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Abstract 
Biogenic single crystals with complex shapes are believed to be generated by the 
crystallisation of an amorphous precursor. Recent biomimetic experiments on the 
crystallisation of calcite via amorphous-to-crystalline transition point to the fact that 
the transformation kinetics may be controlled by the micropattern and the 
macroscopic shape of the amorphous precursor phase. Here we analyse a simple 
kinetic model, based on thermodynamic considerations, showing that the presence of 
cavities in the micropatterned precursor phase might interfere with the transformation 
process and control its kinetics. The size of the cavities couples to the total surface 
energy and, hence, to crystal nucleation and growth, while the spacing of the 
cavities, as compared to the typical diffusion path, controls the possible nucleation of 
competing crystals.  
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1. Introduction 
 
Many biological crystals are grown by the transformation of amorphous precursor 
phases [1-8]. For example, it was shown that amorphous calcium carbonate (ACC) 
transforms into calcite or aragonite in the skeletons of echinoderms and molluscs or 
that amorphous iron oxides transform into magnetite in chiton teeth. The advantage 
of this type of processing is that it apparently allows the growth of single crystals with 
very complex shapes [9, 10]. It has also been argued that amorphous precursor 
phases modify substantially nucleation process as several subcritical nuclei may 
coexist, survive and eventually coalesce within a single amorphous precursor particle 
[11-17]. Recently, it has become possible to stabilize amorphous calcium carbonate 
as a precursor of calcite crystals in laboratory conditions and to initiate controlled 
crystallization of large single crystals [17-21].  
 

One of the challenges in understanding the kinetics of this transformation is to 
rationalize the effect of the volume change between ACC and calcite, which is much 
denser. Hence, crystallisation of ACC is not possible without a considerable mass 
transport at the nano- and micrometer levels. It is quite surprising that the formation 
of a large single crystal is actually possible under these conditions. One would 
suspect that the negative volume jump from ACC to calcite would disrupt the 
crystallization front and the remaining ACC pool, making the growth of a single 
crystal difficult. Indeed, the formation of polycrystalline calcite is observed when a 
large plate-like ACC template transforms, even starting from a single artificial 
nucleation site.[18] However, when the ACC-template is pre-structured by a periodic 
array of holes in the plate-like template, a large single crystal may grow under similar 
conditions [18, 22]. As shown in Fig. 1, large single crystals with periodic arrays of 
holes occur in natural systems and can be grown in the laboratory. The size and the 
spacing of these holes seem to play a major role in the kinetics of the crystallisation 
process, since a single crystal is formed only when the spacing of the holes is 
sufficiently small. The size of the holes was observed to increase during 
crystallisation, obviously to compensate for the volume decrease from ACC to calcite. 
All these experimental observations suggested an important role of geometric 
constraints in the transformation process from an amorphous precursor to a single 
crystal, but the physical nature of this influence is still uncertain. 
 
2. Problem Formulation 

 
In this paper, we carry out theoretical investigations of the influence of 

geometric constraints on a phase transformation process with a considerable volume 
jump. The hypothesis that, perhaps, cavities in the precursor may reduce the 
mechanical stresses arising from the volume change [18] is not likely to be true, 
because the presence of holes leads to stress concentration and increases the risk of 
failure initiation, rather than preventing the disruption between the parent ACC phase 
and the crystal [23]. To avoid this, the parent phase has to be sufficiently ductile to 
allow for accommodation of the deformation without stress concentrations. The latter 
condition is fulfilled for the water-rich ACC phase, which is quite soft and deformable 
compared to calcite. Moreover, recent experiments of controlled crystallization of 
ACC show that, indeed, ACC rearranges considerably around growing crystals to 
form halos [19].  
 Here we analyse the possible influence of holes on the kinetics of the 
transformation of ACC to calcite, within a simple theoretical model. We find that the 
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presence of cavities in the micron range can inhibit calcite nucleation and promote 
the growth of a single crystal from a sufficiently large artificial nucleus. We show that 
the time required for the crystal surface to bridge the distance a between two holes, 
scales as a2, which needs to be compared to the time for nucleation of a competing 
crystal. Hence, a single-domain crystal will only form when the distance between 
holes is small enough to prevent secondary nucleation.  

The model studied is (quasi-) two-dimensional, consisting of a planar, 
perforated layer (with a large thickness d) of ACC with the starting configuration 
shown in Fig. 2. The ACC layer contains a periodic array of circular holes with radius 
ρW  and the initial radius ρ 0W , distributed in a square lattice with the unit cell 
dimension of a. During a diffusive transformation process the phase ACC transforms 
into crystalline calcite (CC), and liquid water (W). The molar fractions, molar volumes 
and molar Gibbs energies of individual phases are listed in Table 1. 
 
3. Problem Solution 
 
We assume that at the beginning of the phase transformation, a calcite nucleus 
grows to an initially very small circle around the centre with radius ρC , while the holes 
increase their radius from ρ 0W  to Wρ , in order to compensate for the decrease of the 
volume of calcium carbonate during the transformation from the ACC to the calcite 
phase. We postulate that the accommodation of the transformation strain, arising 
from significant shrinking, can be realized by the viscous behaviour of ACC. Without 
this property of the ACC, transformation stresses would accumulate at the interface 
between calcite and ACC, which must lead either to a stopping of the transformation 
or to a fracture of the specimen.  

When the calcite crystal grows from 0 to Cρ  and the holes grow from 0ρW  to 
ρW , we can write two conservation relations — one for the calcite and one for the 
water.  

• The first one expresses the conservation of calcium ions, with x being the 
molar fraction of water in ACC:   

 
2 2 2 2

0(1 ) (1 )πρ πρ + πρ − πρ
= = − = −

Ω Ω
C C C W WA

C A

M Mx x
d d

,  (1) 

where it is assumed that MA mols of the amorphous phase is being 
transformed into MC mols of calcite and that the layer thickness d remains 
roughly unchanged during the crystallization (that is, the mass redistribution is 
supposed to mainly occur within the plane of the layer and not in the third 
dimension). This equation can be transformed to  

 
2 2

0
2 1

(1 )
W W A

C Cx
ρ − ρ Ω

= − ≡ α
ρ − Ω

, (2) 

where the parameter α describes the relative volume decrease when a given 
amount of calcium atoms transforms from ACC to calcite. The quantities ΩA  
and ΩC  are the molar volumes of ACC and calcite (see Table 1).  

• The second conservation relation defines the total number MW of mols of 
water which had to leave the amorphous phase during the transformation 
process:  

 
2

1
πρ

= =
− Ω

CW A

C

M M xx
d d x

. (3) 
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The change ∆G in the total Gibbs free energy G (within the unit cell in Fig. 2) due to 
the nucleation of a calcite crystal of size ρC  is given by a sum of the contributions 
from the bulk phases and from their respective interfaces as 

 ( )( )02∆ = − + + + π ρ γ + ρ − ρ γA A C C W W C C W W WG M g M g M g d , (4)  

(for definitions see Table 1). Using relations (1) to (3), we can eliminate Wρ  in the 
expression for ∆G, and obtain: 

 
( )( )

( )

2 2 2
0 0ˆ/ 2 ,

1ˆ 0.
(1 )

C C C W W C W

A C W

C

G d g

g x g x g
g

x

∆ = −πρ + π γ ρ + γ ρ + αρ − ρ

− − −
= ≥

− Ω

 (5)  

The expression ĝ  corresponds to the decrease in molar Gibbs energy during the 
transformation. The energy difference ∆ /G d  must be positive to allow for 
crystallization. This expression neglects the change of the ACC-water interface into a 
calcite water interface on the upper and lower sides of the slab. Taking this 
contribution into account, ĝ  would have to be replaced by ( )ˆ 2 /′+ γ − γW Wg d , where 
′γW  is the surface energy calcite-water. We estimate ĝ  to be in the order of 1.3 108 

J/m3 [24]. This value is obtained by using the following thermodynamic values 
reported for calcite and the hydrated calcium carbonate mineral monohydrocalcite (as 
we do not have good thermodynamic data for the hydrated ACC): 

−/(1 ) = -1537 kJ/molAg x  and = 1/ 2x  for monohydrocalcite, Cg = -1235 kJ/mol  for 
calcite, = −307 kJ/molWg  for water at 25°C [24] and −Ω = 5 33.6910 m /molC . (Note 
that taking ikaite instead of monohydrocalcite for this estimate, one would find ĝ  to 
be in the order of 3 108 J/m3). We do not have good data for γW , but the calcite-
water interface has been reported to be in the order of ′γW  = 0.1 J/m2 [25]. Taking 

′γ − γW W  to be in the same order, then ( )2 /′γ − γW W d  will be much smaller than ĝ , for 
layer thicknesses in the micron or millimetre range. It is, therefore, sufficient to 
consider ĝ  in equation (5).  
 The analysis of this expression (5) also suggests that the presence of the holes 
adds surface energy (which depends differently on ρC  than the ĝ  term) to the system 
and, therefore, reduces the growth rate of a nucleus. The calcite nucleus will grow if 
its radius is larger than the value of ρC  that minimizes ∆G . To get a simple 
understanding of eq. (5), we first assume that the interface energy between calcite 
and ACC is much lower than that between ACC and water and, if we set γC  to zero 
in the derivative of eq. (5) with respect to ρC , one finds that the calcite nucleus can 
grow, if 

 ( )22 2 2
0 ˆ/ρ + αρ ≥ αγ = ρW C W g � . (6)  

As a consequence, an initial hole that is large enough (the critical value being 
0Wρ > ρ� ) does NOT hinder the growth of the calcite nucleus. In order to get a first 

approximation for 0ρW , we take γ ≈W  0.1 J/m2 and ˆ ≈g 1.3 108 J/m3. With a volume 
increase α being on the order of 1 (α = 0.33 for monohydrocalcite and α = 2 for 
ikaite) the order of magnitude for ρ�  is then about one nanometer. This is quite small 
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and, under such circumstances, an initial hole will not change the growth behaviour 
of the calcite nucleus. The situation would, however, be completely different in a 
setting where the ACC is stabilized (e.g. by some additive) so that the driving force 
for crystallization, ĝ , would be reduced to, say, 106 J/m3 or less. Then the critical size 
for the initial hole would be in the order of micrometers and the growth of the calcite 
nucleus would be strongly influenced by the presence of the holes.  
 
One may imagine two scenarios: 
1) 0Wρ > ρ� : Under these conditions, the initial holes in the ACC layer do not 
essentially influence the growth of the calcite nucleus (except for a slight reduction of 
the driving force ĝ ) 
2) 0Wρ < ρ� : Under these conditions, the holes in the structure are hindering the 

growth of calcite nuclei smaller than ( )2 2
0 /ρ − ρ αW� . Typically this value will be in the 

same order of magnitude as ρ� , and this means that calcite nucleation will effectively 
be suppressed, if ρ�  is in the order micrometers. Starting from a single (sufficiently 
large) nucleus, this situation might favour the growth of a single crystal during the 
crystallization of ACC.  
 To obtain some information about the transformation kinetics, one need to 
consider that water must be transported by diffusion in ACC from the site where 
calcite transformation occurs to the interfaces. This is sketched in Fig. 3. Depending 
on the distance of the transformation front to the nearest hole in relation to the slab 
thickness, the water flux will be predominantly to the hole or to the surface above and 
below. Viscous flow then drives the calcium carbonate in the opposite direction. 
Typically, the calcite crystal grows until all the calcium carbonate present in the near 
neighbourhood has been consumed. For isolated nuclei, this apparently leads to 
circular regions around each calcite crystal where ACC has been depleted [19]. In 
particular, if there are no holes in the structure, exchange is only possible with the 
upper and lower surface. However, if the a/d ratio is small enough, diffusion will be 
mostly in-plane transporting water from the transformation front into the hole. This is 
the situation considered in our model. 
 
Assuming a simplified field of diffusive flux of water consisting of two overlapping 
radial fields (see Fig. 2) and that there is no water in the calcite phase and no water 
at the hole interface (water is getting out of the solid phase at the hole), we can 
derive simple solutions for the fluxes in terms of 1/distance; specifically, see e.g. [26] 
Sect 3: 

 ρ
= ρ

Ω
C

C C
A C

xj
r

�   and  ρ
= ρ

Ω
W

W W
A W

xj
r

� . (7) 

With these fluxes, we can calculate the total energy dissipation from diffusion 
(according to [27], section 3, and App. B there) as 

 
ρ ρ

= π + π∫ ∫
2 2/ 2 / 2

/ 2 2
c W

a aC W
C C W W

C W

j jQ d r dr r dr
A A

, with = =
Ω

W
C W

A g

x DA A
R T

, (8)  

where Rg is the gas constant, T is the temperature, DW is the diffusion coefficient of 
water in ACC and the quantities Ac, Aw are the “bulk” mobilities of water. Using eq. (2) 
in rate form, ρ ρ = α ρ ρW W C C� � , the abbreviations 2 /= ρCy a , 02 /β = ρW a , and a 
renormalized time 2/WD t aτ = , we get:  
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 ( )2 2 2 2 2/ 2 ln ln( )
16

g W

A

x R TD
Q d y y y y

π
= − + α β + α

Ω
� , (9)  

where /y dy d= τ� . The kinetics of a system follows from Onsager's principle of 
maximizing the dissipation Q with the boundary condition Q G G= − = −∆� �  (for details 
on this principle see [28] and for applications on diffusion problems see [27] and later 
[29]). In the case at hand, we have for a fixed value of α  only one internal variable 
describing the system, namely Cρ  and its rate Cρ� , which can immediately be found 
by equating −G�  from eq. (5), and Q from eq. (9). Neglecting the contribution from the 
surfaces at sufficiently large times, we arrive to: ˆ/ / 2WG d D yy g− = π� � . Equating this 
with (9), leads to a differential equation in y which can be analytically integrated to 
give: 

 ( ) ( ) ( )2 2 2 2 2 2 2 2 2 21 ln ln lnK y y y y yª ºτ = + α + αβ β − + α β + α β + α¬ ¼ , (10)  

where ˆ16 /( )A gK g xR T= Ω  is a dimensionless constant. Fig. 4 shows graphs of the 
function ( )y τ  for various values of the parameters α and β.  

 
It is apparent from the growth kinetics shown in Fig. 4 that, at fixed parameters 

α and β, the time for the crystal to grow towards the next hole scales with a2 and is 
not linear in a. As a consequence, we expect that, if the distance between holes 
becomes too large, the time for the single crystal to grow becomes large compared to 
the time needed for the nucleation of other crystals. If the first crystal has grown to 
the neighbouring hole, the model can be applied again with the nucleus now being at 
the advancing crystal front. Therefore, the time for the crystal to grow over many 
holes will scale linearly with the number of holes (and not quadratically). The 
dependence on the intial size of the holes (that is, on the dimensionless parameter β) 
is weak (see Fig. 4), as long as it is large enough to overcome the surface tension 
(see the discussion after eq. 6). The dependence on the volume jump α from ACC to 
calcite is, however, important with a considerable retardation of the crystallisation 
when α gets larger.  
 
4. Discussion and Conclusion 
 

Our theoretical analysis of the transformation process of the micropatterned ACC 
to calcite shows that the existence of cavities in a slab-like amorphous precursor has 
several profound consequences for the crystallization kinetics: 

1) The cavities may act as a sink for water to compensate for the volume change 
during the crystallization of ACC into calcite. This requires, however, that the 
thickness d of the precursor slab should not be much smaller than the spacing 
between cavities, so that a/d should be in the order of unity or less. 

2) In addition, small cavities hinder the growth of calcite nuclei. In particular, if the 
driving force for crystallization is small enough and the size of the cavities are 
below a critical threshold, the nucleation of calcite is suppressed, and only one 
large nucleus may grow (eventually into a single crystal).  

3) The transformation time scales with a2 and the calcite crystal nucleus grows to 
a given size roughly as the square-root of time. This means that for large 
values of a, the nucleation rate of competing crystals from the same precursor 
might also prevent the growth of a single crystal, even if condition 2 is fulfilled.  
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These mechanistic considerations are not only in agreement with the existing 
experimental data [18], but they also add a higher level of understanding of the 
crystallization process. Indeed, for a slab thickness d of ten micrometers and a 
spacing a between holes in the same order, the formation of a single crystal from a 
single nucleus has been found experimentally (Fig. 1). When the spacing a was 
increased to 100 microns, however, polycrystalline calcite appeared [18] (in 
agreement with the fact that a/d >>1). The fact that the transformation starts and 
progresses from a single nucleation site indicates that heterogeneous nucleation is 
rather low (except at the artificial nucleus) in this system. This fact justifies the current 
modelling approach which would not be valid in a situation where heterogeneous 
nucleation (e.g. at walls or surfaces) dominates. In particular, the above analysis 
confirms the importance of geometric constraints on the transformation kinetics and 
enables a rational design of the crystallization environment and space.  It provides 
the absolute value of the cavity spacing a, of its ratio to the slab thickness d and of 
the cavity size required to optimize the probability for the growth of a large single 
crystal from an amorphous precursor. Using these parameters, one can generate 
artificial crystals of arbitrary shapes similar to the convoluted micropatterns of their 
biogenic single-crystalline counterparts. Finally, one should be quite careful, 
however, in extrapolating these considerations to single crystal formation in biological 
organisms where the amorphous precursor phase is often anhydrous [8]. In such 
situations, water diffusion can not be the controlling mechanism, but it is not unlikely 
that the diffusion of other ions or molecules stabilizing the precursor phase [30] could 
play a similar role.   
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Tables 
 
 

 bulk properties Interface properties 
Phase Molar 

fraction 
H20 

Molar 
volume 
m3/mol 

Molar Gibbs 
energy 
J/mol 

Interface 
energy 
J/m2 

Radius 
m 

Water 1 ΩW  gW 
γW ρW 

ACC x Ω ( )A x  gA 
γC ρC 

Calcite 0 ΩC  gC   
 
 
Table 1: Definition of thermodynamic quantities for the different phases (columns two to four) 
and of the interfaces between Water and ACC and between Calcite and ACC (last two 
columns).  
 



Figures and Captions 
 
 

  
 

Fig. 1. (a) Scanning electron micrograph (SEM) of a part of the skeleton of a brittlestar 
Ophiocoma wendtii (Ophioroidea, Echinodermata). The entire structure (the mesh and the 

array of microlenses) is composed of a single calcite crystal used by the organism for 
mechanical and optical functions [9]. (b) SEM of a sample micro-patterned single calcite 

crystal fabricated by transformation of an amorphous precursor. The holes were pre-existing 
in the precursor and grew during the transformation process [18].  

Bar = 100Pm and 10Pm in a and in b, respectively.  
 
 
 

 

 
 

Fig. 2: Sketch of the configuration of holes (W) and the calcite nucleus (CC) in the ACC 
plate. The holes with radius Wρ (with ρ 0W  being its initial value at the start of crystallization) 
are arranged on a square lattice with spacing a. The radius of the calcite nucleus is Cρ ., and 

the distance from the centre of the calcite nucleus and of the holes is cr  and Wr , 
respectively.   

 
 
 
 
 



 
 

 
 

Fig. 3: Water flux from the transformation front to the specimen surface.  
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Fig. 4: Plots of the nucleus diameter normalized by the lattice spacing, y, as a 
function of normalized time K τ for several values of the relative volume jump, α, and 

the initial hole diameter relative to the lattice spacing, β, according to eq. (10). 
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