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Abstract 
We use computational modeling to design a device that can controllably trap and release 

particles in solution in response to variations in temperature. The system exploits the thermo-
responsive properties of end-grafted fibers and the underlying gel substrate. The fibers mimic the 
temperature-dependent behavior of biological aptamers, which form a hairpin structure at low 
temperatures (T) and unfold at higher T, consequently losing their binding affinity. The gel 
substrate exhibits a lower critical solution temperature (LCST) and thus, expands at low 
temperatures and contracts at higher T. By developing a new dissipative particle dynamics 
(DPD) simulation, we examine the behavior of this hybrid system in a flowing fluid that contains 
buoyant nanoparticles. At low T, the expansion of the gel causes the hairpin-shaped fibers to 
extend into the path of the fluid-driven particle. Exhibiting a high binding affinity for these 
particles at low temperature, the fibers effectively trap and extract the particles from the 
surrounding solution. When the temperature is increased, the unfolding of the fiber and collapse 
of the supporting gel layer cause the particles to be released and transported away from the layer 
by the applied shear flow. Since the temperature-induced conformational changes of the fiber 
and polymer gel are reversible, the system can be used repeatedly to “catch and release” particles 
in solution. Our findings provide guidelines for creating fluidic devices that are effective at 
purifying contaminated solutions or trapping cells for biological assays. 
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I. Introduction 

 One of the vital functions provided by microfluidic devices is the extraction of targeted 

particles from the fluid flowing through the system. This process is key to filtering contaminated 

solutions or trapping biological cells for specific assays. A fundamental challenge is creating 

devices that can perform these important functions relatively autonomously and repeatedly, 

without requiring significant human intervention to carry out the tasks. Recent studies have 

shown how this functionality can be achieved by harnessing biological aptamers to “catch-and-

release” biomolecules or cells in microchambers.1-2 Notably, aptamers can be driven to 

controllably change conformation from a folded to unfolded structure by varying the local pH of 

the solution1 or the temperature of the system.2 The biological activity of aptamers is directly 

related to their structure: folded aptamers can bind and trap molecules in solution, but these 

bonds are broken when the aptamers unfold. Importantly, the biological activity of the aptamers 

can be restored by altering the pH or temperature to produce the folded structure. Hence, the 

aptamers can be used repeatedly in the catch-and-release applications.1-2 

 In a recently designed device, 1 we matched the pH-dependent properties of the aptamers 

to the dynamic behavior of a pH-sensitive hydrogel in order to create a robust microfluidic 

sorting system. In this system, the aptamers were anchored to microscopic fins, which were 

embedded in the hydrogel, and the pH of the solution was dynamically altered through external 

pumps. By synchronizing the pH-dependent binding strength of the aptamer with volume 

changes of the pH-responsive hydrogel, we could achieve the highly efficient extraction of 

biomolecules from the surrounding solution. Moreover, by cyclically modifying the pH of the 

solution, the system could be made to perform this function repeatedly.  
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The thermo-responsive behavior of the aptamers has also been exploited to perform the 

selective catch-and-release of biological cells in microchambers. Here, the aptamers were bound 

to a solid substrate whose temperature could be carefully regulated.2 At relatively low 

temperatures, the aptamers folded into a hairpin-like structure and hence, could bind the cells 

that were driven to flow through the device. The temperature was then increased to 48o C, which 

lies above the transition temperature associated with the unfolding of the aptamers. At this 

elevated temperature, the aptamer-cell binding was disrupted and the cells were released to the 

surrounding fluid.	 

Herein, we use computational modeling to design a new catch-and-release system; the 

novelty of our system is that it exploits the synchronized, temperature-dependent behavior of 

both the aptamers and an underlying polymer gel. Namely, our system encompasses thermo-

responsive aptamers that are directly anchored to a thermo-responsive gel, which exhibits a 

lower critical solution temperature (LCST). Hence, the gel swells at low temperatures and 

shrinks as the temperature is increased. As we show below, at low T , the expansion of the gel 

effectively pushes the anchored, hairpin-shaped chains into the path of the fluid-driven particles, 

and thereby enables the system to trap and extract species from solution. In this manner, the 

swollen gel plays an active role in optimizing the performance of the system. As T  is increased, 

the unfolding of the chain and collapse of the supporting gel enables the applied shear flow to 

dislodge the particles and transport them away from the layer. The shrinking of the gel at high T 

also contributes to the utility of the system since it increases the size of the region affected by the 

flowing fluid.  

In a device based on these principles, the gel layer would be anchored to the floor of a 

microfluidic chamber, with the aptamers attached to the top of this layer. A pump would drive a 
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solution containing the targeted particles past this aptamer-functionalized gel. The temperature of 

the system could be controlled externally.2 As the system is cooled, the hairpin-shaped aptamers 

on the swollen gel would catch and trap the particles; as the system is heated; the unfolding of 

these chains on the collapsed gel would lead to the release of the trapped species.  Since the 

temperature-induced conformational changes of the chains and polymer gel are reversible, the 

system can be used to repeatedly catch and release the particles. 

To probe the specific mechanisms involved in trapping and releasing nanoparticles in 

solution via this temperature-sensitive system, we use dissipative particle dynamics (DPD) 

simulations,3 which can be viewed as a coarse-grained molecular dynamics (MD) approach. The 

other novel aspect of our study is that we integrate a DPD method for simulating the 

conformations of proteins4 with a recently developed DPD model for thermo-responsive gels.5 

The former method4 reproduces transitions among coil-like, globular, α-helical, and β-hairpin 

configurations of model peptides. The latter model5 accurately captures the temperature-induced 

volume phase transition for a LCST polymer gel.6 By integrating these two DPD schemes, we 

can probe the concerted response of the gel and aptamer to variations in temperature.  

A distinctive feature of the DPD method is that it employs a soft-core repulsive potential 

between the beads, which represent clusters of molecules. Hence, one can use larger time steps in 

the integration scheme and thus, sample larger length and time scales than are possible via MD. 

In particular, via DPD, it is possible to model length scales up to 100 nm and time scales on the 

order of tens of microseconds.3 Below, we first detail our new DPD scheme. We then describe 

our simulations to capture the temperature-driven conformational changes of isolated fibers in 

solution that mimic the thermo-responsive behavior of the aptamers. Finally, we examine how 

the thermal response of the gel/fiber composite can be utilized for effective catch-and-release 
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applications. As discussed below, the findings from these studies can be used to design 

microfluidic systems that trap and release biological cells, as well as nanofluidic devices that 

catch and release nanoparticles. 

II. Methodology 

A. Details of the DPD simulation 

Our system involves an array of thermo-sensitive polymer fibers that adopt a hairpin 

structure at low temperature, T , and an unfolded chain structure at a higher T , with a critical 

temperature MT (see Figs. 1 and 2). The array of fibers is attached to a thermo-responsive 

hydrogel that exhibits a lower critical solution temperature (LCST) behavior, and thus, swells at 

cTT <  and collapses at cTT > . The gel/fiber composite is immersed in a fluid-filled chamber. 

To model the dynamic behavior of this multi-component system, we utilize dissipative 

particle dynamics (DPD),3, 7-8 which is a particle-based approach used to simulate the time 

evolution of a many-body system governed by Newton’s equation of motion, 		mdv i dt = fi . 

Each bead i in the system experiences a force if , which is the sum of three pairwise additive 

forces:  			fi t( ) = Fij
C+Fij

D +Fij
R( )∑ , where the sum is over all beads j  within a certain cutoff radius 

cr  from bead i . The three forces are the conservative force 			Fij
C , drag or dissipative force D

ijF , and 

random force R
ijF . We describe each pairwise force below. 

The conservative force is a soft, repulsive force given by ijijijij ra rF ˆ)1(C −= , where ija  

measures the maximum repulsion between beads i  and j , 			rij = ri − rj /rc , and 

( ) jijiij rrrrr −−=ˆ .  This soft-core force leads to a degree of overlap between neighboring 

beads and permits the use of larger time steps than those typically used in MD simulations,3 
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which commonly involve the use of hard-core potentials (e.g., the Lennard-Jones potential). The 

repulsive parameters ija  are given in terms of k!T . We choose room temperature as the 

reference value and thus k!T! = 1 with !!T =25°C . The reduced temperature is introduced as 

		T
* =T /T0 , and hence, 077.1* =T  for 		T = 48°C  and 01.1* =T  for 		T =28°C . All the 

repulsive parameters are listed in units of 		T *  (see Table 1). 

Table 1: List of interaction parameters in units of reduced temperature, 		T * . 

 Solvent Particle Hairpin  Unfolded 
Fiber 

Top 
Wall 

Bottom 
Wall 

Polymer 
Gel 

Solvent 25 25 25 25 25 25 χps  

Particle - 25 20 25 40 40 25 

Hairpin - - 25 25 40 40 40 

Unfolded 
Fiber 

   25 40 40 40 

Top Wall - - -  25 25 25 

Bottom 
Wall 

- - -  - 25 χps −8  

Polymer 
Gel 

- - - - -  25 
 

The drag force is 			Fij
D = −γωD rij( ) r̂ij ⋅vij( )r̂ij , where γ  is a simulation parameter related to 

viscosity arising from the interactions between beads, Dω  is a weight function that goes to zero at 

cr , and jiij vvv −= . The random force is ijijijij r rF ˆ)(R
R ξωσ= , where ijξ  is a zero-mean Gaussian 

random variable of unit variance and γσ TkB
2 2=  relates the amplitude of the noise to the 

friction coefficient, as specified by the fluctuation-dissipation theorem.3, 8 The value of γ  is 

chosen to ensure relatively rapid equilibration of the system’s temperature and the numerical 
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stability of the simulations for the specified time step.3 Finally, we use 

22
RD )1()()( ijijij rrr −==ωω  for 1<ijr .3, 7 3 

Each of these three pairwise forces conserves momentum locally, and thus, DPD 

reproduces correct hydrodynamic behavior.3, 7-8 The velocity-Verlet algorithm is applied to 

integrate the equations of motion in time. We take cr  as the characteristic length scale and TkB  

as the characteristic energy scale in our simulations. The corresponding characteristic time scale 

is then defined as Tkmr B
2
cintrinsic =τ . The remaining simulation parameters are 3=σ  and 

τ02.0=Δt , with a total bead number density of 3=ρ .3 

We take the initial configuration of the gel to be a finite-sized tetra-functional network 

with a diamond-like topology.5, 9 The semi-flexible polymer strands are modeled as a sequence 

of 30 DPD beads that are connected by harmonic bonds, with an interaction potential given by 

)cos1()(
2

1 2
0 θ++−= anglebond KrrKE g .10-11 The first term in the latter expression 

characterizes the elastic energy with the elastic constant bondK  and the second term represents the 

bending energy with the rigidity parameter angleK . Here,  5.00 =gr  is the equilibrium bond 

length and θ  is the bond angle between two adjacent bonds. The bond and angle potentials of 

the gel are set respectively at 128bond =K  and 4angle =K ; for these values, the ratio of the number 

of bond crossings to the total number of bonds is less than 	2×10−3 (as detailed in the SI), and the 

observed polymer concentration is comparable to the experimental results for this gel.12-13 

Consequently, the total force acting on each gel bead is equal to 	 fe + fi , where 	 fe = −∇E  and 	 fi is 

the DPD pairwise force.	
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As in our previous studies,10  the finite-sized network contains cross-links, which are 

beads with a connectivity of four, and dangling ends, which are located on the surface of the 

lattice and have a connectivity of less than four. Here, the gel contains 12,096 beads and consists 

of 396 strands, 175 cross-links, and 41 dangling ends.  This network is periodic in the lateral (x 

and y) directions. 	

To properly model the thermo-responsive behavior of this gel, we relate the repulsive 

parameter between a polymer and solvent bead, psa , to the Flory-Huggins parameter 

characterizing the polymer-solvent interaction, psχ , as follows: 306.0/psps χTkaa B+= .3 In 

studies of thermo-responsive gels (e.g., poly(N-isopropylacrylamide) (PNIPAAm)), it is  

typically assumed that psχ  depends on temperature and polymer concentration.6, 14-16 Hence, we 

assume that P21ps )(),( ϕχχϕχ += TT ,5 where Pϕ  is the polymer volume fraction in the gel and

TksThT B/)()(1 δδχ −= , with hδ  and sδ being the respective changes in enthalpy and entropy.6, 

17 Note that Pϕ  is calculated as gelρρϕ /PP =  where Pρ  is the time-averaged polymer number 

density and gelρ  is the time-averaged total number density of the gel including the polymer and 

solvent beads. Here, we set 25=a  and take erg10331.14 14−×−=hδ , 116 Kerg10452.5 −− ⋅×−=sδ

and 596.02 =χ  to produce a continuous volume transition between C30°=T  and 	35°C .3, 18-22 

With this choice of aps , we reproduce the experimentally observed temperature-induced volume 

phase transitions of the PNIPAAm gels.5-6, 23  

Notably, in related studies involving polymer gels, we undertook a comparison between 

our DPD simulation approach and the corresponding experiments on the formation of 

“stackable” multilayer gels.24 In particular, we modeled gelation using atom transfer radical 

polymerization (ATRP) and successfully matched our simulation results to the experimental 

findings, and thereby, provided insight into the factors that affect the formation and binding of 
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the different gel layers in the system. The observed correspondence between our simulation 

results and these experiments points to the accuracy of our approach.  

The gel layer is attached via an adhesive interaction to the substrate (brown beads in Fig. 

3a). The effective attraction between the gel and substrate is modeled by setting the interaction 

parameter between the beads in the gel and bottom wall, gwa , at 8psgw −= aa  so that the gel 

remains anchored to the wall in all our simulations.  

The non-deformable spherical particle in Fig. 4 is constructed from 1,624 DPD beads that 

are dispersed on two spherical layers with an outer layer radius of 5 and interlayer spacing of 0.5. 

Each spherical layer is modeled by geodesic grids generated by subdividing an icosahedron.25-27 

In this way, we construct a particle with a well-defined smooth surface, with an outer diameter of 

10. The total force and torque acting on this particle is computed as the sum of the forces and 

torques on its constituent DPD beads. The corresponding number density of the particle shell is 

11.4, which is sufficiently high to prevent penetration of the polymer beads into the sphere and 

does not induce an unrealistic depletion force between the solvent beads28 (a behavior that can 

occur in particle-based simulation methods such as DPD).28 We note that in the model for the 

nanoparticle, the ratio between the rotational and translational moments of inertia is 

approximately equal to 20 and the diffusion coefficient of the particle is 		D ≈2.5×10−4  (as 

detailed in the SI). 

The thermo-responsive fiber is modeled as a flexible polymer chain connected by the 

harmonic bonds:  

            ∑
−

=
+

−− −−=
1

0

2
01

2121 )(
2

1 cN

i
ii rKE RRbond   ,                                  (1) 
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where 		R i is the position vector of the ith bead, 25=cN  is the number of beads in the chain and  

10 =r . (This value of r0  is equal to twice the equilibrium bond length in the gel and is close to 

the value used by Neimark et al. 4). Here, 20021
bond =
−K  is an elastic constant describing the 

harmonic bond between the neighboring beads (e.g., beads “1” and “2”).	 To capture the 

conformational change of the chain such that it adopts the hairpin-like structure at MTT <  and an 

ideal-chain structure at MTT > , we introduce two additional types of bonds. The first is a 

harmonic bond connecting beads separated by two bonds (i.e., connecting next-neighbor beads 

along the chain, beads “1” and “3”): 

∑
−

=
+

−− −−=
2

RR
cN

i
ii rKE

0

2
02

3131 )2(
2

1
bond            ,                          (2) 

where the bond constant is set to 32031
bond =
−K . Second, we introduce a temperature-dependent 

Morse bond connecting beads separated by three or more bonds. The latter bond is described 

by the following Morse potential:      

      
⎪⎩

⎪
⎨
⎧

>

<−−
= ∑

>−

−−−

M

Mbond e

TT

TTK
E ji

rM
M

Mji

                                                                

   RR

,0

],1)1[(
2

1

2

2)(α

                          (3) 

for 1≤− ji RR .  Here, MK bond  is the depth of the energy potential, 8=α  and its inverse value 

α
1  is related to the width of the energy well. The equilibrium length of bonds is set to 5.0=Mr . 

If the distance between two beads is greater than 1, the Morse potential is negligible since 

%6.3/ ≈MM KE bond  and thus, we set the cutoff of the potential equal to 1. This overall approach 

for modeling aptamers is based on DPD simulations of polypeptides in solution that successfully 

reproduced transitions among coil-like, globular, α-helical, and β-hairpin configurations of 
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model peptides. These simulations also yielded values for critical micelle concentrations that 

were in quantitative agreement with experimental measurements.4, 29 

Note that in eq. 1, the equilibrium distance between the bead and its next-nearest 

neighbor is equal to 02r . Therefore, the fiber, governed by the combination of 		E1−2  and 		E1−3 , is 

in the energetically favored unfolded structure in the absence of 	EM . The 	EM  term alone, 

however, tends to bind the chain beads in more compact structures.  As we discuss further below, 

the interplay of the three potentials is responsible for the final structure of the hairpin.  

Variations in temperature affect not only the structure of aptamers, but also the binding 

affinity of these macromolecules. Namely, at 	 48°C , unfolded aptamers were observed to release 

cells that were previously bound at 	 33°C .2 We incorporate this behavior in our system by 

specifying that while the hairpin structure can bind the nanoparticle, the unfolded chain does not 

have an affinity to the particle. In particular, we set 		 aFP =20  when the chain is in the hairpin 

conformation and 		 aFP =25  when the chain is unfolded.  

The 22×  array of fibers is attached to the gel surface via a harmonic spring by 

connecting one end of each fiber to a gel bond. The inter-fiber spacing is initially equal to 13.2 

along the x-direction and 8.2 along the y-direction. The top and bottom solid walls that bound the 

system in the z direction are modeled as solid beads with a height 1=h  and density 3wall =ρ . 

(The wall beads are organized in an amorphous arrangement.) Bounce-back boundary conditions 

are applied at the fluid-solid interfaces to prevent the solvent and gel beads from penetrating into 

the walls, and to produce no-slip boundary conditions with minimal interfacial density 

oscillations.11 Periodic boundary conditions are applied along the x and y directions.  
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Shear is applied to the system by moving the upper wall of the simulation box along the x 

direction at specified velocities. The shear rate  !γ  takes the values 41067.1 −× ,  31067.1 −× , 

31033.8 −× , and 21067.1 −×  , which correspond respectively to the velocities of the upper wall of 

0.01, 0.1, 0.5, and 1 in dimensionless units. 

Finally, the simulation box is 606.246.24 ××  units in size and is filled with 89,603 

solvent beads, maintaining the total density of the system at 	ρsys =3 . Eight independent 

simulations are carried out for =t 6105×  time steps for each parameter set. (In the ensuing 

discussion, 	t is specified in simulation time steps, which can be related to physical units of time 

as discussed below.) 

B. Comparison of simulation parameters to physical values  

We can relate the dimensionless parameters to physical values through the value of the 

collective diffusion coefficient of the polymer network. If we assume that each solvent bead 

represents 10 water molecules,30-31 then a DPD solvent bead occupies a volume of 3A300
°

 since 

a water molecule (of mass density 1 g/cm3), has a volume 
3

A30
°

≈ . The total bead number 

density in our system is 3sys =ρ  and using 3
sys 3 −= crρ  and the mass density of water, we obtain 

the unit length 		rc =0.97nm  and the characteristic mass m = 180Da. By matching the mass 

density of a polymer bead in the simulation to the mass density of amorphous PNIPAAm  

( 3cm/g1.1 ), we find that a polymer bead represents 1.6 PNIPAAm monomers.  

To obtain the correct characteristic time scale, we relate the collective diffusion 

coefficient of the polymer network in the simulations, 	D0
sim =1.74×10−2nm2 /τDPD , obtained 

from the swelling kinetics of the gel, to the experimental value 	D0
exp =2×10−11m2 /s .32 We thus 
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obtain the following physical values for the simulation parameters: 	τDPD =0.87ns , the simulation 

box size is nm2.589.239.23 ×× , the fiber equilibrium length is 	27.2nm , and the particle 

diameter is 	9.7nm . The values 		Kbond =128  and 		Kangle = 4  correspond to 0.56 	N/m 	and 4	kBT , 

respectively.10 The diffusion coefficient of the nanoparticle is 		D ≈2.5×10−4 , which corresponds 

to the dimensional value of 		D ≈1.35×10−11m2 /s . The value of the applied shear rate ranges 

from 		 !γ =1.9×105 / s  to 		 !γ =1.9×107 / s ; these shear rates are of the same order of magnitude as 

those used in high shear rate experiments in microfluidic devices.33-34 For these ranges of shear, 

the corresponding Peclet number can be roughly estimated as  		Pe∈[8,400]  and hence, the 

motion of the nanoparticle is dominated by advection.35   

III. Results and Discussions 

 In the ensuing discussion, we first focus on a single thermo-responsive fiber in solution to 

determine the optimal range of parameters that lead to the formation of a stable biomimetic, 

hairpin structure. We then anchor these fibers onto a swollen gel layer and examine the ability of 

the hairpin-forming fibers to trap nanoparticles, which are driven to flow over the gel layer in a 

channel. Finally, we investigate the effect of increasing the temperature of the system and thus, 

fully exploiting the thermo-responsive behavior of both the fiber and the gel in this application. 

A. Forming the hairpin structure from a single, free chain in solution 

Given the DPD fibers considered here, our aim is to mimic the conformational change 

in biological aptamers, which undergo a transition from a hairpin-like structure at 	 T <TM  to an 

unfolded chain at 	 T >TM . The value of the transition temperature for biological aptamers has 

been reported as 		 TM =33.5°C  and recent observations indicate such aptamers are in the 
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unfolded state at 	 48!C .2 To drive an analogous conformational change in the fiber, we utilize 

the combination of three intra-molecular interaction potentials, 		E1−2 , 		E1−3  and 	EM  ((eqs. (1)-

(3)), and vary the bond strength 	 K bond
M  in the expression for 	EM (eq. (3)), which describes the 

temperature-dependent interaction between beads separated by three or more bonds. First, we 

focus on a single fiber within the simulation box in the absence of the polymer gel and fix the 

temperature at 		 T =28°C<TM . Sixteen independent simulations for each set of parameters are 

carried out for 	2×106  time steps, i.e., until the fiber has completely equilibrated to a stable 

conformation.  

As 	 K bond
M  is varied in the range from 1 to 4, the fiber can adopt the following three 

stable states: “chain”, “hairpin”, or “ring”; these structures are shown in the inset in Fig. 1a 

and are indicated by a yellow, red, or green dot, respectively. We distinguish among these 

distinct structures by calculating 	Nc , the number of contacts, which is determined by counting 

the number of Morse bonds formed between the beads in the same fiber. In particular, two 

beads within the same fiber are considered to be in contact if they are separated by: 1) three or 

more bonds, and 2) a distance that is less than the interaction radius between the beads (here 

set equal to 1). If 		Nc =0 , then the fiber is in the “chain” state. If 		0<Nc <20 , then the fiber is 

considered to be in the “hairpin” state and if  30>cN , then the fiber is in the “ring” state. 

(Recall the fiber is formed from 25 beads.) 

Figure 1a reveals the behavior of cN  as a function of MK bond . As shown in the phase map 

(Fig.1b), two structures can coexist at a specific value of MK bond . For example, for 5.1=MK bond , 

we observe the hairpin structure in two of the 16 simulations, while the remaining 14 
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configurations are the unfolded chains. The average of cN  is calculated using data only for the 

hairpin and ring structures; if we included the contribution from the unfolded chains, the lower 

bound of cN  (after considering the statistical error) would be negative for the case of 

5.1=MK bond . A negative value, however, does not reflect the physical meaning of the contact 

number.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Number of contacts, 
cN , as a function of MK bond . Each error bar in the plot 

corresponds to the standard deviations obtained from 16 independent simulations. Images in the 
inset show the three types of observed structures: chain (marked by the yellow circle), hairpin 
(red circle), and globule (green circle). (b) Phase map of the observed structures as a function of 
MK bond . Values associated with each circle represent the number of occurrences of that structure in 

16 independent simulations. 
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Taken together, Figs. 1a and 1b reveal the optimal conditions for achieving the different 

fiber conformations.  For the weakest bonding interaction, 1=MK bond , we find 0=cN ; the latter 

value is consistent with the data in the phase map, where the unfolded chains are present in all 16 

simulations. The radius of gyration of these chains is found to be 		Rg =5.3±0.98 . Notably, when 

MK bond  is small, the motion of the fiber is dominated by 		E1−2  and 		E1−3 , which both favor the 

unfolded conformation since the equilibrium distance between the bead and its next-nearest 

neighbor is equal to 02r  in the absence of ME .  

As MK bond  is increased to 1.5, we begin to observe the presence of the hairpin structure. 

The error bars for cN  are relatively large (Fig. 1a) at this value of MK bond  because thermal 

fluctuations can break this weak Morse bond. As MK bond  is increased further, we find that 

5.2=MK bond  constitutes the optimal value for forming the hairpin structure. Namely, the hairpin 

structure is formed in 13 of the 16 independent simulations. The radius of gyration of these 

hairpin chains is equal to 		Rg =3.2±0.1 . In this case, the value of ME  (the term that favors the 

compact structure) is comparable to the sum of 21−E and 31−E .  

When 		 K bond
M =3 , the stronger Morse bond compresses the fiber into a more compact ring 

structure and this leads to a significant increase in the value of cN . For the 16 independent 

simulations at  		 K bond
M =3 , we obtained one “chain”, seven “hairpins” and eight “ring” structures. 

When MK bond  is increased to 3.5, there are no fibers in the “chain” state, while four are in the 

“hairpin” and 12 are in the “ring” state. As the Morse bonding potential is increased to 		 K bond
M = 4 , 

the fiber assumes the ring structure for all 16 simulations and 		Rg =1.3±0.05 .  
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Fig. 2 shows the typical kinetic pathway to forming the hairpin structure; here, we have 

fixed 5.2=MK bond . The temporal evolution of cN  (black curve) and gR  (red curve) consistently 

display three distinct stages (see Fig. 2), where regions I, II, and III encompass the respective 

conformations shown below the plot. In stage I, 0=cN  and gR  is close to the value of unfolded 

chains. At these early times, the fiber has not yet become sufficiently bent to form the Morse 

bonds. The duration of stage I is related to the diffusive motion of the fiber beads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Typical kinetic pathway involved in forming a hairpin. Here, we set 5.2=MK bond . 
Black curve indicates the number of contacts, 

cN , that form as the fiber undergoes a transition 
from a chain (see image marked I) via an intermediate structure (see image marked II) to a 
hairpin (see inset marked III). Red curve corresponds to the radius of gyration, 

gR , of the fiber. 

I	

II	

III	

I	 II	 III	
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 Once the fiber beads come into sufficiently close contact to form strong Morse bonds, the 

system enters stage II, where the fiber bends to a greater degree to increase the number of 

enthalpically favorable contacts. Consequently, the fiber displays a decrease in gR .  

In stage III, as more beads are bonded through ME (which drives contacts between 

collinear beads separated by three or more bonds), the fiber forms a hairpin. The central loop in 

the hairpin exhibits relatively large curvature, which in turn affects the degree of stretching 

between nearest and next nearest neighbor beads. Hence, the energetic contributions from the 

21−E and 31−E  now begin to play a significant role. In other words, the interplay among the three 

potentials leads to a stable hairpin structure. Notice that in stage III, cN  displays large 

fluctuations compared to gR  since a single fiber bead can have multiple contacts, and thus, a 

small change of conformation ( gR ) can lead to large variations in cN  (even if gR  remains 

relatively constant).  

B. Catching a nanoparticle with hairpins anchored to a swollen gel at fixed temperature 

Having pinpointed 5.2=MK bond  as the optimal value for driving the chain to form a 

hairpin, we investigate the system shown in Fig. 3. At the outset of the simulations, the polymer 

gel is equilibrated at the temperature C28!=T  and the array of four thermo-sensitive fibers are 

aligned along the z-direction (Fig. 3a). The gel is assumed to be PNIPAAM, which displays 

LCST behavior and thus, the gel is swollen at this low temperature.  

Fig. 3b shows the configuration of the system after it was equilibrated for 6102 ×  time 

steps at the same temperature ( C28!=T ) to allow for the fibers to reach their equilibrium 

conformation; since the fibers are incompatible with the gel ( =ija 40), the hairpins extend away 

from the gel layer and into the solution. We investigate how to utilize this system to extract a  
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Figure 3. (a) Initial morphology of the system. (b) Morphology of the system at 610=t  after 
equilibration at temperature equal to C°= 28T . 

 

targeted nanoparticle from the bulk of the solution at C!28=T . As shown in Fig. 4a, a particle 

with a diameter of 10 is introduced into the simulation box. At this initial stage, there is no point 

of contact between the particle and the gel or the hairpins; in fact, the minimum separation 

between the particle and hairpin is greater than four. We apply a shear flow (from the left to right 

of the simulation box along the x-direction) with the rate 31067.1 −×=γ!  to propel the particle 

through the system.  

As shown in Fig 4b, the hairpins begin interacting with the particle at 4104 ×=t  for 

this simulation, with the system encompassing a few hairpin-particle contacts. The snapshot of 

the system at 6101.1 ×=t (Fig. 4c) shows that at late times, all four hairpins are wrapped 

around the particle, causing the particle to be arrested on the surface and trapped in that position 

by a large number of hairpin-particle contacts. Due to the applied shear flow, one hairpin is 

significantly stretched, but is nonetheless attached to the particle. Notably, the swelling of the gel 

60	

25	

	 z	

(a)                                                                           (b)        	
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drives the hairpins close to the top of the chamber and into the path of the fluid-driven particle 

(see SI), and in this way, the thermo-responsive behavior of this LCST gel aids in the trapping of 

the particle. 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a) Initial morphology of the system after equilibration in the imposed flow for 3105 ×  
time steps. (b), (c) Snapshots of the system at 4104 ×=t and 6101.1 × , respectively, for 

31067.1 −×=γ! . 
 

The rate of the imposed shear can affect the ability of the hairpins to catch and retain the 

particle. To probe the functionality of the system at different shear rates, we characterize the 

behavior of both the particle and hairpins (Fig. 5) at the following shear rates: 41067.1 −× (blue 

curve),  31067.1 −× (green curve), 31033.8 −× (red curve), and 21067.1 −× (black curve). We 

first monitor the velocity of the particle as a function of time, averaging over eight independent 

simulations that were carried out for 6105 ×  time steps. The shading about each solid line 

corresponds to the standard	deviations from these simulations. For the relatively weak shears  

(a)                                 (b)                                  (c)              	

Shear	

10 
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Figure 5. (a) Temporal evolution of the particle velocity along the flow direction for the 
following imposed shear velocities: 41067.1 −×=γ!  (blue), 31067.1 −×  (green), 31033.8 −×  
(red), and 21067.1 −×  (black). (b) Corresponding temporal evolution of 

cZ .; magenta line is the 
height of the gel interface. (c) Corresponding temporal evolution of the number of particle-
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hairpin contacts.  

 

41067.1 −×=γ!  and 31067.1 −× , the average particle velocities are close to zero; note that 

both curves (blue and green) overlap and the standard deviations are small (Fig. 5a). These 

findings suggest that at relatively low shear rates, the particle is caught and its motion becomes 

arrested quite rapidly, as indicated by the images in Fig. 4.  

As the shear rate is increased to the moderate value of 31033.8 −×=γ! , the particle 

velocity is greater than zero, but is still relatively small (compared to the black curve). In this 

case, the shear force acting on the particle is comparable to the binding force induced by the 

hairpin, and thus, the particle velocity is decreased by its interaction with the fiber. Namely, the 

shear-driven velocity of the particle in the absence of the fibers is equal to 3106 −× and is equal 

to 3105.2 −×  in the presence of the hairpins. As the particle is driven across the simulation box, 

it attaches to and detaches from the fibers multiple times.  

When the shear is increased to the highest value considered here, 	 !γ =1.67×10−2 , the 

force due to the adhesion between the hairpin and the particle is weaker than the shear force and 

consequently, the motion of the particle is mainly unaffected by the fibers (a relatively small 

number of contacts that are created between the particle and fibers are almost immediately 

broken by the strong shear force, as can be seen from the black line in Fig. 5c).  

To better understand the competition between the action of the hairpin and the imposed 

shear on the motion of the particle, we monitor the temporal evolution of cZ Z! , the vertical 

position of the bottom of the particle, as shown in Fig. 5b.  As a point of reference, the height of 

the gel/fluid interface, gelh h!"#, is approximated as =gelh gelZ 1− ; here, gelZ  is the center of 
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mass of the gel. We calculate gelZ  
by averaging over the z coordinates of all the gel beads (and 

subtract 1 since the gel is attached to the bottom wall of height of 1). We obtain 		 hgel =29±1.2  

(drawn in magenta in Fig. 5b) and neglect the fluctuations in the plot. In the case of the weak 

shears (blue and green curves), the particle position is seen to rapidly and consistently decrease 

as the particle approaches the gel surface; the small fluctuations about the curves indicate that the 

particle is firmly bound to the hairpins.  

For the strongest shear, 	 !γ =1.67×10−2 , gelhZc >  and the particle is not caught by the 

hairpins. For the intermediate value of 	 !γ =8.33×10−3 , the red curve displays large fluctuations 

and exhibits characteristics of both the weak and strong shear regimes. In this intermediate 

regime, the hairpin still interacts with the particle, forming a few numbers of contacts, as in the 

case of weak shear. Since the shear force is comparable to the relatively weak adhesive 

interaction, the particle repeatedly binds to and unbinds from the fibers as it passes over the 

surface.  

The above arguments are supported by the time evolution of the particle-hairpin contacts, 

as shown in Fig. 5c. The blue and green curves, which correspond to the weak shears, exhibit a 

sharp increase and reach a saturation value of about 80. This value corresponds to the situation in 

Fig. 4c, where four hairpins are wrapped around the particle. The particle-hairpin contact for the 

moderate shear displays large variations (red curve), which indicates that the particle and hairpin 

come into contact frequently, but this binding interaction is broken by the imposed flow (points 

where the contact equals zero). For the strongest shear, the number of particle-hairpin contacts 

remains essentially equal zero, consistent with the observation in Fig. 5a and 5b. 

C. Increasing the temperature to drive the release of the particle 
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As noted above, the hairpin fibers mimic the properties of aptamers that unfold above a 

critical temperature, MT . Before investigating the effect of increasing the temperature on the 

entire gel/fiber composite, we first investigate the unfolding dynamics of a single fiber. Recall 

that the bond connecting beads separated by three or more bonds is temperature-dependent (eq. 

(3)). Namely, 0=ME  when MTT > . Consequently, at MTT > , the conformation of the fiber 

is governed by the combination of 21−E and 31−E ; these terms drive the chain to adopt a more 

extended, unfolded structure. As shown in Fig. 6, after we increase the system temperature 

above the transition temperature by setting C°= 48T , cN  decreases to 16 at 3102 ×=t , 

producing the conformation shown in inset 1. At  410=t , 2=cN  and most of the fiber 

beads are no longer in contact (as shown in inset 2). Insets 3 and 4 correspond to 4105 ×=t  

and 4106 ×  , respectively, and the fiber transforms from the hairpin structure to an unfolded 

chain where the corresponding 0=cN .  

 

 

 

 

 

 

 

 

Figure 6.  Dynamic pathway for the unfolding of the hairpin at 3102 ×=t  (1), 410  (2), 
4105 ×  (3), and 4106 ×  (4). Here, we set 5.2=MK bond  and C°= 48T . 
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For the aptamers, the unfolding of the chain leads to a loss of biological activity, i.e., 

an inability to bind the targeted molecules. In our simulations, we mimic this behavior by 

increasing the repulsion between a fiber and a particle bead when the chain is unfolded. Hence, 

when the hairpin unfolds, a bound particle can readily detach from the fiber and be removed 

by the imposed the shear flow. We exploit this behavior in our gel/fiber composite, as well as 

taking advantage of thermo-responsive shrinking of the gel. 

In the following simulations, we consider the behavior of the entire gel/fiber composite system 

when the temperature of the system is increased above the critical temperature MT . We begin 

with the system at C°= 28T  and focus on the scenario where the particle is bound by the 

hairpins, as shown in Fig. 7a. Here, a shear of rate of 31067.1 −×=γ!  is applied along the x-

direction. To illustrate the merit of utilizing the thermo-responsive gel in the composite, we now 

 

 

 

Figure 7. (a) Initial morphology of the system at the low temperature of C°= 28T . (b) 
Snapshot of the system at 6103 ×=t  after the temperature was increased to C°= 32T . The 

(a)                              (b)                              (c)                              (d)              
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gel shrinks while the particle is arrested by the hairpin. (c) System with the morphology shown 
in (b) is heated to C°= 40T  and the snapshot corresponds to 610024.3 ×=t  under the shear 
rate 31033.8 −×=γ! . (d) Morphology of the system at 610188.3 ×=t .  
 

employ a two-step process to increase the temperature in the system. In the first step, the 

temperature of the system is increased to MTT <°= C32 . At this temperature, the thermo-

responsive LCST gel shrinks, but the fiber remains in the hairpin structure. Hence, the particle 

remains bound to the fibers and is drawn downward toward the substrate by the collapsing gel, as 

illustrated in Fig. 7b, which shows a snapshot of the system at 6103 ×=t . (By comparing Figs. 

7a and 7b, one can clearly see that the height of the gel has decreased at the higher temperature.) 

In the second stage of the heating process, the temperature is further increased to above 

the transition temperature MT . Therefore, the hairpins unfold (see Fig. 7d) and simultaneously, 

the fibers lose their affinity to the particle. Due to the applied shear, the fibers are stretched along 

the shear direction. Notably, the particle has detached from the fibers and gel interface, and is 

completely released to the bulk solution (Fig. 7d).36 The shrinking of the thermo-responsive gel 

plays an important role because it increases the unobstructed volume that is available for the 

flowing fluid, which transports the particle away from the layer.  

Importantly, the behavior of the system can be reset by decreasing the temperature. In 

particular, the gel expands and the chains refold into the hairpin structure as temperature is 

decreased to 		  T =28!C  . (The conformation and activity of certain apatmers can be recovered 

through a decrease in temperature.2) Hence, the temperature of the system can be cycled to 

promote the trapping of the particles at low temperature and their release at high temperature. 

IV. Conclusions 
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Using computational modeling, we designed an effective “catch-and-release” system 

where the components of a thermo-responsive gel/fiber composite act in concert to extract 

nanoparticles in solution at low temperatures and release the particles at a higher temperature. To 

perform these studies, we devised a new DPD model that integrates the thermo-responsive 

behavior of both the bio-inspired fibers and LCST gel. Thus, we could probe and visualize the 

mechanisms that gave rise to this useful functionality.  

In this system, the thermo-responsive fiber can be made to reversibly bind and unbind the 

targeted nanoparticles by varying the temperature, which induces the conformational changes of 

this chain. In contrast to previous devices that exploit the conformational changes of aptamers 

for “catch-and-release” applications,2 the system described here harnesses a substrate that is 

coated with a LCST gel (for example, PNIPAAm). The advantageous feature of this system is 

that the swelling of gel brings the anchored hairpins closer to the top of the chamber and hence, 

into the path of the fluid-driven particles, thereby facilitating the “catch” part of the process. 

Moreover, when the temperature is increased, the gel collapses and thus, effectively increases the 

space that can be occupied by the imposed flow, which is utilized to detach the particle from the 

unfolded chain and transport the freed particle within the device. Since the temperature-induced 

conformational changes of the polymer and fiber are reversible, the system can be used to 

repeatedly catch and release the particles.  

Our results revealed a range of shear rates where the fiber can trap the particles, as well 

as the flow rates where the particles can be released to the surrounding solution. Notably, the 

system also provides a useful platform for purification and filtration applications, where it is 

important to prevent the extracted particles from re-entering the fluid. At 		  T =28!C , the system 

could provide exactly that function. Once the purified fluid has been extracted from the chamber, 
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a new fluid could be introduced into the device and the temperature could be increased to 

dislodge the trapped particles. By flushing these particles from the system and then lowering the 

temperature, the layer could again be used as a purification system. 
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