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Interfacial Materials with Special Wettability 

Tak-Sing Wong, Taolei Sun, Lin Feng, and Joanna Aizenberg  

Abstract  

Various life forms in nature display a high level of adaptability to their environments 

through the use of sophisticated material interfaces. This is exemplified by numerous 

natural examples, such as the self-cleaning of lotus leaves, the water-walking abilities 

of water striders and spiders, the ultra-slipperiness of pitcher plants, the directional 

liquid adhesion of butterfly wings, and the water collection capabilities of beetles, 

spider webs and cacti. The versatile interactions of these natural surfaces with fluids, 

or special wettability, are enabled by their unique micro/nanoscale surface structures 

and intrinsic material properties. Many of these biological designs and principles have 

inspired new classes of functional interfacial materials, which have remarkable 

potential to solve some of the engineering challenges for industrial and biomedical 

applications. In this article, we provide a snapshot of the recent state-of-the-art 

development of biologically inspired materials with extreme fluid repellency and their 

potential applications in high/low temperature environments, as well as discuss some 

promising future directions in the field.  

Keywords: Biomimetics, Bioinspiration, Special Wettability, Superhydrophobicity, 

Superoleophobicity, Superomniphobicity 

 

Introduction  

Wetting – the interaction of fluids with solid surfaces – impacts many areas of 

science and technology in the modern era.(1-3) In particular, creating a robust 

synthetic surface that I) repels various liquids, II) allows for directional/switchable 

fluid manipulation, and/or III) operates under various environmental conditions would 

have broad technological implications for areas related to water, energy, and health 

but has proved extremely challenging.(4) In nature, many biological surfaces are 



engineered to have special interfacial interactions with fluids – or special wettability – 

in order to survive in their innate environments.(5-23) For example, lotus leaves rely 

on hierarchical micro/nanoscale textures to trap a thin layer of air (Figure 1a), which 

then acts as a cushion against liquids and helps to keep the surface clean by carrying 

away dirt – the lotus effect (6); springtails, arthropods that live in the soil, have 

evolved overhanging nanostructured skin patterns (Figure 1b) that help prevent them 

from soiling (20); Nepenthes pitcher plants capture insects with their highly slippery, 

liquid infused micro-textured peristome (Figure 1c) without the use of any active 

prey-capturing mechanisms.(10, 24) Central to many of these functional biological 

surfaces is the presence of unique micro- and nanostructured architectures that allow 

them to exhibit special wettability. To this end, mimicking these biological surfaces -  

biomimetics - and learning from these biological concepts - bioinspiration - have led 

to important advances in the manufacturing and design of synthetic interfacial 

materials in recent years.   

 

Biomimetic and Bioinspired Materials  

Maturation of high resolution microscopy techniques, together with rapid 

advancement in micro- and nanomanufacturing, have enabled scientists and engineers 

to not only uncover the secrets of functional natural interfacial materials, but also to 

manufacture these functional surfaces using a broad spectrum of synthetic materials. 

With these collective advances, the field of biomimetics and bioinspiration, 

particularly the development of interfacial materials, has progressed tremendously 

during the last decade.(25-27) In the first article of this issue, Jiang and Wang et al. 

provide a comprehensive overview of the recent development of bioinspired materials 

with special wettability, ranging from the superior water-walking ability of water 

striders, the directional adhesion of butterfly wings, the antifogging functionality of 

mosquito eyes, the water collection of the cactus and spider silk, to the underwater 

self-cleaning ability of fish scales.   



Among these many biomimetic studies, the lotus effect has been the most 

widely studied and investigated, and has accounted for >1000 journal papers 

published in the last decade alone (Figure 2). This reflects the remarkable interest and 

need to create highly liquid-repellent materials. Since these bioinspired materials 

utilize structured surfaces to achieve their fluid repellency, it is instructive to look at 

some of the fundamental theories and terminologies for wetting on structured 

surfaces.       

 

Wetting on Structured Surfaces 

When a liquid droplet is deposited on a smooth solid surface in air, three 

distinctive interfacial boundaries arise that intersect at a well-defined contact angle, θ 

(Figure 3a). Competition between the adhesion forces of the liquid, vapor and solid 

molecules (or atoms) results in a force equilibrium at the triple line (the line where all 

three phases meet),(28) which can be described by the Young’s equation  

,    (1) 

where γLV, γSV, and γSL are the surface tensions for liquid-vapor, solid-vapor, and 

solid-liquid interfaces, respectively, and θ is the intrinsic contact angle at the triple 

line with the solid surface. By convention, if 𝜃 ≥ 90%, then the solid is said to “hate” 

the fluid droplet (hydrophobic for the case of water).  Likewise, if 𝜃 < 90%, then the 

solid is said to “like” the fluid droplet (hydrophilic for the case of water).  

 However, real surfaces are rarely smooth. The contact angles of liquid droplets 

observed (or apparent contact angles, θ*) on these real surfaces typically deviate 

significantly from those described by the Young’s equation. Wetting of liquid droplets 

on structured surfaces can be roughly described by two distinct modes. In the first 

wetting mode, the liquid closely follows the topography of the surface forming a 

continuous liquid-solid interface (Figure 3b). The apparent contact angle can be 

described by the Wenzel equation developed in 1936  

cos𝜃∗ = 𝑅 cos𝜃,    (2) 

LV SV SLcosg q g g= -



where R is the roughness factor, defined as the ratio between the actual surface area 

and the projected surface area of the solid.(29) The Wenzel equation indicates that 

roughness can amplify the wettability of a solid. For example, if the solid is 

intrinsically hydrophobic, roughness will further enhance the surface hydrophobicity 

(i.e., 𝜃∗ > 𝜃 for R > 1). 

 In the second mode of wetting, the liquid does not follow the topography of 

the solid surface; instead the liquid is suspended on a mixed interface composed of 

surface protrusions with air pockets trapped between them (Figure 3c). The apparent 

contact angle in this mode was first described by the Cassie-Baxter equation in 

1944,(30) and was further extended by Cassie to heterogeneous surfaces in 1948,(31) 

 cos𝜃∗ = 𝐴/ cos 𝜃/ + 𝐴1 cos𝜃1,   (3) 

where A1 and A2 are area fractions (i.e., A1 + A2 = 1), and θ1 and θ2 are the intrinsic 

contact angles of materials 1 and 2, respectively. The Cassie equation indicates that to 

achieve a perfect non-wetting situation (i.e., 𝜃∗~	180%), one can maximize the area 

fraction of the air pockets trapped beneath the liquid droplet. The concept put forth by 

Cassie and Baxter explained the large contact angles observed in many of the plant 

and animal surfaces, such as lotus leaves.(32) In addition to the surface energy model 

proposed by Cassie and Baxter, recent experimental and theoretical studies have 

highlighted the importance of the topography length scale of the surface roughness 

(i.e., line energy) to the role of surface wettability.(33-37)  

 Achieving a high apparent contact angle can reduce the normal adhesion of a 

liquid droplet with the solid surface due to reduction of the liquid-solid contact area. 

However, contact angle alone does not quantify the resistance to liquid motion in the 

direction tangential to the surface.(33, 38-40) In particular, liquids sitting on rough 

surfaces exhibit a variety of contact angles bounded by two extreme values. The upper 

limit is known as the advancing contact angle, 𝜃6, whereas the lower limit is referred 

to as the receding contact angle, 𝜃7. The difference between these values is known as 

contact angle hysteresis, Δθ, whose physical origin is attributed to pinning of the 

liquid contact line (CL) on the nanoscopic surface roughness.(41-44) The presence of 



the contact angle hysteresis gives rise to a surface retention force, FR, that resists the 

motion of a liquid droplet of a characteristic length, L, i.e., (39)  

    𝐹9 = 𝛾;<𝐿(cos 𝜃9 − cos𝜃@).    (4) 

Therefore, minimizing the hysteresis is the key to minimizing resistance to motion, 

resulting in high mobility of the droplets and therefore in significantly improved 

liquid-repellency of the surface. 

 By convention, we describe a material as superhydrophobic if it displays an 

apparent contact angle for water of ≥150o with contact angle hysteresis < ~5o – 10o. If 

the material displays similar values with oils, we describe the surface as 

superoleophobic. If the material meets these criteria for both water and oils, we term 

the material as superomniphobic or superamphiphobic (Table 1). 

 

Extreme Fluid Repellency 

Lotus leaves have exceptional ability to repel water but not oils; therefore 

these natural materials are only superhydrophobic. After more than a decade of 

research and development, we now have many different ways to create synthetic 

superhydrophobic surfaces,(45-48) but creating materials that are both 

superhydrophobic and superoleophobic (i.e. superomniphobic) based on the lotus-leaf 

model has proved more difficult. A fundamental reason is that oils have intrinsically 

low surface tension, which makes them prone to wet the micro/nanoscopic surface 

textures more readily than liquids of higher surface tension, thereby displacing the air 

pockets trapped in between the surface textures and leading to significant liquid 

pinning.  

Despite the challenges, recent efforts have shown that by carefully engineering 

the surface textures with overhanging features, it is possible to create 

superomniphobic materials that can repel both water and oils.(49-52) The novelty 

behind these surfaces is the creation of a local re-entrant curvature such that droplet 

pinning at the edges of the micro/nanoscopic overhanging structures prevents further 

penetration. This development has further advanced the capabilities of lotus-leaf 

inspired surfaces to repel not only water, but also a much broader range of fluids.(53) 



In the second article of this issue, Tuteja and Choi et al. discuss the recent advances 

of superomniphobic surfaces and their durability issues. It is interesting to note that 

springtails also possess similar overhanging nanoscale textured patterns to protect 

themselves from soiling (Figure 1b).(20)  These natural surfaces were shown to resist 

wetting of many organic liquids and at elevated pressures, and demonstrate a number 

of similarities to their artificial counterparts.(49-51, 53)                 

 

Anisotropic Fluid Repellency 

In addition to lotus leaves, which display a high level of omni-directional 

water repellency, a number of biological surfaces are able to shed water only in a 

specific direction – known as anisotropic wetting. For example, the wings of 

butterflies can shed water droplets easily along the radial outward direction away 

from their wings, but not in the opposite direction.(16) The legs of water striders are 

covered with tiny oriented hairs with fine nanogrooves that allow them to propel the 

strider efficiently on water surface.(11, 54) Another example can be found on rice 

leaves that consist of one-dimensional arrays of oriented micro/nanotextures that 

enable the transport of water droplets in a particular direction.(9) Central to these 

biological surfaces are the orientations and arrangements of the surface textures that 

provide precise control over the direction of droplet motion. Inspirations from these 

natural anisotropic surfaces have led to artificial surfaces that display similar 

anisotropic wetting behaviors.(55-57) In the third article of this issue, Hancock and 

Demirel summarize recent experimental and theoretical progress in the design, 

synthesis, and characterization of engineered surfaces that demonstrate anisotropic 

wetting properties, as well as some of their potential applications.  

  

Towards Industrial Applications in Extreme Environments 

In addition to the fundamental research on these synthetic bioinspired 

materials, important advances have been made in understanding how these materials 

could be utilized in various industrial applications under different environmental 

conditions, particularly in industrial processes that involve phase changes such as 



condensation (58-62) and icing (63-70). On one hand, vapor condensation is 

commonly encountered in power generation, thermal management, and desalination 

plants; on the other hand, ice formation and accretion present serious economic and 

safety issues for essential infrastructures such as aircraft, power lines, wind turbines, 

and commercial and residential refrigerators and freezers. Passive coatings that can 

effectively remove condensed vapor and/or reduce ice adhesion are thus critically 

needed. In the fourth article of the issue, recent developments in the use of 

superhydrophobic surfaces for condensation control are discussed by Miljkovic and 

Wang from an academic research perspective. In the last article of the issue, Alizadeh 

et al. discuss how some of these bioinspired materials can contribute to the effective 

removal of condensed vapor and ice from an industrial viewpoint.  

 

Outlook  

One of the ultimate goals in the field of bioinspired interfacial materials is to 

create a robust, scalable, and low-cost surface that can repel any fluids, self-heal upon 

damage, allow for smart/switchable control of wettability, and operate under a wide 

range of environmental conditions, such as extreme temperatures, high pressures, and 

harsh chemicals. As discussed here, cutting-edge development of synthetic liquid-

repellent surfaces has primarily been modeled after the lotus-effect, with many 

important advances made over the last decade (Figure 4). Some of these lotus leaf-

inspired surfaces have been designed to repel both aqueous and organic liquids,(49-

53), others can be manufactured from low-cost (such as plastics)(71) or mechanically 

robust (such as ceramic) materials,(72), yet another set of studies demonstrated 

switchable wettability,(12, 73-76) partially self-healing capability,(77-79) or the 

ability to operate under moderate pressure (up to ~7 atm).(80) However, these 

impressive properties, where present, have been demonstrated separately on different 

materials, rather than integrated into a single material. Thus many of these surfaces 

face severe limitations to their practical applications: they show limited oleophobicity 



with high contact angle hysteresis; fail under high pressure (81) and upon any 

physical damage; and/or cannot completely self-heal.  

Very recently, a conceptually different approach to creating liquid-repellent 

materials – inspired by the slippery Nepenthes pitcher plants – was developed that 

may potentially address many of the challenges found in the lotus leaf-inspired 

surfaces (Table 2). The new bioinspired material consists of a continuous film of 

lubricating liquid locked in place by a micro/nanostructured substrate (Figure 3d), and 

is termed as Slippery Liquid-Infused Porous Surfaces (SLIPS),(82) or slippery pre-

suffused surfaces (83) or lubricant-impregnated surfaces (84, 85). The liquid-infused 

structured surface outperforms its natural counterparts and state-of-the-art synthetic 

surfaces in its ability to repel various simple and complex liquids (water, crude oil, 

and blood); maintain low contact angle hysteresis (<2.5o); restore liquid-repellency 

after physical damage rapidly (within 0.1-1 s); function at high pressures (up to ~676 

atm); resist bacterial bio-fouling (86) and ice adhesion (87, 88); enhance condensation 

(84); and switch wettability in response to mechanical stimuli (89) (see Table 2). 

Since these properties can all be incorporated into a single material, the slippery 

surfaces can potentially be used in a wide variety of applications and environments 

(90), and may provide alternative solutions for designing materials with special 

wettability that could not be addressed by conventional lotus leaf-inspired surfaces.   

Ultimately, the widespread application of any of the aforementioned 

bioinspired interfacial materials is dictated by their cost, scalability, and robustness, 

which are important for their practical use on a large scale and accessibility to people 

with low budgets and around the world. While promising results have been 

demonstrated for many of these bioinspired materials, continuing research is 

necessary to bring down the material and fabrication costs, as well as to enhance their 

longevity and robustness without compromising their functional performances.  
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Figures & Figure Captions 

 

Figure 1. The most repellent biological surfaces in nature. (a) A lotus leaf, known for 

its exceptional water repellency enabled by hierarchical micro/nano-structures (see 

inset). Scale bar = 10 µm; (b) A springtail, which can resist wetting by organic liquids 

and at elevated pressures as enabled by overhanging nanostructures (see inset). Scale 

bar = 500 nm; (c) A pitcher plant, which utilizes a highly slippery, liquid-infused 

micro-structured peristome to capture prey. Inset shows the microstructures on the 

peristome. All images are reproduced with permission from the Creative Commons 

Licenses of (20), (91) Pitcher plant image provided courtesy of W. Federle and H. 

Bohn. 

 

  



 

Figure 2. Citations of key papers in biomimicry studies related to interfacial materials 

with special wettability from the years 2002 to 2012. Citation data obtained from ISI 

Web of Knowledge provided by Thomson Reuters. 
 

  

LOTUS (1997)
WATER STRIDER (2004)
DESERT BEETLE (2001)
ROSE (2008)
CICADA (2004)
BUTTERFLY (2006)
GECKO (2005)
GREEN LACEWING (1996)
MOSQUITO (2007)
SPIDER WEB (2010)
FISH (2008)
PITCHER PLANT (2004)

LOTUS: 1570 (43.7%) 

WATER STRIDER: 609 (17.0%) 

CICADA: 172 (4.8%)

MOSQUITO: 
109 (3.0%)

SPIDER WEB: 
104 (2.9%) PITCHER PLANT:

59 (1.6%)

FISH:
64 (1.8%)



 

Figure 3. Wetting on smooth and structured surfaces. A liquid droplet sitting on (a) a 

smooth surface with an intrinsic contact angle, θ; (b) a textured surface that is 

completely wetted by the liquid, known as a Wenzel state droplet; (c) a textured 

surface with trapped air pockets, known as a Cassie state droplet; (d) a textured 

surface that is infused with an immiscible lubricating fluid (or slippery liquid-infused 

surfaces). 

  

Structured SolidSolid Structured Solid Structured Solid
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Figure 4. Timeline of key materials innovations and developments in bioinspired 

liquid repellent surfaces in the past decade (2003 – 2013).(6, 49-52, 55, 56, 71-73, 80, 

82, 83, 89, 92) Note that this timeline only covers the materials development, and 

does not include the key fundamental theoretical/computational/experimental 

discoveries during the period. Readers are referred to the recent reviews on these 

topics by Quéré (4), Marmur (93), Nosonovsky and Bhushan (94), and Bormashenko 

(95). 
 
 

 

 

  

YEAR

1997
The Lotus Effect

2011 
Liquid-Infused 

Slippery Surfaces
2012

Optically Transparent 
Superamphiphobic Surfaces

2007 – 2008
Superoleophobic Surfaces

2003
Superhydrophobic Surfaces 
on Plastics

2010
Self-healing 

Superhydrophobic Surfaces

2010
Anisotropic Wetting Surfaces

2013
Ceramic-based 
Superhydrophobic Surfaces

2004 
Switchable 

Superhydrophobic Surfaces

2011 – 2012
Reversible Wenzel-to-Cassie 
Switching of 
Superhydrophobic Surfaces

Pressure Stability

Self-healing/Robustness
Switchable/Anisotropy

Cost/Scalability

Omni-repellency
Challenges Addressed:

2013
Switchable

Omniphobic Surfaces



Table 1. Classification of liquid repellent states  
State Superhydrophobic Superoleophobic Omniphobic Superomniphobic/ 

Superamphiphobic 

Liquids Water Oils Water & Oils Water & Oils 

θ* (o) ≥ 150o ≥150o < 150o ≥150o 

Δθ* (o) ≤ 5 – 10o ≤ 5 – 10o ≤ 5 – 10o ≤ 5 – 10o 

 

Table 2. A comparison matrix between the performance of SLIPS and the best 
available parameters of the lotus leaf-inspired superhydrophobic surfaces 
published in the literature 

Technology Contact Angle 
Hysteresis (o) 

Dynamic 
Pressure 

(atm) 

Static 
Pressure 

(atm) 

Self-
Healing 

(sec) 

Ice 
adhesion 

(kPa) 

SLIPS < 2.5o(82)     

 (water & oils) 
> 0.05(82)   

(water & oils) 
676(82)   

(water & oils) 
~0.15(82) ~15(87)  

Lotus-leaf-
Inspired 
Surfaces 

~ 10o – 30o 

(oils)(51)                   

 < 5o (water) (51) 

~0.01 (oils)(52)  

>0.05(water)(96

) 

7 (water)(80) ~180(78)  ~Order of 
100 or 

above(65) 
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