.570	0.016	10.0149	0.0062	1.6476	0.0017
464	42.476	0.016	9.9929	0.0062	1.6440	0.0017
465	42.478	0.016	9.9933	0.0062	1.6441	0.0017
466	42.543	0.016	10.0085	0.0062	1.6466	0.0017
467	42.623	0.016	10.0273	0.0062	1.6497	0.0017
468	42.524	0.016	10.0041	0.0062	1.6458	0.0017
469	42.515	0.016	10.0021	0.0062	1.6455	0.0017
470	42.488	0.016	9.9957	0.0062	1.6445	0.0017
471	42.531	0.016	10.0057	0.0062	1.6461	0.0017
4/2	42.492	0.016	9.9965	0.0062	1.6446	0.0017
4/3	42.582	0.016	10.0177	0.0062	1.6481	0.0017
4/4	42.463	0.016	9.9897	0.0062	1.6435	0.0017
4/5	42.527	0.016	10.0049	0.0062	1.0400	0.0017
470	42.040	0.010	10.0007	0.0002	1.6458	0.0017
479	42.018	0.016	10.0028	0.0062	1.6465	0.0017
479	42.514	0.016	10.00017	0.0062	1.6454	0.0017
480	42 470	0.016	9 9913	0.0062	1 6437	0.0017
481	42,568	0.016	10 0145	0.0062	1 6476	0.0017
482	42 422	0.016	9,9801	0.0062	1.6419	0.0017
483	42,490	0.016	9,9961	0.0062	1.6445	0.0017
484	42.548	0.016	10.0097	0.0062	1.6468	0.0017
485	42.507	0.016	10.0001	0.0062	1.6452	0.0017
486	42.422	0.016	9.9801	0.0062	1.6419	0.0017
487	42.524	0.016	10.0041	0.0062	1.6458	0.0017
488	42.563	0.016	10.0133	0.0062	1.6474	0.0017
489	42.521	0.016	10.0033	0.0062	1.6457	0.0017
490	42.562	0.016	10.0129	0.0062	1.6473	0.0017
491	42.499	0.016	9.9981	0.0062	1.6449	0.0017
492	42.460	0.016	9.9889	0.0062	1.6433	0.0017
493	42.439	0.016	9.9841	0.0062	1.6426	0.0017
494	42.548	0.016	10.0097	0.0062	1.6468	0.0017
495	42.522	0.016	10.0037	0.0062	1.6458	0.0017
496	42.546	0.016	10.0093	0.0062	1.6467	0.0017
497	42.512	0.016	10.0013	0.0062	1.6454	0.0017
498	42.494	0.016	9.9969	0.0062	1.6447	0.0017
499	42.597	0.016	10.0213	0.0062	1.6487	0.0017
500	42.465	0.016	9.9901	0.0062	1.6435	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 13 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
501	42.607	0.016	10.0237	0.0062	1.6491	0.0017
502	42.432	0.016	9.9825	0.0062	1.6423	0.0017
503	42.543	0.016	10.0085	0.0062	1.6466	0.0017
504	42.507	0.016	10.0001	0.0062	1.6452	0.0017
505	42.495	0.016	9,9973	0.0062	1.6447	0.0017
506	42.534	0.016	10.0065	0.0062	1.6462	0.0017
507	42.550	0.016	10.0101	0.0062	1.6468	0.0017
508	42.507	0.016	10.0001	0.0062	1.6452	0.0017
509	42.548	0.016	10.0097	0.0062	1.6468	0.0017
510	42.497	0.016	9.9977	0.0062	1.6448	0.0017
511	42.528	0.016	10.0049	0.0062	1.6460	0.0017
512	42.514	0.016	10.0017	0.0062	1.6455	0.0017
513	42.490	0.016	9.9961	0.0062	1.6445	0.0017
514	42.560	0.016	10.0125	0.0062	1.6472	0.0017
515	42.517	0.016	10.0025	0.0062	1.6456	0.0017
516	42.480	0.016	9.9937	0.0062	1.6441	0.0017
517	42.483	0.016	9.9945	0.0062	1.6443	0.0017
518	42.567	0.016	10.0141	0.0062	1.6475	0.0017
519	42.521	0.016	10.0033	0.0062	1.6457	0.0017
520	42.536	0.016	10.0069	0.0062	1.6463	0.0017
521	42.570	0.016	10.0149	0.0062	1.6476	0.0017
522	42.471	0.016	9.9917	0.0062	1.6438	0.0017
523	42.629	0.016	10.0289	0.0062	1.6499	0.0017
524	42.408	0.010	9.9885	0.0062	1.0433	0.0017
525	42.040	0.010	10.0089	0.0062	1.0400	0.0017
520	42.400	0.016	10.0141	0.0002	1.0433	0.0017
529	42.007	0.016	0.0933	0.0062	1.6475	0.0017
520	42,450	0.016	10.0337	0.0002	1.6507	0.0017
530	42.000	0.016	0.0037	0.0062	1 6441	0.0017
531	42.534	0.016	10 0065	0.0062	1.6462	0.0017
532	42 471	0.016	9.9917	0.0062	1.6438	0.0017
533	42.584	0.016	10.0181	0.0062	1.6482	0.0017
534	42.550	0.016	10.0101	0.0062	1.6468	0.0017
535	42.514	0.016	10.0017	0.0062	1.6455	0.0017
536	42.482	0.016	9.9941	0.0062	1.6442	0.0017
537	42.546	0.016	10.0093	0.0062	1.6467	0.0017
538	42.548	0.016	10.0097	0.0062	1.6468	0.0017
539	42.505	0.016	9.9997	0.0062	1.6451	0.0017
540	42.539	0.016	10.0077	0.0062	1.6464	0.0017
541	42.612	0.016	10.0249	0.0062	1.6493	0.0017
542	42.454	0.016	9.9877	0.0062	1.6432	0.0017
543	42.456	0.016	9.9881	0.0062	1.6432	0.0017
544	42.582	0.016	10.0177	0.0062	1.6481	0.0017
545	42.528	0.016	10.0049	0.0062	1.6460	0.0017
546	42.512	0.016	10.0013	0.0062	1.6454	0.0017
547	42.485	0.016	9.9949	0.0062	1.6443	0.0017
548	42.556	0.016	10.0117	0.0062	1.6471	0.0017
549	42.499	0.016	9.9981	0.0062	1.6449	0.0017
550	42.551	0.016	10.0105	0.0062	1.6469	0.0017

Annex 1 The certified masses of ²³⁸U, ²³⁵U and ²³⁹Pu per unit of IRMM-1027s

Page 14 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty ²⁾
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
551	42.485	0.016	9.9949	0.0062	1.6443	0.0017
552	42.514	0.016	10.0017	0.0062	1.6455	0.0017
553	42.643	0.016	10.0321	0.0062	1.6505	0.0017
554	42 490	0.016	9,9961	0.0062	1.6445	0.0017
555	42 471	0.016	9 9917	0.0062	1 6438	0.0017
556	42 528	0.016	10 0049	0.0062	1.6460	0.0017
557	42.520	0.016	10.0057	0.0062	1.6461	0.0017
558	42 526	0.016	10 0045	0.0062	1 6459	0.0017
550	42.500	0.016	10.0005	0.0062	1.6453	0.0017
560	42.567	0.016	10.0000	0.0062	1.6475	0.0017
561	42 471	0.016	9 9917	0.0002	1 6438	0.0017
562	42.538	0.016	10.0073	0.0062	1 6464	0.0017
562	42.500	0.016	10.0073	0.0062	1.6493	0.0017
564	42.008	0.016	0.0833	0.0002	1.6424	0.0017
585	42,400	0.016	0.0077	0.0002	1.6449	0.0017
566	42.577	0.016	10.0165	0.0002	1.6470	0.0017
567	42.077	0.016	0.0903	0.0002	1.6424	0.0017
580	42.570	0.016	10.0160	0.0002	1.6400	0.0017
500	42.078	0.010	0.0001	0.0002	1.0400	0.0017
509	42.400	0.010	8.8001	0.0002	1.0432	0.0017
570	42.008	0.010	10.0121	0.0002	1.0472	0.0017
570	42.003	0.010	10.0133	0.0002	1.04/4	0.0017
572	42.040	0.010	10.0093	0.0062	1.0407	0.0017
573	42.040	0.010	10.0089	0.0002	1.0400	0.0017
575	42.417	0.010	9.9789	0.0062	1.0417	0.0017
575	42.008	0.010	10.0357	0.0062	1.0010	0.0017
5/6	42.490	0.016	9.9901	0.0062	1.0440	0.0017
5//	42.504	0.016	9.9993	0.0062	1.0451	0.0017
578	42.021	0.010	10.0033	0.0062	1.0407	0.0017
579	42.510	0.016	10.0021	0.0062	1.0400	0.0017
580	42.546	0.016	10.0093	0.0062	1.6467	0.0017
581	42.543	0.016	10.0085	0.0062	1.6466	0.0017
582	42.520	0.016	10.0045	0.0062	1.0409	0.0017
583	42.434	0.016	9.9829	0.0062	1.6424	0.0017
584	42.529	0.016	10.0053	0.0062	1.6460	0.0017
080	42.041	0.010	10.0081	0.0062	1.0400	0.0017
080	42.476	0.016	9.9929	0.0062	1.6440	0.0017
587	42.606	0.016	10.0233	0.0062	1.6490	0.0017
588	42.458	0.016	9.9885	0.0062	1.6433	0.0017
589	42.590	0.016	10.0197	0.0062	1.6484	0.0017
590	42.567	0.016	10.0141	0.0062	1.64/5	0.0017
591	42.468	0.016	9.9909	0.0062	1.6437	0.0017
592	42.548	0.016	10.0097	0.0062	1.6468	0.0017
593	42.592	0.016	10.0201	0.0062	1.6485	0.0017
594	42.436	0.016	9.9833	0.0062	1.6424	0.0017
595	42.527	0.016	10.0049	0.0062	1.6460	0.0017
596	42.553	0.016	10.0109	0.0062	1.6470	0.0017
597	42.422	0.016	9.9801	0.0062	1.6419	0.0017
598	42.568	0.016	10.0145	0.0062	1.6476	0.0017
599	42.517	0.016	10.0025	0.0062	1.6456	0.0017
600	42.492	0.016	9.9965	0.0062	1.6446	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 15 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty ²⁾
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
601	42.476	0.016	9.9929	0.0062	1.6440	0.0017
602	42.636	0.016	10.0305	0.0062	1.6502	0.0017
603	42.521	0.016	10.0033	0.0062	1.6457	0.0017
604	42.527	0.016	10.0049	0.0062	1.6460	0.0017
605	42.526	0.016	10.0045	0.0062	1.6459	0.0017
606	42.538	0.016	10.0073	0.0062	1.6464	0.0017
607	42.492	0.016	9.9965	0.0062	1.6446	0.0017
608	42.500	0.016	9.9985	0.0062	1.6449	0.0017
609	42.570	0.016	10.0149	0.0062	1.6476	0.0017
610	42.483	0.016	9.9945	0.0062	1.6443	0.0017
611	42.590	0.016	10.0197	0.0062	1.6484	0.0017
612	42.543	0.016	10.0085	0.0062	1.6466	0.0017
613	42.420	0.016	9.9797	0.0062	1.6418	0.0017
614	42.626	0.016	10.0281	0.0062	1.6498	0.0017
615	42.437	0.016	9.9837	0.0062	1.6425	0.0017
616	42.572	0.016	10.0153	0.0062	1.6477	0.0017
617	42.524	0.016	10.0041	0.0062	1.6458	0.0017
618	42.510	0.016	10.0009	0.0062	1.6453	0.0017
619	42.485	0.016	9.9949	0.0062	1.6443	0.0017
620	42.529	0.016	10.0053	0.0062	1.6460	0.0017
621	42.609	0.016	10.0241	0.0062	1.6491	0.0017
622	42.471	0.016	9.9917	0.0062	1.6438	0.0017
623	42.492	0.016	9.9965	0.0062	1.6446	0.0017
624	42.602	0.016	10.0225	0.0062	1.6489	0.0017
625	42.502	0.016	9.9989	0.0062	1.6450	0.0017
626	42.516	0.016	10.0021	0.0062	1.6455	0.0017
627	42.548	0.016	10.0097	0.0062	1.6468	0.0017
628	42.471	0.016	9.9917	0.0062	1.6438	0.0017
629	42.517	0.016	10.0025	0.0062	1.6456	0.0017
630	42.563	0.016	10.0133	0.0062	1.6474	0.0017
631	42.502	0.016	9.9989	0.0062	1.6450	0.0017
632	42.558	0.016	10.0121	0.0062	1.6472	0.0017
633	42.470	0.016	9.9913	0.0062	1.6437	0.0017
634	42.565	0.016	10.0137	0.0062	1.6474	0.0017
635	42.517	0.016	10.0025	0.0062	1.6456	0.0017
636	42.522	0.016	10.0037	0.0062	1.6458	0.0017
637	42.509	0.016	10.0005	0.0062	1.6453	0.0017
638	42.510	0.016	10.0009	0.0062	1.6453	0.0017
639	42.521	0.016	10.0033	0.0062	1.6457	0.0017
640	42.533	0.016	10.0061	0.0062	1.6462	0.0017
641	42.526	0.016	10.0045	0.0062	1.6459	0.0017
642	42.538	0.016	10.0073	0.0062	1.6464	0.0017
643	42.521	0.016	10.0033	0.0062	1.6457	0.0017
644	42.492	0.016	9.9965	0.0062	1.6446	0.0017
645	42.565	0.016	10.0137	0.0062	1.6474	0.0017
646	42.534	0.016	10.0065	0.0062	1.6462	0.0017
647	42.499	0.016	9.9981	0.0062	1.6449	0.0017
648	42.507	0.016	10.0001	0.0062	1.6452	0.0017
649	42.616	0.016	10.0257	0.0062	1.6494	0.0017
650	42.558	0.016	10.0121	0.0062	1.6472	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 16 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
651	42.412	0.016	9.9777	0.0062	1.6415	0.0017
652	42.558	0.016	10.0121	0.0062	1.6472	0.0017
653	42.499	0.016	9.9981	0.0062	1.6449	0.0017
654	42.485	0.016	9.9949	0.0062	1.6443	0.0017
655	42.519	0.016	10.0029	0.0062	1.6456	0.0017
656	42.565	0.016	10.0137	0.0062	1.6474	0.0017
657	42.582	0.016	10.0177	0.0062	1.6481	0.0017
658	42.487	0.016	9.9953	0.0062	1.6444	0.0017
659	42.563	0.016	10.0133	0.0062	1.6474	0.0017
660	42.492	0.016	9.9965	0.0062	1.6446	0.0017
661	42.551	0.016	10.0105	0.0062	1.6469	0.0017
662	42.539	0.016	10.0077	0.0062	1.6464	0.0017
663	42.480	0.016	9.9937	0.0062	1.6441	0.0017
664	42.536	0.016	10.0069	0.0062	1.6463	0.0017
665	42.507	0.016	10.0001	0.0062	1.6452	0.0017
666	42.527	0.016	10.0049	0.0062	1.6460	0.0017
667	42.536	0.016	10.0069	0.0062	1.6463	0.0017
668	42.594	0.016	10.0205	0.0062	1.6485	0.0017
669	42.431	0.016	9.9821	0.0062	1.6422	0.0017
670	42.529	0.016	10.0053	0.0062	1.6460	0.0017
671	42.624	0.016	10.0277	0.0062	1.6497	0.0017
672	42.434	0.016	9.9829	0.0062	1.6424	0.0017
6/3	42.553	0.016	10.0109	0.0062	1.6470	0.0017
0/4	42.492	0.016	9.9965	0.0062	1.6446	0.0017
0/0	42.492	0.010	9.9900	0.0062	1.0440	0.0017
0/0 877	42.527	0.016	10.0049	0.0002	1.0400	0.0017
870	42.488	0.010	10,0085	0.0002	1.6483	0.0017
870	42.534	0.010	10.0003	0.0062	1.6465	0.0017
800	42.541	0.010	0.0001	0.0002	1.6465	0.0017
681	42.504	0.016	10.0021	0.0002	1.6455	0.0017
682	42.641	0.016	10.0317	0.0002	1.6504	0.0017
683	42 448	0.016	9 9861	0.0062	1 6429	0.0017
684	42.507	0.016	10.0001	0.0062	1.6452	0.0017
685	42.521	0.016	10.0033	0.0062	1.6457	0.0017
686	42.521	0.016	10.0033	0.0062	1.6457	0.0017
687	42.536	0.016	10.0069	0.0062	1.6463	0.0017
688	42.502	0.016	9.9989	0.0062	1.6450	0.0017
689	42.490	0.016	9.9961	0.0062	1.6445	0.0017
690	42.539	0.016	10.0077	0.0062	1.6464	0.0017
691	42.573	0.016	10.0157	0.0062	1.6478	0.0017
692	42.521	0.016	10.0033	0.0062	1.6457	0.0017
693	42.522	0.016	10.0037	0.0062	1.6458	0.0017
694	42.516	0.016	10.0021	0.0062	1.6455	0.0017
695	42.539	0.016	10.0077	0.0062	1.6464	0.0017
696	42.497	0.016	9.9977	0.0062	1.6448	0.0017
697	42.510	0.016	10.0009	0.0062	1.6453	0.0017
698	42.575	0.016	10.0161	0.0062	1.6478	0.0017
699	42.544	0.016	10.0089	0.0062	1.6466	0.0017
700	42.412	0.016	9.9777	0.0062	1.6415	0.0017

Annex 1 The certified masses of ²³⁸U, ²³⁵U and ²³⁹Pu per unit of IRMM-1027s

Page 17 of 23

		²³⁸ U		²³⁵ U	•	²³⁹ Pu
	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
701	42.509	0.016	10.0005	0.0062	1.6453	0.0017
702	42.509	0.016	10.0005	0.0062	1.6453	0.0017
703	42.558	0.016	10.0121	0.0062	1.6472	0.0017
704	42.551	0.016	10.0105	0.0062	1.6469	0.0017
705	42.468	0.016	9.9909	0.0062	1.6437	0.0017
706	42.510	0.016	10.0009	0.0062	1.6453	0.0017
707	42.521	0.016	10.0033	0.0062	1.6457	0.0017
708	42.595	0.016	10.0209	0.0062	1.6486	0.0017
709	42.490	0.016	9.9961	0.0062	1.6445	0.0017
710	42.538	0.016	10.0073	0.0062	1.6464	0.0017
711	42.580	0.016	10.0173	0.0062	1.6480	0.0017
712	42.441	0.016	9.9845	0.0062	1.6426	0.0017
713	42.601	0.016	10.0221	0.0062	1.6488	0.0017
714	42.451	0.016	9.9869	0.0062	1.6430	0.0017
715	42.584	0.016	10.0181	0.0062	1.6481	0.0017
716	42.539	0.016	10.0077	0.0062	1.6464	0.0017
717	42.522	0.016	10.0037	0.0062	1.6458	0.0017
718	42.352	0.016	9.9037	0.0061	1.0392	0.0017
719	42.034	0.016	10.0065	0.0062	1.0402	0.0017
720	42.471	0.016	9.9917	0.0062	1.0438	0.0017
721	42.480	0.016	9.9937	0.0062	1.0441	0.0017
722	42.510	0.010	10.0021	0.0062	1.0400	0.0017
723	42.000	0.016	10.0173	0.0062	1.0400	0.0017
724	42.000	0.010	0.0925	0.0002	1.6400	0.0017
726	42.432	0.016	9,9025	0.0062	1 6430	0.0017
727	42.567	0.016	10 0141	0.0062	1 6475	0.0017
728	42 451	0.016	9 9869	0.0062	1 6430	0.0017
729	42.555	0.016	10.0113	0.0062	1.6470	0.0017
730	42.570	0.016	10.0149	0.0062	1.6476	0.0017
731	42.519	0.016	10.0029	0.0062	1.6456	0.0017
732	42.536	0.016	10.0069	0.0062	1.6463	0.0017
733	42.485	0.016	9.9949	0.0062	1.6443	0.0017
734	42.504	0.016	9.9993	0.0062	1.6451	0.0017
735	42.465	0.016	9.9901	0.0062	1.6435	0.0017
736	42.504	0.016	9.9993	0.0062	1.6451	0.0017
737	42.567	0.016	10.0141	0.0062	1.6475	0.0017
738	42.570	0.016	10.0149	0.0062	1.6476	0.0017
739	42.468	0.016	9.9909	0.0062	1.6437	0.0017
740	42.495	0.016	9.9973	0.0062	1.6447	0.0017
741	42.538	0.016	10.0073	0.0062	1.6464	0.0017
742	42.597	0.016	10.0213	0.0062	1.6487	0.0017
743	42.391	0.016	9.9729	0.0061	1.6407	0.0017
744	42.582	0.016	10.0177	0.0062	1.6481	0.0017
745	42.444	0.016	9.9853	0.0062	1.6428	0.0017
740	42.531	0.016	10.0057	0.0062	1.6461	0.0017
747	42.027	0.010	10.0049	0.0062	1.6464	0.0017
740	42.038	0.010	10.0077	0.0062	1.6464	0.0017
748	42.038	0.010	0.0073	0.0002	1.6410	0.0017
700	42.422	0.010	8.8601	0.0002	1.0418	0.0017

Annex 1 The certified masses of ²³⁸U, ²³⁵U and ²³⁹Pu per unit of IRMM-1027s

Page 18 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
-	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass 1)	Uncertainty ²⁾
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
751	42.587	0.016	10.0189	0.0062	1.6483	0.0017
752	42.516	0.016	10.0021	0.0062	1.6455	0.0017
753	42.517	0.016	10.0025	0.0062	1.6456	0.0017
754	42.580	0.016	10.0173	0.0062	1.6480	0.0017
755	42.499	0.016	9.9981	0.0062	1.6449	0.0017
756	42.578	0.016	10.0169	0.0062	1.6480	0.0017
757	42.517	0.016	10.0025	0.0062	1.6456	0.0017
758	42.573	0.016	10.0157	0.0062	1.6478	0.0017
759	42.408	0.016	9.9769	0.0062	1.6414	0.0017
760	42.568	0.016	10.0145	0.0062	1.6476	0.0017
761	42.526	0.016	10.0045	0.0062	1.6459	0.0017
762	42.553	0.016	10.0109	0.0062	1.6470	0.0017
763	42.504	0.016	9.9993	0.0062	1.6451	0.0017
764	42.470	0.016	9.9913	0.0062	1.6437	0.0017
765	42.548	0.016	10.0097	0.0062	1.6468	0.0017
766	42.558	0.016	10.0121	0.0062	1.6472	0.0017
767	42.497	0.016	9.9977	0.0062	1.6448	0.0017
768	42.548	0.016	10.0097	0.0062	1.6468	0.0017
769	42.557	0.016	10.0117	0.0062	1.6471	0.0017
770	42.485	0.016	9.9950	0.0062	1.6443	0.0017
771	42.565	0.016	10.0137	0.0062	1.6474	0.0017
772	42.477	0.016	9.9930	0.0062	1.6440	0.0017
773	42.468	0.016	9.9910	0.0062	1.6437	0.0017
774	42.681	0.016	10.0409	0.0062	1.6519	0.0017
775	42.536	0.016	10.0069	0.0062	1.6463	0.0017
776	42.538	0.016	10.0073	0.0062	1.6464	0.0017
777	42.390	0.016	9.9726	0.0061	1.6407	0.0017
778	42.568	0.016	10.0145	0.0062	1.6476	0.0017
779	42.553	0.016	10.0109	0.0062	1.6470	0.0017
780	42.517	0.016	10.0025	0.0062	1.6456	0.0017
781	42.545	0.016	10.0089	0.0062	1.6466	0.0017
782	42.512	0.016	10.0013	0.0062	1.0454	0.0017
783	42.585	0.016	10.0185	0.0062	1.6482	0.0017
704	42.001	0.010	10.0105	0.0062	1.0409	0.0017
700	42.000	0.010	0.0000	0.0062	1.0448	0.0017
780	42.002	0.010	9.9969	0.0002	1.0400	0.0017
700	42.449	0.016	10.0277	0.0002	1.6430	0.0017
780	42.025	0.016	0.0982	0.0002	1.6420	0.0017
700	42.582	0.016	10.0122	0.0062	1.6474	0.0017
791	42.551	0.016	10.0105	0.0062	1.6469	0.0017
792	42.570	0.016	10.0149	0.0002	1.6476	0.0017
793	42,489	0.016	9,9958	0.0062	1.6445	0.0017
794	42 507	0.016	10.0001	0.0062	1.6452	0.0017
795	42.553	0.016	10.0109	0.0062	1.6470	0.0017
796	42.524	0.016	10.0041	0.0062	1.6459	0.0017
797	42.546	0.016	10.0093	0.0062	1.6467	0.0017
798	42.609	0.016	10.0241	0.0062	1.6491	0.0017
799	42.473	0.016	9.9922	0.0062	1.6439	0.0017
800	42.499	0.016	9.9981	0.0062	1.6449	0.0017

Annex 1 The certified masses of ²³⁸U, ²³⁵U and ²³⁰Pu per unit of IRMM-1027s

Page 19 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
801	42.582	0.016	10.0177	0.0062	1.6481	0.0017
802	42.497	0.016	9.9978	0.0062	1.6448	0.0017
803	42.506	0.016	9.9997	0.0062	1.6451	0.0017
804	42.575	0.016	10.0161	0.0062	1.6478	0.0017
805	42.478	0.016	9,9934	0.0062	1.6441	0.0017
806	42.545	0.016	10.0089	0.0062	1.6466	0.0017
807	42.614	0.016	10.0253	0.0062	1.6493	0.0017
808	42.487	0.016	9.9954	0.0062	1.6444	0.0017
809	42.543	0.016	10.0085	0.0062	1.6466	0.0017
810	42.558	0.016	10.0121	0.0062	1.6472	0.0017
811	42.448	0.016	9.9862	0.0062	1.6429	0.0017
812	42.575	0.016	10.0161	0.0062	1.6478	0.0017
813	42.497	0.016	9.9978	0.0062	1.6448	0.0017
814	42.563	0.016	10.0133	0.0062	1.6474	0.0017
815	42.546	0.016	10.0093	0.0062	1.6467	0.0017
816	42.528	0.016	10.0049	0.0062	1.6460	0.0017
817	42.477	0.016	9.9930	0.0062	1.6440	0.0017
818	42.543	0.016	10.0085	0.0062	1.6466	0.0017
819	42.558	0.016	10.0121	0.0062	1.6472	0.0017
820	42.526	0.016	10.0045	0.0062	1.6459	0.0017
821	42.523	0.016	10.0037	0.0062	1.6458	0.0017
822	42.557	0.016	10.0117	0.0062	1.6471	0.0017
823	42.560	0.016	10.0125	0.0062	1.6472	0.0017
824	42.480	0.016	9.9938	0.0062	1.6441	0.0017
825	42.631	0.016	10.0293	0.0062	1.6500	0.0017
826	42.489	0.016	9.9958	0.0062	1.6445	0.0017
827	42.475	0.016	9.9926	0.0062	1.6439	0.0017
828	42.545	0.016	10.0089	0.0062	1.6466	0.0017
829	42.580	0.016	10.0173	0.0062	1.6480	0.0017
830	42.540	0.016	10.0077	0.0062	1.6464	0.0017
831	42.519	0.016	10.0029	0.0062	1.6457	0.0017
832	42.599	0.016	10.0217	0.0062	1.6487	0.0017
833	42.448	0.016	9.9862	0.0062	1.6429	0.0017
834	42.540	0.010	10.0077	0.0062	1.0404	0.0017
030	42.004	0.010	0.0024	0.0062	1.0462	0.0017
830	42.430	0.010	9.9834	0.0062	1.0424	0.0017
83/	42.008	0.016	10.0121	0.0002	1.04/2	0.0017
030	42.520	0.016	0.0095	0.0002	1.6400	0.0017
0.40	42.500	0.016	10.0105	0.0062	1.6460	0.0017
841	42.501	0.016	0.0105	0.0002	1.6451	0.0017
842	42.600	0.016	10.0273	0.0002	1 6407	0.0017
843	42.485	0.016	9 990270	0.0002	1 6436	0.0017
844	42.574	0.016	10 0157	0.0002	1 6478	0.0017
845	42.470	0.016	9,9914	0.0062	1.6437	0.0017
846	42.562	0.016	10.0129	0.0062	1.6473	0.0017
847	42.545	0.016	10.0089	0.0062	1.6466	0.0017
848	42 495	0.016	9,9974	0.0062	1.6447	0.0017
849	42.616	0.016	10.0257	0.0062	1.6494	0.0017
850	42.543	0.016	10.0085	0.0062	1.6466	0.0017
	12.010	0.010	10.0000	0.0002	1.0100	0.0011

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 20 of 23

		²³⁸ U		²³⁵ U		²³⁹ Pu
· ·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
851	42.507	0.016	10.0001	0.0062	1.6452	0.0017
852	42.495	0.016	9.9974	0.0062	1.6447	0.0017
853	42.506	0.016	9,9997	0.0062	1.6451	0.0017
854	42 648	0.016	10.0333	0.0062	1.6507	0.0017
855	42 468	0.016	9,9910	0.0062	1.6437	0.0017
856	42,536	0.016	10.0069	0.0062	1.6463	0.0017
857	42,550	0.016	10.0101	0.0062	1.6468	0.0017
858	42.579	0.016	10.0169	0.0062	1.6480	0.0017
859	42.455	0.016	9.9878	0.0062	1.6432	0.0017
860	42.574	0.016	10.0157	0.0062	1.6478	0.0017
861	42.477	0.016	9.9930	0.0062	1.6440	0.0017
862	42.572	0.016	10.0153	0.0062	1.6477	0.0017
863	42.531	0.016	10.0057	0.0062	1.6461	0.0017
864	42.489	0.016	9.9957	0.0062	1.6445	0.0017
865	42.613	0.016	10.0249	0.0062	1.6493	0.0017
866	42.495	0.016	9.9973	0.0062	1.6447	0.0017
867	42.534	0.016	10.0065	0.0062	1.6462	0.0017
868	42.492	0.016	9.9965	0.0062	1.6446	0.0017
869	42.533	0.016	10.0061	0.0062	1.6462	0.0017
870	42.596	0.016	10.0209	0.0062	1.6486	0.0017
871	42.519	0.016	10.0029	0.0062	1.6457	0.0017
872	42.475	0.016	9.9925	0.0062	1.6439	0.0017
873	42.461	0.016	9.9893	0.0062	1.6434	0.0017
874	42.567	0.016	10.0141	0.0062	1.6475	0.0017
875	42.609	0.016	10.0241	0.0062	1.6491	0.0017
876	42.455	0.016	9.9877	0.0062	1.6432	0.0017
877	42.556	0.016	10.0117	0.0062	1.6471	0.0017
878	42.531	0.016	10.0057	0.0062	1.6461	0.0017
879	42.562	0.016	10.0129	0.0062	1.6473	0.0017
880	42.485	0.016	9.9949	0.0062	1.6443	0.0017
881	42.541	0.016	10.0081	0.0062	1.6465	0.0017
882	42.533	0.016	10.0061	0.0062	1.6462	0.0017
883	42.531	0.016	10.0057	0.0062	1.6461	0.0017
884	42.584	0.016	10.0181	0.0062	1.6482	0.0017
885	42.517	0.016	10.0025	0.0062	1.6456	0.0017
886	42.533	0.016	10.0061	0.0062	1.6462	0.0017
887	42.546	0.016	10.0093	0.0062	1.6467	0.0017
888	42.490	0.016	9.9961	0.0062	1.6445	0.0017
889	42.619	0.016	10.0265	0.0062	1.6495	0.0017
890	42.460	0.016	9.9889	0.0062	1.6434	0.0017
891	42.038	0.010	10.0073	0.0062	1.0404	0.0017
892	42.084	0.010	10.0181	0.0062	1.0482	0.0017
893	42.472	0.016	9.9917	0.0062	1.6438	0.0017
894	42.529	0.016	10.0053	0.0062	1.6460	0.0017
098	42.040	0.010	10.0089	0.0062	1.0400	0.0017
890	42.000	0.010	10.0113	0.0062	1.04/0	0.0017
897	42.040	0.010	10.0089	0.0062	1.6460	0.0017
080	42.000	0.010	0.0001	0.0062	1.6447	0.0017
000	42,484	0.010	10,0080	0.0062	1.6482	0.0017
900	42.030	0.010	10.0009	0.0002	1.0403	0.0017

Annex 1 The certified masses of ²³⁸U, ²³⁵U and ²³⁰Pu per unit of IRMM-1027s

Page 21 of 23

		238U		²³⁵ U		²³⁹ Pu
· · · ·	Mass ¹⁾	Uncertainty 2)	Mass ¹⁾	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)
Vial No.	[ma]	[ma]	[ma]	ſma]	[mg]	[mg]
901	42.519	0.016	10.0029	0.0062	1.6457	0.0017
902	42.553	0.016	10.0109	0.0062	1.6470	0.0017
903	42.517	0.016	10.0025	0.0062	1.6456	0.0017
904	42 504	0.016	9 9993	0.0062	1.6451	0.0017
005	42 548	0.016	10 0097	0.0062	1 6469	0.0017
906	42 601	0.016	10.0221	0.0062	1 6488	0.0017
907	42.490	0.016	9,9961	0.0062	1.6445	0.0017
908	42.511	0.016	10,0009	0.0062	1.6453	0.0017
909	42,505	0.016	9,9997	0.0062	1.6451	0.0017
910	42.585	0.016	10.0185	0.0062	1.6482	0.0017
911	42.538	0.016	10.0073	0.0062	1.6464	0.0017
912	42,480	0.016	9,9937	0.0062	1.6441	0.0017
913	42.541	0.016	10.0081	0.0062	1.6465	0.0017
914	42.490	0.016	9.9961	0.0062	1.6445	0.0017
915	42.512	0.016	10.0013	0.0062	1.6454	0.0017
916	42,556	0.016	10.0117	0.0062	1.6471	0.0017
917	42.562	0.016	10.0129	0.0062	1.6473	0.0017
918	42,590	0.016	10.0197	0.0062	1.6484	0.0017
919	42,456	0.016	9,9881	0.0062	1.6432	0.0017
920	42 582	0.016	10 0177	0.0062	1 6481	0.0017
921	42.528	0.016	10.0049	0.0062	1.6460	0.0017
922	42,516	0.016	10 0021	0.0062	1 6455	0.0017
923	42 492	0.016	9 9965	0.0062	1 6446	0.0017
924	42,456	0.016	9,9881	0.0062	1.6432	0.0017
925	42 623	0.016	10.0273	0.0062	1 6497	0.0017
926	42 597	0.016	10.0213	0.0062	1 6487	0.0017
927	42 499	0.016	9 9981	0.0062	1 6449	0.0017
928	42.504	0.016	9,9993	0.0062	1.6451	0.0017
929	42.524	0.016	10.0041	0.0062	1.6459	0.0017
930	42,582	0.016	10.0177	0.0062	1.6481	0.0017
931	42,560	0.016	10.0125	0.0062	1.6472	0.0017
932	42,465	0.016	9,9901	0.0062	1.6435	0.0017
933	42,573	0.016	10.0157	0.0062	1.6478	0.0017
934	42,546	0.016	10.0093	0.0062	1.6467	0.0017
935	42,463	0.016	9,9897	0.0062	1.6435	0.0017
936	42.596	0.016	10.0209	0.0062	1.6486	0.0017
937	42.483	0.016	9.9945	0.0062	1.6443	0.0017
938	42.514	0.016	10.0017	0.0062	1.6455	0.0017
939	42.538	0.016	10.0073	0.0062	1.6464	0.0017
940	42.497	0.016	9.9977	0.0062	1.6448	0.0017
941	42.534	0.016	10.0065	0.0062	1.6462	0.0017
942	42.611	0.016	10.0245	0.0062	1.6492	0.0017
943	42.470	0.016	9.9913	0.0062	1.6437	0.0017
944	42.526	0.016	10.0045	0.0062	1.6459	0.0017
945	42.553	0.016	10.0109	0.0062	1.6470	0.0017
946	42.517	0.016	10.0025	0.0062	1.6456	0.0017
947	42.534	0.016	10.0065	0.0062	1.6462	0.0017
948	42.534	0.016	10.0065	0.0062	1.6462	0.0017
949	42.514	0.016	10.0017	0.0062	1.6455	0.0017
950	42.607	0.016	10.0237	0.0062	1.6491	0.0017

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

Page 22 of 23

Annex 1 The certified masses of 238U, 235U and 239Pu per unit of IRMM-1027s

	²³⁸ U			²³⁵ U		²³⁹ Pu	
Vial Na	Mass 1)	Uncertainty ²⁾	Mass ¹⁾	Uncertainty 2)	Mass 1)	Uncertainty 2)	
Vial No.	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	
¹⁷ The certified of ²³⁸ U, ²³⁹ U an ²⁷ The uncertair confidence of a Uncertainty in N The atomic material evaluation (II). The half-lives o (A new evaluation)	values are tra d ²³⁹ Pu per vi hty is the expa bout 95 % es Measurement sses of radior Tables, Graph f radionuclide ion of the half	ceable to the SI via and is November 1, 2 anded uncertainty witimated in accordan (GUM:1995), ISO, 2 suclides were obtain and References, is were obtained fro life of ²⁴¹ Pu, J. Ana	the IRMM-04 2016. ith a coverag ice with ISO/I 2008. ied from M. V Chinese Phy m DDEP-BIP I. At. Spectro	i8c spike CRM. The e factor k = 2.3 corr EC Guide 98-3, Gu Vang et al. (The AM sics C, Vol. 36, No. M (Table of radionu m., 24, 801-807, 20	reference da esponding to ide to the Exp E 2012 atom 12, 1603-20 clides) and R 09).	ate for the mass or a level of pression of ic mass 14, 2012). R. Wellum et al.	

European Commission – Joint Research Centre Directorate G – Nuclear Safety and Security G.2 – Standards for Nuclear Safety, Security and Safeguards Unit Retieseweg 111, B - 2440 Geel (Belgium)

Page 23 of 23

.

Certified Nuclear Reference Material Certificate of Analysis

EC NUCLEAR REFERENCE MATERIAL NO. 101

MATERIAL : URANIUM METAL

URANIUM MASS FRACTION : (999.85 \pm 0.05) g kg -1

The uncertainty has been calculated by multiplying the estimated overall standard deviation by a factor of two. This corresponds to a confidence level of about 95 percent.

Commission of the European Communities Joint Research Centre Geel Establishment (CBNM)

Annex 3 The certificate of NBL CRM 116-A uranium metal

Certificate of Analysis CRM 116-A

Uranium (enriched) Metal Assay and Isotopic Standard

Amount Content	Value	Expanded ¹ Uncertainty	Isotope- Amount Ratio	Value	Expanded ¹ Uncertainty
a li attantal	0.00045	0.00014	n(²³³ U)/n(²³⁵ U)	0.000003863	0.000000086
g 0•g metai	0.99945	0.00014	n(²³⁴ U)/n(²³⁵ U)	0.0115836	0.0000097
Molar Mass	Value	Expanded ¹ Uncertainty	n(²³⁶ U)/n(²³⁵ U)	0.0094713	0.0000077
g•mol⁻¹	235.18572	0.00011	n(²³⁸ U)/n(²³⁵ U)	0.051277	0.000041
Isotope-Amount Fraction (•100)	Value	Expanded ¹ Uncertainty	Isotope Mass Fraction (•100)	Value	Expanded ¹ Uncertainty
n(²³³ U)/n(U)	0.00003603	0.00000080	m(²³³ U)/m(U)	0.00003570	0.00000079
n(²³⁴ U)/n(U)	1.08023	0.00089	m(²³⁴ U)/m(U)	1.07497	0.00088
n(²³⁵ U)/n(U)	93.2547	0.0038	m(²³⁵ U)/m(U)	93.1985	0.0038
n(²³⁶ U)/n(U)	0.88324	0.00071	m(²³⁶ U)/m(U)	0.88647	0.00071
n(²³⁸ U)/n(U)	4.7818	0.0036	m(²³⁸ U)/m(U)	4.8401	0.0037

Certified Property Values

¹ Expanded uncertainties for certified property values have a coverage factor of approximately 2.0 with the exception of the amount content value which has a coverage factor of 2.4 and the ²³³U values which have a coverage factor of 3.3 for isotope amount ratio, isotope-amount fraction, and isotope mass fraction.

Notes:

Certified Reference Material 116-A (CRM 116-A) is a uranium amount content and isotope-amount ratio standard intended for use in calibration of and/or quality control for uranium analysis methods. Each unit of CRM 116-A consists of a metal piece with a mass of approximately 1.1 grams. This CRM is not characterized for total quantity of material which may be somewhat greater or less than the nominal mass (between 1.0 g and 1.2 g).

CRM 116-A is a radioactive material and should be handled and stored under proper radiologicallycontrolled conditions at all times.

October 31, 2013 Steven Bakhtiar Laboratory Director

Page 1 of 3

New Brunswick Laboratory Argonne, Illinois www.science.energy.gov/nbl CRM 116-A units do not have an expiration date. To maintain the integrity of an unused unit, it should remain in the original packaging and should be stored in a dry, temperature controlled location.

Measurements for uranium amount content and isotope-amount ratios were performed on metal samples with a mass of 1.1 gram or greater. The homogeneity of uranium amount content or isotopic composition has not been assessed for metal pieces smaller than 1.1 gram. Prior to use, surface oxide must be removed to ensure accurate uranium amount content values. A suggested procedure is provided below.

Suggested Preparation Procedure for Achieving Accurate Mass and Amount Content Values

- Cover the uranium metal sample in 8 mol·L⁻¹ nitric acid for 10-20 minutes to remove all visible surface oxides.
- To minimize oxidation of the sample and ensure an accurate determination of uranium metal mass, the following steps should be performed immediately following Step 1.
 - 2.1 Thoroughly rinse the metal piece with distilled, deionized water.
 - 2.2 Remove excess water by thoroughly rinsing the metal piece with pure acetone.
 - 2.3 Allow the acetone to evaporate (30 60 seconds is typically sufficient).
 - 2.4 Perform a weighing of sufficient accuracy and precision for user's need.

Description:

The CRM 116-A metal pieces are machined metal cylinders. The stock material for the CRM was obtained from a single casting of a HEU right-annular cylinder of metal. Several wedges of material were cut from the annular cylinder and machined into rods which were stamped into narrow-diameter rods. The rods were then machined to shape and cut into the individual 1.1-gram metal cylinders that comprise each CRM 116-A unit.

Uranium amount content for CRM 116-A was determined by the NBL High Precision Titrimetric method using CRM 99 Potassium Dichromate Oxidimetric Standard as the titrant. The CRM 112-A Uranium Metal Assay and Isotopic Standard was used as a control to verify performance of the measurement system. Traceability of the measurements is primarily established by direct determination of uranium amount content based on the titration of uranium using CRM 99 Potassium Dichromate Oxidimetric Standard. CRM 99 was calibrated against CRM 112-A which, in turn, was originally provided by the National Bureau of Standards (now known as the National Institute of Standards and Technology) as SRM 960.

A detailed thermal ionization mass spectrometry measurement campaign was performed on CRM 116-A to determine uranium isotope-amount ratios and uncertainties. Mass discrimination calibrations were performed on a sample turret basis using multiple measurements of NBL Uranium Isotopic Standards U900 and U930-D. Analyses of CRM U970 Uranium Isotopic Standard were performed to verify that mass spectrometric measurements were in control. Traceability of the isotope-amount ratio measurements for CRM 116-A was established by calibration of the mass spectrometers using combined measurements of CRMs U900 and U930-D Uranium Isotopic Standards. CRM 900 was originally provided by the National Bureau of Standards (now known as the National Institute of Standards and Technology) as SRM U900. U930-D is directly traceable to National Bureau of Standards SRM U930 Uranium Isotopic Standards.

Measurement Uncertainty:

Reported numerical uncertainties for values are expressed as expanded uncertainties ($U=k \cdot u_c$) at the 95% level of confidence, where the expanded uncertainty (U) is the product of the combined standard uncertainty (u_c) and a coverage factor (k). The last figure in reported values and uncertainties is provided for information purposes and is not intended to convey a significant degree of reliability. The isotope-amount and weight fraction values and uncertainties are provided primarily for information purposes. To assure proper uncertainty propagation, it is recommended that isotope-amount ratios and associated uncertainties be used for calculations incorporating CRM 116-A values.

Page 2 of 3

Uncertainties were determined according to the protocols outlined in JCGM 100:2008 Guide to the Expression of Uncertainty in Measurement. The combined standard uncertainties for attribute values consist of Type A and Type B components. The Type A uncertainty components for amount content is derived from the standard deviation of high precision titrations performed on 1.1 g U metal samples and the standard uncertainty for the primary analytical amount content measurements, which utilized 3-g U metal samples. The Type B component is the combined standard uncertainty of the CRM 99 oxidimetric standard. The Type A components for isotope-amount ratios are derived from standard deviations associated with isotopic ratio measurements of the samples and the $n(^{238}U)/n(^{235}U)$ ratio of NBL CRMs U900 and U930-D. Type B components are based on the combined standard uncertainties for the $n(^{238}U)/n(^{235}U)$ ratios of CRMs U900 and U930-D and components to account for additional sources of uncertainty associated with background corrections and analytical biases. Isotope mass fractions incorporate an additional Type B component associated with the uncertainty of the atomic mass for the U isotopes. The coverage factor (k) for each expanded uncertainty is based on the effective degrees of freedom for that quantity and is the Student's t-factor necessary to provide a 95% level of confidence (k \approx 2.0 for the values cited in this certificate except for the amount content value with k = 2.4 and the ²³³U isotope amount ratio, amount fraction, and mass fraction which have coverage factors of k = 3.3). A more detailed explanation of measurement uncertainty can be obtained upon request from NBL.

References:

Bureau International des Poids et Measures (BIPM), Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement, JCGM 100: 2008.

Annex 4 The certificate of CETAMA MP2 plutonium metal

REFERENCE MATERIAL CERTIFICATE

PLUTONIUM METAL "MP2"

Sample n° Xxxx Mass : 0.xxxxxx ± 0.000012 g

(For X and x values see list page 4)

The reference material to which this certificate relates is intended for the calibration of chemical composition measurement. The overall chemical content of plutonium is certified. The confidence interval associated with the certified value for a single sample, takes into account uncertainties associated to with analysis and heteregenity of metal. This content, expressed as a percentage of mass, was the following on 12 march 2001 for a single sample with a probability level of 0.95.

The true mass of the sample A \pm 12 $\mu g,$ related to A vacuum, is that indicated in this certificate and on the ampoule.

The possibility of surface oxidation makes it impossible to envisage weighing at the time of use

Isotopique composition is certified on 12 march 2001 : see certificate IRMM page3

The preparation, analysis and certification of the plutonium to which this certificate relates was carried out by different units of the CEA group under the supervision of the Committee for Establishing Analysis Methods (CETAMA).

CETAMA CRM manager

Roch

CETAMA CEA VALRHO Marcoule 30207 BAGNOLS SUR CEZE CEDEX Téléphone 04.66.79.69.88 - Télécopie 04.66.79.69.89

- 1 -

On 12/03/2001, the metal contained around:

- by weight, 489 mg.kg⁻¹ of uranium,
- by weight, 438 mg.kg⁻¹ of américium..

UTILISATION

The sample, which consists of a piece of metal, is supplied in a double glass ampoule filled with pure nitrogen at a pressure of around 0.1 Pascal.

The ampoule must be opened with care inside a glove box. All the sample must be transferred to the dissolver.

Cover with 0.1 mol.l⁻¹ hydrochloric acid. The ampoule must be thoroughly washed with the same acid to recover any particles of metal which may have become separated. In 2 ml fractions, add the necessary quantity of 12 mol.l⁻¹ hydrochloric acid of guaranteed purity to obtain a 4 mol.l⁻¹ hydrochloric acid solution. Allow dissolving to proceed without heating for 10 to 15 minutes, then heat to boiling point. If there are still particles of plutonium at the bottom of the dissolver after heating for two hours, add 2 ml of 12 mol.l⁻¹ hydrochloric acid and 2 drops of 1 mol.l⁻¹ hydrofluoric acid and continue heating for another two hours. Repeat the operation if necessary until the material is totally dissolved.

If plutonium fluoride precipitates out, add a few drops of aluminium nitrate (approximately one mol.I⁻¹).

Allow to cool and adjust to the required volume.

ADDITIONAL INFORMATION

The certified plutonium content has been deduced from analysis of impurities carried out by five laboratories and checked by chemical assay of the plutonium in two different laboratories using three different methods of analysis.

Spark Source Mass Spectrometry has given a full analysis of the impurities and, where concentration levels allowed, inductively-coupled plasma atomic emission spectrometry has been used to establish the concentrations of some of them.

The uranium was determined by laser spectrofluorimetry and the americium by gamma spectrometry. Carbon was determined by coulometry, after transformation into gaseous form by combustion in oxygen.

The gases were analysed by chromatography in the aqueous phase:

- for nitrogen and oxygen after extraction by high temperature stream under an inert gas,

- for hydrogen after diffusion in a vacuum.

CETAMA CEA VALRHO Marcoule 30207 BAGNOLS SUR CEZE CEDEX Téléphone 04.66.79.69.88 - Télécopie 04.66.79.69.89

- 2 -

IRMM

Institute for Reference Materials and Measurements

CERTIFICATE OF ISOTOPIC COMPOSITION

Geel, 30 May 2001

 Applicant: Mr G. Lamarque Président de la Cotama

2. Sample Identification: MP2 (Pu metal)

3. Isotopic composition:

isotope amo	ount ratio(s)
$n(^{238}Pu)/n(^{239}Pu)$	0.000 033 15(41)
$n(^{240}Pu)/n(^{239}Pu)$	0.022 437 4(99)
$n(^{241}Pu)/n(^{239}Pu)$	0.000 298 0(17)
$n(^{242}Pu)/n(^{239}Pu)$	0.000 070 87(71)

amount fra	ction (-100)	mass fraction (-100)		
n(²³⁸ Pu)/n(Pu)	0.003 241(40)	m(²³⁸ Pu)/m(Pu)	0.003 227(40)	
n(²³⁹ Pu)/n(Pu)	97.767 05(98)	m(²³⁹ Pu)/m(Pu)	97.757 76(98)	
$n(^{240}\text{Pu})/n(\text{Pu})$	2.193 64(94)	$m(^{240}Pu)/m(Pu)$	2.202 62(95)	
n(²⁴¹ Pu)/n(Pu)	0.029 14(17)	m(²⁴¹ Pu)/m(Pu)	0.029 38(17)	
n(²⁴² Pu)/n(Pu)	0.006 929(69)	$m(^{242}Pu)/m(Pu)$	0.007 015(70)	

molar mass: 239.074 888(11) g·mol⁻¹

4. Reference number: IMN 10031

5. Remarks:

The above values are valid for 12 March 2001. All uncertainties indicated are expanded uncertainties $U = k \cdot u_c$ where u_c is the combined standard uncertainty calculated according to the ISO/BIPM guide. The uncertainties are given in parentheses and include a coverage factor k=2. They apply to the last two digits of the value. The values certified are traceable to the SI.

The primary certified values are the isotope amount ratios; other values are derived from them. Reproducing the derived values may result in differences due to rounding errors.

Mass spectrometric measurements were performed by A Verbruggen and F Kehoe by TIMS on samples chemically prepared by F Kehoe. A Verbruggen was responsible for the preparation and issuance of the certificate.

PILLET A Verbruggen

Copy: R Wellum F Kehoe

8-2440 GEEL (Belgium) Tel. +32-14-571 608 - Fax +32-14-571 853 European Commission - JRC

30207 BAGNOLS SUR CEZE CEDEX Téléphone 04.66.79.69.88 - Télécopie 04.66.79.69.89

- 3 -

Isotope Measurements Unit

Packaging list for IRMM

The numbers of the ingots and the associated masses are as follows:

Ingot number	Mass (g)
A934	0.587859
A949	0.430987
A952	0.567216
A968	0.434526
A975	0.510770
C321	0.640299
C569	0.592943
C581	0.632827
A123	0.414082
A174	0.602206
A307	0.434852
A314	0.561821
A345	0.514834
A451	0.436194
A518	0.624022
A662	0.469822
A035	0.479086
A453	0.598728
A455	0.563210

CETAMA CRM manager

Rocher

CETAMA CEA VALRHO Marcoule 30207 BAGNOLS SUR CEZE CEDEX Téléphone 04.66.79.69.88 - Télécopie 04.66.79.69.89

- 4 -

Annex 5 The certificate of isotopic abundances of CETAMA MP2

EUROPEAN COMMISSION DIRECTORATE GENERAL JRC JOINT RESEARCH CENTRE IRMM Institute for Reference Materials and Measurements

CERTIFICATE of a reference measurement

IM/MeaC/07/116

11 April 2007

SUBJECT : Recertification of CEA CETAMA MP2

- 1. Applicant: A. Verbruggen
- 2. Sample Identification:
 - CEA/CETAMA/MP2
 - Chemical form: Pu metal provided by CEA/CETAMA
- 3. Measurands:
 - Isotopic composition

isotope amount ratio(s)		
n(²³⁸ Pu)/ n(²³⁹ Pu)	0.000 030 83(29)	
n(²⁴⁰ Pu)/ n(²³⁹ Pu)	0.022 432 4(51)	
n(²⁴¹ Pu)/ n(²³⁹ Pu)	0.000 237 8(31)	
n(²⁴² Pu)/ n(²³⁹ Pu)	0.000 075 70(78)	

amount f	raction (·100)	mass fra	iction (·100)
n(²³⁸ Pu)/n(Pu)	0.003 015(29)	m(²³⁸ Pu)/m(Pu)	0.003 002(28)
n(²³⁹ Pu)/n(Pu)	97.773 05(58)	m(²³⁹ Pu)/m(Pu)	97.763 80(59)
n(²⁴⁰ Pu)/n(Pu)	2.193 28(49)	m(²⁴⁰ Pu)/m(Pu)	2.202 27(49)
n(²⁴¹ Pu)/n(Pu)	0.023 25(30)	m(²⁴¹ Pu)/m(Pu)	0.023 44(31)
n(²⁴² Pu)/n(Pu)	0.007 402(76)	m(²⁴² Pu)/m(Pu)	0.007 494(77)

molar mass: 239.074 790 8(91) g·mol⁻¹

4. Date of sample receipt : n.a. Date of completion of measurement : 7 November 2006

5. All uncertainties indicated are expanded uncertainties $U = k \cdot u_c$ where u_c is the combined standard uncertainty estimated following the ISO/BIPM guide¹. They are given in parentheses and include a coverage factor k=2. They apply to the last two digits of the value. The values certified are traceable to the SI. The primary certified values are the isotope amount ratio; other values are derived from them. Reproducing the derived values may result in difference due to rounding errors.

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-211 • Fax: +32-(0)14-571 978• http://www.imm.jrc.be

page1 of 2

¹ International Organisation for Standardisation, Guide to the expression of Uncertainty in Measurement, ©ISO, ISBN 92-67-10188-9, Geneva, Switserland, 1993

Uncertainty budget :

Quantity	Value	Standard Uncertainty	Index
Atomic mass ²³⁹ Pu	239.05215760 g/mol	5.1.10 ⁻⁶ g/mol	59.6 %
Measurement ratio 240/239	0.02243535 mol/mol	3.81·10 ⁻⁶ mol/mol	14.9 %
Measurement ratio 241/239	240-10 ⁻⁶ mol/mol	450-10 ⁻⁹ mol/mol	0.9 %
Measurement ratio 242/239	75·10 ⁻⁶ mol/mol	175-10 ⁻⁹ mol/mol	0.4 %
variability _{241/239}	0.0 mol/mol	2.65·10 ⁻⁶ mol/mol	21.0 %
variability _{242/239}	0.0 mol/mol	650-10 ⁻⁹ mol/mol	3.0 %
M _{Pu}	239.07478500 g/m	ol 6.46·10 ⁻⁶ g/m	ol

6. The traceability to SI is established through standards from IRMM-290.

7. Analytical measurement procedure

- Mass spectrometric measurments were performed by H Kühn an F Kehoe for the [n(²³⁸Pu)/n(²³⁹Pu)], [n(²⁴⁰Pu)/n(²³⁹Pu)], [n(²⁴¹Pu)/n(²³⁹Pu)] and [n(²⁴²Pu)/n(²³⁹Pu)] using the MAT262 TIMS, sample solutions were prepared for TIMS analysis by F Kehoe. A. Verbruggen was responsible for preparation and issuance of the certificate.
- The atomic masses, used in the calculation are from G. Audi and A.H. Wapstra.²
- Reference numbers of the measurement data: measurements number T26629, T26A03, T26B07, logged in S:\D04-IM\Secure Data\Project Data\MP2 (based on 081a and LSD1027i)\MP2 IA Summary MAT262 measurements.
- Full details of the preparation and the certification procedure can be found in certification report EUR*****.

8. These samples will be stored for a minimum period of six months from the date of this certificate

André Verbruggen Group leader Nuclear Chemistry

Stephan Richter Group leader Nuclear Mass Spectrometry

Copies P Taylor, IM unit head

Y Aregbe, Action leader Nuclear Safeguards F Kehoe

H Kühn

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-211 • Fax: +32-(0)14-571 978• http://www.irmm.jrc.be

page2 of 2

² G. Audi and A.H. Wapstra, The 2003 atomic mass evaluation, Nucl Phys A729 (2003) 337-676

Annex 6 The certificate of isotopic composition of EC NRM 101

European Commissio JOINT RESEARCH CENTRE	on Institute	for Reference Ma Steenweg op Tel.(014)571	terials and Measurements Retie,2440 Geel,Belgium .211-Telex 33589 EURAT B Telefax 014/58.42.73
	CERTIFICATE OF 19	SOTOPIC COMPOSITI	ON **
1. Applicant : [c)r.K.Mayer Stable Isotope Measur∉ IRMM	aments	
2. Sample identifi	cation : EC 101		
3. Results :	Amount Ratio(s)	Mass Ratio(s)	Uncertainty (computed on a 2s basis for each element)
n(234U)/n(238U) n(235U)/n(238U) n(236U)/n(238U)	0.00005548 0.0072593 0.000000151		+/- 0.00000022 +/- 0.0000036 +/- 0.000000040
4. Raference numbe	r : SMS 7315		
5.Remarks : T o	his sample will be st f six months from the	ored for a minim date of this cer	um period rtificate.
R S M T	equest received at la ample recsived at lab easurement achieved elephone or telex com	boratory : 19 oratory : 19 : 19 Munication :	995.06.23 995.06.23 995.06.23

r' -

Mess spectrometric measurements were performed by W.De Bolle (n(235U)/n(238U) ratio by UF6) and A.Alonso (THMS) on samples chemically prepared by A.Alonso.

The values certified are traceable to the SI system and its unit for amount of substance: the mole.

; •

c. P.De Bievre / A.Alonso

W.DE BOLLE Stable Isotope Measurements

Annex 7 The certificate of IRMM-046b

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

Institute for Reference Materials and Measurements (Geel)

CERTIFIED REFERENCE MATERIAL IRMM – 046b

CERTIFICATE OF ANALYSIS

Uranium and Plutonium in nitric acid solution			
	Isotope amount content		
	Certified value 1)	Uncertainty 2)	
	[µmol/g]	[µmol/g]	
²⁴² Pu	0.46504	0.00018	
²³³ U	4.1154	0.0009	
	Isotope amount ratio		
	Certified value 1)	Uncertainty 2)	
	[mol/mol]	[mol/mol]	
n(²³⁴ U)/n(²³³ U)	0.009396	0.000012	
n(²³⁵ U)/n(²³³ U)	0.002252	0.000006	
n(²³⁶ U)/n(²³³ U)	0.000280	0.000004	
n(²³⁸ U)/n(²³³ U)	0.008186	0.000011	
n(²³⁸ Pu)/n(²⁴² Pu)	0.005332	0.000020	
n(²³⁹ Pu)/n(²⁴² Pu)	0.002212	0.000016	
n(²⁴⁰ Pu)/n(²⁴² Pu)	0.04607	0.00007	
n(²⁴¹ Pu)/n(²⁴² Pu)	0.003000	0.000009	
n(²⁴⁴ Pu)/n(²⁴² Pu)	0.00024	0.00004	
¹⁾ The certified values are traceable to the International System of units (SI) via IRMM-1027m. The reference date for the certified values is June 1, 2010. ²⁾ The uncertainty is the expanded uncertainty with a coverage factor $k = 2$ corresponding to a level of confidence			

²⁷ The uncertainty is the expanded uncertainty with a coverage factor k = 2 corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO, 2008.

The certificate is valid for 3 years; the validity may be extended after further tests on the stability of the material are carried out.

Geel, June 2010,

Last revision February 2016

Signed:

20-2 1610212016

Prof. Dr. Hendrik Emons European Commission Joint Research Centre Institute for Reference Materials and Measurements Retieseweg 111 B-2440 Geel, Belgium

Page 1 of 3

Ad	ditional Material Inform	ation	
	Isotopic ma	ss fraction	
	Value 1)	Uncertainty 2)	
	[g/g]	[9/9]	
m(²³³ U)/m(U) 3)	0.980053	0.000017	
m(²³⁴ U)/m(U) 3)	0.009248	0.000012	
m(²³⁵ U)/m(U) ³⁾	0.002226	0.000006	
m(²³⁶ U)/m(U) 3)	0.000278	0.000004	
m(²³⁸ U)/m(U) ³⁾	0.008195	0.000011	
m(²³⁶ Pu)/m(Pu) ³⁾	0.004964	0.000018	
m(²³⁹ Pu)/m(Pu) ³⁾	0.002068	0.000015	
m(²⁴⁰ Pu)/m(Pu) ³⁾	0.04325	0.00006	
m(²⁴¹ Pu)/m(Pu) ³⁾	0.002828	0.000009	
m(²⁴² Pu)/m(Pu) ³⁾	0.94667	0.00007	
m(²⁴⁴ Pu)/m(Pu) ³⁾	0.000226	0.000030	
	Amount	content	
	Value 1)	Uncertainty 2)	
	[µmol/g]	[µmol/g]	
Pu	0.49147	0.00019	
U	4.1982	0.0009	
	Mass fraction		
	Value 1)	Uncertainty 2)	
	[mg/g]	[mg/g]	
Pu	0.11891	0.00005	
U	0.97857	0.00020	
	Molar mass		
	Value 1)	Uncertainty 2)	
	[g/mol]	[g/mol]	
Pu	241.94244	0.00015	
U	233.09432	0.00006	

¹ The information values are derived from the certified values. The reference date for the derived values is June 1, 2010. ²⁰ The uncertainty is the expanded uncertainty with a coverage factor k = 2 corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO, 2008. ³¹ Isotopic mass fraction is expressed as ^{xxx}U/^{fot}U and ^{xxx}Pu/^{fot}Pu.

Page 2 of 3

DESCRIPTION OF THE MATERIAL

The IRMM-046b is a mixed uranium-plutonium spike Certified Reference Material (CRM) supplied with an isotope amount content of ²³³U and ²⁴²Pu and isotope amount ratios as certified above. A unit of IRMM-046b consists of a flame-sealed glass ampoule containing about 10 mg uranium and 1 mg plutonium in 10 mL of nitric acid solution. The concentration of nitric acid is about 5 mol·L⁻¹.

ANALYTICAL METHODS USED FOR CERTIFICATION

The certified values were established by isotope dilution mass spectrometry (IDMS) on randomly selected units of IRMM-046b. The isotope ratio measurements were performed on a Triton TIMS (Thermo Fisher Scientific) using the total evaporation method. Pu standard IRMM-290/A3 and U standard IRMM-074/10 were used to correct for the mass fractionation effects during isotopic measurement.

SAFETY INFORMATION

The IRMM-046b contains radioactive material. The ampoules should be handled with great care and by experienced personnel in a laboratory suitably equipped for the safe handling of radioactive materials.

INSTRUCTIONS FOR USE AND INTENDED USE

This spike Certified Reference Material (CRM) is used as a calibrant to determine the plutonium and uranium amount content by isotope dilution mass spectrometry (IDMS).

STORAGE

The vials should be stored at + 18 °C ± 5 °C in an upright position.

However, the European Commission cannot be held responsible for changes that happen during storage of the material at the customer's premises, especially of opened samples.

LEGAL NOTICE

Neither IRMM, its subsidiaries, its contractors nor any person acting on their behalf,

(a) make any warranty or representation, express or implied that the use of any information, material, pparatus, method or process disclosed in this document does not infringe any privately owned intellectual property rights; or

(b) assume any liability with respect to, or for damages resulting from, the use of any information, material, apparatus, method or process disclosed in this document save for loss or damage arising solely and directly from the negligence of IRMM or any of its subsidiaries.

> European Commission – Joint Research Centre Institute for Reference Materials and Measurements (IHMM) Refieseweg 111, B - 2440 Geel (Belgium) Telephone: +32-(0)14-571.722 - Telefax: +32-(0)14-590.406

> > Page 3 of 3
Annex 8 The certificate of IRMM-046c

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

Directorate G – Nuclear Safety and Security G.2 – Standards for Nuclear Safety, Security and Safeguards Unit

CERTIFIED REFERENCE MATERIAL **IRMM – 046c**

CERTIFICATE OF ANALYSIS

NITRIC ACID SOLUTION							
	Isotope ar	mount content					
	Certified value 1) [µmol/g]	Uncertainty ²⁾ [µmol/g]					
²⁴² Pu	0.35498	0.00014					
²³³ U	4.4636	0.0010					
	Isotope amount ratio						
	Certified value 1) [mol/mol]	Uncertainty ²⁾ [mol/mol]					
n(²³⁴ U)/n(²³³ U)	0.0001939	0.0000012					
n(²³⁵ U)/n(²³³ U)	0.0000735	0.0000023					
n(²³⁶ U)/n(²³³ U)	0.000038	0.0000018					
n(²³⁸ U)/n(²³³ U)	0.0021043	0.0000039					
n(²³⁸ Pu)/n(²⁴² Pu)	0.0053359	0.0000049					
n(²³⁹ Pu)/n(²⁴² Pu)	0.0022699	0.0000014					
n(²⁴⁰ Pu)/n(²⁴² Pu)	0.046084	0.000037					
n(²⁴¹ Pu)/n(²⁴² Pu)	0.0029924	0.0000032					
n(²⁴⁴ Pu)/n(²⁴² Pu)	0.00025739	0.0000049					
^{1]} The certified values are	The certified values are traceable to the International System of units (SI) via IRMM-1027m. The reference						

the certified values is July 1, 2010. ²¹ The certified uncertainty is the expanded uncertainty with a coverage factor k = 2 corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO, 2008.

The certificate is valid for 3 years; the validity may be extended after further tests on the stability of the material are carried out.

Geel, January 2014

Last revision January 2017

Signed:

10/02/2017 Dr. Willy Mondelaers European Commission Joint Research Centre Directorate G - Nuclear Safety and Security G.2 - Standard for Nuclear safety, Security and Safeguards Retieseweg 111 B-2440 Geel, Belgium

Page 1 of 3

	Derived Values	
	Isotopic m	ass fraction
	Value 1) [%]	Uncertainty 2) [%]
m(²³³ U)/m(U)×100	99.75836	0.00051
m(²³⁴ U)/m(U)×100	0.01942	0.00012
m(²³⁵ U)/m(U)×100	0.00740	0.00023
m(²³⁶ U)/m(U)×100	0.00038	0.00019
m(²³⁸ U)/m(U)×100	0.21443	0.00040
m(²³⁸ Pu)/m(Pu)×100	0.49672	0.00044
m(²³⁹ Pu)/m(Pu)×100	0.21220	0.00012
m(²⁴⁰ Pu)/m(Pu)×100	4.3261	0.0033
m(²⁴¹ Pu)/m(Pu)×100	0.28208	0.00030
m(²⁴² Pu)/m(Pu)×100	94.6583	0.0038
m(²⁴⁴ Pu)/m(Pu)×100	0.024364	0.000046
	Amour	nt content
	Value ¹⁾ [µmol/g]	Uncertainty 2) [µmol/g]
Pu	0.37519	0.00015
U	4.4742	0.0010
	Mass	fraction
	Value 1) [mg/g]	Uncertainty 2) [mg/g]
Pu	0.090775	0.000037
U	1.04271	0.00024
¹⁷ The derived values are obtained 2010.	d from the certified values. The refer	ence date for the derived values is July 1

²¹ The certified uncertainty is the expanded uncertainty with a coverage factor k = 2 corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO, 2008.

DESCRIPTION OF THE MATERIAL

The IRMM-046c is a mixed uranium-plutonium spike Isotopic Reference Material suplied with an isotope amount content of ²³³U and ²⁴²Pu and isotope amount ratios as certified above. A unit of IRMM-046c consists of a glass ampoule with a screw cap containing about 10 mg uranium and 1 mg plutonium in a 10 mL of nitric acid solution. The molarity is about 5 mol·L⁻¹.

ANALYTICAL METHODS USED FOR CERTIFICATION

The certified values were established by isotope dilution mass spectrometry (IDMS) on a randomly selected units of IRMM-046c. The isotope ratio measurements were performed on a Triton TIMS (Thermo Fisher Scientific) using total evaporation method. Pu standard IRMM-290/A3 and U standard IRMM-074/10 were used to correct for the mass fractionation effects during isotopic measurement.

Page 2 of 3

SAFETY INFORMATION

The IRMM-046c contains radioactive material. The ampoules should be handled with great care and by experienced personnel in a laboratory suitably equipped for the safe handling of radioactive materials.

INSTRUCTIONS FOR USE AND INTENDED USE

This spike Isotopic Reference Material (IRM) is used as a calibrant to determine the plutonium and uranium amount content by isotope dilution mass spectrometry (IDMS).

STORAGE

The vials should be stored at + 18 °C ± 5 °C in an upright position.

However, the European Commission cannot be held responsible for changes that happen during storage of the material at the customer's premises, especially of opened samples.

LEGAL NOTICE

Neither JRC, its subsidiaries, its contractors nor any person acting on their behalf,

(a) make any warranty or representation, express or implied that the use of any information, material, pparatus, method or process disclosed in this document does not infringe any privately owned intellectual property rights; or

(b) assume any liability with respect to, or for damages resulting from, the use of any information, material, apparatus, method or process disclosed in this document save for loss or damage arising solely and directly from the negligence of JRC or any of its subsidiaries.

LEGAL NOTICE

A technical report on the preparation of IRMM-046c can be obtained from JRC Directorate G – Nuclear Safety and Security, G.2 – Standards for Nuclear Safety, Security and Safeguards unit in Geel, Belgium on request.

European Commission – Joint Research Centre Directorate G – Nuclear Safety and Security G.2 – Standards for Nuclear safety, Security and Safeguards Unit Retieseweg 111, B - 2440 Geel (Belgium)

Page 3 of 3

Annex 9 Results of the process control measurements (5 blends, 3 replicates) for 235 U, 238 U and 239 Pu amount content in the mother solution of IRMM-1027s

Figure 12 The amount content of ²³⁵U in the mother solution of IRMM-1027s measured by ID-TIMS using IRMM-046b (blue diamonds) and IRMM-046c (black triangles) spike CRM expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainties (coverage factor k = 2). Red dotted lines show the relative expanded uncertainty (k = 2) of the gravimetric value

Figure 13 The amount content of ²³⁸U in the mother solution of IRMM-1027s measured by ID-TIMS using IRMM-046b (blue diamonds) and IRMM-046c (black triangles) spike CRM expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainties (coverage factor k = 2). Red dotted lines show the relative expanded uncertainty (k = 2) of the gravimetric value

Figure 14 The amount content of ²³⁹Pu in the mother solution of IRMM-1027s measured by ID-TIMS using IRMM-046b (blue diamonds) and IRMM-046c (black triangles) spike CRM expressed as the relative difference from the gravimetric value. Error bars show the relative expanded uncertainties (coverage factor k = 2). Red dotted lines show the relative expanded uncertainty (k = 2) of the gravimetric value

Annex 10 Results of the process control measurements (5 aliquots, 3 replicates) for the uranium and plutonium isotope amount ratios in the mother solution of IRMM-1027s

Figure 15 The $n(^{234}U)/n(^{238}U)$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue diamonds and the average value with a green diamond). Error bars show the expanded uncertainties (coverage factor k = 2)

Aliquots of IRMM-1027s

Figure 16 The $n(^{235}\text{U})/n(^{238}\text{U})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue diamonds and the average value with a green diamond). Error bars show the expanded uncertainties (coverage factor k = 2)

Figure 17 The $n(^{236}\text{U})/n(^{238}\text{U})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue diamonds and the average value with a green diamond). Error bars show the expanded uncertainties (coverage factor k = 2)

Aliquots of IRMM-1027s

Figure 18 The $n(^{238}\text{Pu})/n(^{239}\text{Pu})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue diamonds and the average value with a green diamond). Error bars show the expanded uncertainties (coverage factor k = 2)

Figure 19 The $n(^{240}\text{Pu})/n(^{239}\text{Pu})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue diamonds and the average value with a green diamond). Error bars show the expanded uncertainties (coverage factor k = 2)

Aliquots of IRMM-1027s

Figure 20 The $n(^{241}\text{Pu})/n(^{239}\text{Pu})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue diamonds and the average value with a green diamond). Error bars show the expanded uncertainties (coverage factor k = 2)

Aliquots of IRMM-1027s

Figure 21 The $n(^{242}\text{Pu})/n(^{239}\text{Pu})$ amount ratio in the solution of IRMM-1027s prepared by gravimetric mixing compared with the measured values by TIMS (individual aliquots with blue diamonds and the average value with a green diamond). Error bars show the expanded uncertainties (coverage factor k = 2)

Aliquots of IRMM-1027s

Annex 11 Results of the homogeneity assessment for IRMM-1027s

Figure 22 The amount content of ²³⁵U from homogeneity study for the 30 replicate measurements (10 selected units, 3 replicates each) are shown as a function of the analytical sequence

Figure 23 Mean amount contents of 235 U from homogeneity study as a function of the units (filling sequence). The unit means are plotted with 95 % CI of the means

Figure 24 The amount content of 238 U from homogeneity study. Replicates are shown as a function of the analytical sequence

Figure 25 Mean amount contents of 238 U from homogeneity study as a function of the units (filling sequence). The unit means are plotted with 95 % CI of the means.

Figure 26 The amount content (normalised) of ²³⁹Pu from homogeneity study. Replicates are shown as a function of the analytical sequence

Figure 27 Mean amount contents (normalised) of 239 Pu from homogeneity study as a function of the units (filling sequence). The unit means are plotted with 95 % CI of the means

Annex 12 The weighing certificate of the aliquots of dispensed solution of IRMM-1027s per unit before drying

Joint Researce Directorate G G.2 - Standard	h Centre – Nuclear Safety and Security Is for Nuclear Safety, Security and Safeguards Unit	Certificate of weighing
E.3891	Issued date: 30/01/2017	Page 1 of 6
Applicant:	R. Jakopič Unit: SN3S	
Project:	Preparation and certification of IRMM-1027s LS	D spikes

Description: Dispensing of IRMM-1027s U/Pu nitrate solution into individual vials

Weighing date: 21-24 November 2016

The reported results apply only to the objects/samples described in this certificate and are shown in Annex.

Observations:

The dispensing and weighing were performed according to working instruction WI-D-00786/2. Preparation of Large-sized dried (LSD) spikes" on balance Sartorius TE124 installed in the dispensing robot box with inventory No. 2006 00290 17.

Traceability:

The certified masses are traceable to the International Kilogram Prototype via regular calibrations of the principal kilogram at JRC Geel. The mass standard identified as H208 (cylinder + vial certificate E3162) was used to verify the balance performance in the mass determinations.

Uncertainty:

The uncertainty on the mass determinations has a value of ± 0.0006 g. The reported uncertainties is expanded uncertainties $U = k \cdot u_c$ where u_c is the combined standard uncertainty calculated according to the ISO/IEC Guide to the Expression of Uncertainty in Measurement. The coverage factor k = 2 corresponds to a coverage probability of about 95%.

Nuclear Chemistry Laboratory Responsible

R. Jakopič

.....

Analyst

J. Bauwens

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-571 617

Annex: Mass of the nitrate solution in the vials of IRMM-1027s before drying.

Vial No.	Mass						
	[g]		[g]		[g]		[g]
001	2.5116	051	2.5091	101	2.5043	151	2.5029
002	2.5107	052	2.5090	102	2.5057	152	2.5037
003	2.5102	053	2.5122	103	2.5029	153	2.5008
004	2.5120	054	2.5062	104	2.5058	154	2.5075
005	2.5123	055	2.5081	105	2.5017	155	2.5018
006	2.5106	056	2.5103	106	2.5040	156	2.5005
007	2.5122	057	2.5063	107	2.5069	157	2.5040
008	2.5096	058	2.5078	108	2.5039	158	2.5043
009	2.5115	059	2.5083	109	2.5067	159	2.5066
010	2.5118	060	2.5072	110	2.5035	160	2.5026
011	2.5122	061	2.5081	111	2.5043	161	2.5015
012	2.5094	062	2.5072	112	2.5026	162	2.5044
013	2.5126	063	2.5088	113	2.5030	163	2.5031
014	2.5109	064	2.5081	114	2.5038	164	2.5027
015	2.5118	065	2.5049	115	2.5071	165	2.5048
016	2.5099	066	2.5104	116	2.5033	166	2.5059
017	2.5118	067	2.5048	117	2.5025	167	2.5014
018	2.5114	068	2.5077	118	2.5040	168	2.5025
019	2.5123	069	2.5066	119	2.5067	169	2.5023
020	2.5079	070	2.5048	120	2.5037	170	2.5035
021	2.5140	071	2.5090	121	2.5029	171	2.5060
022	2.5083	072	2.5032	122	2.5036	172	2.5017
023	2.5126	073	2.5092	123	2.5063	173	2.5030
024	2.5142	074	2.5022	124	2.5020	174	2.5062
025	2.5111	075	2.5056	125	2.5067	175	2.5048
026	2.5107	076	2.5091	126	2.5030	176	2.4994
027	2.5095	077	2.5061	127	2,5009	177	2.5042
028	2.5104	078	2.5050	128	2.5043	178	2.5041
029	2.5132	079	2.5068	129	2.5080	179	2.5020
030	2.5112	080	2.5051	130	2.5006	180	2.5058
031	2.5130	081	2.5067	131	2.5033	181	2.4997
032	2.5083	082	2.5049	132	2.5028	182	2.5047
033	2.5115	083	2.5040	133	2.5061	183	2.5062
034	2.5125	084	2.5054	134	2.5035	184	2.5031
035	2.5104	085	2.5066	135	2.5023	185	2.5035
036	2.5125	086	2.5031	136	2.5067	186	2.4997
037	2.5111	087	2.5044	137	2.5020	187	2.5055
038	2.5106	088	2.5060	138	2.5037	188	2.5023
039	2.5098	089	2.5066	139	2.5026	189	2.5074
040	2.5135	090	2.5039	140	2.5019	190	2.5017
041	2.5093	091	2.5062	141	2.5047	191	2.5027
042	2.5112	092	2.5066	142	2.5055	192	2.5059
043	2.5092	093	2.5033	143	2.5015	193	2.5004
044	2.5094	094	2.5049	144	2.5031	194	2.5013
045	2.5120	095	2.5041	145	2.5021	195	2.5064
046	2.5100	096	2.5070	146	2.5027	196	2.5011
047	2.5107	097	2.5039	147	2.5041	197	2.5036
048	2.5075	098	2.5017	148	2.5031	198	2.5014
049	2.5102	099	2.5032	149	2.5031	199	2.5049
050	2.5088	100	2.5058	150	2.5048	200	2.5046

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-571 617

Annex: Mass of the nitrate solution in the vials of IRMM-1027s before drying.

Vial No.	Mass						
	[g]		[g]		[g]		[g]
201	2.5056	251	2.5031	301	2.5029	351	2.5002
202	2.5009	252	2.5028	302	2.5025	352	2.5096
203	2.5031	253	2.5044	303	2.5018	353	2.4986
204	2.5072	254	2.5053	304	2.5030	354	2.5043
205	2.5004	255	2.5042	305	2.4983	355	2.5034
206	2.5050	256	2.5027	306	2.5124	356	2.5061
207	2.5026	257	2.5003	307	2.4970	357	2.4994
208	2.5046	258	2.5034	308	2.5067	358	2.5101
209	2.5012	259	2.5041	309	2.5001	359	2.4991
210	2.5034	260	2.5024	310	2.5011	360	2.5031
211	2.5057	261	2.5030	311	2.5028	361	2.5074
212	2.5024	262	2.5010	312	2.5085	362	2.5052
213	2.5020	263	2.5041	313	2.5012	363	2.5021
214	2.5042	264	2.5036	314	2.5055	364	2.4990
215	2.5025	265	2.5049	315	2.4964	365	2.5053
216	2.5030	266	2.5037	316	2.5049	366	2.5006
217	2 5048	267	2.5002	317	2.5029	367	2.5117
218	2 5023	268	2.5024	318	2.5033	368	2.5032
219	2.5048	269	2.4989	319	2.5012	369	2.5026
220	2.5034	270	2.5043	320	2.5045	370	2.4982
221	2.5024	271	2.5061	321	2.5021	371	2.5063
222	2.5046	272	2.5048	322	2.5075	372	2.5023
223	2.5029	273	2.5016	323	2.4984	373	2.5058
224	2.5044	274	2.5049	324	2.5056	374	2.5026
225	2.5021	275	2.5012	325	2.5016	375	2.5019
226	2.5070	276	2.5027	326	2.5048	376	2.5055
227	2.5042	277	2.5016	327	2.5012	377	2.4979
228	2.5019	278	2.5034	328	2.5054	378	2.5090
229	2.5025	279	2.5043	329	2.5020	379	2.5077
230	2.5073	280	2.5007	330	2.5039	380	2.5013
231	2.5065	281	2.5072	331	2.5007	381	2.5058
232	2.5019	282	2.4990	332	2.5067	382	2.4948
233	2.5020	283	2.5025	333	2.5057	383	2.5109
234	2.5029	284	2.5042	334	2.4989	384	2.4983
235	2.5078	285	2.5026	335	2.5043	385	2.5096
236	2.5012	286	2.5013	336	2.5035	386	2.5013
237	2.5025	287	2.5013	337	2.5016	387	2.5053
238	2.5048	288	2.5001	338	2.5004	388	2.4989
239	2.5032	289	2,5060	339	2.5105	389	2.5076
240	2.5039	290	2.5071	340	2.4989	390	2.5010
241	2.5016	291	2.5001	341	2.5069	391	2.5014
242	2.5035	292	2.4991	342	2.5028	392	2.5129
243	2,4997	293	2.5039	343	2.5043	393	2.5038
244	2.5016	294	2.5059	344	2.5000	394	2.5029
245	2.5075	295	2.5035	345	2.5065	395	2.5000
246	2.5067	296	2.5009	346	2.4966	396	2.5032
247	2.5010	297	2.5015	347	2.5082	397	2.5042
248	2.5055	298	2.4990	348	2.5018	398	2.5046
249	2.4974	299	2.5071	349	2.5069	399	2.5016
250	2.5036	300	2.5020	350	2.5035	400	2.5047

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-571 617

Annex: Mass of the nitrate solution in the vials of IRMM-1027s before drying.

Vial No.	Mass						
	[g]		[g]		[g]		[g]
401	2.5060	451	2.5044	501	2.5088	551	2.5016
402	2.5044	452	2.5010	502	2.4985	552	2.5033
403	2.5024	453	2.5074	503	2.5050	553	2.5109
404	2.5031	454	2.5078	504	2.5029	554	2.5019
405	2.5075	455	2.4980	505	2.5022	555	2.5008
406	2.5032	456	2.5062	506	2.5045	556	2.5041
407	2.5044	457	2.5045	507	2.5054	557	2.5043
408	2.5023	458	2.5005	508	2.5029	558	2.5040
409	2.5035	459	2.5081	509	2.5053	559	2.5030
410	2.5057	460	2.5006	510	2.5023	560	2.5064
411	2.5042	461	2.5014	511	2.5041	561	2.5008
412	2.4998	462	2.5058	512	2.5033	562	2.5047
413	2.5036	463	2.5066	513	2.5019	563	2.5077
414	2.5091	464	2.5011	514	2.5060	564	2.4987
415	2,5002	465	2.5012	515	2.5035	565	2.5023
416	2.5058	466	2.5050	516	2.5013	566	2.5070
417	2.5039	467	2.5097	517	2.5015	567	2.5002
418	2.5047	468	2.5039	518	2.5064	568	2.5071
419	2.5002	469	2.5034	519	2.5037	569	2.4999
420	2.5045	470	2.5018	520	2.5046	570	2.5059
421	2.5065	471	2.5043	521	2.5066	571	2.5062
422	2.5031	472	2.5020	522	2.5008	572	2.5052
423	2.5037	473	2.5073	523	2.5101	573	2.5051
424	2.5055	474	2.5003	524	2.5000	574	2.4976
425	2.4988	475	2.5041	525	2.5051	575	2.5118
426	2.5069	476	2.5053	526	2.5001	576	2.5019
427	2.5046	477	2.5036	527	2.5064	577	2.5027
428	2.5063	478	2.5049	528	2.4987	578	2.5037
429	2.5009	479	2.5033	529	2.5113	579	2.5034
430	2.5056	480	2.5007	530	2.5013	580	2.5052
431	2.5020	481	2.5065	531	2.5045	581	2.5050
432	2.5048	482	2.4979	532	2.5008	582	2.5040
433	2.4984	483	2.5019	533	2.5074	583	2.4986
434	2.5116	484	2.5053	534	2.5054	584	2.5042
435	2.5034	485	2.5029	535	2.5033	585	2.5049
436	2.5056	486	2.4979	536	2.5014	586	2.5011
437	2.5014	487	2.5039	537	2.5052	587	2.5087
438	2.5023	488	2.5062	538	2.5053	588	2.5000
439	2.5070	489	2.5037	539	2.5028	589	2.5078
440	2.5044	490	2.5061	540	2.5048	590	2.5064
441	2.4999	491	2.5024	541	2.5091	591	2.5006
442	2.5094	492	2.5001	542	2.4998	592	2.5053
443	2.5025	493	2.4989	543	2.4999	593	2.5079
444	2.5027	494	2.5053	544	2.5073	594	2.4987
445	2.5026	495	2.5038	545	2.5041	595	2.5041
446	2.5050	496	2.5052	546	2.5032	596	2.5056
447	2.5066	497	2.5032	547	2.5016	597	2.4979
448	2.5004	498	2.5021	548	2.5058	598	2.5065
449	2.5056	499	2.5082	549	2.5024	599	2.5035
450	2.5024	500	2.5004	550	2.5055	600	2.5020

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-571 617

Annex: Mass of the nitrate solution in the vials of IRMM-1027s before drying.

Vial No.	Mass						
	[g]		[g]		[g]		[g]
601	2.5011	651	2.4973	701	2.5030	751	2.5076
602	2.5105	652	2.5059	702	2.5059	752	2.5034
603	2.5037	653	2.5024	703	2.5055	753	2.5035
604	2.5041	654	2.5016	704	2.5006	754	2.5072
605	2.5040	655	2.5036	705	2.5031	755	2.5024
606	2.5047	656	2.5063	706	2.5037	756	2.5071
607	2.5020	657	2.5073	707	2.5081	757	2.5035
608	2.5025	658	2.5017	708	2.5019	758	2.5068
609	2.5066	659	2.5062	709	2.5047	759	2.4971
610	2.5015	660	2.5020	710	2.5072	760	2.5065
611	2.5078	661	2.5055	711	2.4990	761	2.5040
612	2.5050	662	2.5048	712	2.5084	762	2.5056
613	2.4978	663	2.5013	713	2.4996	763	2.5027
614	2.5099	664	2.5046	714	2.5074	764	2.5007
615	2.4988	665	2.5029	715	2.5048	765	2.5053
616	2.5067	666	2.5041	716	2.5038	766	2.5059
617	2.5039	667	2.5046	717	2.4938	767	2.5023
618	2.5031	668	2.5080	718	2.5045	768	2.5053
619	2.5016	669	2.4984	719	2.5008	769	2.5058
620	2.5042	670	2.5042	720	2.5013	770	2.5016
621	2.5089	671	2.5098	721	2.5034	771	2.5063
622	2.5008	672	2.4986	722	2.5072	772	2.5011
623	2.5020	673	2.5056	723	2.5054	773	2.5006
624	2.5085	674	2.5020	724	2.4985	774	2.5131
625	2.5026	675	2.5020	725	2.5010	775	2.5046
626	2.5034	676	2.5041	726	2.5064	776	2.5047
627	2.5053	677	2.5024	727	2.4996	777	2.4960
628	2.5008	678	2.5045	728	2.5057	778	2.5065
629	2.5035	679	2.5049	729	2.5066	779	2.5056
630	2.5062	680	2.5027	730	2.5036	780	2.5035
631	2.5026	681	2.5034	731	2.5046	781	2.5051
632	2.5059	682	2.5108	732	2.5016	782	2.5032
633	2.5007	683	2.4994	733	2.5027	783	2.5075
634	2.5063	684	2.5029	734	2.5004	784	2.5055
635	2.5035	685	2.5037	735	2.5027	785	2.5025
636	2.5038	686	2.5037	736	2.5064	786	2.5026
637	2.5030	687	2.5046	737	2.5066	787	2.4995
638	2.5031	688	2.5026	738	2.5006	/88	2,5098
639	2.5037	689	2.5019	739	2.5022	789	2,4994
640	2.5044	690	2.5048	740	2.5047	/90	2.5062
641	2.5040	691	2.5068	741	2.5082	791	2.3033
642	2.5047	692	2.5037	742	2.4961	792	2.5006
643	2.5037	693	2.5038	743	2.5073	793	2.5018
644	2.5020	694	2.5034	744	2.4992	794	2.3029
645	2.5063	695	2.5048	745	2.5043	795	2.5056
646	2.5045	696	2.5023	746	2.5041	796	2.5039
647	2.5024	697	2.5031	747	2.5048	797	2.5052
648	2.5029	698	2.5069	748	2.5047	798	2.5069
649	2.5093	699	2.5051	749	2.4979	/99	2.5009
650	2.5059	700	2.5030	750	2.5028	800	2.5024

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-571 617

Annex: Mass of the nitrate solution in the vials of IRMM-1027s before drying.

Vial No.	Mass	Vial No.	Mass	Vial No.	Mass	Vial No.	Mass
	[g]		[g]		[g]		[g]
801	2.5073	851	2.5029	901	2.5036		
802	2.5023	852	2.5022	902	2.5056		
803	2.5028	853	2.5028	903	2.5035		
804	2.5069	854	2.5112	904	2.5027		
805	2.5012	855	2.5006	905	2.5053		
806	2.5051	856	2.5046	906	2.5084		
807	2.5092	857	2.5054	907	2.5019		
808	2.5017	858	2.5071	908	2.5031		
809	2.5050	859	2.4998	909	2.5028		
810	2.5059	860	2.5068	910	2.5075		
811	2.4994	861	2.5011	911	2.5047		
812	2.5069	862	2.5067	912	2.5013		
813	2.5023	863	2.5043	913	2.5049		
814	2.5062	864	2.5018	914	2.5019		
815	2.5052	865	2.5091	915	2.5032		
816	2.5041	866	2.5022	916	2.5058		
817	2.5011	867	2.5045	917	2.5061		
818	2 5050	868	2,5020	918	2.5078	A DECEMBER	
819	2 5059	869	2 5044	919	2,4999	1	
820	2 5040	870	2 5081	920	2 5073	10000	
821	2 5038	871	2 5036	921	2 5041		
922	2.5058	872	2 5010	022	2 5034	1000	
022	2.5050	872	2.5002	073	2 5020	1.2.2.1.1.1.1.	
023	2.5000	873	2.5064	024	2.0020	1000	
024	2.5015	074	2.5004	025	2 5007	Contract of the	
040	2.5102	075	2.3009	026	2.5097		
820	2.5010	070	2.4990	027	2.5002		
827	2.5010	0//	2.5036	028	2.5024	and the second second	
828	2.5051	0/0	2.3045	920	2.5027	1000	
829	2.5012	0/9	2.5001	929	2.5059	Sec. 1	
830	2.5048	880	2.5010	930	2.3073	and the second se	
831	2.5030	166	2.5049	951	2.5000	Contraction of the local division of the loc	
832	2.5083	882	2.5044	952	2.3004	10000	
833	2.4994	883	2.3043	933	2.3008	12000	
834	2.5048	884	2.5074	934	2.3032	The Lord	
835	2.5074	885	2.5035	935	2.3003		
836	2.4987	886	2.5044	936	2.5081		
837	2.5059	887	2.5052	937	2.5015		
838	2.5041	888	2.5019	938	2.5033		
839	2.5025	889	2.5095	939	2.5047	111-2-2	
840	2.5055	890	2.5001	940	2.5023		
841	2.5028	891	2.5047	941	2.5045	Sec. and	
842	2.5097	892	2.5074	942	2.5090	Contraction of	
843	2.5004	893	2.5008	943	2.5007	The second	
844	2.5068	894	2.5042	944	2.5040		
845	2.5007	895	2.5051	945	2.5056		
846	2.5061	896	2.5057	946	2.5035		
847	2.5051	897	2.5051	947	2.5045		
848	2.5022	898	2.5044	948	2.5045		
849	2.5093	899	2.5021	949	2.5033		
850	2.5050	900	2.5046	950	2.5088	State Street	

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-571 617

Annex 13 The weighing certificate for the preparation of the mother solution of IRMM-1027s

Reg. No. E.3882	Issued date: 10 November 2016	Page 1 of 1
-----------------	-------------------------------	-------------

Applicant:	R. Jakopič	Unit: SN3S
Project:	Preparation a	nd certification of IRMM-1027s LSD spikes
Description:	Preparation o	f U/Pu nitrate solution for IRMM-1027s
Date of reques	st: N/A	Weighing date: October/November 2016

The reported results apply only to the objects / samples described in this certificate.

	Mass [g]	Uncertainty [g]
Mass of Pu metal (MP2)	1.65903	0.00009
Mass of enriched U metal (CRM 116-A)	10.24309	0.00007
Mass of natural U metal (EC 101)	41.65132	0.00008
Mass of IRMM-1027s U/Pu nitrate solution	2460.69	0.03

Observations:

Masses were determined by substitution weighing on balances AT 261 and AT 201 with inventory No. 1999003727 and 19960054773 and balance PR 5002 with inventory No. 9800298.

Traceability:

The certified mass values are traceable to the International Kilogram Prototype via regular calibrations of the principal kilogram at JRC Geel. The sets of working mass standards M3 and M10 were used as reference in the mass determination.

Uncertainty:

All reported uncertainties are expanded uncertainties $U = k^* u_c$ where u_c is the combined standard uncertainty calculated according to the ISO/IEC Guide to the expression of Uncertainty in Measurement. The coverage factor k = 2 corresponds to a coverage probability of about 95 %.

Rožle Jakopič

Jeroen Bauwens,

Analyst

Nuclear Chemistry Laboratory Responsible

Retieseweg 111, B-2440 Geel, Belgium; Tel.: +32-(0)14-571 211 * Fax: +32-(0)14-571 978

Annex 14 The uranium isotope amount ratios and their associated uncertainties for the uranium gravimetric mixture of IRMM-1027s

	Uranium gravimetric mixture for IRMM-1027s					
Uranium gravimetric mixture for IRMM-1027s Author: Jakopic						
Author: Rozle Ja	akopic					
A uranium gravi uranium (NBL C	A uranium gravimetric mixture was prepared by dissolving natural uranium (EC NRM 101) and enriched uranium (NBL CRM 116-A) metals in hydrochloric/nitric acid solution.					
Input parameters: a) masses of the metals and the nitrate solution (E3882) b) purity of the metals (metal certificates) c) uranium isotope amount ratios of the metals (certificate) d) the atomic masses according Wang et al. (The AME 2012 atomic mass evaluation (II). Tables, Graphs and References, Chinese Physics C, Vol. 36, No. 12, 1603-2014, 2012).						
U ingrowth from from 2006 until	Pu MP2 metal is calculated from the measurement data (2006, IRMM) plu 1 November 2016 (reference date for the certificate)	is the ingrowth				
Model Equation	on:					
{Molar ma	ass of uranium in gravimetric mixture, IRMM-1027s}					
M _U = M ₂₃	30 [.] f ₂₃₃₀ + M ₂₃₄₀ .f ₂₃₄₀ + M ₂₃₅₀ .f ₂₃₅₀ + M ₂₃₆₀ .f ₂₃₆₀ + M ₂₃₈₀ .f ₂₃₈₀ ;					
{Isotope a	amount fraction in gravimetric mixture, IRMM-1027s}					
f ₂₃₃₁₁ = R ₂	33U/238U/ΣRu;					
f _{234U} = R ₂	34U/238U/ΣRu;					
f _{235U} = R ₂	35U/238U/ΣRu;					
f _{236U} = R ₂						
f _{238U} = 1/2	iRui					
$\Sigma R_{U} = R_{2}$	33U/238U + R234U/238U + R235U/238U + R236U/238U + 1;					
{Isotope r	nass fraction in gravimetric mixture. IRMM-1027s}					
W ₂₂₂₁₁ = f ₂	2211 M 2221 / Muj					
W ₂₃₄₁₁ = f ₂	240 Manu/Mui					
w _{235U} = f ₂	360 1.00 0. 360 ^{(M} 0360) ^{(M} 0					
w _{236U} = f ₂	360 1355 0					
w _{238U} = f ₂	380'M2380/Mu;					
{Isotope a	amount ratios in gravimetric mixture, IRMM-1027s}					
R233U/238U	= n ₂₃₃₁ /n ₂₃₈₁ ;					
R _{234U/238U}	= n _{234U} /n _{238U} ;					
R _{235U/238U}	= n ₂₃₅₀ /n ₂₃₈₀ ;					
R _{236U/238U}	= n _{236U} /n _{238U} ;					
{Amount (of uranium isotopes in gravimetric mixture, IRMM-1027s}					
n _{233U} = (n	233 a + n233 b + n233 c);					
n _{234U} = (n	$n_{2240} = (n_{224,b} + n_{224,b} + n_{224,c});$					
n ₂₃₅₀ = (n	$n_{235U} = (n_{235,b} + n_{235,b} + n_{235,c});$					
n _{236U} = (n	236.a + n _{236.b} + n _{236.c});					
$n_{238,0} = (n_{238,0} + n_{238,0} + n_{238,c});$						
{uranium mass fraction in gravimetric mixture, IRMM-1027s}						
Date: 02/13/2018	File: IRMM-1027s Uranium gravimetric mixture.smu	Page 1 of 14				

	Uranium gravimetric mixture for IRMM-1027s	
7=(I		
Vonsture V	The stars Want C	
72350mixture Vacationista	From and the second se Second second sec	
1238Uminure	rumanine **2580*	
{uranium	Amount content in gravimetric mixture, remin-1027s)	
CUmixture ⁻⁷	Umixture/ ^{IVI} U	
Case of the second seco	=="Umixture '235U+	
C238Umbiture		
{Amount of	of uranium isotopes in EC NRM 101}	
n _{233.a} = m	UEC101 "1/puntyEC101 " 1/233Ua / MUa ;	
n _{234.a} = m	UEC101 "TpurtyEC101 " f234Ua / MUa ;	
n _{235.a} = m	UEC101 "TpurityEC101 " T235Ua / MUa ;	
n _{236.a} = m	UEC101 ¹¹ purityEC101 ¹² 236Ua / ¹¹¹ Ua -	
n _{238.a} = m	UEC101 ¹¹ purityEC101 ¹⁷ 238Ua ⁷ MUa :	
{Amount of	of uranium isotopes in NBL CRM116-A}	
n _{233.b} = m	UCRM116A "NpurtyCRM116A " f233Ub / MUb ;	
n _{234.b} = m	UCRM116A * 1 purtyCRM116A * f234Ub / MUb ;	
n _{235.b} = m	UCRM116A "NpurtyCRM116A " f235Ub / MUb ;	
n _{236.b} = m	UCRM116A "NpurtyCRM116A " f236Ub / MUb ;	
n _{238.b} = m	UCRM116A *NpurtyCRM116A * f238Ub / MUb ;	
{Isotope a	mount fraction of uranium in EC NRM 101}	
f _{233Ua} = R	233U/238Ua/∑R _{Ua} ;	
f _{234Ua} = R	_{234U/238Ua} /ΣR _{Ua} ;	
f _{235Ua} = R	235U/238Ua/2Rua;	
f _{236Ua} = R	236U/238Ua/2Rua;	
f _{238Ua} = 1/	ΣR _{Ua} ;	
$\Sigma R_{Ua} = R_{2}$	233U/238Ua + R _{234U/238Ua} + R _{235U/238Ua} + R _{236U/238Ua} + 1;	
{Molar ma	ass of uranium in EC NRM 101}	
$M_{Ua} = M_{22}$	^{33U·f} 233U a + M _{234U} ·f _{234U} a + M _{235U} ·f _{235U} a + M _{236U} ·f _{236U} a + M _{238U} ·f _{238U} a ;	
w _{233Ua} =f ₂₃	13Ua*M233U/MUa;	
w _{234Ua} =f ₂₃	^{4Ua} *M _{234U} /M _{Ua} ;	
w _{235Ua} =f ₂₃	15Ua [*] M235U/MUa;	
w _{236Ua} =f ₂₃	ысиа [•] М _{236U} /М _{Ua} ;	
w _{238Ua} =f ₂₃	_{18Ua} "M _{238U} /M _{Ua} ;	
{Isotope a	mount fraction of uranium in NBL CRM 116-A}	
f _{233Ub} = R	233U/235Ub/ΣR _{Ub} ;	
f _{234Ub} = R	234U/235Ub [/] ΣR _{Ub} ;	
f _{238Ub} = R	_{238U/235Ub} /ΣR _{Ub} ;	
Date: 02/13/2018	File: IRMM-1027s Uranium gravimetric mixture.smu	Page 2 of 14

		Uranium gravimetric mixture for IRMM-1027s					
f _{236Ub} =	R _{236U/235Ub} /2	R _{ub} ;					
1 _{2350b} = 1/2R _{0b} ,							
$\Sigma R_{Ub} = F$	$\Sigma R_{Ub} = R_{233U/235Ub} + R_{234U/235Ub} + R_{238U/235Ub} + R_{236U/235Ub} + 1;$						
{Molar n	nass of uran	ium in NBL CRM 116-A}					
M _{Ub} = M	$M_{Ub} = M_{233U} \cdot f_{233Ub} + M_{234U} \cdot f_{234Ub} + M_{235U} \cdot f_{235Ub} + M_{236U} \cdot f_{236Ub} + M_{238U} \cdot f_{238Ub};$						
w _{233Ub} =f	w _{233Ub} =f _{233Ub} *M _{233U} /M _{Ub} :						
w _{234Ub} =f	w _{234Ub} =f _{234Ub} 'M _{234U} /M _{Ub} ;						
w _{235Ub} =f	w _{235Ub} =f _{235Ub} ^{*M} _{235U} /M _{Ub} ;						
w _{236Ub} =f	236Ub "M236U/	M _{Ub} :					
w _{238Ub} =f	238Ub "M238U/	M _{Ub} :					
List of Quan	tities:						
Quantity	Unit	Definition					
YUmixture	g/g	U mass fraction in IRMM-1027s					
γ _{235Umixture}	g/g	²³⁵ U mass fraction in IRMM-1027s					
γ _{238Umixture}	g/g	²³⁸ U mass fraction in IRMM-1027s					
CUmbture	mol/g	U amount content in IRMM-1027s					
C _{235Umixture}	mol/g	²³⁵ U amount content in IRMM-1027s					
C _{238Umbture}	mol/g	²³⁸ U amount content in IRMM-1027s					
Mu	g/mol	g/mol Molar mass of U in IRMM-1027s					
R _{233U/238U}	mol/mol	mol/mol 233U/238U amount ratio in IRMM-1027s					
R _{234U/238U}	mol/mol	²³⁴ U/ ²³⁸ U amount ratio in IRMM-1027s					
R _{235U/238U}	mol/mol	²³⁵ U/ ²³⁸ U amount ratio in IRMM-1027s					
R _{236U/238U}	mol/mol	²³⁶ U/ ²³⁸ U amount ratio in IRMM-1027s					
f _{233U}	mol/mol	²³³ U amount fraction in IRMM-1027s					
f _{234U}	mol/mol	²³⁴ U amount fraction in IRMM-1027s					
f _{235U}	mol/mol	²³⁵ U amount fraction in IRMM-1027s					
f _{236U}	mol/mol	²³⁶ U amount fraction in IRMM-1027s					
f _{238U}	mol/mol	²³⁸ U amount fraction in IRMM-1027s					
w _{233U}	g/g	²³³ U mass fraction in IRMM-1027s					
W _{234U}	g/g	²³⁴ U mass fraction in IRMM-1027s					
W _{235U}	g/g	²³⁵ U mass fraction in IRMM-1027s					
W _{236U}	g/g	²³⁶ U mass fraction in IRMM-1027s					
W _{238U}	g/g	²³⁸ U mass fraction in IRMM-1027s					
n _{233U}	mol	Amount of U-233 in the mixture					
n _{234U}	mol	Amount of U-234 in the mixture					
n _{235U}	mol	Amount of U-235 in the mixture					
n _{236U}	mol	Amount of U-236 in the mixture					
n _{238U}	mol	Amount of U-238 in the mixture					
Date: 02/13/2018	File: IRMM	-1027s Uranium gravimetric mixture.smu	Page 3 of 14				

		Uranium gravimetric mixture for IRMM-1027s	
Quantity	Unit	Definition	
M _{233U}	g/mol	Atomic mass of ²³³ U	
M _{234U}	g/mol	Atomic mass of ²³⁴ U	
M _{235U}	g/mol	Atomic mass of ²³⁵ U	
M _{236U}	g/mol	Atomic mass of 236U	
M _{238U}	g/mol	Atomic mass of 238U	
m _{solution1027s}	g	Mass of gravimetric mixture, IRMM-1027s	
m _{UEC101}	g	Mass of natural uranium metal, EC-NRM 101	
η _{purtyEC101}	g/g	Purity of natural uranium metal, EC NRM 101	
m _{UCRM116A}	g	Mass of enriched uranium metal, NBL CRM 116-A	
η _{purityCRM116A}	g/g	Purity of enriched uranium metal, NBL CRM 116-A	
M _{Ua}	g/mol	Molar mass of U in EC NRM 101	
f _{233Ua}	mol/mol	233U amount fraction in EC NRM 101	
f _{234Ua}	mol/mol	234U amount fraction in EC NRM 101	
f _{235Ua}	mol/mol	²³⁵ U amount fraction in EC NRM 101	
f _{236Ua}	mol/mol	²³⁵ U amount fraction in EC NRM 101	
f _{238Ua}	mol/mol	²³⁸ U amount fraction in EC NRM 101	
MUb	g/mol	Molar mass of U in NBL CRM 116-A	
f _{233Ub}	mol/mol	233U amount fraction in NBL CRM 116-A	
f _{234Ub}	mol/mol	234U amount fraction in NBL CRM 116-A	
f _{235Ub}	mol/mol	²³⁵ U amount fraction in NBL CRM 116-A	
f _{236Ub}	mol/mol	²³⁶ U amount fraction in NBL CRM 116-A	
f _{238Ub}	mol/mol	²³⁸ U amount fraction in NBL CRM 116-A	
n _{233.a}	mol	233 U amount in EC NRM 101	
n _{234.a}	mol	234 U amount in EC NRM 101	
n _{235.a}	mol	²³⁵ U amount in EC NRM 101	
n _{236.a}	mol	236 U amount in EC NRM 101	
n _{238.a}	mol	²³⁸ U amount in EC NRM 101	
n _{233.b}	mol	233 U amount in NBL CRM 116-A	
n _{234.b}	mol	234 U amount in NBL CRM 116-A	
n _{235.b}	mol	²³⁵ U amount in NBL CRM 116-A	
n _{236.b}	mol	²³⁶ U amount in NBL CRM 116-A	
n _{238.b}	mol	²³⁸ U amount in NBL CRM 116-A	
R _{233U/238Ua}	mol/mol	233U/238U amount ratio in EC NRM 101	
R _{234U/238Ua}	mol/mol	²³⁴ U/ ²³⁸ U amount ratio in EC NRM 101	
R _{235U/238Ua}	mol/mol	²³⁵ U/ ²³⁸ U amount ratio in EC NRM 101	
R _{236U/238Ua}	mol/mol	²³⁶ U/ ²³⁸ U amount ratio in EC NRM 101	
R233U/235Ub	mol/mol	233U/235U amount ratio in NBL CRM 116-A	
R _{234U/235Ub}	mol/mol	²³⁴ U/ ²³⁵ U amount ratio in NBL CRM 116-A	
Date: 02/13/2018	File: IRMM	-1027s Uranium gravimetric mixture.smu	Page 4 of 14

	Uranium gravimetric mixture for IRMM-1027s								
Quantity	Unit	Unit Definition							
Rosel Woodel In	mol/mol	²³⁸ U/ ²³⁵ U amount ratio in NBL CRM 116-A							
R2361/2351/b	mol/mol	pl/mol 235U/235U amount ratio in NBL CRM 116-A							
ΣRu	mol/mol	I/mol Sum of amount ratios in gravimteric mixture, IRMM-1027s							
ΣRua	mol/mol	M/mol Sum of amount ratios in gravimteric mixture, IRMM-1027s bl/mol Sum of amount ratios in EC- NRM 101							
ΣR _{Ub}	mol/mol	ol/mol Sum of amount ratios in NBL CRM 118-A							
W _{233Ua}	g/g ²³³ U mass fraction in EC 101								
W _{234Ua}	a g/g ²³⁴ U mass fraction in EC 101								
W235Ua g/g 235U mass fraction in EC 101									
W _{236Ua}	g/g	²³⁶ U mass fraction in EC 101							
w _{238Ua} g/g ²³⁸ U mass fraction in EC 101									
w _{233Ub} g/g ²³³ U mass fraction in CRM 116-A									
W _{234Ub}	w _{234Ub} g/g ²³⁴ U mass fraction in CRM 116-A								
W _{235Ub}	g/g 235U mass fraction in CRM 118-A								
W _{236Ub}	g/g 236U mass fraction in CRM 118-A								
W _{238Ub}	g/g	²³⁸ U mass fraction in CRM 116-A							
n _{234.c}	mol	²³⁴ U amount ingrowth from Pu MP2							
n _{235.c}	mol	²³⁵ U amount ingrowth from Pu MP2							
n _{236.c}	mol	mol 236 U amount ingrowth from Pu MP2							
n _{233.c}	mol	mol 233 U amount ingrowth from Pu MP2							
n _{238.c}	mol	²³⁸ U amount ingrowth from Pu MP2							
m _{UMP2}	g	mass of total ingrown U from Pu MP2							
M _{233U} : Type B normal distribution Value: 233.0396355 g/mol Expanded Uncertainty: 0.0000029 g/mol Coverage Factor: 1									
the atomic mas and References	ses accordi s, Chinese F	ing Wang et al. (The AME 2012 atomic mass evaluation (II). Tal Physics C, Vol. 36, No. 12, 1603-2014, 2012).	bles, Graphs						
M ₂₃₄₀ :	M _{234U} : Type B normal distribution Value: 234.0409523 g/mol Expanded Uncertainty: 0.0000019 g/mol Coverage Factor: 1								
the atomic mas and Reference:	the atomic masses according Wang et al. (The AME 2012 atomic mass evaluation (II). Tables, Graphs and References, Chinese Physics C, Vol. 38, No. 12, 1603-2014, 2012).								
M _{235U} : Type B normal distribution Value: 235.0439301 g/mol Expanded Uncertainty: 0.0000019 g/mol Coverage Factor: 1									
the atomic mas and Reference:	Coverage Factor: 1 the atomic masses according Wang et al. (The AME 2012 atomic mass evaluation (II). Tables, Graphs and References, Chinese Physics C, Vol. 36, No. 12, 1603-2014, 2012).								
Date: 02/13/2018	File: IRMM	-1027s Uranium gravimetric mixture.smu	Page 5 of 14						

	Uranium gravimetric mixture for IRMM-1027s						
M ₂₃₆₀ :	M ₂₃₆₀ : Type B normal distribution Value: 236.0455682 g/mol Expanded Uncertainty: 0.0000019 g/mol Coverage Factor: 1 the atomic masses according Wang et al. (The AME 2012 atomic mass evaluation (II). Tables, Graphs						
and References	, Chinese Physics C, Vol. 38, No. 12, 1603-2014, 2012).	oles, Graphs					
M _{238U} :	Type B normal distribution Value: 238.0507884 g/mol Expanded Uncertainty: 0.0000020 g/mol Coverage Factor: 1						
the atomic masses according Wang et al. (The AME 2012 atomic mass evaluation (II). Tables, Graphs and References, Chinese Physics C, Vol. 36, No. 12, 1603-2014, 2012).							
m _{solution 1027s} :	Type B normal distribution Value: 2480.69 g Expanded Uncertainty: 0.03 g Coverage Factor: 2						
E3882 certificate	2						
m _{UEC101} :	Type B normal distribution Value: 41.65132 g Expanded Uncertainty: 0.00008 g Coverage Factor: 2						
E3882 certificate							
η _{purtyEC1D1} :	Type B normal distribution Value: 0.99985 g/g Expanded Uncertainty: 0.00005 g/g Coverage Factor: 2						
EC NRM 101 ce	rtificate						
m _{UCRM116A} :	Type B normal distribution Value: 10.24309 g Expanded Uncertainty: 0.00007 g Coverage Factor: 2						
E3882 certificate	2						
η _{purtyCRM116A} :	Type B normal distribution Value: 0.99945 g/g Expanded Uncertainty: 0.00014 g/g Coverage Factor: 2.4						
NBL CRM 116-A	A certificate (coverage factor 2.4)						
R _{233U/238Ua} :	Type B normal distribution Value: 0 mol/mol Expanded Uncertainty: 0 mol/mol Coverage Factor: 1						
Certificate of iso	topic coposition (IRMM, W. De Bolle)						
Date: 02/13/2018	File: IRMM-1027s Uranium gravimetric mixture.smu	Page 6 of 14					

	Uranium gravimetric mixture for IRMM-1027s	
R _{234U/238Ua} :	Type B normal distribution Value: 0.00005548 mol/mol Expanded Uncertainty: 0.00000022 mol/mol Coverage Factor: 1	
Certificate of iso	topic coposition (IRMM, W. De Bolle)	
R _{235U/238Ua} :	Type B normal distribution Value: 0.0072593 mol/mol Expanded Uncertainty: 0.0000036 mol/mol Coverage Factor: 1	
Certificate of iso		
R _{236U/238Ua} :	Type B normal distribution Value: 0.000000151 mol/mol Expanded Uncertainty: 0.000000040 mol/mol Coverage Factor: 1	
Certificate of iso	topic coposition (IRMM, W. De Bolle)	
R _{233U/235Ub} :	Type B normal distribution Value: 0.0000003863 mol/mol Expanded Uncertainty: 0.000000086 mol/mol Coverage Factor: 3.3	
CRM 116-A cert	ificate (coverage factor k= 3.3)	
R _{234U/235Ub} :	Type B normal distribution Value: 0.0115836 mol/mol Expanded Uncertainty: 0.0000097 mol/mol Coverage Factor: 2	
CRM 116-A cert	ificate	
R _{238U/235Ub} :	Type B normal distribution Value: 0.051277 mol/mol Expanded Uncertainty: 0.000041 mol/mol Coverage Factor: 2	
CRM 116-A cert	ificate	
R _{236U/235Ub} :	Type B normal distribution Value: 0.0094713 mol/mol Expanded Uncertainty: 0.0000077 mol/mol Coverage Factor: 2	
CRM 116-A cert	ificate	
n _{234.c} :	Import Filename: U ingrowth from Pu MP2.smu Symbol: n ₂₃₄₀ Total	
n _{235.c} :	Import Filename: U ingrowth from Pu MP2.smu Symbol: n ₂₃₅₀ Total	
n _{236.c} :	Import Filename: U ingrowth from Pu MP2.smu Symbol: n _{236U} Total	
Date: 02/42/2014	File IDMM 1027- Line in a service bis stiller and	Pros 7 rd t d
Date: 02/13/2018	File: Intmin-1027s Uranium gravimetric mixture.smu	Page / of 14

			U	ranium g	pravimet	ric mixture for IRMM-1027s		
n _{233.c} :	233.c ² Type B normal distribution Value: 0 mol Expanded Uncertainty: 0 mol Coverage Factor: 2							
n _{238.c} :	Import Filename: U ingrowth from Pu MP2.smu Symbol: n ₂₃₈₀ Total							
m _{ump2} :		Impo Filen Syml	ort ame: U i bol: m _u T	ingrowth otal	from P	u MP2.smu		
Input (Correlat	tion:						
	n _{234.c}	n _{235.c}	n _{236.c}	n _{238.c}	m _{UMP2}			
n _{234.c}	1	0.2332	0.1691	0.0028	0.2644			
n _{235.c}	0.2332	1	0.6773	0.0114	0.9965			
n _{236.c}	0.1691	0.6773	1	0.0083	0.7321			
n _{238.c}	0.0028	0.0114	0.0083	1	0.0115	-		
m _{UMP2}	0.2644	0.9965	0.7321	0.0115	1			
Date: 02/1	13/2018	File: IRM	/M-1027s	s Uraniun	n gravime	etric mixture.smu	Page 8 of 14	

terim Decultor						
Quantity	Value	Standard Uncertainty]			
f _{233U}	71.769•10 ⁻⁹ mol/mol	484.10 ⁻¹² mol/mol				
W _{233U}	70.432·10 ⁻⁹ g/g	475·10 ⁻¹² g/g	1			
n _{233U}	15.681 10 ⁻⁹ mol	106·10 ⁻¹² mol	1			
n _{234U}	479.905 10 ⁻⁶ mol	201·10 ⁻⁹ mol	1			
n ₂₃₅₀	0.04186024 mol	2.59·10 ⁻⁶ mol	1			
n ₂₃₆₀	385.018 10 ⁻⁶ mol	157·10 ⁻⁹ mol	1			
n _{238U}	0.17576903 mol	4.46·10 ⁻⁶ mol				
M _{Ua}	238.0288981 g/mol	10.9•10 ⁻⁶ g/mol	1			
f _{234Ua}	55.077·10 ⁻⁶ mol/mol	218·10 ⁻⁹ mol/mol				
f _{235Ua}	7.20658 10 ⁻³ mol/mol	3.55 10 ⁻⁶ mol/mol]			
f _{236Ua}	149.9·10 ⁻⁹ mol/mol	39.7 • 10 ⁻⁹ mol/mol]			
f _{238Ua}	0.99273819 mol/mol	3.55 10 ⁻⁶ mol/mol]			
MUb	235.1857244 g/mol	55.1·10 ⁻⁶ g/mol	1			
f _{233Ub}	360.24 · 10 ⁻⁹ mol/mol	2.43·10 ⁻⁹ mol/mol	1			
f _{234Ub}	0.01080225 mol/mol	4.48 10 ⁻⁶ mol/mol	1			
f _{235Ub}	0.9325468 mol/mol	18.6•10 ⁻⁶ mol/mol	1			
f _{236Ub}	8.83243 10 ⁻³ mol/mol	3.56·10 ⁻⁶ mol/mol	1			
f _{238Ub}	0.0478182 mol/mol	18.2·10 ⁻⁶ mol/mol				
n _{234.a}	9.6362·10 ⁻⁶ mol	38.2·10 ⁻⁹ mol	1			
n _{235.a}	1.260850 10 ⁻³ mol	622·10 ⁻⁹ mol	1			
n _{236.a}	26.23·10 ⁻⁹ mol	6.95·10 ⁻⁹ mol				
n _{238.a}	0.17368754 mol	4.39·10 ⁻⁶ mol	1			
n _{233.b}	15.681 10 ⁻⁹ mol	106·10 ⁻¹² mol	1			
n _{234.b}	470.214 10 ⁻⁶ mol	197·10 ⁻⁹ mol	1			
n _{235.b}	0.04059305 mol	2.51·10 ⁻⁶ mol	1			
n _{236.b}	384.469 10 ⁻⁶ mol	157·10 ⁻⁹ mol	1			
n _{238.b}	2.081490 10 ⁻³ mol	801·10 ⁻⁹ mol	1			
ΣRU	1.2430757 mol/mol	16.5•10 ⁻⁶ mol/mol	1			
ΣR_{Ua}	1.00731493 mol/mol	3.61·10 ⁻⁶ mol/mol	1			
ΣR _{Ub}	1.0723323 mol/mol	21.4 · 10 ⁻⁶ mol/mol	1			
W _{234Ua}	54.154·10 ⁻⁶ g/g	215·10 ⁻⁹ g/g	1			
W _{235Ua}	7.11621.10 ⁻³ g/g	3.50•10 ⁻⁶ g/g	1			
W _{236Ua}	148.7•10 ⁻⁹ g/g	39.4•10 ⁻⁹ g/g	1			
W _{238Ua}	0.99282949 g/g	3.51·10 ⁻⁶ g/g	1			
W233Ub	356.96·10 ⁻⁹ g/g	2.41·10 ⁻⁹ g/g]			
W _{234Ub}	0.01074967 g/g	4.46·10 ⁻⁶ g/g]			
			_			
02/13/2018	File: IRMM-1027s Uranium	gravimetric mixture.smu		Page 9		

	Uranium gra	avimetric mixture for IRMM-1027s	
Quantity	Value	Standard Uncertainty	
W235Ub	0.9319845 g/g	18.8·10 ⁻⁶ g/g	
W _{236Ub}	8.86472·10 ⁻³ g/g	3.58·10 ⁻⁶ g/g	
W238Ub	0.0484007 g/g	18.4·10 ⁻⁶ g/g	
ate: 02/13/2018	File: IRMM-1027s Uranium (gravimetric mixture.smu	Page 10 of 14

Quantity	Value	Standard Uncertainty	Distributio	Sensitivity Coefficient	Uncertainty Contribution	Index
M _{233U}	233.03963550 g/mol	2.90·10 ⁻⁶	normal	-4.0·10 ⁻¹²	-12.10 ⁻¹⁸	0.0 %
M _{234U}	234.04095230 g/mol	1.90·10 ⁻⁶	normal	-120·10 ⁻⁹	-230.10 ⁻¹⁵	0.0 %
M _{235U}	235.04393010 g/mol	1.90·10 ⁻⁶ g/mol	normal	-10.10.6	-20•10 ⁻¹² mol/mol	0.0 %
M _{236U}	236.04556820 g/mol	1.90 10 ⁻⁶ g/mol	normal	-99·10 ⁻⁹	-190-10 ⁻¹⁵ mol/mol	0.0 %
M _{238U}	238.05078840 g/mol	2.00·10 ⁻⁶ g/mol	normal	10·10 ⁻⁶	21·10 ⁻¹² mol/mol	0.0 %
m _{UEC101}	41.6513200 g	40.0•10 ⁻⁶ g	normal	-63.10-6	-2.5•10 ⁻⁹ mol/mol	0.0 %
η _{purityEC101}	0.9998500 g/g	25.0·10 ⁻⁶ g/g	normal	-2.6•10 ⁻³	-66•10 ⁻⁹ mol/mol	0.3 %
m _{UCRM116A}	10.2430900 g	35.0•10 ⁻⁶ g	normal	260.10-6	9.0•10 ⁻⁹ mol/mol	0.0 %
DpurityCRM116A	0.9994500 g/g	58.3•10 ⁻⁶ g/g	normal	2.6.10-3	150•10 ⁻⁹ mol/mol	1.8 %
R _{233U/238Ua}	0.0 mol/mol	0.0 mol/mol	normal	0.0	0.0 mol/mol	0.0 %
R _{234U/238Ua}	55.480 10 ⁻⁶ mol/mol	220·10 ⁻⁹ mol/mol	normal	0.99	220·10 ⁻⁹ mol/mol	3.6 %
R _{235U/238Ua}	7.25930 • 10 ⁻³ mol/mol	3.60·10 ⁻⁶ mol/mol	normal	2.6·10 ⁻³	9.3•10 ⁻⁹ mol/mol	0.0 %
R _{236U/238Ua}	151.0•10 ⁻⁹ mol/mol	40.0•10 ⁻⁹ mol/mol	normal	2.6·10 ⁻³	100·10 ⁻¹² mol/mol	0.0 %
R _{233U/235Ub}	386.30•10 ⁻⁹ mol/mol	2.61 • 10 ⁻⁹ mol/mol	normal	-2.4·10 ⁻³	-6.4 10 ⁻¹² mol/mol	0.0 %
R _{234U/235Ub}	0.01158360 mol/mol	4.85·10 ⁻⁶ mol/mol	normal	0.23	1.1·10 ⁻⁶ mol/mol	93.9 %
R _{238U/235Ub}	0.0512770 mol/mol	20.5•10 ⁻⁶ mol/mol	normal	-3.1·10 ⁻³	-64•10 ⁻⁹ mol/mol	0.3 %
R _{236U/235Ub}	9.47130·10 ⁻³ mol/mol	3.85·10 ⁻⁶ mol/mol	normal	-2.5·10 ⁻³	-9.5•10 ⁻⁹ mol/mol	0.0 %
n _{234.c}	55.1874•10 ⁻⁹ mol	84.5•10 ⁻¹² mol		5.7	480.10 ⁻¹² mol/mol	0.0 %
n _{238.c}	10.1978 10 ⁻¹² mol	97.3•10 ⁻¹⁵ mol		-0.016	-1.5·10 ⁻¹⁵ mol/mol	0.0 %
R _{234U/238U}	2.73032 • 10 ⁻³ mol/mol	1.14·10 ⁻⁶ mol/mol				

Value 233.03963550 g/mol 234.04095230 g/mol 235.04393010 g/mol 238.05078840 g/mol 238.05078840 g/mol 41.6513200 g 0.9998500 g/g 10.2430900 g 0.9994500 g/g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	Standard Uncertainty 2.90·10 ⁻⁶ g/mol 1.90·10 ⁻⁶ g/mol 1.90·10 ⁻⁶ g/mol 2.00·10 ⁻⁶ g/mol 2.00·10 ⁻⁶ g/mol 2.00·10 ⁻⁶ g/mol 25.0·10 ⁻⁶ g/g 35.0·10 ⁻⁶ g/g 58.3·10 ⁻⁶ g/g 0.0 mol/mol 220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	Distributio n normal	Sensitivity Coefficient -350·10 ⁻¹² -10·10 ⁻⁶ -900·10 ⁻⁶ -8.6·10 ⁻⁶ 910·10 ⁻⁶ -5.5·10 ⁻³ -0.23 0.022 0.23 0.0 0.22	Uncertainty Contributio -1.0·10 ⁻¹⁵ mol/mol -20·10 ⁻¹² mol/mol -1.7·10 ⁻⁹ mol/mol -16·10 ⁻¹² mol/mol 1.8·10 ⁻⁹ mol/mol -220·10 ⁻⁹ mol/mol -5.7·10 ⁻⁶ mol/mol 13·10 ⁻⁶ mol/mol 0.0 mol/mol 40·10 ⁻⁹	y Index 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.2 % 67.7 % 1 0.0 %		
233.03963550 g/mol 234.04095230 g/mol 235.04393010 g/mol 236.04556820 g/mol 238.05078840 g/mol 41.6513200 g 0.9998500 g/g 10.2430900 g 0.9994500 g/g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	2.90·10 ⁻⁶ g/mol 1.90·10 ⁻⁶ g/mol 1.90·10 ⁻⁶ g/mol 2.00·10 ⁻⁶ g/mol 40.0·10 ⁻⁶ g/mol 25.0·10 ⁻⁶ g/g 35.0·10 ⁻⁶ g/g 58.3·10 ⁻⁶ g/g 0.0 mol/mol 220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	normal	-350+10 ⁻¹² -10+10 ⁻⁶ -900+10 ⁻⁶ -8.6+10 ⁻⁶ 910+10 ⁻⁶ -5.5+10 ⁻³ -0.23 0.022 0.23 0.0 0.22	-1.0·10 ⁻¹⁵ mol/mol -20·10 ⁻¹² mol/mol -1.7·10 ⁻⁹ mol/mol 1.8·10 ⁻³ mol/mol -220·10 ⁻⁹ mol/mol -5.7·10 ⁻⁶ mol/mol 13·10 ⁻⁶ mol/mol 0.0 mol/mol 40·10 ⁻⁹	0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 12.4 % 0.2 % 67.7 % 1 0.0 %		
234.04095230 g/mol 235.04393010 g/mol 236.04556820 g/mol 238.05078840 g/mol 41.6513200 g 0.9998500 g/g 10.2430900 g 0.9994500 g/g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	1.90·10 ⁻⁶ g/mol 1.90·10 ⁻⁶ g/mol 2.00·10 ⁻⁶ g/mol 40.0·10 ⁻⁶ g 25.0·10 ⁻⁶ g/g 35.0·10 ⁻⁶ g/g 0.0 mol/mol 220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	normal normal normal normal normal normal normal normal	-10·10 ⁻⁶ -900·10 ⁻⁶ -8.6·10 ⁻⁶ 910·10 ⁻⁶ -5.5·10 ⁻³ -0.23 0.022 0.23 0.0 0.22	-20·10 ⁻¹² mol/mol -1.7·10 ⁻⁹ mol/mol 1.8·10 ⁻⁹ mol/mol -220·10 ⁻⁹ mol/mol -5.7·10 ⁻⁶ mol/mol 780·10 ⁻⁹ mol/mol 13·10 ⁻⁶ mol/mol 0.0 mol/mol	0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 12.4 % 0.2 % 67.7 % 1 0.0 %		
235.04393010 g/mol 236.04556820 g/mol 238.05078840 g/mol 41.8513200 g 0.9998500 g/g 10.2430900 g 0.9994500 g/g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	1.90·10 ⁻⁶ g/mol 1.90·10 ⁻⁶ g/mol 2.00·10 ⁻⁶ g/mol 40.0·10 ⁻⁶ g/g 25.0·10 ⁻⁶ g/g 35.0·10 ⁻⁶ g/g 0.0 mol/mol 220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	normal normal normal normal normal normal normal	-900·10 ⁻⁶ -8.6·10 ⁻⁶ 910·10 ⁻⁶ -5.5·10 ⁻³ -0.23 0.022 0.23 0.0 0.22	-1.7·10 ⁻⁹ mol/mol -16·10 ⁻¹² mol/mol 1.8·10 ⁻⁹ mol/mol -220·10 ⁻⁹ mol/mol -5.7·10 ⁻⁶ mol/mol 13·10 ⁻⁶ mol/mol 0.0 mol/mol 40·10 ⁻⁹	0.0 % 0.0 % 0.0 % 0.0 % 12.4 % 0.2 % 67.7 % 1 0.0 %		
238.04556820 g/mol 238.05078840 g/mol 41.0513200 g 0.9998500 g/g 10.2430900 g 0.9994500 g/g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	1.90+10 ⁻⁶ g/mol 2.00+10 ⁻⁶ g/mol 40.0+10 ⁻⁶ g 25.0+10 ⁻⁶ g/g 35.0+10 ⁻⁶ g/g 0.0 mol/mol 220+10 ⁻⁹ mol/mol 3.60+10 ⁻⁶	normal normal normal normal normal normal	-8.6·10 ⁻⁶ 910·10 ⁻⁶ -5.5·10 ⁻³ -0.23 0.022 0.23 0.0 0.22	-18·10 ⁻¹² mol/mol 1.8·10 ⁻³ mol/mol -220·10 ⁻⁹ mol/mol 780·10 ⁻⁹ mol/mol 13·10 ⁻⁶ mol/mol 0.0 mol/mol 49·10 ⁻⁹	0.0 % 0.0 % 0.0 % 12.4 % 0.2 % 67.7 % 1 0.0 %		
238.05078840 g/mol 41.6513200 g 0.9998500 g/g 10.2430900 g 0.9994500 g/g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	2.00·10 ⁻⁶ g/mol 40.0·10 ⁻⁶ g 25.0·10 ⁻⁶ g/g 35.0·10 ⁻⁶ g/g 58.3·10 ⁻⁶ g/g 0.0 mol/mol 220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	normal normal normal normal normal normal	910·10 ⁻⁶ -5.5·10 ⁻³ -0.23 0.022 0.23 0.0 0.22	1.8·10 ⁻⁹ mol/mol -220·10 ⁻⁹ mol/mol 780·10 ⁻⁹ mol/mol 13·10 ⁻⁶ mol/mol 0.0 mol/mol 49·10 ⁻⁹	0.0 % 0.0 % 12.4 % 0.2 % 67.7 % 1 0.0 %		
41.8513200 g 0.9998500 g/g 10.2430900 g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	40.0°10 ⁻⁶ g 25.0°10 ⁻⁶ g/g 35.0°10 ⁻⁶ g/g 58.3°10 ⁻⁶ g/g 0.0 mol/mol 220°10 ⁻⁹ mol/mol 3.60°10 ⁻⁶	normal normal normal normal normal	-5.5·10 ⁻³ -0.23 0.022 0.23 0.0 0.22	-220·10 ⁻⁹ mol/mol -5.7·10 ⁻⁶ mol/mol 13·10 ⁻⁹ mol/mol 0.0 mol/mol 49·10 ⁻⁹	0.0 % 12.4 % 0.2 % 67.7 % I 0.0 %		
0.9998500 g/g 10.2430900 g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	25.0·10 ⁻⁶ g/g 35.0·10 ⁻⁶ g 58.3·10 ⁻⁶ g/g 0.0 mol/mol 220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	normal normal normal normal	-0.23 0.022 0.23 0.0 0.22	-5.7·10 ⁻⁶ mol/mol 780·10 ⁻⁹ mol/mol 13·10 ⁻⁶ mol/mol 0.0 mol/mol 49·10 ⁻⁹	12.4 % 0.2 % 67.7 % 1 0.0 % 0.0 %		
10.2430900 g 0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	35.0°10 ⁻⁶ g 58.3°10 ⁻⁶ g/g 0.0 mol/mol 220°10 ⁻⁹ mol/mol 3.60°10 ⁻⁶	normal normal normal normal	0.022 0.23 0.0 0.22	780·10 ⁻⁹ mol/mol 13·10 ⁻⁵ mol/mol 0.0 mol/mol 40·10 ⁻⁹	0.2 % 67.7 % 1 0.0 % 0.0 %		
0.9994500 g/g 0.0 mol/mol 55.480·10 ⁻⁶ mol/mol 7.25930·10 ⁻³	58.3·10 ⁻⁶ g/g 0.0 mol/mol 220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	normal normal normal	0.23 0.0 0.22	13·10 ⁻⁵ mol/mol 0.0 mol/mo 49·10 ⁻⁹	67.7 % I 0.0 % 0.0 %		
0.0 mol/mol 55.480 10 ⁻⁶ mol/mol 7.25930 10 ⁻³	0.0 mol/mol 220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	normal normal	0.0 0.22	0.0 mol/mo 49·10 ⁻⁹	0.0 %		
55.480 10 ⁻⁶ mol/mol 7.25930 10 ⁻³	220·10 ⁻⁹ mol/mol 3.60·10 ⁻⁶	normal	0.22	49·10 ⁻⁹	0.0 %		
7.25930 10 3	3.60 10 6			mol/mol			
mol/mol	mol/mol	normal	1.2	4.4·10 ⁻⁶ mol/mol	7.3 %		
1.0•10 ⁻⁹ mol/mol	40.0•10 ⁻⁹ mol/mol	normal	0.22	9.0·10 ⁻⁹ mol/mol	0.0 %		
386.30•10 ⁻⁹ mol/mol	2.61 • 10 ⁻⁹ mol/mol	normal	-0.21	-550-10 ⁻¹² mol/mol	0.0 %		
0.01158360 mol/mol	4.85·10 ⁻⁶ mol/mol	normal	-0.21	-1.0·10 ⁻⁶ mol/mol	0.4 %		
0512770 mol/mol	20.5•10 ⁻⁶ mol/mol	normal	-0.27	-5.5•10 ⁻⁶ mol/mol	11.7 %		
9.47130·10 ⁻³ mol/mol	3.85•10 ⁻⁶ mol/mol	normal	-0.21	-820·10 ⁻⁹ mol/mol	0.3 %		
.33280•10 ⁻⁶ mol	2.37·10 ⁻⁹ mol		5.7	13·10 ⁻⁹ mol/mol	0.0 %		
0.1978•10 ^{•12} mol	97.3•10 ⁻¹⁵ mol		-1.4	-130-10 ⁻¹⁵ mol/mol	0.0 %		
2381548 mol/mol	16.2·10 ⁻⁶ mol/mol				•		
	9.47130·10 ⁻³ mol/mol 33280·10 ⁻⁶ mol .1978·10 ⁻¹² mol 381548 mol/mol	mol/mol 9.47130·10 ⁻³ mol/mol 33.85·10 ⁻⁶ mol/mol 33280·10 ⁻⁶ mol 2.37·10 ⁻⁹ mol .1978·10 ⁻¹² mol 97.3·10 ⁻¹⁵ mol 381548 mol/mol 16.2·10 ⁻⁶ mol/mol	mol/mol 9.47130·10 ⁻³ 3.85·10 ⁻⁶ normal mol/mol nol/mol normal 33280·10 ⁻⁶ mol 2.37·10 ⁻⁹ mol normal .1978·10 ⁻¹² mol 97.3·10 ⁻¹⁵ mol normal 381548 mol/mol 16.2·10 ⁻⁶ mol/mol normal	mol/mol mol/mol 9.47130·10 ⁻³ 3.85·10 ⁻⁶ normal -0.21 mol/mol mol/mol 5.7 33280·10 ⁻⁶ mol 2.37·10 ⁻⁹ mol 5.7 .1978·10 ⁻¹² mol 97.3·10 ⁻¹⁵ mol -1.4 381548 mol/mol 16.2·10 ⁻⁶ mol/mol -1.4	mol/mol mol/mol mol/mol 9.47130·10 ⁻³ 3.85·10 ⁻⁶ normal -0.21 -820·10 ⁻⁹ mol/mol mol/mol mol/mol -0.21 -820·10 ⁻⁹ 33280·10 ⁻⁶ mol 2.37·10 ⁻⁹ mol 5.7 13·10 ⁻⁹ .1978·10 ⁻¹² mol 97.3·10 ⁻¹⁵ mol -1.4 -130·10 ⁻¹⁵ .381548 mol/mol 16.2·10 ⁻⁶ mol/mol -1.4		

	Ura	Uranium gravimetric mixture for IRMM-1027s					
R _{236U/238U} :	²³⁶ U/ ²³⁸ U amou	unt ratio in IRM	M-1027s				
Quantity	Value	Standard Uncertainty	Distributio n	Sensitivity Coefficient	Uncerta Contrib	ainty ution	Index
M _{233U}	233.03963550 g/mol	2.90 10 ⁻⁶ g/mol	normal	-3.3·10 ⁻¹²	-9.6•1 mol/m	0 ⁻¹⁸ 101	0.0 %
M _{234U}	234.04095230 g/mol	1.90 10 ⁻⁶ g/mol	normal	-99·10 ⁻⁹	-190•1 mol/m	0 ⁻¹⁵ 101	0.0 %
M _{235U}	235.04393010 g/mol	1.90•10 ⁻⁶ g/mol	normal	-8.5·10 ⁻⁶	-16•10 mol/m	0 ⁻¹² 10l	0.0 %
M _{236U}	236.04556820 g/mol	1.90•10 ⁻⁶ g/mol	normal	-81·10 ⁻⁹	-150-1 mol/m	0 ⁻¹⁵ 101	0.0 %
M _{238U}	238.05078840 g/mol	2.00 • 10 ⁻⁶ g/mol	normal	8.6•10 ⁻⁶	17·10 mol/m) ⁻¹² 10	0.0 %
m _{UEC101}	41.6513200 g	40.0•10 ⁻⁶ g	normal	-52.10	-2.1·1 mol/m	10 ⁻⁹ Nol	0.0 %
η _{purityEC101}	0.9998500 g/g	25.0•10 ⁻⁶ g/g	normal	-2.2·10 ⁻³	-54•1 mol/m	0 ⁻⁹ 101	0.4 %
m _{UCRM116A}	10.2430900 g	35.0•10 ⁻⁶ g	normal	210.10-6	7.4·1 mol/m	0 ⁻⁹ 101	0.0 %
η _{purityCRM116A}	0.9994500 g/g	58.3•10 ⁻⁶ g/g	normal	2.2.10-3	130-1 mol/m	0 ⁻⁹ Iol	2.0 %
R _{233U/238Ua}	0.0 mol/mol	0.0 mol/mol	normal	0.0	0.0 mol	l/mol	0.0 %
R _{234U/238Ua}	55.480•10 ⁻⁶ mol/mol	220·10 ⁻⁹ mol/mol	normal	2.1.10 ⁻³	460•1 mol/m	0 ⁻¹² 10	0.0 %
R _{235U/238Ua}	7.25930 • 10 ⁻³ mol/mol	3.60 • 10 ⁻⁶ mol/mol	normal	2.1.10 ⁻³	7.6•1 mol/m	0 ⁻⁹ 101	0.0 %
R _{236U/238Ua}	151.0•10 ⁻⁹ mol/mol	40.0•10 ⁻⁹ mol/mol	normal	0.99	40·10 mol/m	D ⁻⁹ Iol	0.2 %
R _{233U/235Ub}	386.30•10 ⁻⁹ mol/mol	2.61 • 10 ⁻⁹ mol/mol	normal	-2.0·10 ⁻³	-5.2·1 mol/m	0 ⁻¹² 101	0.0 %
R _{234U/235Ub}	0.01158360 mol/mol	4.85•10 ⁻⁶ mol/mol	normal	-2.0·10 ⁻³	-9.7•1 mol/m	10 ⁻⁹ 10l	0.0 %
R _{238U/235Ub}	0.0512770 mol/mol	20.5•10 ⁻⁶ mol/mol	normal	-2.5·10 ⁻³	-52•1 mol/m	0 ⁻⁹ 101	0.3 %
R _{236U/235Ub}	9.47130·10 ⁻³ mol/mol	3.85·10 ⁻⁶ mol/mol	normal	0.23	880•1 mol/m	0 ⁻⁹ Iol	97.1 %
n _{236.c}	522.477·10 ⁻⁹ mol	270·10 ⁻¹² mol		5.7	1.5•1 mol/m	0 ⁻⁹ 101	0.0 %
n _{238.c}	10.1978·10 ⁻¹² mol	97.3·10 ⁻¹⁵ mol		-0.012	-1.2·1 mol/m	0 ⁻¹⁵ 101	0.0 %
R _{236U/238U}	2.190475•10 ⁻³ mol/mol	895•10 ⁻⁹ mol/mol					
	-1						
ate: 02/13/2018 File: IRMM-1027s Uranium gravimetric mixture.smu Page 13 of 14							

uantity	Value	Expanded Uncertainty	Coverage factor	Coverag	je
YUmixture	0.0210852 g/g	1.0·10 ⁻⁶ g/g	2.00	manual	
35Umixture	3.99847•10 ⁻³ g/g	500·10 ⁻⁹ g/g	2.00	manual	
38Umixture	0.01700416 g/g	890·10 ⁻⁹ g/g	2.00	manual	
CUminture	88.7939 10 ⁻⁶ mol/g	4.3·10 ⁻⁹ mol/g	2.00	manual	
35Umbture	17.0116 10 ⁻⁶ mol/g	2.1.10 ⁻⁹ mol/g	2.00	manual	
238Umbture	71.4308 10 ⁻⁶ mol/g	3.7·10 ⁻⁹ mol/g	2.00	manual	
Mu	237.462378 g/mol	64·10 ⁻⁶ g/mol	2.00	manual	
2330/2380	89.2•10 ⁻⁹ mol/mol	1.2·10 ⁻⁹ mol/mol	2.00	manual	
234U/238U	2.7303·10 ⁻³ mol/mol	2.3·10 ⁻⁶ mol/mol	2.00	manual	
235U/238U	0.238155 mol/mol	32·10 ⁻⁶ mol/mol	2.00	manual	
2360/2380	2.1905·10 ⁻³ mol/mol	1.8·10 ⁻⁶ mol/mol	2.00	manual	
f _{234U}	2.1964 10 ⁻³ mol/mol	1.8·10 ⁻⁶ mol/mol	2.00	manual	
f _{235U}	0.191585 mol/mol	21.10 ⁻⁶ mol/mol	2.00	manual	
f _{236U}	1.7621.10 ⁻³ mol/mol	1.4·10 ⁻⁶ mol/mol	2.00	manual	
f _{238U}	0.804456 mol/mol	21.10 ⁻⁶ mol/mol	2.00	manual	
w _{234U}	2.1648 10 ⁻³ g/g	1.8•10 ⁻⁶ g/g	2.00	manual	
w _{235U}	0.189634 g/g	21·10 ⁻⁶ g/g	2.00	manual	
W _{236U}	1.7516 10 ⁻³ g/g	1.4·10 ⁻⁶ g/g	2.00	manual	
W _{238U}	0.806450 g/g	21·10 ⁻⁶ g/g	2.00	manual	

Annex 15 The plutonium isotope amount ratios and their associated uncertainties for the plutonium gravimetric mixture of IRMM-1027s

	Plutonium gravimetric mixture for IRMM-1027s	
Plutonium gr	avimetric mixture for IRMM-1027s	
Author: Barlo Ia	hen in	
Author: Rozie Ja	коріс imetric mixture was prepared by dissolving plutonium MP2 metal (CEA/C	ETAMA) in
hydrochloric/nitri	c acid.	
Input parameters	5.	
a) Mass or plutol c) Plutonium isof according Wang Chinese Physics from the the puri certificate (99.90	hium metal and the hitrate Solution (E3832) b) Purity of plutonium metal (n tope amount ratios (IRMM certificate, issued 11 April 2007) d) the atomic r et al. (The AME 2012 atomic mass evaluation (II). Tables, Graphs and R4 C, Vol. 36, No. 12, 1803-2014, 2012). Purity of MP2 metal on 1 Nov 2016 ty on 1 Jan 2007 (99.875 +/-0.040), which was derived from the original C) +/- 0.04).	netal certificate) masses eferences, i was calculated ETAMA
The values are n	ormalised to 1 Nov 2016 (reference date for IRMM-1027s certificate)	
Model Equation	on:	
{Molar ma	iss of plutonium in MP2, 1 Jan 2007}	
M _{Pu} = M ₂₃	_{8Pu} ·f _{238Pu} + M _{239Pu} ·f _{239Pu} + M _{240Pu} ·f _{240Pu} + M _{241Pu} ·f _{241Pu} + M _{242Pu} ·f _{242Pu} ;	
{Isotope a	mount fraction in MP2, 1 Jan 2007}	
f _{238Pu} = R ₂	_{38Ρω239Ρυ} /ΣR _{Pu} ;	
f _{239Pu} = 1/2	ΣR _{Pu} ;	
f _{240Pu} = R ₂	40Pu/239Pu/ ² R _{Pu} ;	
f _{241Pu} = R ₂	41Pu239Pu/2R _{Pu} ;	
f _{242Pu} = R ₂	42Pu239Pu/2R _{Pu} ;	
$\Sigma R_{Pu} = R_2$	зяри/239Pu + 1 + R _{240Pu/239Pu} + R _{241Pu/239Pu} + R _{242Pu/239Pu} ;	
{Isotope m	nass fractios in MP2, 1 Jan 2007}	
w _{238Pu} = f ₂	_{I38Pu} ·M _{238Pu} /M _{Pu} ;	
w _{239Pu} = f ₂	139Pu ⁻ M _{239Pu} /M _{Pu} ;	
$w_{240Pu} = f_2$	Mapu M240Pu/Mpu;	
w _{241Pu} = f ₂	141Pu ⁻ M _{241Pu} /M _{Pu} ;	
w _{242Pu} = f ₂	_{142Pu} : M _{242Pu} /M _{Pu} ;	
{Decayed	isotope amount ratios in gravimetric mixture, IRMM-1027s, 1 Nov 2018}	
Rd _{238Pu/239}	_{3Pu} = R _{238Pu/239Pu} ·(e^(-λ ₂₃₈ ·Δt)/e^(-λ ₂₃₉ ·Δt));	
Rd _{240Pu/239}	$_{3Pu} = R_{240Pu/239Pu} \cdot (e^{(-\lambda_{240} \cdot \Delta t)/e^{(-\lambda_{239} \cdot \Delta t)});$	
Rd _{241Pu/235}	$_{3Pu} = R_{241Pu/239Pu} \cdot (e^{(-\lambda_{241} \cdot \Delta t)/e^{(-\lambda_{239} \cdot \Delta t))};$	
Rd _{242Pu/239}	$_{3Pu} = R_{242Pu/233Pu} \cdot (e^{(-\lambda_{242} \cdot \Delta t)/e^{(-\lambda_{239} \cdot \Delta t)});$	
ΣRd _{Pu} = R	d _{238Pw239Pu} + 1 + Rd _{240Pw239Pu} + Rd _{241Pw239Pu} + Rd _{242Pw239Pu} ;	
{Decayed	and normalised isotope amount fractios in gravimetric mixture, IRMM-102	7s, 1 Nov 2016}
fdnorm ₂₃₈	_{Pu} = Rd _{238Pu/239Pu} /ΣRd _{Pu} ;	
fdnorm ₂₃₉₈	$P_{u} = 1/\Sigma Rd_{Pu};$	
fdnorm ₂₄₀	_{Pu} = Rd _{240Pu/239Pu} /ΣRd _{Pu} ;	
Date: 02/13/2018	File: IRMM-1027s Plutonium gravimetric mixture_1_Nov_2016.smu	Page 1 of 10

	Plutonium gravimetric mixture for IRMM-1027s	
fdnorm ₂₄₁ fdnorm ₂₄₂ {Decayed Md _{Pu} = M	_{Pu} = Rd _{241Pu239Pu} /ΣRd _{Pu} ; _{Pu} = Rd _{242Pu239Pu} /ΣRd _{Pu} ; molar mass of plutonium in gravimetric mixtures, IRMM-1027s, 1 Nov 201 _{238Pu} ·fdnorm _{238Pu} + M _{239Pu} ·fdnorm _{239Pu} + M _{240Pu} ·fdnorm _{240Pu} + M _{241Pu} ·fdnor	6} m _{241Pu} +
{Decayed wdnorm ₂₂ wdnorm ₂₄ wdnorm ₂₄ wdnorm ₂₄ wdnorm ₂₄	and normalised isotope mass fractios in gravimetric mixture, IRMM-1027s $_{18Pu} = fdnorm_{238Pu} M_{238Pu}/Md_{Pu}$ $_{19Pu} = fdnorm_{238Pu} M_{238Pu}/Md_{Pu}$ $_{10Pu} = fdnorm_{240Pu} M_{240Pu}/Md_{Pu}$ $_{11Pu} = fdnorm_{241Pu} M_{241Pu}/Md_{Pu}$ $_{12Pu} = fdnorm_{242Pu} M_{242Pu}/Md_{Pu}$ $_{12Pu} = fdnorm_{242Pu} M_{242Pu}/Md_{Pu}$ $_{12Pu} = fdnorm_{242Pu} M_{242Pu}/Md_{Pu}$ $_{12Pu} = fdnorm_{242Pu} M_{242Pu}/Md_{Pu}$, 1 Nov 2016}
fd _{238Pu} =f ₂ fd _{239Pu} =f ₂ fd _{240Pu} =f ₂ fd _{241Pu} =f ₂ fd _{242Pu} =f ₂ {Decayed	^{38Pu} [*] e ^Λ (-λ ₂₃₈ [*] Δt); ^{39Pu} [*] e ^Λ (-λ ₂₄₀ [*] Δt); ^{41Pu} [*] e ^Λ (-λ ₂₄₁ [*] Δt); ^{42Pu} [*] e ^Λ (-λ ₂₄₂ [*] Δt); ¹ isotope masses for purity calculation, 1 Nov 2016}	
md _{238Pu} =1 md _{239Pu} =1 md _{240Pu} =1 md _{242Pu} =1 Σmd _{242Pu} =1	^{id} 238Pu [*] M _{238Pu} [*] M _{PU} /M _{PU} ; ^{id} 239Pu [*] M _{239Pu} [*] M _{PV} /M _{PU} ; ^{id} 240Pu [*] M _{240Pu} [*] M _{PV} /M _{PU} ; ^{id} 241Pu [*] M _{241Pu} [*] M _{PV} /M _{PU} ; ^{id} 242Pu [*] M _{242Pu} [*] M _{PV} /M _{PU} ; ^{id} 238Pu ⁺ Md _{243Pu} *md _{240Pu} +md _{241Pu} +md _{242Pu} ;	
$\eta_{PUMP2Nov}$ {Decay or $ln_2 = ln(2)$ $\lambda_{238} = ln_2$ $\lambda_{239} = ln_2$ $\lambda_{240} = ln_2$ $\lambda_{241} = ln_2$	2016 ^{=η} PuMP2Jan2007 [*] Σmd _{Pu} /m _{Pu} ; postants} ; / τ ₂₃₈ ; / τ ₂₄₀ ; / τ ₂₄₁ ;	
$\lambda_{242} = \ln_2$ {Plutoniur $\gamma_{Pumbture}$ $\gamma_{Pumbture2}$ {Plutoniur $c_{Pumbture}$ $c_{Pumbture2}$	/ τ ₂₄₂ ; n mass fraction in gravimetric mixture, IRMM-1027s, 1 Nov 2016} (m _{PuMP2} *η _{PuMP2Nov2016})/m _{solution1027s} ; ₉ ="/ _{Pumixture} *wdnorm _{239Pu} ; n amount content in gravimetric mixture, IRMM-1027s, 1 Nov 2016} _{γ_{Pumixture}/Md_{Pu}; ₈₉ = c_{Pumixture}*fdnorm_{239Pu};}	
Date: 02/13/2018	File: IRMM-1027s Plutonium gravimetric mixture_1_Nov_2016.smu	Page 2 of 10

ist of Quar	tities:	1	
Quantity	Unit	Definition	
YPumixture	g/g	Pu mass fraction in IRMM-1027s	
YPumixture239	g/g	²³⁹ Pu mass fraction in IRMM-1027s	
Cpumbiture239	mol/g	²³⁹ Pu amount content in IRMM-1027s	
Cpumixture	mol/g	Pu amount content in IRMM-1027s	
Rd _{238Pu/239Pu}	mol/mol	decayed ²³⁸ Pu/ ²³⁹ Pu amount ratio in IRMM-1027s, 1 Nov 2016	
Rd _{240Pw239Pu}	mol/mol	decayed ²⁴⁰ Pu/ ²³⁹ Pu amount ratio in IRMM-1027s, 1 Nov 2016	
Rd _{241Pu/239Pu}	mol/mol	decayed ²⁴¹ Pu/ ²³⁹ Pu amount ratio in IRMM-1027s, 1 Nov 2016	
Rd _{242Pu/239Pu}	mol/mol	decayed ²⁴² Pu/ ²³⁹ Pu amount ratio in IRMM-1027s, 1 Nov 2016	
R _{238Pu/239Pu}	mol/mol	²³⁸ Pu/ ²³⁹ Pu amount ratio in MP2, 1 Jan 2007	
Δt	а	time difference between certification date MP2 (1 Jan 2007) and reference date (1 Nov 2016)	
R _{240Pu/239Pu}	mol/mol	²⁴⁰ Pu/ ²³⁹ Pu amount ratio in MP2, 1 Jan 2007	
R _{241Pu/239Pu}	mol/mol	²⁴¹ Pu/ ²³⁹ Pu amount ratio in MP2, 1 Jan 2007	
R _{242Pu/239Pu}	mol/mol	242Pu/239Pu amount ratio in MP2, 1 Jan 2007	
M _{Pu}	g/mol	molar mass of Pu in MP2, 1 Jan 2007	
f _{238Pu}	mol/mol	²³⁸ Pu amount fraction in MP2, 1 Jan 2007	
f _{239Pu}	mol/mol	²³⁹ Pu amount fraction in MP2, 1 Jan 2007	
f _{240Pu}	mol/mol	²⁴⁰ Pu amount fraction in MP2, 1 Jan 2007	
f _{241Pu}	mol/mol	²⁴¹ Pu amount fraction in MP2, 1 Jan 2007	
f _{242Pu}	mol/mol	²⁴² Pu amount fraction in MP2, 1 Jan 2007	
е			
ΣR _{Pu}	mol/mol	Sum of amount ratios in MP2, 1 Jan 2007	
λ ₂₃₈	a ⁻¹	Decay constant ²³⁸ Pu	
λ ₂₃₉	a ⁻¹	Decay constant ²³⁹ Pu	
λ ₂₄₀	a ⁻¹	Decay constant ²⁴⁰ Pu	
λ ₂₄₁	a ⁻¹	Decay constant ²⁴¹ Pu	
λ ₂₄₂	a ⁻¹	Decay constant ²⁴² Pu	
M _{238Pu}	g/mol	Atomic mass of ²³⁸ Pu	
M _{239Pu}	g/mol	Atomic mass of ²³⁹ Pu	
M _{240Pu}	g/mol	Atomic mass of ²⁴⁰ Pu	
Madeline	g/mol	Atomic mass of ²⁴¹ Pu	
Mayan	g/mol	Atomic mass of ²⁴² Pu	
ΣRd _{Pu}	mol/mol	Sum of decayed amount ratios in gravimetric mixture, IRMM-1027s, 1 Nov 2016	
fdnorm _{238Pu}	mol/mol	Decayed and normalised ²³⁸ Pu amount fraction in gravimetric mixture, IRMM-1027s, 1 Nov 2016	
fdnorm _{239Pu}	mol/mol	Decayed and normalised ²³⁹ Pu amount fraction in gravimetric mixture, IRMM-1027s, 1 Nov 2016	
		Plutonium gravimetric mixture for IRMM-1027s	
----------------------------	------------	---	----------------
Quantity	Unit	Definition	
fdnorm _{240Pu}	mol/mol	Decayed and normalised ²⁴⁰ Pu amount fraction in gravimetric IRMM-1027s, 1 Nov 2016	mixture,
fdnorm _{241Pu}	mol/mol	Decayed and normalised ²⁴¹ Pu amount fraction in gravimetric IRMM-1027s, 1 Nov 2016	mixture,
fdnorm _{242Pu}	mol/mol	Decayed and normalised ²⁴² Pu amount fraction in gravimetric IRMM-1027s, 1 Nov 2016	mixture,
Md _{Pu}	g/mol	Decayed molar mass of Pu in gravimetric mixture, IRMM-102	7s, 1 Nov 2016
wdnorm _{238Pu}	g/g	Decayed and normalised ²³⁸ Pu mass fraction in gravimetric m IRMM-1027s, 1 Nov 2016	ixture,
wdnorm _{239Pu}	g/g	Decayed and normalised ²³⁹ Pu mass fraction in gravimetric m IRMM-1027s, 1 Nov 2016	ixture,
wdnorm _{240Pu}	g/g	Decayed and normalised ²⁴⁰ Pu mass fraction in gravimetric m IRMM-1027s, 1 Nov 2016	ixture,
wdnorm _{241Pu}	g/g	Decayed and normalised ²⁴¹ Pu mass fraction in gravimetric m IRMM-1027s, 1 Nov 2016	ixture,
wdnorm _{242Pu}	g/g	Decayed and normalised ²⁴² Pu mass fraction in gravimetric m IRMM-1027s, 1 Nov 2016	ixture,
η _{PuMP2Nov2016}	g/g	Purity of MP2 metal, 1 Nov 2016	
In ₂			
τ ₂₃₈	а	Half-life ²³⁸ Pu	
τ ₂₃₉	а	Half-life ²³⁹ Pu	
τ ₂₄₀	а	Half-life ²⁴⁰ Pu	
τ ₂₄₁	а	Half-life ²⁴¹ Pu	
τ ₂₄₂	а	Half-life ²⁴² Pu	
m _{PuMP2}	g	Mass of plutonium MP2 metal	
m _{solution1027s}	g	Mass of gravimetric mixture, IRMM-1027s	
m _{Pu}	g		
md _{238Pu}	g	Decayed mass of ²³⁸ Pu, from 1 Jan 2007 to 1 Nov 2016	
md _{239Pu}	g	Decayed mass of ²³⁹ Pu, from 1 Jan 2007 to 1 Nov 2016	
md _{240Pu}	g	Decayed mass of ²⁴⁰ Pu, from 1 Jan 2007 to 1 Nov 2016	
md _{241Pu}	g	Decayed mass of ²⁴¹ Pu, from 1 Jan 2007 to 1 Nov 2016	
md _{242Pu}	g	Decayed mass of ²⁴² Pu, from 1 Jan 2007 to 1 Nov 2016	
Σmd _{Pu}	g	Sum of decayed Pu masses	
η _{PuMP2Jan2007}	g/g	Purity of MP2 metal, 1 Jan 2007	
W _{238Pu}	g/g	²³⁸ Pu mass fraction in MP2, 1 Jan 2007	
W _{239Pu}	g/g	²³⁹ Pu mass fraction in MP2, 1 Jan 2007	
W240Pu	g/g	²⁴⁰ Pu mass fraction in MP2, 1 Jan 2007	
W _{241Pu}	g/g	²⁴¹ Pu mass fraction in MP2, 1 Jan 2007	
W242Pu	g/g	²⁴² Pu mass fraction in MP2, 1 Jan 2007	
fd _{238Pu}	mol/mol	Decayed ²³⁸ Pu amount fraction in MP2, from 1 Jan 2007 to 1	Nov 2016
ate: 02/13/2018	File: IRMM	-1027s Plutonium gravimetric mixture_1_Nov_2016.smu	Page 4 of 1

		Plutonium gravimetric mixture for IRMM-1027s	
Quantity	Unit	Definition 239	
fd _{239Pu}	mol/mol	Decayed 200 Pu amount fraction in MP2, from 1 Jan 2007 to 1	Nov 2016
fd _{240Pu}	mol/mol	Decayed ²⁴⁰ Pu amount fraction in MP2, from 1 Jan 2007 to 1	Nov 2016
fd _{241Pu}	mol/mol	Decayed ²⁴¹ Pu amount fraction in MP2, from 1 Jan 2007 to 1	Nov 2016
fd _{242Pu}	mol/mol	Decayed ²⁴² Pu amount fraction in MP2, from 1 Jan 2007 to 1	Nov 2016
R _{238Pu/239Pu} :	Type B Value: 0 Expande Coverag	normal distribution 0.00003083 mol/mol ed Uncertainty: 0.00000029 mol/mol ge Factor: 2	
IRMM MP2 certi	ificate 2007		
Δt:	Constan Value: 9	it .83436 a	
01/01/2007, 01/	11/2016, de	lta t= 3592 days / 365.25 = 9.83436 a	
R _{240Pu/239Pu} :	Type B i Value: 0 Expande Coverag	normal distribution I.0224324 mol/mol ed Uncertainty: 0.0000051 mol/mol je Factor: 2	
IRMM MP2 certi	ificate 2007		
R _{241Pu/239Pu} :	Type Bi Value: 0 Expande Coverag	normal distribution 0.0002378 mol/mol ed Uncertainty: 0.0000031 mol/mol ge Factor: 2	
IRMM MP2 certi	ificate 2007		
R _{242Pu/239Pu} :	Type B Value: 0 Expande Coverag	normal distribution .00007570 mol/mol ed Uncertainty: 0.00000078 mol/mol ge Factor: 2	
IRMM MP2 certi	ificate 2007		
e:	Constan Value: 2	nt .71828182845904523536	
M _{238Pu} :	Type Bi Value: 2 Expande Coverag	normal distribution 138.0495601 g/mol ed Uncertainty: 0.0000019 g/mol ge Factor: 1	
The atomic mas and References	ses accord , Chinese P	ing Wang et al. (The AME 2012 atomic mass evaluation (II). Ta hysics C, Vol. 36, No. 12, 1603-2014, 2012).	bles, Graphs
M _{239Pu} :	Type B i Value: 2 Expande Coveraç	normal distribution 139.0521636 g/mol ed Uncertainty: 0.0000019 g/mol ge Factor: 1	
the atomic mass and References	ses accordir , Chinese P	ng Wang et al. (The AME 2012 atomic mass evaluation (II). Tal 'hysics C, Vol. 38, No. 12, 1603-2014, 2012).	bles, Graphs
Date: 02/13/2018	File: IRMM-	1027s Plutonium gravimetric mixture_1_Nov_2016.smu	Page 5 of 10

th GUM Workbench Pro Version 2.4.1.458

	Plutonium gravimetric mixture for IRMM-1027s			
M _{240Pu} :	Type B normal distribution Value: 240.0538138 g/mol Expanded Uncertainty: 0.0000019 g/mol Coverage Factor: 1			
the atomic mass and References	ses according Wang et al. (The AME 2012 atomic mass evaluation (II). Tal , Chinese Physics C, Vol. 36, No. 12, 1603-2014, 2012).	bles, Graphs		
M _{241Pu} :	Type B normal distribution Value: 241.0568517 g/mol Expanded Uncertainty: 0.0000019 g/mol Coverage Factor: 1			
the atomic masses according Wang et al. (The AME 2012 atomic mass evaluation (II). Tables, Graphs and References, Chinese Physics C, Vol. 36, No. 12, 1603-2014, 2012).				
M _{242Pu} :	Type B normal distribution Value: 242.0587428 g/mol Expanded Uncertainty: 0.0000020 g/mol Coverage Factor: 1			
the atomic mass and References	ses according Wang et al. (The AME 2012 atomic mass evaluation (II). Tal , Chinese Physics C, Vol. 36, No. 12, 1603-2014, 2012).	bles, Graphs		
τ ₂₃₈ :	Type B normal distribution Value: 87.74 a Expanded Uncertainty: 0.03 a Coverage Factor: 1			
Laboratorie Nati	ional Henri Becquerel, http://www.nucleide.org/DDEP _{WG} /DDEPdata.htm			
τ ₂₃₉ :	Type B normal distribution Value: 24100 a Expanded Uncertainty: 11 a Coverage Factor: 1			
Laboratorie Nati	onal Henri Becquerel, http://www.nucleide.org/DDEP _{WG} /DDEPdata.htm			
¶ ₂₄₀ :	Type B normal distribution Value: 6561 a Expanded Uncertainty: 7 a Coverage Factor: 1			
Laboratorie Nati	ional Henri Becquerel, http://www.nucleide.org/DDEP _{WG} /DDEPdata.htm			
τ ₂₄₁ :	Type B normal distribution Value: 14.325 a Expanded Uncertainty: 0.024 a Coverage Factor: 2			
Wellum et al., J.	Anal. At. Spectrom., 2009, 24, 801-807			
τ ₂₄₂ :	Type B normal distribution Value: 373000 a Expanded Uncertainty: 3000 a Coverage Factor: 1			
Laboratorie Nati	ional Henri Becquerel, http://www.nucleide.org/DDEP _{WG} /DDEPdata.htm			
Date: 02/13/2018	File: IRMM-1027s Plutonium gravimetric mixture_1_Nov_2016.smu	Page 6 of 10		

	Plutonium gravimetric mixture for IRMM-1027s	
m _{PuMP2} :	Type B normal distribution Value: 1.85903 g Expanded Uncertainty: 0.00009 g Coverage Factor: 2	
E3882 certificat	e	
m _{solution 1027s} :	Type B normal distribution Value: 2480.69 g Expanded Uncertainty: 0.03 g Coverage Factor: 2	
E3882 certificate	e	
m _{Pu} :	Type B normal distribution Value: 1.00 g Expanded Uncertainty: 0 g Coverage Factor: 1	
η _{PuMP2Jan2007} :	Import Filename: Decay MP2 from 12-03-2001 to 01-01-2007.smu Symbol: η _{PuMP2Jan2007}	
Input Correlat	tion:	
The abundance	set for Pu is assumed as uncorrelated.	
Date: 02/13/2018	File: IRMM-1027s Plutonium gravimetric mixture 1, Nov, 2016 smu	Page 7 of 10

	Value	Standard]	
M	230 07470104 a/mol	4 44:10 ⁻⁶ g/mol	-	
f	20 142:10 ⁻⁶ mol/mol	142:10 ⁻⁹ mol/mol	-	
1238Pu	0.07772050 mol/mol	2.99:10 ⁻⁶ mol/mol	-	
1239Pu	0.02103284 mol/mol	2.44:10 ⁻⁶ mol/mol	-	
1240Pu	232 50:10 ⁻⁶ mol/mol	1.52:10 ⁻⁶ mol/mol	-	
'241Pu f	74 014 10 ⁻⁶ mol/mol	381:10 ⁻⁹ mol/mol	-	
'242Pu ΣR_	1 02277673 mol/mol	3.01:10 ⁻⁶ mol/mol	-	
λογο	7.90001·10 ⁻³ a ⁻¹	2.70·10 ⁻⁶ a ⁻¹	1	
λ	28.7613·10 ⁻⁶ a ⁻¹	13.1·10 ⁻⁹ a ⁻¹	-	
λ239	105.647 10 ⁻⁶ a ⁻¹	113 10 ⁻⁹ a ⁻¹	1	
λ	0.0483872 a ⁻¹	40.5·10 ⁻⁶ a ⁻¹	1	
λ ₂₄₂	1.8583·10 ⁻⁶ a ⁻¹	14.9·10 ⁻⁹ a ⁻¹	1	
ΣRd _{pu}	1.02266750 mol/mol	2.76·10 ⁻⁶ mol/mol	1	
	0.998356 g/g	200·10 ⁻⁶ g/g	1	
md _{238Pu}	27.771·10 ⁻⁶ g	131·10 ⁻⁹ g	1	
md _{239Pu}	0.97736147 g	2.90·10 ⁻⁶ g	-	
md _{240Pu}	0.02199979 g	2.45·10 ⁻⁶ g		
md _{241Pu}	145.665 10 ⁻⁶ g	951·10 ⁻⁹ g	1	
md _{242Pu}	74.937•10 [€] g	386·10 ⁻⁹ g	1	
Σmd _{Pu}	0.999609634 g	595·10 ⁻⁹ g	1	
W _{238Pu}	30.014•10 ⁻⁶ g/g	141·10 ⁻⁹ g/g	1	
W _{239Pu}	0.97763796 g/g	2.90 10 ⁻⁶ g/g	1	
W _{240Pu}	0.02202266 g/g	2.45·10 ⁻⁶ g/g	1	
W _{241Pu}	234.43·10 ⁻⁶ g/g	1.53·10 ⁻⁶ g/g	1	
W _{242Pu}	74.938·10 ⁻⁶ g/g	386·10 ⁻⁹ g/g		
fd _{238Pu}	27.890·10 ⁻⁶ mol/mol	131·10 ⁻⁹ mol/mol]	
fd _{239Pu}	0.97745399 mol/mol	2.88 10 ⁻⁶ mol/mol]	
fd _{240Pu}	0.02191007 mol/mol	2.44 10 ⁻⁶ mol/mol]	
fd _{241Pu}	144.467·10 ⁻⁶ mol/mol	943·10 ⁻⁹ mol/mol]	
	74.013.10 ⁻⁶ mol/mol	381.10 ⁻⁹ mol/mol]	

	Plut	onium gravimet	ric mixture for l	RMM-1027s		
Uncertainty	y Budgets:	239		4007 4 1		
Rd _{240Pu/239Pu}	decayed P	u/Pu amount	ratio in IRMM	1-102/s, 1 Nov	2016	
Quantity	Value	Uncertainty	Distribution	Coefficient	Contribution	Index
Δt	9.83436 a					
R _{240Pu/239Pu}	0.02243240 mol/mol	2.55 10 ⁻⁶ mol/mol	normal	1.0	2.5•10 ⁻⁶ mol/mol	100.0 %
e	2.718281828459					
τ ₂₃₉	24100.0 a	11.0 a	normal	-260·10 ⁻¹²	-2.9•10 ⁻⁹ mol/mol	0.0 %
τ ₂₄₀	6561.00 a	7.00 a	normal	3.5·10 ⁻⁹	25.10 ⁻⁹ mol/mol	0.0 %
Rd _{240Pu/239} Pu	0.02241544 mol/mol	2.55 10 ⁻⁶ mol/mol				

Rd241Pu/229Pu:	decaved 24	Pu/ ²³⁹ Pu amount ratio in IRM	M-1027s, 1 Nov 2016
2011 10 2 3 3 1 1			

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
Δt	9.83436 a					
R _{241Pu/239Pu}	237.80·10 ⁻⁶ mol/mol	1.55 10 ⁻⁶ mol/mol	normal	0.62	960·10 ⁻⁹ mol/mol	99.6 %
e	2.718281828459					
τ ₂₃₉	24100.0 a	11.0 a	normal	-1.7 10 ⁻¹²	-19·10 ⁻¹² mol/mol	0.0 %
τ ₂₄₁	14.3250 a	0.0120 a	normal	4.9·10 ⁻⁶	59.10 ⁻⁹ mol/mol	0.4 %
Rd _{241Pu/239} Pu	147.799•10 ⁻⁶ mol/mol	965•10 ⁻⁹ mol/mol				

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertain Contribution	ty Index
Δt	9.83436 a					
R _{242Pu/239Pu}	75.700•10 ⁻⁶ mol/mol	390•10 ⁻⁹ mol/mol	normal	1.0	390·10 ⁻⁹ mol/mol	100.0 %
е	2.718281828459					
τ ₂₃₉	24100.0 a	11.0 a	normal	-890·10 ⁻¹⁵	-9.8 10 ⁻¹² mol/mol	0.0 %
τ ₂₄₂	373.00•10 ³ a	3000 a	normal	3.7·10 ⁻¹⁵	11.10 ⁻¹² mol/mol	0.0 %
Rd _{242Pu/239} Pu	75.720 10 ⁻⁶ mol/mol	390•10 ⁻⁹ mol/mol				
ate: 02/13/201	8 File: IRMM-1027s	Plutonium gravim	etric mixture_1_	Nov_2016.smu		Page 9 of 1

YPumixture YPumixture239		Expanded Uncertainty	Coverage factor	Coverage
YPumixture239	673.11·10 ⁻⁶ g/g	270·10 ⁻⁹ g/g	2.00	manual
	658.12·10 ⁻⁶ g/g	270·10 ⁻⁹ g/g	2.00	manual
Cpumbiture239	2.7531·10 ⁻⁶ mol/g	1.1.10 ⁻⁹ mol/g	2.00	manual
CPumixture	2.8155·10 ⁻⁶ mol/g	1.1.10 ⁻⁹ mol/g	2.00	manual
Rd _{238Pu/239Pu}	28.53·10 ⁻⁶ mol/mol	270·10 ⁻⁹ mol/mol	2.00	manual
Rd _{240Pu/239Pu}	0.0224154 mol/mol	5.1·10 ⁻⁶ mol/mol	2.00	manual
Rd _{241Pu/239Pu}	147.8·10 ⁻⁶ mol/mol	1.9·10 ⁻⁶ mol/mol	2.00	manual
Rd _{242Pu/239Pu}	75.72·10 ⁻⁶ mol/mol	780-10 ⁻⁹ mol/mol	2.00	manual
fdnorm _{238Pu}	27.90•10 ⁻⁶ mol/mol	260-10 ⁻⁹ mol/mol	2.00	manual
fdnorm _{239Pu}	0.9778349 mol/mol	5.3·10 ⁻⁶ mol/mol	2.00	manual
fdnorm _{240Pu}	0.0219186 mol/mol	4.9·10 ⁻⁶ mol/mol	2.00	manual
fdnorm _{241Pu}	144.5·10 ⁻⁶ mol/mol	1.9·10 ⁻⁶ mol/mol	2.00	manual
fdnorm _{242Pu}	74.04·10 ⁻⁶ mol/mol	760-10 ⁻⁹ mol/mol	2.00	manual
Md _{Pu}	239.0746027 g/mol	7.5·10 ⁻⁶ g/mol	2.00	manual
wdnorm _{238Pu}	27.78·10 ⁻⁶ g/g	260·10 ⁻⁹ g/g	2.00	manual
wdnorm _{239Pu}	0.9777432 g/g	5.3·10 ⁻⁶ g/g	2.00	manual
wdnorm _{240Pu}	0.0220084 g/g	4.9•10 ⁻⁶ g/g	2.00	manual
wdnorm _{241Pu}	145.7·10 ⁻⁶ g/g	1.9•10 ⁻⁵ g/g	2.00	manual
wdnorm _{242Pu}	74.97•10 ⁻⁶ g/g	770·10 ⁻⁹ g/g	2.00	manual

Annex 16 The weighing certificate of the blend mixtures for the characterisation of 235 U, 238 U and 239 Pu amount content by ID-TIMS using IRMM-046c

Joint Research Directorate G – Standards for N	Centre Nuclear Safety and Security uclear Safety, Security and Saf	eguards Unit	Certifica	te of weighing
Reg. No. E.389	2 Date of issue:	24 May 2017		Page 1 of 1
Applicant:	R. Jakopič		Project:	IRMM-1027s
Description:	Verification of IRMM-1027s	s vials with IRM	M-046c	
Request for an	alysis number: 3740	ID num	ber: 25937	
Date of reques	t: 27 January 2017	Weighi	ng dates: 7 Fe	bruary 2017

The reported results apply only to the objects/samples described in this certificate.

Blend	IRMM-046c Mass [g]	IRMM-046c Uncertainty [g]
IRMM-1027s-53/046c-15-1	2.50025	0.00011
IRMM-1027s-134/046c-15-2	2.49239	0.00011
IRMM-1027s-208/046c-15-3	2.49688	0.00044
IRMM-1027s-341/046c-15-4	2.51159	0.00047
IRMM-1027s-418/046c-58-1	3.01383	0.00010
IRMM-1027s-496/046c-58-2	2.99935	0.00016
IRMM-1027s-617/046c-58-3	3.00151	0.00017
IRMM-1027s-730/046c-86-1	3.00315	0.00014
IRMM-1027s-794/046c-86-2	3.00249	0.00018
IRMM-1027s-888/046c-86-3	3.06050	0.00016

Observations:

Masses were determined by substitution weighing on balances AT 261 with an inventory No. 1999 00337 27.

Traceability:

The certified mass values are traceable to the International Kilogram Prototype via regular calibrations of the JRC principal kilogram. The set of working mass standards M 3 was used as reference in the mass determination.

Uncertainty:

All reported uncertainties are expanded uncertainties $U = k^*u_c$ where u_c is the combined standard uncertainty calculated according to the ISO/IEC Guide to the expression of Uncertainty in Measurement. The coverage factor k = 2 corresponds to a coverage probability of about 95 %.

Nuclear Chemistry Laboratory Responsible

Rožle Jakopič

Carmel Hennessy Analyst

Retieseweg, B-2440 Geel, Belgium; Tel.: +32-(0)14-571 211 • Fax: +32-(0)14-571 978*

Annex 17 The internal test report (3802) for the selected units of IRMM-1027s

ſ

EUROPEAN COMMISSION JOINT RESEARCH CENTRE Directorate G - Nuclear Safety and Security Unit G.2 - Standards for Nuclear Safety, Security and Safeguards (SN3S)

INTERNAL TEST REPORT # 3802

Requested by: R. Jakopic, SN3S Unit

Samples

Sample ID	Applicant sample identification
26589	IRMM-1027s LSD Spikes

Date of receipt of samples: 01/11/2016

Condition of the samples: U and Pu nitrate solutions, Radioactive material. Chemical separation and purification of samples prior to isotopic measurements was done following working instructions WI-D-00352, WI-D-00353 and WI-D-00352

Sub-sample ID	Analyte	Result (±	Unit	Method ²
		uncertainty ¹)		
Date:	04/04/2017			
1027s-134	n(242Pu)/n(239Pu)	0.12860(13)	mol / mol	WI-D-00360
1027s-496	n(²⁴² Pu)/n(²³⁹ Pu)	0.15459(18)	mol / mol	WI-D-00360
1027s-888	n(²⁴² Pu)/n(²³⁹ Pu)	0.15796(16)	mol / mol	WI-D-00360
1027s-341	n(²⁴² Pu)/n(²³⁹ Pu)	0.12937(14)	mol / mol	WI-D-00360
1027s-730	n(²⁴² Pu)/n(²³⁹ Pu)	0.15498(22)	mol / mol	WI-D-00360
Date:	19/05/2017			
1027s-53	n(²⁶² Pu)/n(²³⁹ Pu)	0.12851(13)	mol / mol	WI-D-00360
1027s-617	n(²⁴² Pu)/n(²³⁹ Pu)	0.15478(16)	mol / mol	WI-D-00360
1027s-208	n(²⁴² Pu)/n(²³⁹ Pu)	0.12864(13)	mol / mol	WI-D-00360
1027s-794	n(²⁴² Pu)/n(²³⁹ Pu)	0.15486(16)	mol / mol	WI-D-00360
1027s-418	n(²⁴² Pu)/n(²³⁹ Pu)	0.15535(16)	mol / mol	WI-D-00360
Date:	24/03/2017			
1027s-134	n(233U)/n(235U)	0.261495(73)	mol / mol	WI-D-00348
1027s-134	n(233U)/n(238U)	0.062291(41)	mol / mol	WI-D-00348
1027s-496	n(²³³ U)/n(²³⁵ U)	0.314388 (97)	mol / mol	WI-D-00348
1027s-496	n(²³³ U)/n(²³⁸ U)	0.074899(58)	mol / mol	WI-D-00348
1027s-888	n(²³³ U)/n(²³⁵ U)	0.321187(85)	moi / mol	WI-D-00348
1027s-888	n(²³³ U)/n(²³⁸ U)	0.076511(51)	mol / mol	WI-D-00348

This report may only be reproduced in full and with the written consent of the Requestor. No feedback within 4 weeks constitutes acceptance of the report. Potential sample rests may be destroyed after this period.

Page 1 of 3

F-D-00376 rev. 5

1027s-341	n(²³³ U)/n(²³⁵ U)	0.262970(74)	mol / mol	WI-D-00348
1027s-341	n(²³³ U)/n(²³⁸ U)	0.062653(42)	mol / mol	WI-D-00348
1027s-730	n(233U)/n(235U)	0.314951(74)	mol / mol	WI-D-00348
1027s-730	n(233U)/n(238U)	0.075014(46)	mol / mol	WI-D-00348
Date:	02/05/2017			
1027s-53	n(233U)/n(235U)	0.261340(83)	mol / mol	WI-D-00348
1027s-53	n(²³³ U)/n(²³⁸ U)	0.062262(48)	mol / mol	WI-D-00348
1027s-617	n(²³³ U)/n(²³⁵ U)	0.314794(79)	mol / mol	WI-D-00348
1027s-617	n(233U)/n(238U)	0.074999(47)	mol / mol	WI-D-00348
1027s-208	n(233U)/n(235U)	0.261680(58)	mol / mol	WI-D-00348
1027s-208	n(233U)/n(238U)	0.062354(33)	mol / mol	WI-D-00348
1027s-794	n(²³³ U)/n(²³⁵ U)	0.315021(66)	mol / mol	WI-D-00348
1027s-794	n(²³³ U)/n(²³⁸ U)	0.075063(38)	mol / mol	WI-D-00348
1027s-418	n(²³³ U)/n(²³⁵ U)	0.316026(84)	mol / mol	WI-D-00348
1027s-418	n(²³³ U)/n(²³⁸ U)	0.075286(50)	mol / mol	WI-D-00348

Sub-sample ID	Analyte	Result (±	Unit	Method ²
		expanded		
Data	04/04/2017	uncertainty)		
Date:	242			
1027s-134	n(***Pu)/n(***Pu)	0.128598(38)	mol / mol	WI-D-00360
1027s-496	n(***Pu)/n(***Pu)	0.154593(83)	mol / mol	WI-D-00360
1027s-888	n(²⁴² Pu)/n(²³⁹ Pu)	0.157955(40)	mol / mol	WI-D-00360
1027s-341	n(²⁴² Pu)/n(²³⁹ Pu)	0.129369(58)	mol / mol	WI-D-00360
1027s-730	n(²⁴² Pu)/n(²³⁹ Pu)	0.15498(15)	mol / mol	WI-D-00360
Date:	19/05/2017			
1027s-53	n(²⁴² Pu)/n(²³⁹ Pu)	0.128514(33)	mol / mol	WI-D-00360
1027s-617	n(²⁴² Pu)/n(²³⁹ Pu)	0.154776(39)	mol / mol	WI-D-00360
1027s-208	n(²⁴² Pu)/n(²³⁹ Pu)	0.128645(32)	mol / mol	WI-D-00360
1027s-794	n(²⁴² Pu)/n(²³⁹ Pu)	0.154862(48)	mol / mol	WI-D-00360
1027s-418	n(242Pu)/n(239Pu)	0.155354(46)	mol / mol	WI-D-00360
Date:	24/03/2017			
1027s-134	n(²³³ U)/n(²³⁵ U)	0.261495(68)	mol / mol	WI-D-00348
1027s-134	n(233U)/n(238U)	0.062291(38)	mol / mol	WI-D-00348
1027s-496	n(233U)/n(235U)	0.314388(92)	mol / mol	WI-D-00348
1027s-496	n(233U)/n(238U)	0.074899(55)	mol / mol	WI-D-00348
1027s-888	n(233U)/n(235U)	0.321187(79)	mol / mol	WI-D-00348
1027s-888	n(233U)/n(238U)	0.076511(47)	mol / mol	WI-D-00348
1027s-341	n(233U)/n(235U)	0.262970(69)	mol / mol	WI-D-00348
1027s-341	n(233U)/n(238U)	0.062653(39)	mol / mol	WI-D-00348
1027s-730	n(233U)/n(235U)	0.314951(67)	mol / mol	WI-D-00348

This report must not be reproduced without the written consent of the Requestor. No feedback within 4 weeks is seen as acceptance of the report. Potential rests of samples will be destroyed after that period.

Page 2 of2

F-D-00376 rev. 5

1

1027s-730	n(233U)/n(238U)	0.075014(42)	mol / mol	WI-D-00348
Date:	02/05/2017			
1027s-53	n(²³³ U)/n(²³⁵ U)	0.261340(79)	mol / mol	WI-D-00348
10278-53	n(²³³ U)/n(²³⁸ U)	0.062262(46)	mol / mol	WI-D-00348
1027s-617	n(²³³ U)/n(²³⁵ U)	0.314794(72)	mol / mol	WI-D-00348
1027s-617	n(233U)/n(238U)	0.074999(43)	mol / mol	WI-D-00348
1027s-208	n(²³³ U)/n(²³⁵ U)	0.261680(52)	mol / mol	WI-D-00348
1027s-208	n(²³³ U)/n(²³⁸ U)	0.062354(29)	mol / mol	WI-D-00348
1027s-794	n(233U)/n(235U)	0.315021(58)	mol / mol	WI-D-00348
1027s-794	n(²³³ U)/n(²³⁸ U)	0.075063(33)	mol / mol	WI-D-00348
1027s-418	n(²³³ U)/n(²³⁶ U)	0.316026(77)	mol / mol	WI-D-00348
1027s-418	n(²³³ U)/n(²³⁸ U)	0.075286(47)	mol / mol	WI-D-00348

	Notes (to be deleted if not applicable, also the logo!)
1	Uncertainties are given as (e.g. expanded (k=2) uncertainties according to the ISO Guide to the Expression of Uncertainty (GUM), corresponding to an approximate 85% confidence interval). The uncertainties include contributions from the certified reference materials used for mass fractionation correction, IRMM-074/10 for U and IRMM-290A3 for Pu
2	Uncertainties are given as (e.g. expanded (k=2) uncertainties according to the ISO Guide to the Expression of Uncertainty (GUM), corresponding to an approximate 95% confidence interval). The uncertainties do NOT include contributions from the certified reference materials used for mass fractionation correction.

Files name(s) of raw data:

Results of mass spectrometric measurements for Pu are stored in: " G:\JRC.G.2\Nuclear Safeguards\Nuclear\PUTON DATA - SHARED\IRMM LSD 1027s* The relevant data files are:

"P170403 1027s IDMS Pu vials Rev 9.xls "

"P170403 1027s IDMS Pu vials Rev 9 - without IRMM-290A3-uncertainty.xls "

"P170519 1027s IDMS Pu vials Rev 9.xls"

"P170519 1027s IDMS Pu vials Rev 9 - without IRMM-290A3-uncertainty.xls"

Results of mass spectrometric measurements for U are stored in: "G:\JRC.G.2\Nuclear Safeguards\Nuclear\TRITON DATA - SHARED\LSD 1027s" The relevant data files are: "T170323 1027s IDMS U vials Rev 8.xls" "T170323 1027s IDMS U vials Rev 8 - without IRMM-074-uncertainty.xls"

"T170428 1027s IDMS U vials Rev 8.xls"

"T170428 1027s IDMS U vials Rev 8 - without IRMM-074-uncertainty.xls"

02/06 Date

Signature Analyst

Signature Laboratory Responsible

This report must not be reproduced without the written consent of the Requestor. No feedback within 4 weeks is seen as acceptance of the report. Potential rests of samples will be destroyed after that period.

Page 3 of3

F-D-00376 rev. 5

Annex 18 Determination of ²³⁵U in 10 randomly selected vials (turrets A and B) for the characterisation in IRMM-1027s by ID-TIMS with IRMM-046c (reference date November 1, 2016)

U235 IDMS IRMM-1027s single vials with 048c spike COMBINED							
U235 IDMS IRMM-1027s single vials with 046c spike COMBINED							
Author: Jakopic Date: Elements: U							
simplified equation spike ²³³ U, sample ²³⁵ U, ratio ²³³ U/ ²³⁵ U							
Isotope amount ratios: Internal test report 3740							
input data from GUM files (set A and B)							
IRMM-1027s vials (3 replicates per blend mixture): set A: 134, 341, 496, 730 and 888							
set B: 53, 208, 418, 617 and 794							
Model Equation:							
{isotope IDMS							
equation							
$T_{c233U}(C_{x}) = C_{x}$							
{turret A, 24 March 2017}							
c _{235U134} =f _{c233U} (c _{x1})+δ ₁ ;							
c _{235U341} =f _{c233U} (c _{x2})+δ ₂ ;							
c _{235U496} =f _{c233U} (c _{x3})+δ ₃ ;							
c _{235U730} =f _{c233U} (c _{x4})+δ ₄ ;							
c _{235∪888} =f _{c233∪} (c _{x5})+δ ₅ ;							
{turret B, 2 May 2017}							
$c_{235U53}=f_{c233U}(c_{x6})+\delta_{6};$							
c _{235U208} =f _{c233U} (c _{x7})+δ ₇ ;							
c _{235U418} =f _{c233U} (c _{x8})+δ ₈ ;							
c _{235U617} =f _{c233U} (c _{x9})+δ ₉ ;							
$c_{235U794} = f_{c233U}(c_{x10}) + \delta_{10};$							
{amount content and mass fraction							
calculations}							
c _{235U} =(c _{235U134} +c _{235U341} +c _{235U496} +c _{235U730} +c _{235U888} +c _{235U53} +c _{235U208} +c _{235U418} +c _{235U617} +c _{235U734})/10;							
c _U =c _{235U} /f _{235U} ;							
γ ₂₃₅₀ =c ₂₃₅₀ *M ₂₃₅₀ ;							
$\gamma_{U} = \gamma_{235U} / W_{235U}$							
m _{235Uvlal53} = ^v _{235U} [*] m _{alquol53} ;							
{}							
$\varepsilon_1 = c_{235U} - c_{235U134};$							
$\varepsilon_2 = c_{235U} - c_{235U341};$							
$\varepsilon_3 = c_{235U} - c_{235U496};$							
$\varepsilon_4 = c_{235U} - c_{235U730};$							
$e_5 = c_{235U} - c_{235U888};$							
Date: 03/19/2018 File: U-IDMS IRMM-1027s vialswith 046c using 233-235 _ combined.SMU Page 1 of 9							

	U	235 IDMS IRMM-1027s single vials with 048c spike COMBINED	
e. = 0			
e-= c	2350 2350	53°	
e, = e	2350 - 02350	208-	
E. = 0	2350 - 02350 Saaata - Caasta	418-	
E =	-2350 -2350 Carao - Cara	617'	
~10	~2350 ~235	U794·	
{		gravimetric versus IDMS values	
diff _{rei} *	=(c _{235U} -c ₂₃₅	_{Umetr})/c _{235Umetr} *100;	
ist of Qu	antities:		
Quantity	Unit	Definition	
C _{235U}	mol/g	mean amount content of ²³⁵ U in IRMM-1027s	
C235U134	mol/g	amount of content ²³⁵ U in vial 134	
C235U341	mol/g	amount of content ²³⁵ U in vial 341	
C235U496	mol/g	amount of content ²³⁵ U in vial 496	
C235U730	mol/g	amount of content ²³⁵ U in vial 730	
C235U888	mol/g	amount of content ²³⁵ U in vial 888	
C235U53	mol/g	amount of content ²³⁵ U in vial 53	
C235U208	mol/g	amount of content ²³⁵ U in vial 208	
C235U418	mol/g	amount of content ²³⁵ U in vial 418	
C235U617	mol/g	amount of content ²³⁵ U in vial 617	
C235U794	mol/g	amount of content ²³⁵ U in vial 794	
diff _{rel}	%	relative difference (IDMS-gravimetric/gravimetric)	
с _U	mol/g	mean amount content of U in IRMM-1027s	
ε,			
ε2			
٤3			
ε4			
٤5			
٤6			
ε7			
ε ₈			
-			
89			
ε ₉ ε ₁₀		gravimatric amount content of ²³⁵ U in mother solution IRMM 1027	/s
ε ₉ ε ₁₀ c _{235Umetr}	mol/g	gravinetric amount content of 0 in mother solution name 1027	-
ε ₉ ε ₁₀ c _{235Umetr} c _{x1}	mol/g mol/g	vial 134	-

Quantity	Unit	Definition			
c _{x2}	mol/g	vial 341			
C _{x3}	mol/g vial 496				
c _{x4}	mol/g	mol/g vial 730			
C _{x5}	mol/g	vial 888			
Cx6	mol/g	vial 53			
C _{x7}	mol/g	vial 208			
C _{x8}	mol/g	vial 418			
c _{x9}	mol/g	vial 617			
C _{x10}	mol/g	vial 794			
δ1	mol/g				
δ2	mol/g				
δ3	mol/g				
δ_4	mol/g				
δ ₅	mol/g				
δ ₆	mol/g				
δ ₇	mol/g				
δ ₈	mol/g				
δ9	mol/g				
δ ₁₀	mol/g				
M _{235U}	g/mol	atom mass of ²³⁵ U			
m _{aliquot53}	g	mass of an aliquot of IRMM-1027s dispensed in vial 53			
f _{235U}	mol/mol	²³⁵ U amount fraction in IRMM-1027s			
W _{235U}	g/g	²³⁵ U mass fraction in IRMM-1027s			
Y235U	g/g	mean mass fraction of ²³⁵ U in IRMM-1027s			
γu	g/g	mean mass fraction of U in IRMM-1027s			
m _{235Uvial53}	g	mass of ²³⁵ U in vial 53			
235Umetr [:]	Imp File mix Syn	ort name:\\Processing\GUM calculations\IRMM-1027s Uranium grav ture.smu nbol: c _{235Umixture} ort	vimetric		
c _{x1} : Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set A.SMU Symbol: c _{235U134}					
9 ₈₂ :	Imp File Syn	ort name: U-IDMS IRMM-1027s vials with 046c using 233-235_set A.SI nbol: c _{235U341}	ми		

.

	U235 IDMS IRMM-1027s single vials with 046c spike COMBINED	
с _{х3} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set A.S Symbol: c ₂₃₅₀₄₉₆	MU
с _{х4} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set A.S Symbol: c _{235U730}	MU
C _{XS} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set A.S Symbol: c _{235U888}	MU
c _{a6} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set B.S Symbol: c _{235U53}	MU
с _{х7} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set B.S Symbol: c _{235U208}	MU
с _{х8} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set B.S Symbol: c _{235U418}	MU
с ₁₉ :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set B.S Symbol: c _{235U617}	MU
c _{x10} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-235_set B.S Symbol: c ₂₃₅₀₇₉₄	MU
δ 1:	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₂ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₃ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₄ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
Date: 03/19/2018	File: U-IDMS IRMM-1027s vialswith 046c using 233-235 _ combined.SMU	Page 4 of 9

	U235 IDMS IRMM-1027s single vials with 046c spike COMBINED	
δ ₅ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
8 ₅ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₇ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₈ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₉ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
8 ₁₀ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
M _{235U} :	Type B normal distribution Value: 235.0439301 g/mol Expanded Uncertainty: 0.0000019 g/mol Coverage Factor: 1	
m _{aliquot53} :	Type B normal distribution Value: 2.51224 g Expanded Uncertainty: 0.00060 g Coverage Factor: 2	
f _{235U} :	Import Filename:\\.Processing\GUM calculations\IRMM-1027s Uranium g mixture.smu Symbol: f _{235U}	ravimetric
W _{236U} :	Import Filename:\\Processing\GUM calculations\IRMM-1027s Uranium g mixture.smu Symbol: w ₂₃₅₀	ravimetric
Date: 03/19/2018	File: U-IDMS IRMM-1027s vialswith 046c using 233-235 _ combined.SMU	Page 5 of 9

		U	235 IDM	S IRMM-	1027s s	ingle vials with 048c spike COMBINED	
Input	Input Correlation:						
	Cri	C _{x2}	C _{x3}	C _{x4}	Cas		
C _{x1}	1	0.5032	0.5225	0.5831	0.5570		
C _{x2}	0.5032	1	0.4796	0.5352	0.5113		
C _{x3}	0.5225	0.4796	1	0.5557	0.5309		
C _{x4}	0.5831	0.5352	0.5557	1	0.5924		
C _{x5}	0.5570	0.5113	0.5309	0.5924	1		
						1	
	C ₂₆	C _{X7}	C _{x8}	C _{x9}	C _{x10}		
C _{x6}	1	0.4342	0.4461	0.4530	0.4788		
Cx7	0.4342	1	0.4715	0.4788	0.5060		
C _{x8}	0.4461	0.4715	1	0.4919	0.5198		
C _{X9}	0.4530	0.4788	0.4919	1	0.5279		
C _{x10}	0.4788	0.5060	0.5198	0.5279	1		
	f _{235U}	W _{235U}]				
f _{235U}	1	1.0000	1				
w _{235U}	1.0000	1	1				
			-				
Date: 03	/19/2018	File: U	-IDMS IR	MM-1027	's vialswi	th 046c using 233-235 _ combined.SMU	Page 6 of 9

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
C _{x1}	16.99341·10 ⁻⁶ mol/g	3.67·10 ⁻⁹ mol/g		59	220·10 ⁻⁹ g	5.3 %
c _{x2}	17.00522·10 ⁻⁶ mol/g	4.00 10 ⁻⁹ mol/g		59	240·10 ⁻⁹ g	5.6 %
C _{K3}	16.99786•10 ⁻⁶ mol/g	3.85•10 ⁻⁹ mol/g		59	230·10 ⁻⁹ g	5.4 %
C _{X4}	16.99982·10 ⁻⁶ mol/g	3.45•10 ⁻⁹ mol/g		59	200•10 ⁻⁹ g	5.1 %
C _{x5}	16.99962•10 ⁻⁶ mol/g	3.62•10 ⁻⁹ mol/g		59	210·10 ⁻⁹ g	5.2 %
C _{x6}	16.99807•10 ⁻⁶ mol/g	3.90•10 ⁻⁹ mol/g		59	230·10 ⁻⁹ g	4.9 %
с _{х7}	17.00457·10 ⁻⁶ mol/g	3.69•10 ⁻⁹ mol/g		59	220·10 ⁻⁹ g	4.7 %
C _{x8}	16.99477·10 ⁻⁶ mol/g	3.59•10 ⁻⁹ mol/g		59	210·10 ⁻⁹ g	4.6 %
c _{x9}	16.99700•10 ⁻⁶ mol/g	3.54 10 ⁻⁹ mol/g		59	210·10 ⁻⁹ g	4.6 %
c _{x10}	16.99706•10 ⁻⁶ mol/g	3.35·10 ⁻⁹ mol/g		59	200•10 ⁻⁹ g	4.4 %
δ1	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ2	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ3	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ4	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ5	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ ₆	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ7	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δε	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ9	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ10	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
M _{235U}	235.04393010 g/mol	1.90•10 ⁻⁶ g/mol	normal	43·10 ⁻⁶	81·10 ⁻¹² g	0.0 %
m _{aliquot53}	2.512240 g	300•10 ⁻⁶ g	normal	4.0·10 ⁻³	1.2 10 ⁶ g	50.3 %
m _{235UVIal5} 3	0.01003753 g	1.69•10 ⁻⁶ g				

350		Expanded	Coverage	Coverage	
	16.9987·10 ⁻⁶ mol/g	4.6.10 ⁻⁹ mol/g	2.30	manual	
5U134	16.9934 10 ⁻⁶ mol/g	7.3·10 ⁻⁹ mol/g	2.00	manual	
5U341	17.0052·10 ⁻⁶ mol/g	8.0.10 ⁻⁹ mol/g	2.00	manual	
5U496	16.9979•10 ⁻⁶ mol/g	7.7·10 ⁻⁹ mol/g	2.00	manual	
5U730	16.9998•10 ⁻⁶ mol/g	6.9·10 ⁻⁹ mol/g	2.00	manual	
SUBBB	16.9996•10 ⁻⁶ mol/g	7.2·10 ⁻⁹ mol/g	2.00	manual	
5U53	16.9981•10 ⁻⁶ mol/g	7.8·10 ⁻⁹ mol/g	2.00	manual	
5U208	17.0046·10 ⁻⁶ mol/g	7.4 10 ⁻⁹ mol/g	2.00	manual	
5U418	16.9948·10 ⁻⁶ mol/g	7.2·10 ⁻⁹ mol/g	2.00	manual	
5U617	16.9970•10 ⁻⁶ mol/g	7.1·10 ⁻⁹ mol/g	2.00	manual	
5U794	16.9971•10 ⁻⁶ mol/g	6.7·10 ⁻⁹ mol/g	2.00	manual	
ff _{rei}	-0.076 %	0.027 %	2.00	manual	
°υ	88.727·10 ⁻⁶ mol/g	27·10 ⁻⁹ mol/g	2.30	manual	
E1	5.3·10 ⁻⁹	6.0·10 ⁻⁹	2.00	manual	
E2	-6.5·10 ⁻⁹	6.6•10 ⁻⁹	2.00	manual	
^E 3	900·10 ⁻¹²	6.3·10 ⁻⁹	2.00	manual	
^E 4	-1.1.10 ⁻⁹	5.6·10 ⁻⁹	2.00	manual	
² 5	-900·10 ⁻¹²	5.9·10 ⁻⁹	2.00	manual	
² 6	700·10 ⁻¹²	6.7·10 ⁻⁹	2.00	manual	
E.7	-5.8·10 ⁻⁹	6.3·10 ⁻⁹	2.00	manual	
² 8	4.0·10 ⁻⁹	6.1·10 ⁻⁹	2.00	manual	
² 9	1.7·10 ⁻⁹	6.0·10 ⁻⁹	2.00	manual	
10	1.7·10 ⁻⁹	5.7·10 ⁻⁹	2.00	manual	
350	3.9955•10 ⁻³ g/g	1.1 10 ⁻⁶ g/g	2.30	manual	
Yυ	0.0210693 g/g	6.3·10 ⁻⁶ g/g	2.30	manual	
Uvial53	0.0100375 g	3.9·10 ⁻⁶ g	2.30	manual	
E6 E7 E8 E9 C10 C35U XU XU SUVIDI53	700·10 ⁻² -5.8·10 ⁻⁹ 4.0·10 ⁻⁹ 1.7·10 ⁻⁹ 1.7·10 ⁻⁹ 3.9955·10 ⁻³ g/g 0.0210693 g/g 0.0100375 g	6.7·10 ⁻¹ 6.3·10 ⁻⁹ 6.1·10 ⁻⁹ 6.0·10 ⁻⁹ 5.7·10 ⁻⁹ 1.1·10 ⁻⁶ g/g 3.9·10 ⁻⁶ g	2.00 2.00 2.00 2.00 2.00 2.30 2.30 2.30	manual manual manual manual manual manual manual	

Annex 19 Determination of ²³⁸U in 10 randomly selected vials (turrets A and B) for the characterisation IRMM-1027s by ID-TIMS with IRMM-046c (reference date November 1, 2016)

	U238 IDMS IRMM-1027s single vials with 046c spike COMBINED	
U238 IDMS I	IRMM-1027s single vials with 046c spike COMBINED	
Author: Jakonia	Date: Elemente: II	
simplified equation	ion snike ²³³ LL sample ²³⁸ LL satio ²³³ LU ²³⁸ LL	
simplified equation	CLIM files (set A and B)	
IRMM-1027s via	SOM files (Set A and B)	
sot B: 52, 209, 4	19 (3 replicates per biend mixture). Set A. 134, 341, 480, 730 and 660	
ser 0. 33, 200, 4		
Model Equatio	on:	
{	simplified equation	
Tc233U(Cx)=	°C _n i	
{turret A, 2	24 March 2017}	
0238U134=fc	c233U(cx1)+δ1;	
0 _{238U341} =f _c	c233U(Cx2)+δ ₂ ;	
c _{238U496} =f _c	_{c233U} (c _{x3})+δ ₃ ;	
c _{238U730} =f _c	_{c233U} (c _{y4})+δ ₄ ;	
0 _{238U888} =f _c	c233U(Cxs5)+δ5;	
{turret B, 2	2 May 2017}	
c _{238U53} =f _{c2}	₂₂₃₀ (C _{vs})+δ _s ;	
c _{238U208} =f _c	_{c233U} (c _{x7})+δ ₇ ;	
C _{238U418} =f _c	_{c233U} (c _{x8})+δ ₈ ;	
C _{238U617} =f _c	$233U(C_{yq}) + \delta_{q}$	
c _{238U794} =f	_{2233U} (c _{v10})+δ ₁₀ ;	
	amount content and made fraction	
calculation	ns}	
c _{238U} =(c ₂₃	18U134 ^{+C} 238U341 ^{+C} 238U495 ^{+C} 238U730 ^{+C} 238U888 ^{+C} 238U53 ^{+C} 238U208 ^{+C} 238U418 ^{+C} 238U617 ^{+C} 238U794)/10	:
c _u =c _{238U} /f	2380	
γ ₂₃₈ ∪≕⊂ ₂₃₈	_{IU} *M _{238U} ;	
γ _U =γ _{238U} /w	Y _{238U} ;	
m _{238Uvlai53}	= ⁻ γ ₂₃₆ , m _{alquot53} ;	
{	gravimetric versus IDMS values	-}
diff _{rel} =(c ₂₃	18U ^{-C} 238Umet ^{-)/C} 238Umet [*] 100;	
{	consistency check}	
ε ₁ = c ₂₃₈₀	- C _{238U134} ;	
ε ₂ = c _{238U}	- C _{238U341} ;	
ε ₃ = c _{238U}	- C _{238U496} ;	
ε ₄ = c _{238U}	- C _{238U730} ;	
Date: 02/12/2018	File: U-IDMS IRMM-1027s vials with 046c using 233-238 combined.SMU Page 1 of	9
	Generated with GLIM Workbench Pro Version 3	4 4 4 5 9

	U2	38 IDMS IRMM-1027s single vials with 048c spike COMBINED	
			1
25 - 0	2380 - 023808		
26-0	2380 - 023805		
27-0	2380 - 023802		
ε ₈ -0	238U ^{- 0} 238U4	-	
ε ₉ = c	238U ^{- C} 238U6	i17°	
ε ₁₀ =	C _{238U} - C _{238U}	1794-	
List of Qu	antities:		
Quantity	Unit	Definition	
C238U	mol/g	mean amount content of ²³⁰ U in IRMM-1027s	
C238U134	mol/g	amount of content ²³⁸ U in vial 134	
C238U341	mol/g	amount of content ²³⁸ U in vial 341	
C238U496	mol/g	amount of content ²³⁸ U in vial 496	
C238U730	mol/g	amount of content ²³⁸ U in vial 730	
C238U888	mol/g	amount of content ²³⁸ U in vial 888	
C238U53	mol/g	amount of content ²³⁸ U in vial 53	
C238U208	mol/g	amount of content ²³⁸ U in vial 208	
C238U418	mol/g	amount of content ²³⁸ U in vial 418	
C238U617	mol/g	amount of content ²³⁸ U in vial 617	
C238U794	mol/g	amount of content ²³⁸ U in vial 794	
ε ₁			
ε2			
ε3			
ε4			
٤5			
٤6			
ε7			
ε ₈			
89			
ε ₁₀			
C _{238Umetr}	mol/g	metrological amount content of ²³⁸ U in mother solution IRMM-102	7s
Cri	mol/g	vial 134	
C _{x2}	mol/g	vial 341	
C _{x3}	mol/g	vial 496	
C _{y4}	mol/g	vial 730	
	-		
Date: 02/12/20	18 File: U-	IDMS IRMM-1027s vials with 046c using 233-238 _ combined.SMU	Page 2 of 9

	U2:	38 IDMS IRMM-1027s single vials with 046c spike COMBINED					
Quantity	Unit	Definition					
Cys	mol/g	vial 888					
Cys	mol/g	vial 53					
Cv7	mol/g	ial 208					
Cve	mol/g	vial 418					
Cya	mol/g	vial 617					
Cyin	mol/g	vial 794					
δ,	mol/g						
δ	mol/g						
δ,	mol/g						
δ,	mol/g						
δ.	mol/a						
δ.	mol/g						
δ.	mol/a						
δ.	mol/a						
δ.	mol/a						
δ	mol/g						
diff .	%	relative difference (IDMS-gravimetric/gravimetric)					
v	ala	mean mass fraction of ²³⁸ U in IRMM-1027s					
7238U M	a/mol	atom mass of ²³⁸ U					
····238U	9	mass of ²³⁸ L in vial 52					
111238Uvial53	8	mass of an aliguot of IRMM-1027s dispensed in vial 53					
***aiquots3	a/a	mean mass fraction of U in IRMM-1027s					
1U Warau	8'8 ala	mass fraction of ²³⁸ L in IPMM_1027s					
•2380	mol/a	mean amount content of U in IRMM-1027s					
franci	mol/mol	amount fraction of ²³⁸ U in IRMM-1027s					
"238U C _{238Umet} r:	Impo	ort					
	mixt Sym	ure.smu bol: c _{238Umixture}					
c _{x1} :	Impo Filen Sym	ort name: U-IDMS IRMM-1027s vials with 046c using 233-238_set A.SMU bol: c ₂₃₈₀₁₃₄					
c _{x2} :	Impo Filen Sym	ort name: U-IDMS IRMM-1027s vials with 046c using 233-238_set A.SMU bol: c ₂₃₈₀₃₄₁					
с _{х3} :	Impo Filen Sym	art name: U-IDMS IRMM-1027s vials with 046c using 233-238_set A.SMU bol: c ₂₃₈₀₄₉₆					
Date: 02/12/20)18 File: U-I	DMS IRMM-1027s vials with 046c using 233-238 _ combined.SMU Page 3 of 9					

	U238 IDMS IRMM-1027s single vials with 046c spike COMBINED	
c _{x4} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-238_set A.S Symbol: c ₂₃₈₀₇₃₀	мυ
c _{x5} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-238_set A.S Symbol: c _{238U888}	мо
с _{х5} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-238_set B.S Symbol: c ₂₃₈₀₅₃	MU
c _{x7} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-238_set B.S Symbol: c _{238U208}	MU
с _{х8} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-238_set B.S Symbol: c _{238U418}	MU
c _{x9} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-238_set B.S Symbol: c _{238U517}	ми
c _{x10} :	Import Filename: U-IDMS IRMM-1027s vials with 046c using 233-238_set B.S Symbol: c ₂₃₈₀₇₉₄	ми
δ ₁ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
8 ₂ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ3:	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₄ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₅ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
Date: 02/12/2018	File: U-IDMS IRMM-1027s vials with 048c using 233-238 _ combined.SMU	Page 4 of 9

	U238 IDMS IRMM-1027s single vials with 046c spike COMBINED	
δ ₅ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
8 7∶	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₃ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₉ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
δ ₁₀ :	Type B normal distribution Value: 0 mol/g Expanded Uncertainty: 0 mol/g Coverage Factor: 1	
M _{238U} :	Type B normal distribution Value: 238.0507884 g/mol Expanded Uncertainty: 0.0000020 g/mol Coverage Factor: 1	
m _{aliquot53} :	Type B normal distribution Value: 2.51224 g Expanded Uncertainty: 0.00060 g Coverage Factor: 2	
w _{238U} :	Import Filename:\\.Processing\GUM calculations\IRMM-1027s Uranium gr mixture.smu Symbol: w _{238U}	ravimetric
f _{238U} :	Import Filename:\\Processing\GUM calculations\IRMM-1027s Uranium gr mixture.smu Symbol: f _{239U}	ravimetric
	[]	
Date: 02/12/2018	File: U-IDMS IRMM-1027s vials with 048c using 233-238 _ combined.SMU	Page 5 of 9

		_						
		U	238 IDM	S IRMM-	1027s s	ingle vials with 0460	spike COMBINED	
Input	Correl	ation:						
	C _{x1}	C _{x2}	C _{x3}	C _{x4}	C _{XS}			
C _{x1}	1	0.6639	0.6076	0.7411	0.6865			
c _{x2}	0.6639	1	0.5795	0.7068	0.6547			
C _{x3}	0.6076	0.5795	1	0.6470	0.5992			
C _{x4}	0.7411	0.7068	0.6470	1	0.7309			
C _{x5}	0.6865	0.6547	0.5992	0.7309	1			
						1		
	C _{x6}	C _{X7}	C _{x8}	C _{X9}	C _{x10}			
C _{x6}	1	0.5074	0.4395	0.4662	0.5394			
C _{X7}	0.5074	1	0.5736	0.6083	0.7039			
C _{x8}	0.4395	0.5736	1	0.5270	0.6098			
C _{X9}	0.4662	0.6083	0.5270	1	0.6467			
C _{x10}	0.5394	0.7039	0.6098	0.6467	1			
	W _{238U}	f _{238U}]					
w _{238U}	1	1.0000	1					
f _{238U}	1.0000	1]					
Interi	m Resi	ults:	-					
Q	iantity		Valu	•		Standard		
	anny		Value	-		Uncertainty		
	γ _U	0.	0210593	35 g/g	4	1.54•10 ⁻⁶ g/g		
	с _U	88.	6850-10	[€] mol/g	19	9.1•10 ⁻⁹ mol/g		
ate: 02	/12/2018	File: U	-IDMS IR	MM-1027	s vials w	ith 046c using 233-23	8 _ combined.SMU	Page 6 of 9

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
C _{x1}	71.3302•10 ⁻⁶ mol/g	26.2·10 ⁻⁹ mol/g		60	1.6•10 ⁻⁶ g	8.5 %
c _{x2}	71.3666•10 ⁻⁶ mol/g	27.5•10 ⁻⁹ mol/g		60	1.6•10 ⁻⁶ g	8.7 %
c _{x3}	71.3389•10 ⁻⁶ mol/g	30.1•10 ⁻⁹ mol/g		60	1.8•10 ⁻⁶ g	9.2 %
C _{X4}	71.3652 10 ⁻⁶ mol/g	24.7 • 10 ⁻⁹ mol/g		60	1.5•10 ⁻⁶ g	8.2 %
C _{x5}	71.3529•10 ⁻⁶ mol/g	26.6•10 ⁻⁹ mol/g		60	1.6•10 ⁻⁶ g	8.5 %
C _{x6}	71.3399•10 ⁻⁶ mol/g	30.1•10 ⁻⁹ mol/g		60	1.8•10 ⁻⁶ g	7.5 %
с _{х7}	71.3543·10 ⁻⁶ mol/g	23.1•10 ⁻⁹ mol/g		60	1.4·10 ⁻⁶ g	6.3 %
C _{x8}	71.3289•10 ⁻⁶ mol/g	26.6•10 ⁻⁹ mol/g		60	1.6•10 ⁻⁶ g	6.9 %
c ^{xa}	71.3319•10 ⁻⁶ mol/g	25.1•10 ⁻⁹ mol/g		60	1.5•10 ⁻⁶ g	6.6 %
c _{x10}	71.3232·10 ⁻⁶ mol/g	21.7·10 ⁻⁹ mol/g		60	1.3•10 ⁻⁶ g	6.1 %
δ1	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ2	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ3	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ4	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ5	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ ₆	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ7	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δε	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ9	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
δ10	0.0 mol/g	0.0 mol/g	normal	0.0	0.0 g	0.0 %
M _{238U}	238.05078840 g/mol	2.00•10 ⁻⁶ g/mol	normal	180.10-6	360·10 ⁻¹² g	0.0 %
m _{aliquotS3}	2.512240 g	300•10 ⁻⁶ g	normal	0.017	5.1•10 ⁻⁶ g	23.6 %
m _{238Uvlai5} 3	0.0426661 g	10.5•10 ⁻⁶ g			-	

71.343•10 ⁻⁶ mol/g 71.330•10 ⁻⁶ mol/g		factor		2
71.330•10 ⁻⁶ mol/g	35·10 ⁻⁹ mol/g	2.30	manual	
	52·10 ⁻⁹ mol/g	2.00	manual	
71.367·10 ⁻⁶ mol/g	55·10 ⁻⁹ mol/g	2.00	manual	
71.339·10 ⁻⁶ mol/g	60·10 ⁻⁹ mol/g	2.00	manual	
71.365•10 ⁻⁶ mol/g	49·10 ⁻⁹ mol/g	2.00	manual	
71.353·10 ⁻⁶ mol/g	53·10 ⁻⁹ mol/g	2.00	manual	
71.340•10 ⁻⁶ mol/g	60·10 ⁻⁹ mol/g	2.00	manual	
71.354 10 ⁻⁶ mol/g	46·10 ⁻⁹ mol/g	2.00	manual	
71.329 10 ⁻⁶ mol/g	53·10 ⁻⁹ mol/g	2.00	manual	
71.332•10 ⁻⁶ mol/g	50·10 ⁻⁹ mol/g	2.00	manual	
71.323•10 ⁻⁶ mol/g	43·10 ⁻⁹ mol/g	2.00	manual	
13·10 ⁻⁹	40·10 ⁻⁹	2.00	manual	
-23·10 ⁻⁹	43·10 ⁻⁹	2.00	manual	
4·10 ⁻⁹	48·10 ⁻⁹	2.00	manual	
-22·10 ⁻⁹	37·10 ⁻⁹	2.00	manual	
-10·10 ⁻⁹	41·10 ⁻⁹	2.00	manual	
3·10 ⁻⁹	52·10 ⁻⁹	2.00	manual	
-11.10*9	39·10 ⁻⁹	2.00	manual	
14·10 ⁻⁹	46·10 ⁻⁹	2.00	manual	
11.10 9	43·10 ⁻⁹	2.00	manual	
20·10 ⁻⁹	36·10 ⁻⁹	2.00	manual	
-0.123 %	0.043 %	2.00	manual	
0.0169833 g/g	8.4·10 ⁻⁶ g/g	2.30	manual	
0.042666 g	24·10 ⁻⁶ g	2.30	manual	
	71.353·10 ⁻⁶ mol/g 71.340·10 ⁻⁶ mol/g 71.354·10 ⁻⁶ mol/g 71.329·10 ⁻⁶ mol/g 71.322·10 ⁻⁶ mol/g 71.323·10 ⁻⁶ mol/g 13·10 ⁻⁹ -23·10 ⁻⁹ -23·10 ⁻⁹ -22·10 ⁻⁹ -10·10 ⁻⁹ -10·10 ⁻⁹ -10·10 ⁻⁹ -11·10 ⁻⁹ 11·10 ⁻⁹ -11·10 ⁻⁹ -0.123 % 0.0169833 g/g 0.042686 g	$71.353 \cdot 10^{-6}$ mol/g $53 \cdot 10^{-9}$ mol/g $71.340 \cdot 10^{-6}$ mol/g $60 \cdot 10^{-9}$ mol/g $71.354 \cdot 10^{-6}$ mol/g $46 \cdot 10^{-9}$ mol/g $71.354 \cdot 10^{-6}$ mol/g $53 \cdot 10^{-9}$ mol/g $71.329 \cdot 10^{-6}$ mol/g $53 \cdot 10^{-9}$ mol/g $71.329 \cdot 10^{-6}$ mol/g $53 \cdot 10^{-9}$ mol/g $71.329 \cdot 10^{-6}$ mol/g $50 \cdot 10^{-9}$ mol/g $71.323 \cdot 10^{-6}$ mol/g $50 \cdot 10^{-9}$ mol/g $71.323 \cdot 10^{-6}$ mol/g $43 \cdot 10^{-9}$ mol/g $71.323 \cdot 10^{-6}$ mol/g $43 \cdot 10^{-9}$ mol/g $71.323 \cdot 10^{-6}$ mol/g $43 \cdot 10^{-9}$ $-23 \cdot 10^{-9}$ $43 \cdot 10^{-9}$ $-23 \cdot 10^{-9}$ $47 \cdot 10^{-9}$ $4 \cdot 10^{-9}$ $48 \cdot 10^{-9}$ $-10 \cdot 10^{-9}$ $37 \cdot 10^{-9}$ $-10 \cdot 10^{-9}$ $39 \cdot 10^{-9}$ $-11 \cdot 10^{-9}$ $48 \cdot 10^{-9}$ $11 \cdot 10^{-9}$ $43 \cdot 10^{-9}$ $20 \cdot 10^{-9}$ $36 \cdot 10^{-9}$ $-0.123 \ 96$ $0.043 \ 96$ $0.0169833 g/g$ $8.4 \cdot 10^{-6} g/g$ $0.042666 g$ $24 \cdot 10^{-6} g$	$71.353 \cdot 10^{-6} mol/g$ $53 \cdot 10^{-9} mol/g$ 2.00 $71.340 \cdot 10^{-6} mol/g$ $60 \cdot 10^{-9} mol/g$ 2.00 $71.354 \cdot 10^{-6} mol/g$ $46 \cdot 10^{-9} mol/g$ 2.00 $71.354 \cdot 10^{-6} mol/g$ $53 \cdot 10^{-9} mol/g$ 2.00 $71.329 \cdot 10^{-6} mol/g$ $53 \cdot 10^{-9} mol/g$ 2.00 $71.329 \cdot 10^{-6} mol/g$ $50 \cdot 10^{-9} mol/g$ 2.00 $71.323 \cdot 10^{-6} mol/g$ $50 \cdot 10^{-9} mol/g$ 2.00 $71.323 \cdot 10^{-6} mol/g$ $43 \cdot 10^{-9} mol/g$ 2.00 $71.323 \cdot 10^{-6} mol/g$ $43 \cdot 10^{-9} mol/g$ 2.00 $71.323 \cdot 10^{-6} mol/g$ $43 \cdot 10^{-9} 2.00$ 2.00 $-23 \cdot 10^{-9}$ $43 \cdot 10^{-9}$ 2.00 $-23 \cdot 10^{-9}$ $37 \cdot 10^{-9}$ 2.00 $-10 \cdot 10^{-9}$ $41 \cdot 10^{-9}$ 2.00 $-10 \cdot 10^{-9}$ $41 \cdot 10^{-9}$ 2.00 $-11 \cdot 10^{-9}$ $39 \cdot 10^{-9}$ 2.00 $-11 \cdot 10^{-9}$ $48 \cdot 10^{-9}$ 2.00 $11 \cdot 10^{-9}$ $43 \cdot 10^{-9}$ 2.00 $11 \cdot 10^{-9}$ $48 \cdot 10^{-9}$ 2.00 2.010^{-9} 36	71.353 $\cdot 10^{-9}$ mol/g 53 $\cdot 10^{-9}$ mol/g 2.00 manual 71.340 $\cdot 10^{-9}$ mol/g 60 $\cdot 10^{-9}$ mol/g 2.00 manual 71.354 $\cdot 10^{-6}$ mol/g 46 $\cdot 10^{-9}$ mol/g 2.00 manual 71.354 $\cdot 10^{-6}$ mol/g 53 $\cdot 10^{-9}$ mol/g 2.00 manual 71.329 $\cdot 10^{-6}$ mol/g 53 $\cdot 10^{-9}$ mol/g 2.00 manual 71.329 $\cdot 10^{-6}$ mol/g 50 $\cdot 10^{-9}$ mol/g 2.00 manual 71.323 $\cdot 10^{-6}$ mol/g 50 $\cdot 10^{-9}$ mol/g 2.00 manual 71.323 $\cdot 10^{-6}$ mol/g 43 $\cdot 10^{-9}$ mol/g 2.00 manual 71.323 $\cdot 10^{-6}$ mol/g 43 $\cdot 10^{-9}$ mol/g 2.00 manual 71.323 $\cdot 10^{-6}$ mol/g 43 $\cdot 10^{-9}$ 2.00 manual $-23 \cdot 10^{-9}$ 43 $\cdot 10^{-9}$ 2.00 manual $-22 \cdot 10^{-9}$ 37 $\cdot 10^{-9}$ 2.00 manual $-10 \cdot 10^{-9}$ 48 $\cdot 10^{-9}$ 2.00 manual $-10 \cdot 10^{-9}$ 39 $\cdot 10^{-9}$ 2.00 manual $-11 \cdot 10^{-9}$ 46 $\cdot 10^{-9}$

Annex 20 Determination of ²³⁹Pu in 10 randomly selected vials (turrets C and D) for the characterisation in IRMM-1027s by ID-TIMS with IRMM-046c (reference date November 1, 2016)

	Pu IDMS IRMM-1027s VIALS with IRMM-046c using 242-239 COMBINED 1 Nov 2016	
Pu IDMS IRM 2016	MM-1027s VIALS with IRMM-046c using 242-239 COMBINE	ED 1 Nov
Author: Rozle J	akopic Elements: Pu	
Date of referen	ce: 1 November 2016	
Isotope amount	ratios internal test report 3740 to 1st November 2016	
input data from	GUM files turret A and B:	
magazine C (vi	als): 134, 341, 496, 730, 888, 4 April 2017	
magazine D (vi	als): 53, 208, 418, 617, 794, 19 May 2017	
Model Equati	on:	
{	amount content calculations	}
fc242Pu(C)=c _x ;	
{turret C	4 April 2017}	
	- (a) 1 and (b) and (b)	
C239Pu134	$f_{c242Pu}(c_{x1}) = (-\lambda_{239}, \Delta t_1),$	
C239Pu341	$f_{c242Pu}(G_{22}) = (-\lambda_{239}, \Delta t_1),$	
C239Pu496	$f_{c242Pu}(c_{x3}) = (-\lambda_{233}, \Delta t_1),$	
°239Pu730	$c_{242Pu}(c_{x4}) = (-x_{239} - x_{1}),$	
~239Pu888	242Pu(4x5/ C (3239 221).	
{turret D	19 May 2017}	
C _{239Pu53} =	f _{c242Pu} (c _{x6})* e^(-λ ₂₃₉ ·Δt ₂);	
C239Pu208	$f_{c242Pu}(c_{x7})^* e^{(-\lambda_{239} \cdot \Delta t_2)};$	
C239Pu418	$f_{c242Pu}(c_{x8})^* e^{(-\lambda_{239} \cdot \Delta t_2)};$	
C239Pu617 ²	$f_{c242Pu}(c_{x9})^* e^{(-\lambda_{239} \cdot \Delta t_2)};$	
C _{239Pu794} ²	$f_{c242Pu}(c_{x10})^* e^{(-\lambda_{239} \cdot \Delta t_2)};$	
{	amount content and mass fraction	
calculatio	ns}	
c _{239Pu} =(c	239Pu134+C239Pu341+C239Pu496+C239Pu730+C239Pu888+C239Pu53+C239Pu208+C239Pu418*	+0 _{239Pu617} +0 _{239Pu794})
c _{Pu} =c _{239F}	_u /fdnorm _{239Pu} ;	
γ _{239Pu} = c	239Pu [*] M239Pu;	
γ _{Pu} =γ _{239P}	, /wdnorm _{239Pu} ;	
m _{239Puvial}	s3 ^{=γ} 239Pu [*] m _{aliquot53} ;	
{	consistency check	
ε ₁ = c _{239F}	u - C _{239Pu134} ;	
ε ₂ = c _{239F}	u - C _{239Pu341} ;	
ε ₃ = c _{239P}	u - C _{239P0496} ;	
ε ₄ = c _{239F}	u - C _{239Pu730} ;	
ε ₅ = c _{239P}	u - C _{239Pu888} ;	
Date: 03/19/2018	File: Pu IDMS IRMM-1027s with 046c spike using 242-239_combined.smu	Page 1 of 10
	1	

Pu IDMS IRMM-1027s VIALS with IRMM-0460 using 242-239 COMBINED 1 Nov 2016 $\varepsilon_6 = c_{235Pu} - c_{23Pu/25}$: $\varepsilon_7 = c_{235Pu} - c_{23Pu/25}$: $\varepsilon_8 = c_{235Pu} - c_{23Pu/25}$: $\varepsilon_9 = c_{235Pu} - c_{23Pu/25}$: $\varepsilon_{10} = c_{235Pu} - c_{23Pu/25}$: $\varepsilon_{10} = c_{235Pu} - c_{23Pu/25}$: $\varepsilon_{10} = c_{235Pu} - c_{23Pu/25}$: $\lambda_{235} = \ln 2 / \tau_{236}$: $\lambda_{235} = \ln 2 / \tau_{236}$: $\lambda_{232} = \ln 2 / \tau_{236}$: $\lambda_{241} = \ln 2 / \tau_{242}$: List of Quantities: Uantity Unit Definition c_{238Pu} molg mean amount content of ²³⁸ Pu in IRMM-10275 Δt_1 a time difference measurement date 4 April 2017 (IDMS) and reference date 1 November 2016 a Δt_2 a Δt_2 a Δt_1 a τ_{239} a τ_{239} a τ_{239} a π^2									
			Pull	DMS IRMM-1027s VIALS with IRMM-048c using 242-239 COMBINED 1 Nov 2016					
$\begin{array}{c} r_{6} = c_{238\mu} - c_{238\mu}c_{338} \\ r_{7} = c_{238\mu} - c_{238\mu}c_{338} \\ r_{8} = c_{238\mu} - c_{238\mu}c_{338} \\ r_{8} = c_{238\mu} - c_{238\mu}c_{338} \\ r_{8} = c_{238\mu} - c_{238\mu}c_{338} \\ r_{10} = c_{238} \\ r_{10} - c_{10} \\ r_{10} \\ r_{10} \\ r_{10} - c_{10} \\ r_{10} \\ r_{10} \\ r_{10} - c_{10} \\ r_{10} \\ r_{10$									
$ \begin{split} & r_7 = c_{2399u} - c_{2399u} r_{2399u} r_{2390u} r_{2399u} r_{2390u} r_{2399u} r_{2399u} r_{2399u} r_{2390u} r$		ε ₆ = c ₂₃	9Pu - C _{239Pu53} ;						
$ \begin{split} \epsilon_8 &= c_{238Pu} - c_{238Pu} \epsilon_{13}; \\ \epsilon_9 &= c_{238Pu} - c_{238Pu} \epsilon_{13}; \\ \epsilon_{10} &= c_{238Pu} - c_{238Pu} \epsilon_{238Punee}; \\ \hline \\ \epsilon_{10} &= c_{238Pu} - c_{238Punee}; \\ \hline \\ c_{238Pu} &= c_{2} - c_{238Pu}; \\ c_{238Pu} &= c_{2} - c_{238Pu}; \\ c_{238Pu} &= c_{2} - c_{238Pu}; \\ \hline \\ c_{238Pu} &= c_{2} - c_{238Pu}; \\ c_{238Pu} &= c_{2} - c_{238Pu}; \\ c_{238Pu} &= c_{2} - c_{2} - c_{2}; \\ c_{238Pu} &= c_{2}; \\ c_{238Pu} &= c_{2} - c_{2}; \\ c_{238Pu} &= c_{$		ε ₇ = c ₂₃	9Pu - C239Pu208	6					
		ε ₈ = c ₂₃	9Pu - C _{239Pu418}	F					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ε ₉ = c ₂₃	9Pu - C239Pu617	6					
		$\varepsilon_{10} = c_{239Pu} - c_{239Pu794}$							
$\begin{split} \text{diff}_{\text{me}} = \left(c_{233Pu} c_{233Pumet} \right)^{1} c_{233Pumet} ^{*} 100; \\ \text{In}_{2} = \ln(2); \\ \lambda_{238} = \ln_{2} / \tau_{239}; \\ \lambda_{200} = \ln_{2} / \tau_{230}; \\ \lambda_{201} = \ln_{2} / \tau_{241}; \\ \lambda_{242} = \ln_{2} / \tau_{242}; \\ \lambda_{244} = \ln_{2} / \tau_{244}; \\ \end{split}$		{gravimetric value vs. IDMS}							
$\begin{array}{l} \label{eq:second} & \ln_2 = \ln(2); \\ \lambda_{238} = \ln_2 / \tau_{239}; \\ \lambda_{239} = \ln_2 / \tau_{239}; \\ \lambda_{249} = \ln_2 / \tau_{240}; \\ \lambda_{342} = \ln_2 / \tau_{342}; \\ \lambda_{342} = \ln_2 / \tau_{342}; \\ \lambda_{342} = \ln_2 / \tau_{544}; \end{array}$		diff _{rel} =(c	C _{239Pu} -C _{239Pum}	et)/c _{239Pumet} *100;					
$\begin{array}{l lllllllllllllllllllllllllllllllllll$		ln ₂ = ln((2);						
$\begin{array}{l} \lambda_{239} = \ln_2 / \tau_{239}; \\ \lambda_{241} = \ln_2 / \tau_{240}; \\ \lambda_{241} = \ln_2 / \tau_{242}; \\ \lambda_{244} = \ln_2 / \tau_{242}; \\ \lambda_{244} = \ln_2 / \tau_{244}; \end{array}$ List of Quantities: $\begin{array}{ c c c c } \hline \hline \textbf{Quantity} & \textbf{Unit} & \textbf{Definition} \\ \hline \textbf{Quantity} & \textbf{Unit} & \textbf{Definition} \\ \hline \textbf{Quantity} & \textbf{Unit} & \textbf{Definition} \\ \hline \textbf{Quantity} & \textbf{Mol/g} & mean amount content of 239Pu in IRMM-1027s \\ \hline \textbf{At}_1 & a & time difference measurement date 4 April 2017 (IDMS) and reference date 1 \\ November 2016 \\ \hline \textbf{At}_2 & a & time difference measurement date 19 May 2017 (IDMS) and reference date 1 \\ November 2016 \\ \hline \textbf{e} & & \\ \hline \textbf{T}_{238} & a & half life 238Pu \\ \hline \textbf{T}_{239} & a & half life 238Pu \\ \hline \textbf{T}_{239} & a & half life 238Pu \\ \hline \textbf{T}_{240} & a & half life 244Pu \\ \hline \textbf{T}_{242} & a & half life 244Pu \\ \hline \textbf{T}_{242} & a & half life 244Pu \\ \hline \textbf{T}_{244} & a & half life 244Pu \\ \hline \lambda_{238} & a^{-1} & decay constant 238Pu \\ \hline \lambda_{240} & a^{-1} & decay constant 244Pu \\ \hline \lambda_{241} & a^{-1} & decay constant 244Pu \\ \hline \lambda_{244} & a^{-1} & decay constant 244Pu \\ \hline \lambda_{244} & a^{-1} & decay constant 244Pu \\ \hline \lambda_{244} & a^{-1} & decay constant 244Pu \\ \hline \lambda_{244} & a^{-1} & decay constant 244Pu \\ \hline \lambda_{244} & a^{-1} & decay constant 244Pu \\ \hline \lambda_{244} & a^{-1} & decay constant 244Pu \\ \hline \textbf{C}_{24} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{22} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{24} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{24} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{24} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{24} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{24} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{24} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{24} & mol/g & import from respective GUMWB amount content of 239Pu \\ \hline \textbf{C}_{24} & mol/g & import from respe$		$\lambda_{238} = \ln \theta$	n ₂ / τ ₂₃₈ ;						
$\begin{array}{c c} \lambda_{240} = \ln_2/\tau_{240}; \\ \lambda_{241} = \ln_2/\tau_{241}; \\ \lambda_{242} = \ln_2/\tau_{242}; \\ \lambda_{244} = \ln_2/\tau_{244}; \end{array}$ $\begin{array}{c c} \textbf{List of Quantities:} \\ \hline \\ $		$\lambda_{239} = \ln \theta$	n ₂ / τ ₂₃₉ ;						
$\begin{array}{c c} \lambda_{241} = \ln_2 / \tau_{241}; \\ \lambda_{242} = \ln_2 / \tau_{242}; \\ \lambda_{244} = \ln_2 / \tau_{244}; \end{array}$ List of Quantity Unit Definition $\hline c_{239Pu} mol/g mean amount content of ^{239}Pu in IRMM-1027s$ $\hline \Delta t_1 a time difference measurement date 4 April 2017 (IDMS) and reference date 1 November 2016 \hline \Delta t_2 a time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline e time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline e time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline e time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline e time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline e time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline t_{238} a half life ^{238}Pu time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline t_{238} a half life ^{248}Pu time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline t_{238} a half life ^{248}Pu time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline t_{238} a half life ^{248}Pu time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline t_{241} a half life ^{248}Pu time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline t_{244} a half life ^{248}Pu time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 \hline t_{244} a half life ^{248}Pu time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2010 \hline t_{244} a half life ^{248}Pu time difference measurement date 19 May 2017 (IDMS) and reference date 10 May 2017 (IDMS) and reference $		$\lambda_{240} = \ln \theta$	n ₂ / τ ₂₄₀ ;						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\lambda_{241} = \ln$	n_2 / τ_{241} ;						
$\begin{array}{c c} \lambda_{244} = \ln_2 / \tau_{244}; \\ \hline \lambda_{244} = \ln_2 / \tau_{244}; \\ \hline \\ $		$\lambda_{242} = lt$	n_2 / τ_{242} ;						
List of Quantities: Quantity Unit Definition σ_{239Fu} mol/g mean amount content of 239 Pu in IRMM-1027s Δt_1 a time difference measurement date 4 April 2017 (IDMS) and reference date 1 Δt_2 a time difference measurement date 19 May 2017 (IDMS) and reference date 1 Δt_2 a time difference measurement date 19 May 2017 (IDMS) and reference date 1 Φ_2 a time difference measurement date 19 May 2017 (IDMS) and reference date 1 Φ_2 a half life 238 Pu π_{238} a half life 238 Pu π_{239} a half life 238 Pu π_{240} a half life 249 Pu π_{241} a half life 242 Pu π_{244} a half life 242 Pu π_{244} a half life 249 Pu λ_{238} a^{-1} decay constant 238 Pu λ_{240} a^{-1} decay constant 238 Pu λ_{240} a^{-1} decay constant 249 Pu λ_{240} a^{-1} decay constant 248 Pu λ_{244} a^{-1}		λ_244 = Ιι	ης / τομμ:						
List of Quantities: Unit Definition o_{239Pu} mol/g mean amount content of ^{239}Pu in IRMM-1027s Δt_1 a time difference measurement date 4 April 2017 (IDMS) and reference date 1 November 2016 Δt_2 a time difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2016 e									
	L	ist of Quar	ntities:						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Γ	Quantity	Unit	Definition					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ŀ	Стары	mol/g	mean amount content of 239 Pu in IRMM-1027s					
Λ_{11} Λ November 2018 Λ_{12} atime difference measurement date 19 May 2017 (IDMS) and reference date 1 November 2018e	ŀ	Δt ₄	a	time difference measurement date 4 April 2017 (IDMS) and re-	ference date 1				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	November 2016					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Δt_2	а	time difference measurement date 19 May 2017 (IDMS) and re November 2016	eference date 1				
$\begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$	ſ	e							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ſ	In ₂							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h	τ ₂₃₈	а	half life ²³⁸ Pu					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ŀ	Tana	а	half life ²³⁹ Pu					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ŀ	Taun	а	half life ²⁴⁰ Pu					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŀ	7.040 Taux	a	half life ²⁴¹ Pu					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŀ	*241		half life ²⁴² Pu					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ŀ	*242	-	half life ²⁴⁴ Pu					
$\begin{array}{c c c c c c c } \hline \lambda_{238} & a^{-1} & decay \ constant & Pu \\ \hline \lambda_{239} & a^{-1} & decay \ constant & ^{239} Pu \\ \hline \lambda_{240} & a^{-1} & decay \ constant & ^{240} Pu \\ \hline \lambda_{241} & a^{-1} & decay \ constant & ^{241} Pu \\ \hline \lambda_{242} & a^{-1} & decay \ constant & ^{242} Pu \\ \hline \lambda_{244} & a^{-1} & decay \ constant & ^{242} Pu \\ \hline \lambda_{244} & a^{-1} & decay \ constant & ^{244} Pu \\ \hline c_{x1} & mol/g & import \ from \ respective \ GUMWB \ amount \ content \ of \ ^{239} Pu \\ \hline c_{x2} & mol/g & import \ from \ respective \ GUMWB \ amount \ content \ of \ ^{239} Pu \\ \hline \end{array}$	⊦	*244 2	a _1	deere constant ²³⁸ Pu					
$\begin{array}{c c c c c c c } \hline \lambda_{239} & a^{-1} & decay \ constant & Pu \\ \hline \lambda_{240} & a^{-1} & decay \ constant & ^{240} Pu \\ \hline \lambda_{241} & a^{-1} & decay \ constant & ^{241} Pu \\ \hline \lambda_{242} & a^{-1} & decay \ constant & ^{242} Pu \\ \hline \lambda_{244} & a^{-1} & decay \ constant & ^{242} Pu \\ \hline \lambda_{244} & a^{-1} & decay \ constant & ^{242} Pu \\ \hline c_{x1} & mol/g & import \ from \ respective \ GUMWB \ amount \ content \ of \ ^{239} Pu \\ \hline c_{x2} & mol/g & import \ from \ respective \ GUMWB \ amount \ content \ of \ ^{239} Pu \\ \hline \end{array}$	⊦	^238	a 	decay constant Pu					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⊦	A239	a 1	decay constant Pu					
$ \begin{array}{c cccc} & \lambda_{241} & a & decay \ constant & Pu \\ \hline \lambda_{242} & a^{-1} & decay \ constant & ^{242}Pu \\ \hline \lambda_{244} & a^{-1} & decay \ constant & ^{244}Pu \\ \hline c_{x1} & mol/g & import \ from \ respective \ GUMWB \ amount \ content \ of \ ^{239}Pu \\ \hline c_{x2} & mol/g & import \ from \ respective \ GUMWB \ amount \ content \ of \ ^{239}Pu \\ \hline \end{array} $	⊦	^240	a 1	decay constant Pu					
λ ₂₄₂ a * decay constant ***Pu λ ₂₄₄ a *1 decay constant ***Pu c _{x1} mol/g import from respective GUMWB amount content of ²³⁹ Pu c _{x2} mol/g import from respective GUMWB amount content of ²³⁹ Pu	┝	A ₂₄₁	-1	decay constant Pu					
λ ₂₄₄ a ' decay constant ""Pu c _{x1} mol/g import from respective GUMWB amount content of ²³⁹ Pu c _{x2} mol/g import from respective GUMWB amount content of ²³⁹ Pu	⊢	λ ₂₄₂	a '	decay constant Pu					
c _{x1} mol/g import from respective GUMWB amount content of ²³⁹ Pu c _{x2} mol/g import from respective GUMWB amount content of ²³⁹ Pu	⊢	λ ₂₄₄	a'	decay constant TPu					
c _{x2} mol/g import from respective GUMWB amount content of ²³⁹ Pu	Ļ	c _{x1}	mol/g	import from respective GUMWB amount content of 239Pu					
	L	C _{x2}	mol/g	import from respective GUMWB amount content of ²³⁹ Pu					
c _{x3} mol/g import from respective GUMWB amount content of ²³⁹ Pu	L	C _{x3}	mol/g	import from respective GUMWB amount content of ²³⁹ Pu					
Date: 03/19/2018 File: Pu IDMS IRMM-1027s with 046c spike using 242-239_combined.smu Page 2 of 10	Da	ite: 03/19/2018	B File: Pu ID	MS IRMM-1027s with 046c spike using 242-239_combined.smu	Page 2 of 10				

-

	Pul	DMS IRMM-1027s VIALS with IRMM-046c using 242-239 COMBINED 1 Nov 2016						
Quantity	Unit	Definition						
C _{x4}	mol/g	import from respective GUMWB amount content of 239Pu						
C _{x5}	mol/g	import from respective GUMWB amount content of 239Pu						
C _{x6}	mol/g	mport from respective GUMWB amount content of ²³⁹ Pu						
C _{x7}	mol/g	import from respective GUMWB amount content of 239 Pu						
C _{x8}	mol/g	import from respective GUMWB amount content of 239 Pu						
C _{x9}	mol/g	import from respective GUMWB amount content of 239 Pu						
C _{v10}	mol/g	import from respective GUMWB amount content of 239 Pu						
ε								
ε2								
ε,								
ε4								
ε _s								
ε _s								
ε,								
ε								
ε.								
E10								
C _{239Pu134}	mol/g	normalised 239Pu amount content in vial						
C _{239Pu341}	mol/g	normalised 239Pu amount content in vial						
C739Pud95	mol/g	normalised ²³⁹ Pu amount content in vial						
C239Pu730	mol/g	normalised ²³⁹ Pu amount content in vial						
C739Pu888	mol/g	normalised ²³⁹ Pu amount content in vial						
C _{239Pu63}	mol/g	normalised ²³⁹ Pu amount content in vial						
C239Pu208	mol/g	normalised ²³⁹ Pu amount content in vial						
C _{239Pu418}	mol/g	normalised 239Pu amount content in vial						
C _{239Pu617}	mol/g	normalised 239Pu amount content in vial						
C239Pu794	mol/g	normalised 239Pu amount content in vial						
diffret	%	relative difference between the measured (IDMS) and gravim-	etric value					
C _{239Pumetr}	mol/g	amount content of ²³⁹ Pu in IRMM-1027s from gravimetric prep November 2016	aration, 1					
CPu	mol/g	mean amount content of Pu in IRMM-1027s						
Υ239Pu	9/9	mean mass fraction of ²³⁹ Pu in IRMM-1027s						
Yeu	g/g	mean mass fraction of Pu in IRMM-1027s						
M _{239Pu}	g/mol	atom mass of ²³⁹ Pu						
m _{239Puvial53}	g	mass of ²³⁹ Pu in vial 53						
m _{allouot53}	g	mass of an aliquot of IRMM-1027s dispensed in vial 53						
fdnorm _{239Pu}	mol/mol	amount fraction of ²³⁹ Pu in IRMM-1027s, 1 November 2016						
wdnorm _{239Pu}	g/g	mass fraction of 239Pu in IRMM-1027s, 1 November 2016						
Date: 03/19/2018 File: Pu IDMS IRMM-1027s with 046c spike using 242-239_combined.smu Page 3 of 10								

	Pu IDMS IRMM-1027s VIALS with IRMM-046c using 242-239 COMBINED 1 Nov 2016						
Δ t ₁ :	Constant Value: -0.42163 a						
04/04/2017, 01/	11/2016,-154 days/365.25 =-0.42163						
Δ t ₂ :	Constant Value: -0.54483 a						
19/05/2017, 1/1	1/2016, -199 days/365.25 = 0.54483 a						
e:	Constant Value: 2.71828182845904523536						
τ ₂₃₈ :	Type B normal distribution Value: 87.74 a Expanded Uncertainty: 0.03 a Coverage Factor: 1						
τ ₂₃₉ :	Type B normal distribution Value: 24100 a Expanded Uncertainty: 11 a Coverage Factor: 1						
¶ ₂₄₀ :	Type B normal distribution Value: 6564 a Expanded Uncertainty: 7 a Coverage Factor: 1						
τ ₂₄₁ :	Type B normal distribution Value: 14.325 a Expanded Uncertainty: 0.024 a Coverage Factor: 2						
τ ₂₄₂ :	Type B normal distribution Value: 373000 a Expanded Uncertainty: 3000 a Coverage Factor: 1						
¶244:	Type B normal distribution Value: 8·10 ⁷ a Expanded Uncertainty: 0.09·10 ⁷ a Coverage Factor: 1						
c _{x1} :	Import Filename: U:\Nuclear Safeguards\Secure Data\Project Data\LSD spike ISO 17034\characterisation assessment\individual vials\GUM files\Pu-I IRMM-1027s with 046c spike using 242-239_set C.smu Symbol: c _{233Pu134}	s\IRMM-1027s DMS					
с ₁₂ :	Import Filename: U:\Nuclear Safeguards\Secure Data\Project Data\LSD spike ISO 17034\characterisation assessment\individual vials\GUM files\Pu-I IRMM-1027s with 046c spike using 242-239_set C.smu Symbol: c _{239Pu341}	s\IRMM-1027s DMS					
Date: 03/19/2018	File: Pu IDMS IRMM-1027s with 046c spike using 242-239_combined.smu	Page 4 of 10					

	Pu IDMS IRMM-1027s VIALS with IRMM-046c using 242-239 COMBINED 1 Nov 2016	
с _{х3} :	Import Filename: U:\Nuclear Safeguards\Secure Data\Project Data\LSD spike ISO 17034\characterisation assessment\individual vials\GUM files\Pu-I IRMM-1027s with 046c spike using 242-239_set C.smu Symbol: c _{239Pu495}	s\IRMM-1027s DMS
с _{х4} :	Import Filename: U:\Nuclear Safeguards\Secure Data\Project Data\LSD spike ISO 17034\characterisation assessment\individual vials\GUM files\Pu-I IRMM-1027s with 048c spike using 242-239_set C.smu Symbol: c _{239Fu730}	s\IRMM-1027s DMS
c _{xs} :	Import Filename: U:\Nuclear Safeguards\Secure Data\Project Data\LSD spike ISO 17034\characterisation assessment\individual vials\GUM files\Pu-I IRMM-1027s with 048c spike using 242-239_set C.smu Symbol: c239Fu888	s\IRMM-1027s DMS
с _{хб} :	Import Filename: Pu-IDMS IRMM-1027s with 046c spike using 242-239_set D Symbol: c _{239Pu53}).smu
с _{х7} :	Import Filename: Pu-IDMS IRMM-1027s with 046c spike using 242-239_set D Symbol: c _{239Pu208}).smu
с _{и8} :	Import Filename: Pu-IDMS IRMM-1027s with 046c spike using 242-239_set D Symbol: c _{239Pu418}).smu
с ₁₉ :	Import Filename: Pu-IDMS IRMM-1027s with 046c spike using 242-239_set D Symbol: c _{239Pu617}).smu
с _{х10} :	Import Filename: Pu-IDMS IRMM-1027s with 046c spike using 242-239_set D Symbol: c _{239Pu794}).smu
C _{239Pumetr} :	Import Filename:\\Processing\GUM calculations\IRMM-1027s Plutonium gr mixture_1_Nov_2016.smu Symbol: c _{Pumixture239}	avimetric
M _{239Pu} :	Type B normal distribution Value: 239.0521638 g/mol Expanded Uncertainty: 0.0000019 g/mol Coverage Factor: 1	
m _{aliquot53} :	Type B normal distribution Value: 2.51224 g Expanded Uncertainty: 0.00060 g Coverage Factor: 2	
Date: 03/19/2018	File: Pu IDMS IRMM-1027s with 046c spike using 242-239_combined.smu	Page 5 of 10

	Pu IDMS IRMM-1027s VIALS with IRMM-046c using 242-239 COMBINED 1 Nov 2016									
fdnorm _{239Pu} : Import Filename:\\Processing\GUM calculations\IRMM-1027s Plutonium gravimetric mixture_1_Nov_2016.smu Symbol: fdnorm _{239Pu}										
wdnorm _{239Pu} : Import Filename:\\.Processing\GUM calculations\IRMM-1027s Plutonium gravime mixture_1_Nov_2016.smu Symbol: wdnorm _{239Pu}						gravimetric				
Input	Correl	ation:								
G.,	1	0.8741	0.8584	0.7154	0.9296					
6	0.8741	1	0.8134	0.6779	0.8808					
-x2	0.8584	0.8134	1	0.6657	0.8650					
~x3	0 7154	0.6770	0.8857	1	0.7200					
℃ <u>x</u> 4	0.7104	0.0778	0.0007	0 7000	4					
CxS	0.9290	0.0000	0.8000	0.7209	1					
	C ₁₆	C _{x7}	C _{x8}	C _{x9}	C _{x10}					
C _{x6}	1	0.9376	0.9402	0.9480	0.9352					
C.7	0.9376	1	0.9298	0.9374	0.9248					
G.,	0.9402	0.9298	1	0.9400	0.9273					
-x8	0.9480	0.9374	0.9400	1	0.9350					
~x9	0.9352	0.0248	0.0273	0.9350	1					
⁹ x10	0.0002	0.0240	0.0210	0.8550						
		fdnorm ₂	39Pu wdr	norm _{239P}	u					
fdnor	fdnorm _{239Pu} 1 1.0000									
wdno	wdnorm _{239Pu}		0	1						
The at	bundano m Resu	e set for Ilts:	Pu is as	sumed a	as uncor	related.				
Qu	antity		Valu	•		Standard				
	,					Incertainty				
	λ ₂₃₈	7.	90001-1	0 ⁻³ a ⁻¹	1	2.70·10 ⁻⁶ a ⁻¹				
	λ.230		3.7613-1	0 ⁻⁶ a ⁻¹	1	13.1•10 ⁻⁹ a ⁻¹				
	λ ₂₄₀	10	05.598·1	0 ⁻⁶ a ⁻¹		113·10 ⁻⁹ a ⁻¹				
λ ₂₄₀ 100.000 10 a 110 λ ₂₄₀ 0.0483872 a ⁻¹ 40.5		10.5·10 ⁻⁶ a ⁻¹								
	λουο	1	.8583-10) ⁻⁶ a ⁻¹		14.9·10 ⁻⁹ a ⁻¹				
λ242		8	8.6643·10 ⁻⁹ a ⁻¹		9	7.5.10 ⁻¹² a ⁻¹				
Date: 03	Date: 03/19/2018 File: Pu IDMS IRMM-1027s with 046c spike using 242-239_combined.smu Page 6 of 10							Page 6 of 10		

		Pu IDMS	IRMM-1027s VI COMBI	ALS with IRMM NED 1 Nov 201	I-046c using 242 16	2-239		
Uncertair	nty B	udgets:	(
7 _{239Pu} : mean mass fraction of ²¹² Pu in IRMM-1027s								
Quantity		Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Contribu	ution	Index
Δt ₁		-0.42163 a						
Δt_2		-0.54483 a						
e	2.7	18281828459						
τ ₂₃₉		24100.0 a	11.0 a	normal	-380·10 ⁻¹⁵	-4.2·10 ⁻¹	² g/g	0.0 %
c _{x1}	2.74	892•10 ⁻⁶ mol/g	1.57•10 ⁻⁹ mol/g		24	37·10 ⁻⁹	9/9	9.8 %
с _{х2}	2.74	984·10 ⁻⁶ mol/g 1.66·10 ⁻⁹ mol/g			24	40·10 ⁻⁹ g/g		10.0 %
c _{x3}	2.74	950·10 ⁻⁶ mol/g	1.68•10 ⁻⁹ mol/g		24	40·10 ⁻⁹	9/9	10.1 %
c _{x4}	2.74	783•10 ⁻⁶ mol/g	2.02•10 ⁻⁹ mol/g		24	48·10 ⁻⁹	9/9	11.1 %
c _{x5}	2.74	941•10 ⁻⁶ mol/g	1.56•10 ⁻⁹ mol/g		24	37·10 ⁻⁹	9/9	9.7 %
c _{x6}	2.74	983•10 ⁻⁶ mol/g	1.55•10 ⁻⁹ mol/g		24	37·10 ⁻⁹	9/9	9.8 %
с _{х7}	2.75	i166•10 ⁻⁶ mol/g	1.57•10 ⁻⁹ mol/g		24	38·10 ⁻⁹	9/9	9.9 %
C _{x8}	2.74	977•10 ⁻⁶ mol/g	1.57 10 ⁻⁹ mol/g		24	37·10 ⁻⁹	9/9	9.9 %
c ^{xa}	2.74	964•10 ⁻⁶ mol/g	1.55 10 ⁻⁹ mol/g		24	37·10 ⁻⁹	9/9	9.8 %
C _{x10}	2.75	i012•10 ⁻⁶ mol/g	1.58 10 ⁻⁹ mol/g		24	38·10 ⁻⁹	9/9	9.9 %
М _{239Ри}	23	39.05216360 g/mol	1.90•10 ⁻⁶ g/mol	normal	2.7.10-6	5.2·10 ^{-1:}	² g/g	0.0 %
γ _{239Pu}	65	7.319•10 ⁻⁶ g/g	260·10 ⁻⁹ g/g					
Date: 03/19/2018 File: Pu IDMS IRMM-1027s with 046c spike using 242-239_combined.smu Page 7 of 10								
n	:	mass of ²³⁹ F	COMBI	NED 1 Nov 201	16			
------------------------------	------	----------------------------	--------------------------------	-------------------	----------------------------	---------------------	------------------	------------
Quantity		Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncerta Contribu	inty Ition	Index
Δt ₁		0.42163 a						
Δt_2	-	0.54483 a						
e	2.7	18281828459						
τ ₂₃₉	:	24100.0 a	11.0 a	normal	-950·10 ⁻¹⁵	-10·10	¹² g	0.0 %
C _{x1}	2.74	892•10 ⁻⁶ mol/g	1.57•10 ⁻⁹ mol/g		60	94.10*	°9	9.0 %
c ₁₂	2.74	984•10 ⁻⁶ mol/g	1.66•10 ⁻⁹ mol/g		60	99·10 ⁴	°9	9.2 %
c _{x3}	2.74	950•10 ⁻⁶ mol/g	1.68 10 ⁻⁹ mol/g		60	100-10	- ⁹ g	9.2 %
с ₈₄	2.74	783•10 ⁻⁶ mol/g	2.02•10 ⁻⁹ mol/g		60	120-10	°9	10.2 %
C _{x5}	2.74	941•10 ⁻⁶ mol/g	1.56 10 ⁻⁹ mol/g		60	93·10 ⁴	°9	8.9 %
c _{x6}	2.74	983•10 ⁻⁶ mol/g	1.55 10 ⁻⁹ mol/g		60	93·10 ⁴	9	9.0 %
с _{х7}	2.75	166•10 ⁻⁶ mol/g	1.57·10 ⁻⁹ mol/g		60	94·10 ⁻¹	,a	9.0 %
c _{x8}	2.74	977•10 ⁻⁶ mol/g	1.57·10 ⁻⁹ mol/g		60	94·10 ⁻¹	,a	9.0 %
c ^{xa}	2.74	964•10 ⁻⁶ mol/g	1.55·10 ⁻⁹ mol/g		60	93·10 ⁺	°9	9.0 %
с _{х10}	2.75	012•10 ⁻⁶ mol/g	1.58 10 ⁻⁹ mol/g		60	95·10 ⁴	,a	9.0 %
M _{239Pu}	23	9.05216360 g/mol	1.90•10 ⁻⁶ g/mol	normal	6.9·10 ⁻⁶	13·10 ⁻¹	² g	0.0 %
m _{alguot53}	2	2.512240 g	300•10 ⁻⁶ g	normal	660·10 ⁻⁶	200.10	°g	8.4 %
m _{239Puvlal} 53	1.6	51343·10 ⁻³ g	681·10 ⁻⁹ g					
ite: 03/19/2	2018	File: Pu IDMS IR	MM-1027s with 04	46c spike using 3	242-239_combine	ed.smu	Pa	ge 8 of 1(

Generated with GUM Workbench Pro Version 2.4.1.458

Value 2.7497·10 ⁻⁶ mol/g 700·10 ⁻¹²	Expanded Uncertainty	Coverage		
2.7497 • 10 ⁻⁶ mol/g 700 • 10 ⁻¹²	Uncertainty	Coverage	Coverad	e
2.7497·10 ⁻⁶ mol/g 700·10 ⁻¹²		factor		
700·10 ⁻¹²	2.5•10 ⁻⁹ mol/g	2.30	manual	
-200.10 ⁻¹²	2.3·10 ⁻⁹	2.00	manual	
200 10	2.5.10 ⁻⁹	2.00	manual	
200·10 ⁻¹²	2.6.10 ⁻⁹	2.00	manual	
1.8·10 ⁻⁹	3.2.10 ⁻⁹	2.00	manual	
200·10 ⁻¹²	2.3.10 ⁻⁹	2.00	manual	
-200·10 ⁻¹²	2.3.10 ⁻⁹	2.00	manual	
-2.0·10 ⁻⁹	2.3.10 ⁻⁹	2.00	manual	
-100·10 ⁻¹²	2.3.10 ⁻⁹	2.00	manual	
0.0	2.3·10 ⁻⁹	2.00	manua	
-500·10 ⁻¹²	2.3·10 ⁻⁹	2.00	manual	
2.7490•10 ⁻⁶ mol/g	3.1·10 ⁻⁹ mol/g	2.00	manual	
2.7499•10 ⁻⁶ mol/g	3.3·10 ⁻⁹ mol/g	2.00	manual	
2.7495•10 ⁻⁶ mol/g	3.4·10 ⁻⁹ mol/g	2.00	manual	
2.7479•10 ⁻⁶ mol/g	4.0·10 ⁻⁹ mol/g	2.00	manual	
2.7494•10 ⁻⁶ mol/g	3.1·10 ⁻⁹ mol/g	2.00	manual	
2.7499•10 ⁻⁶ mol/g	3.1.10 ⁻⁹ mol/g	2.00	manual	
2.7517·10 ⁻⁶ mol/g	3.1.10 ⁻⁹ mol/g	2.00	manual	
2.7498·10 ⁻⁶ mol/g	3.1.10 ⁻⁹ mol/g	2.00	manual	
2.7497·10 ⁻⁶ mol/g	3.1.10 ⁻⁹ mol/g	2.00	manual	
2.7502·10 ⁻⁶ mol/g	3.2·10 ⁻⁹ mol/g	2.00	manual	
-0.122 %	0.089 %	2.00	manual	
2.8120•10 ⁻⁶ mol/g	2.6·10 ⁻⁹ mol/g	2.30	manual	
657.32 10 ⁻⁶ g/g	600·10 ⁻⁹ g/g	2.30	manual	
672.28·10 ⁻⁶ g/g	610·10 ⁻⁹ g/g	2.30	manual	
1.6513 10 ⁻³ g	1.6•10 ⁻⁶ g	2.30	manual	
	200·10 ⁻¹² -200·10 ⁻¹² -2.0·10 ⁻⁹ -100·10 ⁻¹² 0.0 -500·10 ⁻¹² 2.7490·10 ⁻⁶ mol/g 2.7490·10 ⁻⁶ mol/g 2.7502·10 ⁻⁶ mol/g 2.7502·10 ⁻⁶ mol/g -0.122 % 2.8120·10 ⁻⁶ mol/g 657.32·10 ⁻⁶ g/g 1.8513·10 ⁻³ g	1.0 10 10 10 200·10 ⁻¹² 2.3·10 ⁻⁹ -200·10 ⁻¹² 2.3·10 ⁻⁹ -2.0·10 ⁻⁹ 2.3·10 ⁻⁹ -100·10 ⁻¹² 2.3·10 ⁻⁹ -100·10 ⁻¹² 2.3·10 ⁻⁹ -500·10 ⁻¹² 2.3·10 ⁻⁹ 2.7490·10 ⁻⁶ mol/g 3.1·10 ⁻⁹ mol/g 2.7490·10 ⁻⁶ mol/g 3.1·10 ⁻⁹ mol/g 2.7495·10 ⁻⁶ mol/g 3.1·10 ⁻⁹ mol/g 2.7490·10 ⁻⁶ mol/g 3.1·10 ⁻⁹ mol/g 2.7517·10 ⁻⁶ mol/g 3.1·10 ⁻⁹ mol/g 2.7502·10 ⁻⁶ mol/g 3.1·10 ⁻⁹ mol/g 2.7502·10 ⁻⁶ mol/g 3.1·10 ⁻⁹ mol/g 2.8120·10 ⁻⁶ mol/g 2.6·10 ⁻⁹ mol/g 657.32·10 ⁻⁶ g/g 600·10 ⁻⁶ g/g 672.28·10 ⁻⁶ g/g 610·10 ⁻⁹ g/g 1.6513·10 ⁻³ g 1.8·10 ⁻⁶ g <td>1.0 10 10 1.0 1.00 <th1.00< th=""> <th1.00< th=""> <th1.00< td="" th<=""><td>1.5 10 1.5 13 1.5 13<</td></th1.00<></th1.00<></th1.00<></td>	1.0 10 10 1.0 1.00 <th1.00< th=""> <th1.00< th=""> <th1.00< td="" th<=""><td>1.5 10 1.5 13 1.5 13<</td></th1.00<></th1.00<></th1.00<>	1.5 10 1.5 13 1.5 13<

Generated with GUM Workbench Pro Version 2.4.1.458

GETTING IN TOUCH WITH THE EU

In person

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre nearest you at: <u>http://europea.eu/contact</u>

On the phone or by email

Europe Direct is a service that answers your questions about the European Union. You can contact this service: - by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),

- at the following standard number: +32 22999696, or
- by electronic mail via: <u>http://europa.eu/contact</u>

FINDING INFORMATION ABOUT THE EU

Online

Information about the European Union in all the official languages of the EU is available on the Europa website at: <u>http://europa.eu</u>

EU publications

You can download or order free and priced EU publications from EU Bookshop at: <u>http://bookshop.europa.eu</u>. Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see <u>http://europa.eu/contact</u>).

JRC Mission

As the science and knowledge service of the European Commission, the Joint Research Centre's mission is to support EU policies with independent evidence throughout the whole policy cycle.

EU Science Hub ec.europa.eu/jrc

Metu_ScienceHub

- **f** EU Science Hub Joint Research Centre
- in Joint Research Centre
- EU Science Hub

doi:10.2760/221796 ISBN 978-92-79-87992-0