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Abstract 

Perfluorinated alkylate substances (PFASs) are highly persistent and may cause immunotoxic 

effects. PFAS-associated attenuated antibody responses to childhood vaccines may be affected 

by PFAS exposures during infancy, where breastfeeding adds to PFAS exposures. Of 490 

members of a Faroese birth cohort, 275 and 349 participated in clinical examinations and 

provided blood samples at ages 18 months and 5 years. PFAS concentrations were measured at 

birth and at the clinical examinations. Using information on duration of breastfeeding, serum-

PFAS concentration profiles during infancy were estimated. As outcomes, serum concentrations 

of antibodies against tetanus and diphtheria vaccines were determined at age 5. Data from a 

previous cohort born eight years earlier were available for pooled analyses. Prenatal exposure 

showed inverse associations with the antibody concentrations five years later, with decreases by 

up to about 20% for each two-fold higher exposure, while associations for serum concentrations 

at ages 18 months and 5 years were weaker. Modeling of serum-PFAS concentration showed 

levels for age 18 months that were similar to those measured. Concentrations estimated for ages 

3 and 6 months showed the strongest inverse associations with antibody concentrations at age 5 

years, particularly for tetanus. Joint analyses showed statistically significant decreases in tetanus 

antibody concentrations by 19% to 29% at age 5 for each doubling of the PFAS exposure in 

early infancy. These findings support the notion that the developing adaptive immune system is 

particularly vulnerable to immunotoxicity during infancy. This vulnerability appears to be the 

greatest during the first 6 months after birth, where PFAS exposures are affected by breast-

feeding. 
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Introduction 

Industrial chemicals are not routinely tested for immunotoxicity, but recent evidence 

suggests that some environmental chemicals may harm immune functions, perhaps in particular 

during early development of the adaptive immune system (Dietert and Dewitt 2010; Dietert 

2014). Among recently confirmed immunotoxicants, the perfluorinated alkylate substances 

(PFASs) have been widely applied for a multitude of purposes, and due to their persistence, 

human PFAS exposures now occur globally (Lindstrom et al. 2011). Women eliminate PFASs 

via lactation (Mondal et al. 2014), and a child’s exposure in infancy is strongly affected by 

transfer via human milk (Liu et al. 2011; Mogensen et al. 2015b). With human milk being a main 

source of exposure early postnatally, serum-PFAS concentrations in infancy could potentially be 

estimated from the exposure level at birth and the duration of breastfeeding. 

Experimental evidence so far supports the possibility that early development of the 

adaptive immune system may be particularly vulnerable to PFAS exposure (Dietert 2014), but 

the U.S. National Toxicology Program recently concluded that specific immune cell 

vulnerabilities and their dependence upon developmental stages are unclear so far (National 

Toxicology Program 2016). Unfortunately, epidemiology studies of toxicant exposures in 

infancy are problematic due to the difficulty in obtaining blood samples from small children. 

In addition, immune function tests are not easily applied in epidemiological studies of 

small children. However, serum-antibody concentrations induced by routine immunizations have 

been recommended for this purpose (van Loveren et al. 1999) due to the advantage that a 

vaccination constitutes a well-defined stimulation of the adaptive immune system (Ljungman 

2013). The first vaccinations in infancy stimulate the virgin immune system, and subsequent re-

vaccinations trigger the primary repertoire and response as well as secondary responses (Capua 
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et al. 2013). The immune response against specific protein antigens (such as tetanus and 

diphtheria toxoids) thereby reflects a variety of functions, such as antigen presentation, antigen 

processing, T-cell help, B-cell activation, germinal center B-cell reactivation and B-cell 

maturation (Schatz et al. 1998). 

Recent studies relied on serum concentrations of antibodies specifically directed against 

vaccines that were administered in infancy (Grandjean et al. 2012; Granum et al. 2013), but none 

of them attempted to link the PFAS-associated decreases in antibody concentrations to past 

exposures during infancy. Because a sizable proportion of fully-vaccinated children may have 

vaccine responses that provide incomplete protection against the disease (Grandjean et al. 2012), 

PFAS immunotoxicity may be of substantial public health relevance in regard to the specific 

vaccine responses and possibly also in regard to other immune functions. 

The present study extends earlier reports on inverse associations between serum 

concentrations of PFASs and vaccine-specific antibodies in children (Grandjean et al. 2012; 

Mogensen et al. 2015a), now in a new prospective birth cohort in the Faroe Islands (Cohort 5, 

born in 2007-2009). Serum samples from ages 18 months and five years were analyzed for 

PFASs, and serum-PFAS concentrations during infancy were modeled. To increase the statistical 

power of the study, joint statistical analyses were conducted with a previous birth cohort 

(Grandjean et al. 2012), where PFAS exposures were higher. 

Methods 

Study population 

The Faroese Cohort 5 of 490 children was recruited from births at the National Hospital 

in Tórshavn, Faroe Islands, during 2007-2009 (Kim et al. 2014; Timmermann et al. 2017). A 

maternal serum sample was collected about two weeks after the expected term date. As part of 
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the government-supported health care system, Faroese children receive vaccinations against 

diphtheria and tetanus at ages 3 months, 5 months, and 12 months, and a booster at age 5 years. 

This way, the same amount of vaccine and associated alum adjuvant were applied at the same 

ages. In this population, PFAS exposures are associated with marine food contamination (Weihe 

et al. 2008), and these substances do not occur as contaminants of local drinking water (Eriksson 

et al. 2013). 

All cohort members were invited for clinical follow-up at ages 18 months and 5 years 

(before the age-5 booster), where maternal interview, physical examination of the child, and 

blood sampling took place. Detailed vaccination records were available, as were obstetrics 

information, and questionnaire information on duration of breastfeeding, past medical history 

and current health status. In order to increase the statistical power, this study included data from 

the earlier Cohort 3 (born 1997-2000), which had formed the basis of previous reports 

(Grandjean et al. 2012; Grandjean and Budtz-Jorgensen 2013; Mogensen et al. 2015a). Apart 

from being about eight years apart and therefore differing in exposure levels and profiles 

(median concentrations of PFHxS, PFOS, PFOA, and perfluorodecanoate (PFDA) were lower in 

Cohort 5, while the concentrations of perfluorononanoate (PFNA) were slightly higher compared 

to Cohort 3), the two cohorts are highly similar, and methods were virtually identical (Cohort 3 

sampled maternal blood in late pregnancy) (Dalgard et al. 2016; Timmermann et al. 2017). 

The study protocol was approved by the Faroese ethical review committee and by the 

institutional review board at Harvard T.H. Chan School of Public Health. Written informed 

consent was obtained from all mothers. 
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Immunotoxicant exposures  

The PFAS concentrations were measured in all serum samples by online solid-phase 

extraction followed by high-pressure liquid chromatography with tandem mass spectrometry 

(Haug et al. 2009; Grandjean et al. 2012). The analyses quantified the five major PFAS, i.e., 

perfluorohexanesulfonic acid (PFHxS), PFOA, PFOS, PFNA, and PFDA. Within-batch and 

between-batch imprecision levels (coefficients of variation) for all five PFASs were < 3% and 5-

6%, respectively, in agreement with excellent results obtained in regular comparisons organized 

by the German Society of Occupational Medicine. 

As developmental exposure to polychlorinated biphenyls (PCBs) can also reduce 

vaccine responses (Heilmann et al. 2010), this study also measured maternal serum-PCB concen-

trations and used the sum of the three major congeners as an indicator of the total PCB exposure 

(Grandjean et al. 2012). 

Vaccine antibodies  

Focus was maintained on tetanus and diphtheria, as these toxoid vaccines trigger immune 

system responses involving both T- and B-cells (Schatz et al. 1998). Serum concentrations of 

IgG antibodies were again measured by the Danish vaccine producer (Statens Serum Institut 

[SSI], Copenhagen, Denmark) using an enzyme-linked immunosorbent assay for tetanus 

(Hendriksen et al. 1988), while diphtheria antibodies were measured using a standard Vero cell-

based neutralization assay employing two-fold dilutions (Miyamura et al. 1974). For both assays, 

calibration was performed using international and local standard antitoxins. We used the cut-off 

limit of 0.1 IU/mL for both vaccine antibodies, as recommended by the SSI, to determine 

whether antibody concentrations could be considered protective. 
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Statistical methods 

Due to skewed distributions, antibody concentrations and serum-PFAS concentrations 

were log-transformed (base 2) before entering the models. We first applied standard multiple 

regression analyses, where log-transformed PFAS concentrations at different ages were included 

as independent variables one at a time. More advanced models relied on structural equations 

(Mogensen et al. 2015a). All analyses were adjusted for age and sex. Joint models were 

developed for the combined data that also included the data from Cohort 3 (Grandjean et al. 

2012), where cohort identity was included as an additional covariate that was allowed to interact 

with sex, age and PFAS concentrations. Effects were expressed as the relative change in the 

antibody concentration associated with a doubling in the PFAS concentration. In sensitivity 

analyses, it was tested whether cesarean section (N = 63) played a role, and likewise possible 

effects of prenatal PCB exposure and duration of breastfeeding were considered. 

Because previous results on Cohort 3 showed that PFAS concentrations in childhood 

depended on the duration of breastfeeding (in months) (Mogensen et al. 2015b), early postnatal 

serum-PFAS concentrations were modeled from their dependence on the duration of 

breastfeeding in a piece-wise linear model: 

log PFASi,a = µ + α exclusivei,a + β partiali,a + γ nomilki,a + Ui + εi,a,                (1) 

where log PFASi,a is the log-transformed serum concentration of child i at age a, while 

exclusivei,a, partiali,a, and nomilki,a indicate the number of months that the child was exclusively 

breastfed, partially breastfed, and not breastfed at all by age a. The variable Ui accounts for 

within-child correlation, i.e., the fact that a child above the mean at one time-point will also tend 

to be higher at other time points. The last term εi,a is a random measurement error. So, at birth, 

the log transformed serum concentration is given by the intercept (µ + Ui), which is allowed to 
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be specific for each child. During the period of exclusive breastfeeding, the log-transformed 

concentration is assumed to change by a slope of α. Likewise, during partial breastfeeding the 

slope is β, and after weaning, the slope is γ. This model was fitted to the data from the two 

cohorts separately, and a joint model was then fitted under the assumption that breastfeeding 

effects were homogeneous while allowing the serum-PFAS concentration (µ) to depend on 

cohort. This part of the model allows, in principle, a prediction of the serum-PFAS concentration 

at any given age, based on the breastfeeding history up to that age. Estimated concentrations for 

age 18 months were then compared with measured serum concentrations at that age. 

A second part of the structural equation model links the exposure to the vaccine 

antibody concentration at age 5 using a linear regression similar to the standard models used for 

observed exposures, i.e., 

log antibodyi = θ0 + θ1 log PFASi,a + θ2sexi + θ3age60i + εi                                   (2)  

where age60i is the child’s age (months) at the 5-year examination. In this model, we estimated 

the effect of a doubling of the exposure at ages 3, 6, and 12 months.  As in the regression 

analyses, the calculations allowed for differences between cohorts by allowing the intercept and 

the effects of the covariates (age and sex) to depend on cohort. We focused on the two major 

PFASs that showed the strongest associations for prenatal exposures. 

The calculations were carried out for the two cohorts separately and jointly. As maternal 

serum in Cohort 5 was not obtained at childbirth, sensitivity analyses were carried out to assess 

whether the number of days between parturition and blood sampling for PFAS analysis affected 

the estimated relation between breastfeeding and the child’s PFAS-concentrations. This was 

done by changing model (1) for the concentration at birth (a = 0) so that it also depended on the 

interval (days) between childbirth and blood sampling, as well as a covariate indicating whether 
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the child was breastfed, and an interaction term. This way, allowance was made for the 

possibility that maternal serum-PFAS concentrations measured post parturition may have been 

affected by changes in distribution volume or transfer of PFASs from mother to child via 

lactation. The algorithm also allowed for a possible beneficial effect of breastfeeding on the 

child’s antibody concentration, as an additional covariate in model (2) indicated whether the 

child had been breastfed for at least 6 months. 

Regression analyses were conducted using SAS version 9.4 (SAS Institute, Inc. Cary, 

NC), while structural equation models were fitted using the R software, the lava package. 

Results 

A total of 381 children (77% of 495 cohort members) participated in the age-5 

examinations, and 370 (97%) of these had also participated at age 18 months. The characteristics 

of the 349 children who provided sufficient serum for analyses at age 5 and the 275 children who 

additionally provided sufficient serum for analyses at age 18 months are shown in Table 1. 

PFOS was by far the most prevalent PFAS in Cohort 5 with a median age-5 serum 

concentration of 4.7 ng/ml. PFOS and PFOA concentrations decreased from age 18 months to 

age 5 years (Table 1). Moderate correlations were observed between the concentrations at ages 

18 months and 5 years of the same PFAS (r up to 0.7 after log transformation), though somewhat 

stronger between the different PFASs at each age (r up to 0.9 at age 18 months and up to 0.8 at 

age 5 years). The close correlations prevented meaningful adjustment for concomitant PFAS 

exposures. In regard to the antibody concentrations, they showed clear decreases from age 18 

months to the (pre-booster) examination at age 5 years (Table 1). At age 5, 152 (44%) children 

had antibody concentrations lower than the protective level of 0.1 IU/mL for diphtheria and 126 

(36%) for tetanus. 



 
 

10 

Multiple regression analyses showed inverse associations between serum-PFAS 

concentrations and antibody concentrations in most analyses (Table 2). In Cohort 5, the strongest 

inverse associations were found for tetanus, especially in regard to prenatal PFAS exposures. For 

all three sets of serum analyses, PFOA showed the strongest associations with lower tetanus 

antibody concentrations at age 5. Little difference occurred between the cohorts, and joint 

analyses again revealed clear inverse associations for PFOA. In regard to prenatal exposures, 

both PFOS and PFOA showed clear inverse associations with antibody levels, and inclusion of 

the interval between childbirth and maternal blood sampling in Cohort 5 did not affect the 

results. Cross-sectional comparisons in the joint analysis at age 5 showed inverse associations 

also for PFNA and PFDA, though in regard to diphtheria only. The PCB concentration in 

maternal pregnancy serum correlated poorly with the child’s serum-PFAS concentrations (r 

between 0.0 and 0.3), similar to previous results (Grandjean et al. 2012), and adjustment for 

developmental PCB exposure had no appreciable effect on the associations for the PFASs. 

Likewise, adjustment for cesarean section did not substantially affect the results. 

Duration of breastfeeding is closely associated with the child’s postnatal PFAS-

concentrations (Table 3), even for PFHxS, but differences between cohorts 3 and 5 were minor. 

Serum-PFAS concentrations during infancy were then estimated on the basis of breastfeeding 

duration. Estimated serum-PFAS concentrations extended to age 18 months correlated closely 

with the measured serum concentrations in Cohort 5 at this age (Figure 1), thereby supporting the 

validity of the calculations. The predicted concentrations of PFOS and PFOA in early infancy 

tended to be inversely associated with the antibody concentrations at age 5 (Table 4), most 

clearly for PFOA in regard to tetanus, where a doubled exposure led to a decrease in the antibody 

concentration of about 30% at age 5 years. Tendencies were similar in the two cohorts, whether 
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cohort-specific or based on the joint model that assumed identical relationships between 

breastfeeding and PFAS exposure in the two cohorts. The results presented in Table 4 are 

adjusted for duration of breastfeeding, but the direct effects of breastfeeding on antibody 

concentrations tended to be weakly negative, and the impact on the regression coefficients for 

the PFASs was minor. 

Discussion 

The present prospective study aimed at exploring the role of PFAS exposure in infancy in 

regard to responses to routine childhood immunizations in terms of antibody concentrations 

measured at age 5 years, i.e., four years after the most recent (third) vaccination. While greater 

vulnerability to immunotoxicants is suspected during early maturation of the adaptive immune 

system, previous studies have not been able to elucidate this possibility, as blood samples are 

difficult to collect from healthy infants. While serum-PFAS concentrations tend to be quite stable 

in adults (Zhang et al. 2013), the concentrations in children are much more variable, possibly 

because of age-dependent changes in exposure sources (Kato et al. 2009; Lindstrom et al. 2011). 

Accordingly, our results showed only modest correlations between serum-PFAS concentrations 

at birth and at ages 18 months and 5 years, likely due to differences in the transfer via breast-

feeding (Mogensen et al. 2015b). For several industrial chemicals, breast milk is known to serve 

as an exposure pathway (Grandjean and Jensen 2004; Stefanidou et al. 2009); our observation 

that serum-PFAS concentrations in infants increase substantially with the duration of breast-

feeding is in accordance with this notion. 

In order to estimate PFAS concentrations over time, single-compartment toxicokinetic 

models have been successfully applied, e.g., to calculate past serum-PFOA concentrations after 

cessation of exposure (Seals et al. 2011) and serum-PFAS profiles in children exposed from 



 
 

12 

breastfeeding (Verner et al. 2016). Thus, the present study included both PFAS concentrations 

measured in age 18-month blood samples, and the study also utilized information on the duration 

of exclusive breastfeeding to calculate profiles of serum-PFAS concentrations during infancy. 

Such calculations assume that each child received the same daily amount of milk in 

regard to body weight and that the transfer was constant throughout the duration of exclusive 

breastfeeding without major differences in age-dependent changes in the distribution volume. 

Partial breastfeeding was taken into account, but seemed to be of negligible importance. Despite 

the reservations, the validity of the calculations is supported by the close correlation of observed 

and calculated serum concentrations at age 18 months (Figure 1). Nonetheless, the estimated 

serum-PFAS concentrations in infancy likely involve some random imprecision, thus causing a 

potential bias toward the null (Grandjean and Budtz-Jorgensen 2010) and thereby a possible 

underestimation of the impact of PFAS exposures at infancy on adaptive immune system 

functions. The close correlation seen in Figure 1 suggests that this bias is small. 

As a further consideration, while breastfeeding may transfer toxicants to the infant, it is 

considered advantageous to the developing immune system (Kramer et al. 2007). However, 

although almost all studies on benefits from breastfeeding have ignored any possible bias from 

effects in the opposite direction from immunotoxicants transferred via human milk (Grandjean 

and Jensen 2004; Grandjean et al. 2010), thereby potentially leading to residual negative 

confounding (Choi et al. 2008). As before (Grandjean et al. 2012), we were unable to detect any 

important benefit on the two antibody concentrations associated with the duration of exclusive 

breast-feeding.  

In agreement with our previous studies (Grandjean et al. 2012; Mogensen et al. 2015a), 

the present study confirmed the inverse associations with prenatal exposures for both toxoid 
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antibodies, and our findings now extend these observations by adding information on exposures 

during early childhood. Associations for diphtheria and tetanus differ somewhat, perhaps 

because the diphtheria toxoid is considered a weaker antigen than tetanus and because the 

associations may depend on relative levels of exposure as well as possible differences in age-

dependent vulnerability. Maintenance of the antibody concentrations in serum may be a 

vulnerable target, but previous studies have also documented an inverse association of serum-

PFAS concentrations with the short-term response to vaccinations both in children and in adults 

(Grandjean et al. 2012; Looker et al. 2014; Kielsen et al. 2016). Overall, these findings are in 

accordance with immunotoxic effects demonstrated in laboratory models (National Toxicology 

Program 2016) including in vitro studies of human immune cells (Corsini et al. 2012). Still, the 

detailed mechanisms involved are unclear at present. 

The adaptive immune system is at first dominated by TH2 responses, and TH1 responses 

mature during infancy, thereby allowing proper responses to routine immunizations (Romagnani 

2014). In regard to TH2-related allergy, increased odds of asthma in children were reported at 

elevated PFAS exposures (Dong et al. 2013), although this finding has not been replicated 

(Humblet et al. 2014). Our own studies (i.e., Timmermann et al. 2017) suggested that serum-

PFAS concentrations at age 5 years were associated with increased odds of asthma only among 

the children who had not yet been vaccinated against measles, mumps, and rubella (MMR), 

while the association was reversed among MMR-vaccinated children. Although inhibition of 

antibody responses, perhaps associated with increased risk of allergy development, could 

represent a change in the TH1/TH2 balance (Dong et al. 2011), the relative role of the immune 

system components is complex. The lack of clear evidence on PFAS-associated allergy may in 
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part be due to uncontrolled and variable allergen exposures and the absence of outcome variables 

that are as well-defined and standardized as are vaccine-induced antibodies. 

Our previous results show that an insufficient vaccination response may be remedied at 

least in part by an additional booster (Grandjean et al. 2016). However, while these deficient 

antibody responses do not represent an irreparable insult, the boosters may not remedy any 

additional immune dysfunctions due to PFAS exposures. Among possible consequences of 

insufficient responses to childhood immunizations could be an increased risk of infectious 

diseases other than those that the vaccines aim to protect against. Thus, increased incidence of 

common cold and gastroenteritis in 3-year-olds were recorded in relation to higher maternal 

serum PFOA concentrations during pregnancy (Granum et al. 2013), and a greater incidence of 

infection was also linked with lower vaccine antibody concentrations (Pennings et al 2016). 

Similarly, the incidence of disease with high fever in small children was positively associated 

with the mother’s serum-PFAS concentrations in early pregnancy (Dalsager et al. 2016). While 

serum concentrations of PFOS and PFOA during pregnancy were apparently not associated with 

the total hospitalization rate for infectious diseases in school-age children (Fei et al. 2010), 

quality concerns regarding the serum-PFAS analyses in this cohort (Bach et al. 2015) questions 

the validity of this report. 

The National Toxicology Program recently concluded that both PFOS and PFOA are 

presumed immune hazards for humans (National Toxicology Program 2016), while acknowledg-

ing that the epidemiological studies are unable to attribute PFAS associations to individual 

compounds. PFAS exposures in the Faroes are quite similar to those in the United States (CDC 

2015), but inter-correlations between serum-PFAS concentrations prenatally and at different ages 
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make it difficult to determine accurately the possible age-dependent roles of individual PFASs in 

regard to immune function outcomes. 

Conclusions 

As PFASs are excreted in human milk, serum concentrations in infancy can be estimated 

from serum analyses at birth and the duration of exclusive breastfeeding. Both prenatal 

exposures and estimated serum levels in early infancy showed clear inverse associations with 

antibody concentrations against two toxoid vaccines at age 5 years, while associations with 

PFAS concentrations at ages 18 months and 5 years were weaker. Given that the adaptive 

immune system undergoes crucial maturation during infancy, the results support the high 

vulnerability of the developing immune system. Thus, the present study extends the evidence on 

PFAS-associated deficient antibody responses in children and emphasizes that infants may need 

particular protection as a highly vulnerable sub-population. 
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Figure legend 

Figure 1. Serum concentrations of (A) PFOA and (B) PFOS at age 18 months, as calculated 

from neonatal concentration and the duration of breastfeeding (vertical scale) and compared to 

the measured concentration (horizontal scale). 
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Table 1. Characteristics of children who contributed serum antibody concentrations at the two 

follow-up examinations in Cohort 5. 

 
 

Age 18 months 

(N=275) 
 

Age 5 years 

(N=349) 

  n (%)  n (%) 

Sex, girls  139 (50.6)  173 (49.6) 

 

 

Median (25; 75 

percentile) 
 

Median (25; 75 

percentile) 

Age (months)  18.5 (18.1; 18.9)  60.4 (59.9; 60.9) 

PFOS (ng/ml)  7.1 (4.5; 10.0)  4.7 (3.5; 6.3) 

PFOA (ng/ml)  2.8 (2.0; 4.5)  2.2 (1.8; 2.8) 

PFHxS (ng/ml)  0.2 (0.1; 0.4)  0.3 (0.2; 0.4) 

PFNA (ng/ml)  1.0 (0.6; 1.5)  1.1 (0.8; 1.6) 

PFDA (ng/ml)  0.3 (0.2; 0.4)  0.3 (0.2; 0.5) 

Tetanus (IU/ml)  1.5 (0.5; 3.0)  0.1 (0.1; 0.3) 

Diphteria (IU/ml)  1.6 (0.8; 3.2)  0.1 (0.1; 0.3) 

Duration of exclusive breastfeeding (mo)  5 (4; 6)   

Duration of mixed breastfeeding (mo)  4 (2; 7)   
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Table 2. Change (in percent) of the pre-booster serum-antibody concentrations at age 5 years associated with a doubling of the serum 

concentration of major PFASs at three different times of examination. 

  Cohort 5    Cohort 3    Joint  
 Change 95% Cl p  Change 95% Cl p  Change 95% Cl p 
Tetanus            

At birth            
PFOS  -10.84 -28.34; 10.94 0.30  -10.09 -31.78; 18.51 0.45  -10.55 -24.63; 6.16 0.20 

PFOA  -22.25 -35.25; -6.63 0.007  -10.46 -28.04; 11.41 0.32  -17.59 -28.38; -5.17 0.007 

PFHxS  -11.31 -21.72; 0.49 0.060  -6.30 -15.05; 3.34 0.19  -8.24 -15.05; -0.89 0.029 

PFNA  -7.11 -26.59; 17.53 0.54  11.16 -8.46; 34.98 0.29  3.36 -11.02; 20.07 0.67 

PFDA -8.40 -26.27; 13.79 0.43  -2.45 -18.39; 16.61 0.79  -4.90 -17.14; 9.15 0.47 

18 months            
PFOS  -7.027 -21.63; 10.30 0.40  -8.05 -55.26; 89.01 0.82  -7.08 -21.29; 9.70 0.39 

PFOA  -16.31 -29.04; -1.31 0.034  -19.24 -59.75; 62.05 0.55  -16.47 -28.84; -1.96 0.028 

PFHxS  -2.616 -10.08; 5.47 0.51  -5.18 -51.71; 86.19 0.88  -2.65 -10.05; 5.36 0.50 

PFNA  -6.981 -21.10; 9.67 0.39  -33.79 -64.36; 23.01 0.19  -9.04 -22.43; 6.65 0.24 

PFDA  -5.780 -23.56; 16.13 0.58  -14.47 -56.88; 69.66 0.65  -6.55 -23.47; 14.09 0.50 

60 months            
PFOS  -9.076 -28.10; 14.98 0.43  -11.86 -29.79; 10.65 0.28  -10.52 -24.00; 5.35 0.18 

PFOA  -25.26 -42.63; -2.64 0.031  -13.28 -31.34; 9.54 0.23  -18.75 -31.79; -3.21 0.020 

PFHxS  -4.432 -21.26; 15.99 0.65  -6.29 -17.45; 6.38 0.32  -5.74 -15.22; 4.81 0.27 

PFNA  -10.31 -24.39; 6.40 0.21  -5.87 -21.67; 13.12 0.52  -8.28 -19.06; 3.940 0.18 

PFDA  -1.756 -16.73; 15.91 0.83  -13.55 -26.18; 1.24 0.071  -8.11 -18.03; 3.01 0.15 
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Diphtheria            
At birth            
PFOS  -14.00 -31.59; 8.11 0.20  -38.64 -54.07; -18.04 0.001  -24.47 -36.90; -9.60 0.002 

PFOA  -18.93 -33.16; -1.66 0.033  -16.24 -33.43; 5.40 0.13  -17.82 -29.11; -4.74 0.009 

PFHxS  -3.33 -15.28; 10.30 0.61  -6.41 -15.62; 3.80 0.21  -5.25 -12.66; 2.79 0.19 

PFNA  4.79 -18.21; 34.27 0.71  -14.82 -30.55; 4.47 0.12  -7.38 -20.89; 8.43 0.34 

PFDA  -3.54 -23.19; 21.15 0.76  -21.73 -35.09; -5.63 0.010  -14.86 -26.33; -1.60 0.029 

18 months            
PFOS  17.55 -0.84; 39.34 0.062  -21.21 -61.54; 61.40 0.51  15.07 -2.49; 35.79 0.096 

PFOA  4.19 -11.76; 23.02 0.63  30.49 -35.31; 163.21 0.46  5.44 -10.28; 23.92 0.52 

PFHxS  7.85 -0.38; 16.76 0.062  -12.42 -55.25; 71.43 0.70  7.54 -0.60; 16.35 0.070 

PFNA  24.43 5.72; 46.45 0.009  -35.28 -64.95; 19.48 0.16  19.18 1.72; 39.62 0.030 

PFDA  25.52 2.00; 54.48 0.032  -22.87 -60.92; 52.24 0.45  20.42 -1.29; 46.90 0.067 

60 months            
PFOS  17.17 -8.66; 50.31 0.21  -16.02 -34.01; 6.87 0.16  -1.34 -17.05; 17.34 0.88 

PFOA  18.31 -10.72; 56.78 0.24  -6.84 -27.26; 19.30 0.57  3.38 -14.16; 24.50 0.73 

PFHxS  4.26 -15.12; 28.08 0.69  4.98 -8.25; 20.13 0.48  4.77 -6.40; 17.26 0.42 

PFNA  -8.85 -23.95; 9.25 0.32  -17.70 -32.30; 0.03 0.050  -13.06 -23.86; -0.72 0.039 

PFDA  -8.99 -23.63; 8.46 0.29  -15.96 -28.91; -0.66 0.042  -12.71 -22.66; -1.48 0.028 

 



 
 

28 

Table 3. Percentage change in serum-PFAS concentrations per month during exclusive breastfeeding, partial and none. 

   Cohort 5    Cohort 3   Joint  

Exposure nursing change 95% Cl p  change 95% Cl p  change 95% Cl p 

PFOS exclusive 14.76 (13.13, 16.41) <0.001  21.03 (17.02, 25.19) <0.001  15.74 (14.24, 17.26) <0.001 

 mixed   6.32 (5.29, 7.37) <0.001    3.26 (0.32, 6.29)   0.030    5.99 (5.00, 6.98) <0.001 

 none  -0.07 (-0.50, 0.36)   0.75  -0.71 (-1.77, 0.35)   0.19   -0.2 (-0.60, 0.19)   0.31 

PFOA exclusive 16.69 (14.82, 18.60) <0.001  24.05 (19.35, 28.93) <0.001  17.78 (16.05, 19.54) <0.001 

 mixed   7.22 (6.04, 8.41) <0.001    5.08 (1.58, 8.71)   0.004    7.01 (5.88, 8.14) <0.001 

 none   0.8 (0.30, 1.29)   0.002    1.31 (0.04, 2.59)   0.043   0.77 (0.31, 1.23)   0.001 

PFHxS exclusive 23.91 (19.83, 28.12) <0.001   -2.95 (-8.46, 2.88)   0.31  20.56 (16.68, 24.56) <0.001 

 mixed   2.25 (-0.07, 4.61)   0.057  -11.54 (-16.72, -6.04) <0.001    2.1 (-0.19, 4.45)   0.073 

 none -7.91 (-8.83, -6.98) <0.001  -16.82 (-18.70, -14.90) <0.001  -7.48 (-8.38, -6.56) <0.001 

PFNA exclusive 13.77 (12.05, 15.51) <0.001  20.15 (15.82, 24.65) <0.001  14.55 (12.96, 16.16) <0.001 

 mixed   8.55 (7.43, 9.69) <0.001    4.61 (1.37, 7.95)   0.005    8.17 (7.09, 9.25) <0.001 

 none   0.91 (0.45, 1.37) <0.001   -1.29 (-2.44, -0.12)   0.030    0.66 (0.24, 1.09)   0.002 

PFDA exclusive 11.5 (9.83, 13.19) <0.001  14.51 (8.98, 20.32) <0.001  11.45 (9.85, 13.08) <0.001 

 mixed   9.64 (8.51, 10.78) <0.001    5.03 (0.73, 9.51)   0.021    9.49 (8.38, 10.61) <0.001 

 none   4.21 (3.73, 4.69) <0.001    0.29 (-1.24, 1.86)   0.71    4.05 (3.58, 4.51) <0.001 
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Table 4. Effect of doubling in predicted serum concentration of PFOA and PFOA at different ages (in months) with adjustment for  
differences in dependence on breastfeeding in the two cohorts. 

Vaccine /   Cohort 5    Cohort 3     Joint  

Exposure Age change 95% Cl p  change 95% Cl p   change 95% Cl p 

Tetanus              

PFOS   3 -20.03 (-38.88,4.62) 0.10  -24.75 (-53.37,21.42) 0.24   -21.16 (-37.60,-0.38) 0.046 

   6 -13.13 (-30.52,8.62) 0.22  -27.74 (-46.26,-2.86) 0.031   -18.81 (-32.06,-2.99) 0.022 

 12 -6.58 (-22.62,12.78) 0.48  -16.92 (-32.17,1.77) 0.073   -11.50 (-22.91,1.60) 0.083 

PFOA   3 -32.63 (-46.72,-14.82) 0.001  -23.03 (-48.45,14.94) 0.20   -30.35 (-43.20,-14.59) 0.001 

   6 -24.81 (-38.43,-8.19) 0.005  -28.17 (-45.08,-6.07) 0.016   -26.06 (-37.01,-13.20) <0.001 

 12 -16.92 (-30.11,-1.25) 0.035  -17.75 (-32.01,-0.51) 0.044   -17.31 (-27.25,-6.02) 0.004 

Diphtheria              

PFOS   3 -0.90 (-24.02,29.26) 0.95  -54.36 (-73.91,-20.16) 0.006   -15.30 (-33.08,7.21) 0.17 

   6 3.35 (-17.16,28.95) 0.77  -27.40 (-47.47,0.34) 0.052   -7.32 (-22.79,11.25) 0.42 

 12 3.65 (-13.90,24.78) 0.71  -2.70 (-22.31,21.85) 0.81   1.12 (-12.38,16.69) 0.88 

PFOA   3 -12.36 (-30.61,10.69) 0.27  -31.05 (-56.20,8.54) 0.11   -16.87 (-32.35,2.15) 0.079 

   6 -6.42 (-23.28,14.14) 0.51  -16.46 (-37.69,12.02) 0.23   -9.73 (-23.41,6.39) 0.22 

 12 -3.88 (-18.97,14.02) 0.65  2.63 (-16.87,26.69) 0.81   -1.28 (-13.54,12.72) 0.85 

 


