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Capillary-mediated self-assembly and self-organization are useful techniques for constructing ordered superstructures from
nanoscale and microscale building blocks. Square arrays of flexible microfibers attached to a substrate have been shown to
form highly ordered patterns of 2x2 fiber clusters (tetramers) under the influence of capillary forces at the surface of an evap-
orating liquid layer. We model this pattern formation as an irreversible sequential adsorption process on a square lattice, in
which tetramers form sequentially on an initially empty lattice and locally enhance the formation of nearby tetramers, giving
rise to partially ordered domains. Restrictions analogous to excluded volume interactions for hard squares prevent additional
tetramers forming at next-and second-neighbor positions. Two parameters regulate the enhancement in tetramer formation at
third- and fourth-near neighbor positions. We study the model using numerical simulations and compare it to a realization of a
self-organization experiment. The model reproduces many features of the observed patterns when the two parameters are chosen
by a least-squares fit to a single experimental quantity. The fourth-near neighbor enhancement, not considered in previously
studied sequential adsorption models, is shown to be significant for the pattern formation under study.

1 Introduction

The study of the self-assembly and self-organization of solid
macro-, micro- and nanoscale structures using capillary forces
mediated by a wetting liquid has made an impact in fields
ranging from photonics1 to the theory of computation.2 In
recent years, the phenomenon of elastocapillary coalescence3

has been observed in aggregation of fibers ranging in size from
the macroscopic scale4,5 down to micro- and nanoscales.6–13

In all these investigations, capillary forces in a wetting liquid
bring together the free ends of high-aspect-ratio structures at-
tached to a substrate to form clusters. For highly symmetrical
arrangement of fibers in the individual clusters, a long-range
ordering in the positions of the clusters has been reported.10–13

In particular, when the fibers are initially arranged in a square
lattice and primarily form 2x2 clusters of four individual fibers
connected at the tip, these 2x2 clusters themselves are ordered
locally in a square superlattice with a lattice spacing twice that
of the individual fibers (figure 1(a)). This ordering mechanism
has potential application not only as a means of creating com-
plex three-dimensional structures with spatial regularity but
also as a basis for generating dynamic “smart” surfaces capa-
ble of ordered particle trapping and release, color changes and
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adaptive wetting behavior.12,14

A number of previous theoretical treatments of capillary-
assisted clustering5,6,8–10,15 have analyzed the elastic, capil-
lary and surface tension energies associated with fiber clus-
tering to determine the critical stiffness of the fibers that al-
lows clustering to occur, and the typical size/size distribution
of clusters. However, less has been said about the higher-level
arrangement, size and ordering of the clustered domains. A
qualitative picture of long-range ordering of clusters due to
the distance dependence of the capillary interactions between
submerged fibers is presented in Ref. 12, and a similar de-
scription based on the stability of upright fibers is reported in
Ref. 13, but to our knowledge no quantitative comparison of
these descriptions with experimentally observed patterns has
been made. The current work develops this aspect of capillary-
mediated clustering of fibers. We propose, characterize and
test a nonequilibrium dynamical model for the irreversible for-
mation of clusters showing long-range order in a square array
of fibers.

Our approach falls into a broad class of systems known as
sequential adsorption models.16 Sequential adsorption (SA)
models describe deposition of particles on a surface through
the following algorithm: a trial deposition of a particle is made
on the surface (typically empty initially, though a ‘seeded’
surface with predeposited particles may also be studied); if
the particle does not overlap with any other, the deposition is
successful and the particle is permanently fixed in the chosen
spot; if on the other hand the particle overlaps with an already

1–16 | 1



(a)
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Fig. 1 (a) Top-down scanning electron microscope (SEM) image of
a region of an epoxy microfiber sample in which clusters have been
induced via ethanol evaporation and persist due to van der Waals in-
teractions between the touching fiber tips. Scale bar 50µm. The
region predominantly shows tetramers, i.e. clusters of four fibers
whose tips meet at a height of a few microns above the substrate,
centered above the squares of the underlying lattice of fibers. The
inset (bottom right) is a close-up view of a tetramer, showing the lat-
tice spacing a of the fibers. Four distinct domains (as defined in the
text) are highlighted and labeled A—D. (b) Schematic of the lattice
of fibers with some formed tetramers all belonging to a single do-
main. (In this and following diagrams, each dot represents the base
of an upright fiber while each ‘x’ represents the top-down view of a
tetramer comprising of four fibers whose bases remain on the square
lattice but tips come together at the center.) The numbers show the
division of the dual lattice into four sublattices 1–4 corresponding to
the four distinct domains shown in (a); the remainder of the lattice
is occupied by a domain whose members occupy sublattice 1. In the
SEM image, we may assign the tetramers of domain A to sublattice 1;
domains B, C and D then belong to sublattices 2, 3 and 4 respectively.

attached particle then the trial is rejected. Random sequential
adsorption (RSA) models refer to those in which the position
of the trial deposition is chosen purely at random, while co-
operative sequential adsorption (CSA) processes are those in
which the probability of a trial deposition at any point on the

surface is influenced (typically enhanced) by the presence of
deposited particles nearby. Both RSA and CSA, on continuum
surfaces as well as lattices, have been used to study a variety of
physical, chemical and biological processes (for a comprehen-
sive review see Ref. 16). The questions of interest in studying
such models range from predicting the final coverage of the
surface when the system has evolved until no further deposi-
tion takes place (i.e. there is no further room for particle depo-
sition and the system reaches a ‘jammed’ or ‘saturated’ state)
to understanding the time evolution up to jamming as well as
the spatial distributions and correlations of the particles at any
stage.

Since the deposition events are irreversible, sequential ad-
sorption models are typically not amenable to study via tools
of equilibrium statistical mechanics.16 Theoretical modeling
begins with the formulation of rate equations describing the
filling of empty areas of the surface with particles. The result
is a hierarchical set of rate equations linking each empty con-
figuration to the set of empty configurations that could result
from the adsorption of a particle anywhere within it. These
equations describe a nonequilibrium generalization of the fa-
mous dimer problem of statistical physics,17 with dimers be-
ing replaced by hard spheres in our case. One-dimensional
RSA models as well as CSA models with short-range cooper-
ative effects are exactly solvable. However, in dimensions two
and higher, the hierarchy of rate equations becomes very large
and is not exactly solvable even for the simplest short-range
cooperative effects (such as nearest-neighbor exclusion on a
lattice). A variety of approximation methods such as series ex-
pansions for small coverages (i.e. early times) and systematic
truncation of the hierarchical rate equations has been adopted
to study higher dimensional RSA/CSA models. The algorith-
mic nature of the SA process also makes it a good candidate
for direct numerical simulation on finite-sized lattices or sur-
faces, which is the approach taken by this paper.

With experimental patterns like the one depicted in fig-
ure 1(a) in mind, we develop here a model of irreversible CSA
of particles on an initially empty square lattice, under the con-
ditions that adsorption of a particle at any site prevents fur-
ther adsorption not only at the filled site but at nearest neigh-
bor (NN) and next-nearest neighbor (2NN) positions, but in-
creases the rate of adsorption at the third (3NN) and fourth
(4NN) nearest neighbor positions. (As explained in detail in
section 2.1, these lattice positions correspond to the positions
of plaquettes of the microfiber array for the particular case
of fiber clustering; representative NN through 4NN positions
relative to a 2x2 cluster are indicated in figure 2(b).) Local co-
operativity in the adsorption process is typically introduced by
defining adsorption rates that depend on the local environment
of each site.16 For our model, we assign a rate k(i, j) = k0α iβ j

to each site that depends on the numbers i and j of particles
previously adsorbed at 3NN and 4NN positions respectively
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relative to the site. Enhancement of adsorption near previ-
ously adsorbed particles corresponds to k(i, j) > k(0,0) for
allowed values of (i, j) other than (0,0). Here k(0,0) ≡ k0 is
the rate of adsorption of particles for a site that has no filled
3NN or 4NN sites. We shall take α and β greater than 1,
so that they describe in a simple way enhanced “adsorption”
(tetramer clustering in our case) at 3NN and 4NN positions
respectively. While the lone particle adsorption rate k0 deter-
mines the overall speed at which the surface is covered with
particles, the nature of the adsorbed pattern at any fractional
coverage and particularly at saturation depends only on α and
β which are the two adjustable parameters in the model.

Our model is similar to previously studied CSA models on a
square lattice with close-neighbor cooperative effects.16,18–21

Previous studies, however, have focused on a single level of
cooperativity with rates ki = α ik0,α > 1 defined at each site
when i is the number of occupied closest neighbor sites. (This
rate choice is called a multiplicative or Arrhenius rate, in con-
trast to the Eden rate choice, ki = αk0,α > 1 for i≥ 1.) Some
of these analyses are also useful in explaining the properties of
our model. For example, in the regime of strong cooperativity
when adsorption near occupied sites is strongly favored, ad-
sorbed particles tend to form growing domains or islands19,20

around a randomly deposited nucleation site. Here we define
a domain as a group of tetramers whose centers may be con-
nected to each other by a network of bonds each of length
2a, where a is the lattice spacing of the square array of fibers.
As shown in figure 1, the domains lie on one of four sublat-
tices and domains belonging to different sublattices meet in
boundaries that largely follow the principal axes of the lattice
of fibers. Then k0 may be considered the rate of nucleation of
domains while the other rates describe the growth of domains.
As adsorption continues, growing domains on the same sub-
lattice coalesce upon meeting one another, while domains be-
longing to different sublattices meet at a frozen domain bound-
ary. As long as all k(i, j) > 0, the system ultimately reaches a
‘saturated’ or ‘jammed’ state at which point no further adsorp-
tion can take place and the state of the entire lattice may be de-
scribed by domain boundaries separating domains of various
shapes and sizes. This saturated state is the one that is com-
pared to the experimental domain patterns. In the fiber clus-
tering experiments discussed above, rare anomalous clusters
of 2, 3, 5, 6,... fibers constitute additional point-like defects
which we disregard here.

In section 2, we summarize the experiments leading to the
self-organization of microfibers and motivate the CSA model
with NN/2NN exclusion and 3NN/4NN cooperative effects to
describe ordering and domain formation in this system. In
section 3, we characterize the patterns of tetramers generated
by the model for a range of parameter values using computer
simulations. We emphasize the effects of the newly consid-
ered 4NN cooperativity (β > 1) to contrast the current model

with previously studied single-parameter models, and high-
light the similarity of the tetramer-tetramer correlation func-
tions for different values of α and β upon appropriate rescal-
ing. In section 4, we evaluate the ability of the model to repro-
duce patterns from an actual experiment, using a single mea-
sured quantity to fit the two parameters α and β , and compare
the model’s performance to that of a similar single-parameter
model. We show that a single-parameter model deviates sig-
nificantly from the experimental observations, while our new
double-parameter model provides an excellent description of
the experimentally observed patterns. In section 5, we con-
clude by using the insights provided by the model to improve
ordering in the clustering experiment, and consider the po-
tential relevance of the new model to various sequential ad-
sorption processes and self-assembly. Details of the numeri-
cal simulation and the experimental procedure are reported in
appendices A and B respectively.

2 Microfiber clustering and order formation

The formation of large ordered regions during self-
organization of nanostructures via capillary forces has been
reported by the Aizenberg group in Ref. 12. In this section
we summarize the experiment and observations that motivate
our theory. Highly uniform square arrays of high-aspect-ratio
nano- and microscale polymeric fibers, prepared using soft
lithography as described in Ref. 22, were wet with a solvent
which was allowed to evaporate under ambient conditions. As
the solvent-air interface is forced below the tips of the upright
fibers due to evaporation, the tips are drawn together by cap-
illary interactions and adhere to each other upon contact via
short-range van der Waals forces, forming clusters that per-
sist after all the liquid has evaporated and may be observed
by optical and scanning electron microscopy. Under certain
conditions of fiber geometry and stiffness, the clusters formed
could be primarily tetramers composed of four fibers meet-
ing at the tips. The tetramers were arranged in highly regular
arrays, with large domains (spanning several lattice lengths)
composed of groups of tetramers ordered in a square super-
lattice of lattice constant twice the distance between fibers. A
representative SEM image of such a system after clustering is
shown in figure 1(a).

2.1 Ordering mechanism and formulation of the CSA
model

A qualitative one-dimensional mechanism for the formation
of ordered domains has been proposed12 that propagates a
breaking of the lattice symmetry into one sublattice due to
the nature of the attractive capillary forces between fiber tips.
For small displacements of the meniscus from the horizontal
plane, the capillary forces are proportional to γr2/d, where
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(a)

(b)

Fig. 2 Capillary-mediated cooperative clustering. (a) illustrates the
mechanism in a one-dimensional row of fibers whose tips are drawn
together to form dimers (top view, left; side view, right). The large
dots in the top view indicate the bases of upright fibers. When the
liquid-air interface first reaches the upright fiber tips, all interfiber
forces are equal. Now suppose the random formation of a cluster
brings fibers g and h together. The tips of i and h are now further apart
than the tips of i and j; hence i experiences an imbalance of forces
(grey arrow) that induces it to cluster with its neighbor j. Now fiber
k experiences a force imbalance, and the effect of the initial cluster-
ing of g and h thus cascades down the lattice. (b) extends the picture
to tetramer formation in two dimensions (top view). Representative
first through fourth neighbor squares or “plaquettes” relative to the
nucleating tetramer are indicated by numbers 1–4. Due to the for-
mation of a tetramer, the four highlighted pairs of fibers experience a
force imbalance. As shown for the top pair, there is a resultant force
on each fiber due to capillary attraction with the nearby fibers and
tetramer (whose fibers perturb the ethanol-air interface further away
compared to the unclustered fibers). This increases the probability of
tetramer formation at the ‘A’ position (third-nearest neighbor), and to
a smaller extent at the ‘B’ positions (fourth-nearest neighbors).

γ is the surface tension of the ethanol-air interface, r the ra-
dius of the fibers and d the distance between fiber tips at the
meniscus.23 The cooperativity in cluster formation arises as a
result of the inverse relationship between interfiber distance d
and capillary force between fiber tips. Figure 2(a) illustrates

this mechanism. If a dimer nucleates due to an imperfection
or instability (such as a nonuniformity in the rate of evapora-
tion of the ethanol, or slight variations in the spacing of the
fiber tips when they encounter the ethanol-air interface), that
event induces a fiber to buckle or bend, and the fiber to the
right of the dimer then experiences a net force towards its own
neighbor on its right which is closer to it than the fiber par-
ticipating in the dimer on its left. Thus, the initial dimeriza-
tion induces the fiber to form a new dimer with the fiber on
its right. This cascade then continues, propagating a chain of
dimers with periodicity 2a. To extend this picture to two di-
mensions, note that the formation of a tetramer has the biggest
effect on four pairs of neighboring fibers in the four cardinal
directions. For instance, consider the highlighted pair of fibers
in figure 2(b). Due to the force imbalance induced by the ini-
tial tetramer, the pair moves toward the fibers to its north, in-
creasing the probability of forming a tetramer in position ‘A’
which is a third-nearest-neighbor, or 3NN, position relative to
the formed tetramer. However, each destabilized fiber also has
an enhanced probability of forming a tetramers at the two po-
sitions marked ‘B’, the 4NN positions relative to the formed
tetramer. Hence the effect of the formed tetramer on the fibers
closest to it is fully captured if we include both 3NN and 4NN
enhancement in tetramer formation. We would expect the ef-
fect to be weaker for 4NN tetramers, but to increase when the
number of 3NN or 4NN neighbors is increased as more fibers
are perturbed by force imbalances. (Note that tetramers can-
not form at NN or 2NN positions due to a lack of a complete
set of four upright fibers. Also, the absence in the experimen-
tal patterns of adjacent pairs of dimers suggests that any dimer
formed near an initial tetramer immediately forms a more sta-
ble tetramer configuration with the next pair of fibers if it is
available, giving rise to a 3NN or 4NN cluster. Hence we do
not include the possibility of dimer formation induced by a
tetramer in neighboring fibers.)

Thus the formation of ordered domains occurs in the fol-
lowing way: random instabilities nucleate lone tetramers in
the lattice of initially upright fibers at some background rate.
Once a tetramer is formed, the nature of capillary interactions
enhances the rate at which tetramers are formed at 3NN and
4NN positions near it. The 3NN enhancement tends to be
stronger, giving rise to the formation of ordered domains of
tetramers that grow from different nucleating sites. Nucleation
of a 4NN tetramer at the edge of a growing domain disrupts
its growth, instead starting a domain belonging to a different
sublattice. Once tetramers are formed, they do not unbind.

Note that formation of tetramers on the square lattice of
fibers is equivalent to the deposition of single particles on sites
of the dual square lattice (which is the lattice formed from the
centers of the plaquettes formed by the fiber lattice, or equiva-
lently the fiber lattice displaced by a/2 in both the x and y di-
rections). Hence the irreversible process of tetramer formation
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as described above is equivalent to a cooperative sequential
adsorption process of particles that occupy sites on a square
lattice with NN/2NN exclusion and 3NN/4NN enhancement
of deposition. The initial state of upright fibers (no tetramers)
is equivalent to an empty initial lattice for particle deposition.
The rate of deposition at each site at any instant in time is de-
termined by the previously deposited particles (if any) at 3NN
and 4NN positions, or is equal to the rate of random or bare
nucleation if there are no such deposited neighbors. The final
state after all the ethanol has evaporated, when all fibers are
clustered except those that do not have enough neighbors to
form tetramers, corresponds to a state of jamming or satura-
tion for adsorption on the dual lattice.

2.2 Choice of CSA model rates

To complete our model, we must specify the local-
environment-dependent rate of adsorption of tetramers at
empty sites. The transformation of a group of four upright
fibers to a tetramer happens in less than a hundredth of a
second,24 practically instantaneous over the time scale of the
clustering of the entire sample (roughly a minute). We assume
that the formation of a tetramer at a particular site on the (dual)
lattice is a stochastic process with a waiting time that is expo-
nentially distributed with a mean time τ , which depends on
the geometry of the fibers, the surface and bulk properties of
the fiber material, the surface tension of the evaporating liquid
and the level of the ethanol-air interface, as well as the con-
figuration of fibers and/or tetramers at nearby positions. The
rate of formation (adsorption) at the particular site is then 1/τ .
We do not attempt to calculate these rates microscopically for
different local environments but treat them as parameters that
we extract from a particular experimental realization by fitting
to simulation results.

Even if we restrict ourselves to 3NN/4NN effects of pre-
viously formed tetramers, there are several different rates of
adsorption to an empty site based on different possible con-
figurations of previously adsorbed tetramers around it. For
instance, there are five different configurations involving one,
two, three or four tetramers adsorbed at 3NN sites that are
not superimposable via rotations, and several more indepen-
dent configurations when considering all possible combina-
tions of adsorbed 3NN/4NN tetramers allowed under the ex-
clusion rule. To reduce the number of independent parameters
in the model, we make the simplifying assumption that the
adsorption rate k(i, j) at any site is a function only of the num-
ber of tetramers adsorbed at 3NN and 4NN positions (i and j
respectively) and not their spatial arrangement around the site.

The functional dependence of the rate on i and j (which, of
course, take only non-negative integer values) is motivated by
the observation of long unbroken domain walls along both lat-
tice directions, which suggests that individual domains grow-

ing from different nucleation sites are largely rectangular in
shape when they encounter one another. Let us focus initially
on the stronger 3NN cooperativity, ignoring any dependence
of the rates on j so that k(i, j) ≡ ki. Then k0, k1 and k2 rep-
resent respectively the rates of nucleation of a new domain,
beginning of a new row at the edge of a growing domain,
and growth of an incomplete row at the edge of a domain
by formation of a tetramer at either end of the row. The ra-
tio k1/k0 determines the average size to which domains grow
before they encounter other domains and stop, while k2/k1
determines the size until which a growing domain remains
rectangular.∗ Evans and Nord21 have shown that multiplica-
tive rates that satisfy k0 : k1 : k2 = 1 : α : α2 with α > 1
give rise to domains that maintain their rectangular shape un-
til saturation is reached in the adsorption process. In contrast,
a weaker arithmetic increase in cooperativity with i such as
k0 : k1 : k2 = 1 : α : 2α would lead to patterns with irregu-
lar domain walls as domains do not maintain their rectangu-
lar shape. Motivated by these observations and the experi-
ments themselves, we choose multiplicative rates that inde-
pendently grow with i and j: k(i, j) = k0α iβ j, where α and
β are the cooperativity parameters associated with 3NN and
4NN tetramers respectively. This simplified form has several
advantages: it reduces the number of parameters to two while
retaining the desired properties of two cooperativity levels, co-
operativity that increases with number of adsorbed neighbors,
and support for rectangular domains; the levels of 3NN and
4NN cooperativity may be independently varied; and the sim-
ilarity with (one-parameter) multiplicative rates allows a com-
parison with models that have been previously studied. We
do not propose that the actual microscopic rates in experiment
follow this choice of rates, but rather that this simplified choice
reflects the local environment dependence of the actual rates
sufficiently well to recreate key features of the patterns seen in
experiment — particularly the relative influence of 3NN and
4NN cooperativity. As we shall see, a large number of exper-
imental features can be understood upon adjusting just these
two parameters.

3 Simulation results

We study the proposed CSA model using Monte Carlo simula-
tions, described in brief in Appendix A. The simulations were
carried out on 400x400 lattices, with results averaged across
100 runs for each (α,β ) combination.

∗The time taken to complete an edge on a rectangular domain with edge length
m is tc ∼ m/k2; in that time, the rectangular shape would be spoiled if a new
edge is begun before the whole string of m tetramers is added to complete the
growing edge. This happens ∼mk1tc ≈m2k1/k2 times; hence the rectangular
shape of the domain can be maintained only for m2k1/k2 . 1 i.e. m .

√
k2/k1.

Discussed in Ref. 21.
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Fig. 3 Dependence of saturation coverage, θ∗, on cooperativity pa-
rameters α and β in the CSA model (simulation). The top figure
highlights the α-dependence when β is kept constant and vice-versa
on the bottom. The lines are guides to the eye.

3.1 Mean coverage at saturation

The coverage θ at any point during the adsorption process is
the fraction of filled sites. The saturation coverage θ ∗ is the
coverage when no further particles can adsorb. The maximum
possible coverage is achieved when the entire lattice consists
of one single domain, in which case θ ∗ = 1/4 (the NN and
2NN exclusion allows at most a fourth of the dual lattice to be
covered in tetramers, all on one sublattice).

The saturation coverage is expected to increase with the co-
operativity, because deviations from the maximum possible
value occur only when domains with different nucleating sites
coalesce. A higher rate of tetramer formation near previously
formed tetramers (compared to nucleation of lone tetramers)
ensures that the dual lattice is filled with fewer domain walls;
i.e. higher values of α and β give rise to higher values of
saturation coverage, as seen in figure 3.

(a) (b) (c)

Fig. 4 Domain walls between tetramer domains. (a) and (b) depict
Type I domain walls that leave behind upright fibers (depicted by
dots) which are not part of any cluster. On the dual lattice, two empty
vertical rows separate the domains. The domain on the left in (a)
belongs to sublattice 1 (if numbering begins from the top left as in
figure 1(b)) while the domain on the right belongs to sublattice 2.
In (b), the domain boundary is between domains on sublattice 1 and
sublattice 3. (c) depicts a vertical Type II domain wall (dashed line)
that does not leave behind any unclustered fibers. The domains are
separated by only one row of empty sites on the dual lattice. The
boundary is between a domain on sublattice 1 and one on sublattice
4. There are, of course, horizontal analogs of all three types of wall.
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Fig. 5 A typical result of the CSA process run to saturation has a
mixture of Type I and Type II domains in both the horizontal and
vertical directions. “Zig-zag” walls are occasionally seen which may
be considered a combination of horizontal and vertical sections.

3.2 Domain sizes, chord lengths and domain wall densi-
ties

We have already defined domains as groups of particles (i.e.
tetramers) connected to each other by a network of 3NN
bonds. Domains belonging to different sublattices meet in do-
main walls that also run along the principal lattice directions.
As figure 4(a–c) shows, there are two types of boundaries be-
tween domains that occur at saturation: boundaries involving
free-standing single fibers that do not have enough neighbors
to form tetramers (Type I) and boundaries that do not have
such freely standing fibers (Type II). As a result of the CSA
process, patterns with several domains meeting in boundaries
of either type that primarily follow the principal directions of
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the lattice are generated (figure 5). “Zig-zag” domain walls
that follow diagonal directions in the lattice are rare because
of the Arrhenius choice of rates.†

Once the different domains in the simulation result and
the domain boundaries between them have been identified,
ensemble-averaged measures of the domain size and the do-
main boundary lengths may be obtained. For a given simu-
lation run, if ns is the number of domains with s particles in
them, we define the average domain size sav = ∑sns/∑ns. We
also consider the statistics of adsorbed particles on a row-by-
row or column-by-column basis. Defining a chord as a con-
tiguous string of particles connected by 3NN bonds in the ver-
tical or horizontal direction of the lattice, we may also mea-
sure the average chord length mav = ∑mnm/∑nm where nm is
the number of chords of length m. These are all measures of
domain size that have been used in previous studies.16,20

We also define the domain wall densities ρ1 and ρ2 of type I
and type II domain boundaries respectively as the total length
(in lattice units) of each domain wall type at saturation divided
by the number of fibers in the lattice. Zig-zag domain walls
are broken up into vertical and horizontal sections which con-
tribute to the domain wall densities as well.

Figures 6, 7, 8 and 9 summarize the dependence of these
measured quantities on α and β . The effects of the two levels
of cooperativity considered are different on the measures of
domain size. Consider an already adsorbed particle M at the
edge of a growing domain. The 3NN cooperativity enhances
the adsorption of particles that belong to the same domain as
M. Hence increased 3NN cooperativity, quantified by a larger
value of α , corresponds to larger domains. In contrast, the
effect of 4NN cooperativity is to enhance the rate of forma-
tion of particles that belong to a different sublattice than that
occupied by M. This disrupts the growth of the domain by
effectively nucleating a new domain on a different sublattice,
giving rise to a Type II domain boundary shown in figure 4(c).
Hence increasing the level of 4NN cooperativity, β , gives rise
to smaller domains. This is seen in the measures of average
domain size and average chord length from simulation, fig-
ures 6 and 7. From this argument, increasing β should also
increase the density of type II domain walls, as confirmed in
figure 9. The density of type I domain walls is essentially the
density of unclustered fibers and thus closely related to the
saturation coverage (increased θ ∗ should correspond to a fall

† The asymptotic size of a single growing domain in an otherwise empty lattice
is circular for Arrhenius-type rates. However, at its initial stages of growth
the domain is rectangular since rows fill up quickly for Arrhenius rates. If we
ignore 4NN cooperativity for the moment, Evans and Nord 21 have shown that
growing domains retain their rectangular size up to a linear size of order α1/2

which also turns out to be the typical size a domain grows before it encounters
another domain that nucleated independently. Thus domains do not attain
their asymptotic shape but remain largely rectangular in the saturated state.
As we shall see, the 4NN cooperativity tends to make domains even smaller
and thus preserves their primarily rectangular shapes. See also footnote on
page 5.

Fig. 6 Dependence of average domain size sav on cooperativity pa-
rameters α and β in the CSA model (simulation).

in ρ1 as fewer unclustered fibers are left at saturation). Hence
increasing α and β both have the effect of reducing ρ1 (fig-
ure 8).

A useful consequence of the competing influence of 3NN
and 4NN cooperativity on domain size is that the parameters
may be varied in tandem to increase the coverage at saturation
without simultaneously increasing the average domain size. In
previously studied models of cooperative sequential adsorp-
tion that include only one level of cooperativity (typically NN
enhancement or NN exclusion and 2NN enhancement19,20),
increasing the rate of cooperative adsorption increases both
the saturation coverage and the size of domains. In contrast,
if the system exhibits cooperativity that induces adsorption of
particles on a different sublattice as in the current model, then
increasing this rate (β in the current model) increases the sat-
uration coverage θ ∗ while decreasing the measures of domain
size, sav and mav.
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Fig. 7 Dependence of average chord length mav on cooperativity
parameters α and β in the CSA model (simulation). Note the quali-
tatively different trends.

3.3 Pair correlations

We define spatial pair correlations at saturation as C(x,y) =
P(x,y)− θ ∗2, where P(x,y) is the probability that a pair of
sites separated by the vector (x,y) in lattice units is occupied.
Here we analyze correlations purely in the x direction, C(x,0),
averaged over several simulation runs. The average x and y
direction correlations are equal by symmetry. The correlation
C(x,0) is positive for even values of the lattice separation x and
negative for odd values as a consequence of nearest-neighbor
exclusion in the tetramer model. For instance, C(1,0) =−θ ∗2

since P(1,0) = 0.

3.3.1 Dependence on 3NN cooperativity

At first we set β to 1 (no 4NN cooperativity) and vary α . The
system is then very similar to the C(2x2) adsorption model
with NN exclusion and 2NN cooperativity with Arrhenius
rates studied by Evans and co-workers20,21 for which scal-
ing arguments were developed by the authors using semi-

Fig. 8 Dependence of type I domain wall density ρ1 on cooperativity
parameters α and β in the CSA model (simulation).

deterministic domain growth models. For large α , the adsorp-
tion process resembles a deterministic nucleation and growth
process in which new domains are nucleated with a rate k0 per
empty site, following which rectangular domains grow at a
size-dependent rate αk0m where m is the number of adsorbed
particles on a growing edge of the domain. (When α � 1,
the time taken for a complete row to be added to the edge
of a growing domain, ∼ m/(α2k0), is much smaller than the
time taken for the new row to be initiated at that edge which is
roughly 1/(mαk0). The latter is thus the rate-determining step
for domain growth.) If fluctuations and edge roughening are
ignored, the only relevant quantity is the ratio of the rates of
domain nucleation to domain growth. Hence patterns gener-
ated by different values of α should be self-similar if they are
rescaled by a characteristic length ξ that gives rise to the same
nucleation to growth rate ratio for all of them. For Arrhenius
rates in the limit of large α in two dimensions, this length has
been shown to scale as ξ ∼ O(α1/2) (Ref. 21). At high val-
ues of α , the average linear dimension of the domains and the
chord length mav are expected to scale in the same fashion.
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Fig. 9 Dependence of type II domain wall density ρ2 on cooperativity
parameters α and β in the CSA model (simulation).

Fig. 10 Pair correlation C(l,0) for different values of α plotted
against the rescaled separation l/mav(α). In all cases, β = 1. mav(α)
is taken from data similar to that reported in figure 7 with β = 1.For
α > 20 the scaled correlations follow a universal form. The inset,
which plots the absolute value of the pair correlation on a log-linear
scale, shows the loss of scaling at large separations.

Fig. 11 Pair correlation C(l,0) for α = 100 and different values of β

against separation l in lattice units.

A consequence of the length scale set by the strong cooper-
ativity is that the spatial correlations should display universal
scaling on length scales O(ξ ) for large values of α . On length
scales larger than the characteristic length, a crossover to the
superexponential decay characteristic of random sequential
adsorption processes is expected.20,25 Such behavior is indeed
seen in figure 10.

3.3.2 Dependence on 4NN cooperativity

The effect of varying β while keeping the value of α constant
is shown in figure 11. As β is increased, the positive-valued
part of the correlation function (C(l = 2n,0) where n is an inte-
ger) falls. This is a result of the increased propensity for type
II domain walls to form, which break up contiguous strings
of adsorbed particles on the same sublattice in the x direction
(see figure 4(c)). On the other hand, the negative-valued part
(C(x = 2n + 1,0)) becomes more negative, because a parti-
cle in the domain on the left of figure 4(c) continues to have
vacancies at positions that are odd numbers of lattice displace-
ments along the same row into the new domain on the right.

The pair correlations in figure 11 cannot be made to overlap
by rescaling the horizontal axis. (For instance, if we rescaled
the l axis to make the positive-valued parts of C(l,0) over-
lap for β = 1 and β = 8, we can see from the figure that the
negative-valued parts of the curves would be pushed even fur-
ther away compared to the unscaled functions.) The simple
scaling of correlations seen when β was set to 1 has been lost.
In the former case, scaling was justified by considering a de-
terministic domain nucleation and growth process where the
ratio of the rates of domain nucleation to growth set the the
characteristic length scale. When 4NN cooperativity is also
included, the deterministic process is modified as follows: nu-
cleation still happens at a rate k0 per empty lattice site, and
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Fig. 12 Pair correlation C(l,0) for different values of (α,β ) chosen
such that α/β 2 = 2 in all cases. The scaling length ls(α,β ) was
chosen for each value of (α,β ) to obtain the best data collapse. Inset:
|C(l,0)| against l/ls on a log-linear scale.

rows continue to be added to the straight edge of a growing
domain at a rate mαk0 where m is the number of particles at
the edge. However, domain growth (where a row is added to
the same sublattice as the domain) now competes with the for-
mation of a new domain on the sublattice displaced by one lat-
tice step in either direction perpendicular to the growing edge,
which happens at a rate ∼ mβ 2k0. The deterministic process
thus depends on two rate ratios: the ratio of domain nucleation
to growth, which is domain size dependent but controlled by
α , and the ratio of domain growth to formation of a new do-
main at the growing edge, which equals α/β 2 for all sizes of
domains.

The pair correlations do not scale as before because it is
not possible to find a single characteristic length for rescaling
that sets both rate ratios to be equal for patterns with different
values of α and β . However, we expect that patterns with
the same value of the ratio α/β 2 may be made self-similar
by the appropriate rescaling that sets the nucleation-growth
ratio to be uniform. This is confirmed in figure 12 where pair
correlations for different values of (α,β ) but the same value
of α/β 2 have the same form upon appropriate rescaling of
the horizontal axis. Note that for each of the values of α , a
different value of β would not give a pair correlation that could
be collapsed onto the same curves. As before, the conclusions
drawn from the deterministic model are appropriate only for
large values of α where the domain nucleation and growth
picture is not completely obscured by fluctuations due to the
stochastic nature of the sequential adsorption model.

From the above discussion, we also see that the ratio α/β 2

quantifies of the relative influence of the 3NN and 4NN coop-
erativity on domain sizes. If α/β 2� 1, the 4NN cooperativ-
ity dominates, disrupting domain growth completely even for

large α because it would be much more likely for a new row
of tetramers to form on a shifted sublattice than on the same
sublattice as a previously formed row. In that situation one
would not observe large ordered domains at all, but rather see
regions of staggered parallel rows of tetramers on alternating
sublattices. The case of α/β 2 � 1 is not relevant to the mi-
crofiber clustering system (for which domains extending over
a few lattice lengths in either direction are always observed,
indicating that 3NN cooperativity is dominant) and is not con-
sidered here.

3.4 Diffracted intensity

Although one does not typically diffract matter or light waves
from the tetramer patterns studied here, Fourier analysis nev-
ertheless provides a powerful tool for uncovering subtle pat-
terns underlying tetramer formation. We define the diffracted
intensity of the dual lattice of tetramers at a wavevector q as

I(q) =

∣∣∣∣∣∑x,y e−i(qxx+qyy)n(x,y)

∣∣∣∣∣
2

(1)

where qx,qy ∈ (−π,π), n(x,y) is the occupation number (0 or
1) of the lattice position (x,y) and the sum runs over all lat-
tice positions. This quantity is closely related to the diffracted
intensity for scattering from the actual pattern of tetramers; it
is the pattern that would be obtained if every tetramer in the
pattern were replaced by a delta function scatterer at its center
(similar to the structure factor for scattering from a collection
of identical atoms). It provides information about the degree
of order in the system and the types of domains and domain
boundaries that are present.

In practice, the results of simulations and the experimental
measurements are discrete arrays of size NxN. In this case we
calculate the diffracted intensity via a discrete Fourier trans-
form of the array n(x,y) of occupation numbers. The resulting
array provides an estimate of I(qx,qy) for qx,qy taking on dis-
crete values 2πn/N where n takes on integer values between
−N/2 and N/2. Averaging the calculated patterns from sev-
eral realizations of a finite-sized simulation of tetramer de-
position at a particular (α,β ) provides a diffraction pattern
representative of that set of parameters.

A single domain is a square array of particles with a super-
lattice spacing of twice the underlying lattice. The diffraction
pattern of an infinite domain consists of delta function peaks at
q =±(π,0),±(0,π),±(π,π),±(π,−π), etc., i.e. the recipro-
cal lattice of the square superlattice of particles, in addition to
the origin. At finite cooperativity, finite-sized domains on dif-
ferent sublattices interfere to broaden these peaks in specific
ways. To understand this, suppose we start with an infinite do-
main and create a Type II domain wall running along the y di-
rection by shifting all the particles to the right of the origin up
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Fig. 13 Intensity plots of diffraction patterns from simulations for different values of α . Since the pattern is fourfold symmetric, only one
quadrant is shown but the x and y axes have been offset to reveal the shapes of the diffraction spots. The square region −π/5 < qx,qy < π/5
(dotted line) has been set to zero to emphasize the features near the edges. There is no 4NN cooperativity; i.e. β = 1 in all cases.

by one lattice position. The x coordinates of all occupied sites
remain the same in the sum in equation 1; hence the peaks at
q = (±π,0) are unaffected but the peaks at nonzero values of
qy broaden in the qx direction.‡ Analogously, Type II domain
walls in the x direction broaden the peaks with qx 6= 0 in the qy
direction. Type I domain walls have an effect of either dimin-
ishing the strength of peaks or broadening them perpendicular
to their non-zero momentum direction.

Increasing α while setting β = 1 constant (figure 13) sharp-
ens the principal reciprocal lattice peaks by reducing domain
wall densities, allowing large domains to dominate the diffrac-
tion pattern. At a constant value of α , increasing the value
of β (figure 14) increases Type II domain wall densities ex-
clusively, thus broadening the peaks at (0,±π) and (±π,0)

‡ The width of a diffraction peak in either direction is inversely proportional
to the correlation length of the pair correlation in that direction. The do-
main wall reduces pair correlations in the x direction (by dephasing rows of
adsorbed particles that extended across the entire lattice) but not in the y di-
rection, hence affecting the peak width along qx but not qy.

perpendicular to the non-zero momentum and diminishing the
peaks at (±π,±π).

4 Experimental results

To test our theoretical ideas, we conducted clustering experi-
ments on a sample of size 2 cm x 1 cm, with fibers of height
10µm and diameter 1.8µm arranged in a square array with
lattice constant 3.5µm (Sample I). Experimental details are in
Appendix B. Optical microscope images were taken of a 182
x 182 fiber area at a time, and a pattern recognition program
written in MATLAB R© (MathWorks, Inc.) was used to iden-
tify the positions of the formed tetramers on the dual lattice.
Thus a 182 x 182 lattice of empty and filled sites was obtained
from each image, the filled sites being the ones at which a
tetramer was observed. From these lattices, relevant measures
such as the coverage, domain sizes and chord lengths could
be measured which correspond exactly to the quantities mea-
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Fig. 14 Intensity plots, similar to figure 13, of diffraction patterns from simulations for different values of β . In all cases, α = 20.
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Fig. 15 A section of an experimental image (left) compared to its
interpretation in terms of tetramers on a lattice (right) within the
framework of our model. Notice especially that the hexamer (3x2)
clusters, indicated by solid arrows, have been interpreted as being
parts of a continuous type I domain boundary. Similarly, dimers that
form along another type I boundary, indicated by dashed arrows, are
interpreted as a row of lone fibers.

sured from the CSA model simulations. We imaged 43 non-
overlapping regions, and calculated pattern statistics for each
lattice. Here we report quantitites averaged across the 43 re-

gions, and the corresponding standard error of this average is
used as the error estimate.§

In the experiment, we also see clusters that do not strictly
consist of four fibers, such as hexamers (3x2 clusters). These
are primarily seen at the boundaries between ordered domains
belonging to different sublattices. We interpret these clusters
in the context of the tetramer adsorption model as follows: the
ethanol-air interface is pinned to the tips of the fibers even as
the level of the ethanol-air interface recedes below the height
of the fibers. The capillary forces between fiber tips are a
result of this pinning which perturbs the interface, and they

§ The standard error, s = σ/
√

n where σ is the estimate of the standard devi-
ation of the measured quantity and n is the number of measurements taken,
is a valid estimate of the error associated with measuring a mean quantity, as
long as the individual measurements are made from the same statistical dis-
tribution with a uniform value of σ . In practice, slight nonuniformities in the
sample, as well as spatial irregularities in the evaporation rate of ethanol, are
likely to make the cooperativity levels in each of the 43 regions slightly dif-
ferent from one another; i.e. the measurements made in each region belong
to slightly different statistical distributions. This variation is not reflected in
the standard error which is thus likely to underestimate the true errors in the
measured quantities.
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increase as the height difference between fiber tips and in-
terface increases.23 These capillary forces compete with the
elastic forces involved with bending the fibers so that their
tips touch to form clusters. When the level of the ethanol-
air interface is such that capillary forces are strong enough to
induce tetramer clustering, tetramer formation begins and pro-
ceeds until saturation; larger cluster formation does not hap-
pen because fiber tips need to be displaced by larger distances,
and higher capillary forces are needed to overcome the corre-
sponding elastic forces. If the evaporation were stopped at this
stage a pattern consisting only of tetramers and upright (un-
clustered) fibers would be observed. However, in the actual
experiments, ethanol evaporation continues until the capillary
forces become strong enough to draw some of the remaining
lone fibers toward their neighbors to form dimers (clusters of
two adjacent pillars), hexamers and larger sized clusters. Thus
we interpret these clusters as a combination of tetramers and
lone fibers when we convert the experimental images into lat-
tice occupancy data. To be consistent with this interpretation,
we translate a row of hexamers in the experiment as a row
of tetramers next to a row of unclustered fibers (rather than
randomly assigning a tetramer to one of the two positions it
could occupy in each hexamer) because such a row is most
likely to have arisen at the site of a continuous Type I domain
wall which we recreate in the lattice data. Figure 15 shows
an example of translating an experimental pattern into lattice
data.

The method of fitting the experimental results to the simu-
lations is as follows: the two-dimensional diffracted intensity
defined in equation 1 condenses ensemble-wide properties of
the generated patterns into a two-dimensional array of num-
bers. We thus compare the averaged diffracted intensity from
the experiment to that from the simulations, choosing α and β

that best fit the experimental diffraction pattern. The parame-
ters are chosen that minimize the root mean square deviation
of the diffracted intensity, weighted by the inverse of the ex-
perimental error estimate at each (qx,qy). As figure 16 shows,
such a minimum value may be extracted from the data to a
reasonable precision. For our experimental measurements, we
obtain α = 48±1,β = 2.7±0.1.

Table 1 shows a comparison between experiment (second
column) and the CSA model simulation for the optimized α

and β values described above (third column). The measured
average values of the different pattern statistics introduced
previously appear to be in reasonable agreement. Figure 17
compares the calculated pair correlation function from the ex-
periment to that of the CSA model with the chosen fit param-
eters, again showing reasonable agreement.

We can also compare the performance of the extended CSA
model to a one-parameter model with only 3NN cooperativity
and Arrhenius rates ki = k0α i for an empty site with i occu-
pied sites at third nearest neighbor positions (this is equivalent

Fig. 16 Least-squares fitting of the experimental result to simu-
lations. Each line shows the RMS value of the difference in ob-
served and simulated diffraction intensity (averaged across the two-
dimensional array) for a particular value of α while varying β . On
the top, the smallest value of of the RMS deviation decreases and
then increases upon varying α over a large range, suggesting that a
unique minimum can be found in the vicinity of α = 50,β = 3. On
the bottom, more refined parameters α = 48,β = 2.7 are seen to pro-
vide the best fit with a precision of ±1 in α and ±0.1 in β .

to the two-parameter model with β set to 1). Statistics for
the best fit obtained for α in the one-parameter model have
also been reported in table 1 (fourth column), showing that the
two parameter model performs significantly better. In particu-
lar, the absence of 4NN cooperativity leads the one-parameter
model to greatly underestimate ρ2, the density of type II do-
main boundaries which are induced by the 4NN cooperativity
mechanism. The high value of ρ2 in the experiment confirms
that the 4NN cooperativity mechanism is important in tetramer
formation.
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Quantity Experiment Two-parameter CSA One-parameter CSA
α = 48,β = 2.7 α = 41

θ ∗ 0.2258±0.0004 0.2253 0.2213
sav 20.6±0.5 23.2 29.1
mav 4.0±0.1 4.12 4.84
ρ1 0.099±0.002 0.099 0.115
ρ2 0.111±0.002 0.105 0.057

Table 1 Comparison of measured quantities from Sample I with averaged statistics of the two-parameter and the one-parameter CSA models
with parameters picked by least-squares fitting of the diffraction pattern with experiment. The simulation results are averaged over 100 instances
of a 400 x 400 lattice and the standard error associated with this average is smaller than the most significant digit reported.

Fig. 17 Comparison between the measured pair correlation of Sam-
ple I to the pair correlation function of the CSA model with α =
48,β = 2.7. Inset: Absolute value of the pair correlations on a log-
linear scale.

5 Conclusion

We have proposed a lattice sequential adsorption model of
ordered tetramer clusters of microfibers driven by capillary
forces. The newly introduced further-neighbor cooperativity
allows independent variation of lattice coverage and average
domain size: unlike previously studied cooperative sequential
adsorption models, the present model allows the saturation lat-
tice coverage to be increased without correspondingly raising
the average domain size. This independence arises because
the model admits additional domain boundaries that do not in-
clude unoccupied sites.

With a plausible model for ordered cluster formation as
judged by the comparison of the theory to experiment, we
may ask how to improve ordering in the capillary-assisted
self-organization process. Clearly, increasing the rate of co-
operative domain growth relative to random domain nucle-
ation gives rise to larger ordered domains. A low level of
the ethanol-air interface relative to the height of the fiber
tips increases the downward as well as inter-fiber-tip capillary

forces, which would induce more random nucleation events.
If we control the evaporation of the ethanol (for instance, by
controlling the ambient vapor pressure of ethanol) in such a
way that the interface spends a longer time at a height that in-
duces few tetramers to form on their own, then clustering is
more likely to be triggered among fibers destabilized by the
formation of clusters nearby than by the effect of the capil-
lary forces on upright fibers. Thus the rate of bare nucleation
of domains is reduced relative to their growth rate, and larger
ordered domains could be produced.

The 4NN cooperativity is also a factor that leads to smaller
domains. Indeed, even if domain growth arises from a sin-
gle nucleation site and further isolated single-site nucleation
is suppressed, there is always a chance that a domain belong-
ing to a different sublattice begins somewhere along the grow-
ing edges of the domain as long as the 4NN cooperativity is
significant. A second alternative to create uniform domains
is to create artificial domain nucleation sites (say, by weak-
ening or bending individual fibers as has been demonstrated
in Ref. 22) in a regular square array with each nucleation site
created on the same sublattice and the spacing between nu-
cleation sites smaller than the typical domain size observed
in an uncontrolled clustering experiment. This strategy would
enhance domains on the same sublattice and allow commensu-
rate coalescence before random single-site nucleation or 4NN
cooperativity-induced nucleation could initialize a domain be-
longing to a different sublattice.

A similar effect can be recreated along one dimension by
imposing clustering dynamics at a front that sweeps across
the sample in one direction rather than allowing random nu-
cleation and bidirectional domain growth everywhere in the
sample, as has been previously recognized in Ref. 13. This
bias can be achieved, for instance, by performing the cluster-
ing on a tilted sample. Due to the effect of gravity, the wetting
layer retreats in one direction as the ethanol evaporates, and
at any moment clustering happens only in a few horizontal
rows near the retreating edge where the wetting layer is at its
thinnest. Domain growth along the horizontal strip happens
very quickly under 3NN cooperativity, following which the
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Fig. 18 Single simulation result for (left) CSA with α = 40,β = 2 (left) compared with (right) a simulation with the same parameters in which
clustering happens only in a strip three rows wide that is swept across the lattice from top to bottom to mimic the effect of an evaporation front
(see text). There are far fewer domain boundaries in the row-by-row simulation on the right, and they tend to lie along the vertical axis.

domain edge acts as a template for clustering in the next un-
clustered row. This leads to extended domains in the direction
of propagation of the clustering front (top to bottom), while in
the perpendicular (horizontal) direction domains are broken
up by 4NN cooperativity and random nucleation. A pattern
resulting from a simulation of such a mechanism is shown in
figure 18.

Finally we remark that this work could be relevant
to future studies of various self-organization processes as
well as sequential adsorption. For example, this model
could be used to describe nonequilibrium adsorption of a
molecule/complex/particle/DNA tile that has a square/cross
symmetry with the neighboring corners/ligands/arms possess-
ing either opposite charge, or A,B,A,B recognition sites. Then
the attachment of the next particle is mostly enhanced at the
NN position where a bidentate junction is formed, but it will
be also enhanced (but to a lesser degree) at the 2NN posi-
tion where a monodentate junction is formed. Again, we ar-
rive at double-level cooperativity in adsorption. The differ-
ence is that there will be no NN/2NN exclusion, but instead
NN/2NN enhancement; otherwise, the model is largely the
same. Abstraction of complex processes to lattice-type mod-
els that do not focus on microscopic details has been used
with success to describe self-assembly of nanoparticles26 and
vesicle formation27 among other processes; here we use an
out-of-equilibrium lattice process to study a microscale self-
organization process. The two-parameter sequential adsorp-
tion model we have developed could be relevant to more ‘tra-
ditional’ sequential adsorption processes of gas molecules on
metal surfaces where further neighbor interactions are signif-
icant, and also to other irreversible processes that are not ad-
sorption processes in the strict sense but nevertheless may be
illuminated using such models.

A Details of numerical simulation

The CSA process was simulated in a program written in the
C++ programming language. For each realization of the ad-
sorption process for a particular set of (α,β ) values, a two-
dimensional binary state array (0≡ “empty”; 1≡ “occupied”)
of size equal to that of the lattice being simulated was initial-
ized to zero (all positions vacant). Periodic boundary condi-
tions were used to minimize finite-size effects. Initially all
sites were assigned the same rate k0 = 1 in arbitrary units. At
each iteration of the sequential process, a site was chosen at
random for an adsorption trial. The probability of a site be-
ing chosen was set to be proportional to the rate of adsorption
assigned to it. If adsorption of a particle was allowed by the
exclusion rules, the state of that site was changed to “occu-
pied” and the adsorption rate of vacant sites at 3NN and 4NN
positions was updated using the set values of α and β . The
iterations continued until no further adsorption was allowed
by the exclusion rules. Since the evolution in time of the pro-
cess was not of interest, the simulation was sped up by pe-
riodically eliminating sites at which adsorption was excluded
from consideration as adsorption candidates so that the fre-
quency of unsuccessful adsorption attempts remained low and
the jammed state was attained quickly.

B Experimental

The microfiber array was prepared in epoxy, using a poly-
dimethylsiloxane (PDMS) mold fabricated from a silicon mas-
ter. The fabrication of the mold is described in detail in
Ref. 22. The epoxy used was UVO-114 single component UV-
initiated epoxy (Epoxy Technology, Inc.). Epoxy was poured
into the PDMS mold using a pipette and allowed to cure un-
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der a B-100 UV lamp (UVP Blak-Ray) for 20 minutes, after
which the mold was peeled off. The hardened epoxy sample
was exposed to plasma in a FEMTO plasma system (Diener
Electronic) for 20 seconds to improve its wettability. To in-
duce clustering, the sample was placed on a flat surface and
10 µl of absolute anhydrous ethanol was dropped on it using a
pipette. The ethanol was allowed to evaporate under ambient
conditions.

Optical microscope mages of the clustered microfiber sam-
ple used for pattern recognition were taken using a Leica
DMRX microscope connected to a QImaging Evolution VF
CCD camera. SEM images used for illustrations in the main
text were recorded with a JEOL JSM-6390 scanning electron
microscope.
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