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Abstract 

Introduction: Perfluorinated alkylated substances (PFAS) are persistent industrial chemicals 

that have resulted in global environmental exposures. Previous epidemiological studies have 

reported possible effects on the immune system after developmental PFAS exposure, but the 

possible impact on childhood infectious disease is unclear.  

Objectives: To investigate the association between prenatal exposure to PFAS and symptoms 

of infections at age 1-4 years. 

Methods: The Odense Child Cohort is an on-going prospective study on children’s health, 

where serum concentrations of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid 

(PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDA) and 

perfluorononanoic acid (PFNA) were measured in 649 pregnant women before gestational 

week 16. Of these women, 359 reported on symptoms of infection in their child every two 

weeks for a one-year period. The association between prenatal exposure to PFAS and the 

symptoms was estimated using a logistic regression model and a negative binomial 

regression model. For the latter, the outcome was reported as an incidence rate-ratio (IRR), 

and all models were adjusted for maternal age, educational level, parity and child age.   

Results: On average, and accounting for incomplete reporting, the children experienced 

symptoms of infection 23% of the time during one year. PFOS exposure in the high tertile 

compared to the low tertile was associated with a statistically significant increased proportion 

of days with fever (IRR: 1.65 (95% CI: 1.24, 2.18), p-trend<0.001) and an increased odds of 

experiencing days with fever above the median (OR: 2.35 (95%CI: 1.31, 4.11). The latter 

tendency was also apparent for PFOA (OR: 1.97 (95%CI: 1.07, 3.62). Further, higher 

concentrations of PFOS and PFOA tended to increase the number of episodes of co-

occurrence of fever and coughing and fever and nasal discharge during the one-year study 

period. 
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Conclusion: We found a positive association between prenatal exposure to PFOS and PFOA 

and the prevalence of fever, which may be a sensitive marker of infection. This finding is in 

agreement with an immunotoxic effect of prenatal exposure to PFAS. The wider implications 

for childhood infectious disease deserve attention. 

 

Keywords: perfluorinated compounds, childhood infections, immunotoxicity, prenatal 

exposure, cohort study
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1. Introduction 

Perfluorinated compounds (PFASs) are highly persistent industrial chemicals that have 

resulted in global environmental dissemination (Lau et al. 2007). The most common types are 

PFOS (perfluorooctane sulfonic acid), and PFOA (perfluorooctanoic acid), which are 

ubiquitously present in human serum, where they show an estimated elimination half-life of 

four years for PFOA and five years for PFOS (Calafat et al. 2007; Kato et al. 2011; Olsen et 

al. 2007). They cross the placenta (Needham et al. 2011) and are released through human 

milk (Mogensen et al. 2015), thereby causing early-life exposure that may be worthy of 

concern. Due to changes in production, serum concentrations of some PFASs have decreased, 

although others have increased, including perfluorohexane sulfonic acid (PFHxS,) 

perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) (Glynn et al. 2012). 

Among potential toxic effects, developmental PFAS exposures have been linked to lower 

efficiency of routine childhood immunizations (Grandjean et al. 2012; Granum et al. 2013). 

Increased prevalence of self-reported common cold and gastroenteritis was found during the 

first three years of life in children with elevated prenatal exposure to PFOA, PFNA and 

PFHxS in utero (Granum et al. 2013). However, among 1400 members of the Danish Birth 

Cohort, hospitalization for infectious diseases such as appendicitis or pneumonia was not 

associated with maternal PFOA and PFOS concentrations in serum during the first eleven 

years of life (Fei et al. 2010). On the other hand, a recent report showed that the PFAS 

analyses in this study might have been imprecise (Bach et al. 2015), thus limiting the validity 

of this finding. A key concern in these studies is how infection is defined and reported. In 

children, fever is an almost universal sign of infection, and other causes of elevated body 

temperature are rare in temperate countries (Sullivan and Farrar 2011).  
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The aim of this study was therefore to investigate the association between pregnancy serum 

concentrations of PFOS, PFOA, PFDA, PFNA and PFHxS and fever and other symptoms of 

infections during a one-year period among children aged 1-4 years.  

 

2. Methods 

2.1. Study participants and data collection 

The participants were derived from the Odense Child Cohort. Briefly, all women living in the 

municipality of Odense who were pregnant between January 1st 2010 and December 31st 

2012 were invited to participate (a total of 6,707). They were recruited either at a voluntary 

meeting about ultrasound examinations, at their first antenatal visit, or at the ultrasound 

examination at Odense University Hospital between gestational age (GA) 10-16 weeks (Kyhl 

et al. 2015). Of the eligible women, 4,017 were informed and 2,874 (43%) agreed to 

participate. Today 2,446 singleton children are still being followed. At the time of inclusion, 

a blood sample was drawn and the participants filled out a questionnaire on general health, 

lifestyle and social factors. Questionnaires focusing on the child’s health and well-being were 

completed at age three months, 18 months and 3 years, and together with the birth records, 

these were the sources of data on co-variables. Information on maternal age and educational 

level was obtained from the questionnaire completed at the time of inclusion, while 

information on parity, smoking and child sex was derived from the birth record. Educational 

level was missing in the questionnaires for 119 women and the information was then 

retrieved from the obstetric records. Duration of breastfeeding and day-care attendance were 

reported in the questionnaire at age 18 months.  

 

2.2. PFAS measurements 

From the serum samples collected, a subset of 649 samples was analyzed for PFAS. Of these, 
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200 were selected randomly while the remaining 449 were selected based on the availability 

of information from questionnaires, birth records, and a clinical examination of the child at 

three months of age. The blood sample preparation and storage were uniform, as appropriate 

for PFAS analysis (Kato et al. 2013). After centrifugation, serum was pipetted into 

polypropylene cryo tubes and immediately frozen to -80°C and stored up to three years until 

analysis. As is standard in this field, we specifically avoided using sampling or storage tubes 

containing fluoropolymers (such as Teflon-coated materials) that could be a source of PFAS 

contamination (Berger et al. 2011). Although sample contamination or adsorption is always a 

possibility, our repeated analyses of serum samples over time as well as analyses of duplicate 

samples have shown excellent precision and have never revealed any indication of variance 

attributable to sampling and storage (Jensen et al. 2015). The serum-PFAS concentrations 

were analyzed using on-line solid phase extraction followed by liquid chromatography and 

triple quadropole mass spectrometry (LC-MS/MS) at Environmental Medicine, University of 

Southern Denmark. The quantified PFASs include perfluorooctanesulfonic acid (PFOS), 

perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic 

acid (PFNA), and perfluorodecanoic acid (PFDA). For all compounds, the Limit of 

Quantification (LOQ) was 0.03 ng/mL. Results from the first 200 samples as well as more 

detailed information of PFAS analyses have been previously published (Vorkamp et al. 

2014). 

 

2.3. Symptoms of infection in children 

In June 2014, 1,647 of the 2,547 families, who were enrolled and active in the Odense Child 

Cohort at that time, were invited to participate in a study of childhood infections in which 

symptoms of infection had to be reported by text messages every second week (26 times) 

during one year. At the time of invitation the children were between 1.0 and 3.3 years old. It 
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was not possible to invite all 2,547 due to a clerical error in the informed consent materials. 

Of the families invited, a total of 1,540 (93%) accepted to participate. 

Symptoms of infection were assessed using mobile-phone questionnaires (SMS-Track Aps, 

Esbjerg, Denmark). The participants received a text message every second Sunday and were 

asked to evaluate the occurrence of 11 symptoms during the previous two weeks. The parents 

reported every symptom with a value between zero and 14 reflecting the number of days the 

symptom had been present within the two-week period. Data on the following symptoms 

were collected: days without symptoms, fever, stuffed or runny nose, cough, wheezy or 

whistling breathing, eye inflammation, ear pain, discharge from ear, feeling unwell, diarrhea, 

blood in stool, and vomiting. All parents were provided with written information on when 

and how to report the symptoms. In the present study, we focused on fever, cough, nasal 

discharge, diarrhea and vomiting. Fever was considered the most relevant outcome for 

assessing infection, but the other symptoms were included as likely symptoms of common 

cold and gastroenteritis, which have previously been found to be associated with three of the 

five PFASs investigated here (Granum et al. 2013). Participants were instructed that a rectal 

temperature above 38.5°C was required to be certain about the presence of fever.  

The study was performed in accordance with the second Helsinki Declaration and approved 

by the regional Ethical Review Committee (Project ID S-20090130). All participants 

received written and oral information and gave their written consent. 

 

2.4. Statistical analysis 

Due to a non-normal distribution of the serum-PFAS concentrations, these were log-

transformed and reported as medians. The PFAS concentrations were examined in regard to 

relevant characteristics of the participants, and T-tests and F-tests were conducted. 
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Characteristics of participants included in the analysis were compared to those who dropped 

out using a T-test for continuous variables and a Chi2 test for categorical variables.  

The reported number of days with each symptom was summarized for all 26 periods to create 

a mean for the whole year. Since not all participants answered the 26 text messages and 

therefore did not report the presence of symptoms for all days during the whole year, the time 

at risk differed. This was taken into account by calculating the proportion of days with a 

given symptom out of the total number of days for which information on symptoms were 

provided. Further, to quantify the extent of the missing replies to the text messages, the mean 

reply rate for the 26 periods was calculated. 

The associations between the PFAS exposures and the symptoms of infection were assessed 

using regression models, and the outcomes were analyzed both as dichotomous and ordinal 

data. First, the number of days with a symptom was transformed into a binary variable 

reflecting whether or not a child’s proportion of days with a symptom during the last year 

was above or below the median proportion of days with the symptom (Model 1). These data 

were analyzed using logistic regression to obtain an odds ratio, which expresses the relative 

difference between the odds of two people who only differ in one parameter. Second, the 

number of days with a symptom was analyzed as ordinal data using a negative binomial 

regression (Model 2), since the variability in the data was greater than expected from a 

Poisson distribution. Additionally, the number of co-occurrences of two or more symptoms 

(fever and coughing or nasal discharge) within the same 14-days period during the one-year 

period was analyzed by the same approach (Model 3). Time at risk differed between 

participants and was therefore included in the model. The estimates produced by this 

approach were incidence rate-ratios, which in this study reflect the relative difference 

between the expected proportions of days with symptoms when comparing two groups 
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(Model 2) and the relative difference between the expected proportion of 14-day periods with 

co-occurrence of more symptoms when comparing two groups (Model 3). 

For both the logistic and the negative binomial regression analyses, the serum-PFASs were 

divided into tertiles, and for the negative binomial regression, a test for a linear trend across 

the exposure groups was conducted. Potential confounders of the association were found 

through review of the literature, and assessed using a directed acyclic graph (DAG) (Hernán 

and Robins 2015). Factors a priori found to be predictive of both exposure and outcome were 

considered possible confounders and included in the multivariate models. These included 

maternal age (categorical: <25, 25-29, >29 years), educational level (categorical: high school 

or less, high school + 1-4 years, high school + more than 4 years), and parity (dichotomous: 

0, >0).  

Further, all models were adjusted for child age at the beginning of the study, since age was 

expected to be associated with childhood infections and with postnatal PFAS exposure. As 

PFAS concentrations were highly correlated, mutual adjustment was not attempted.  

Since not all participants responded to the complete set of 26 text-messages, the analyses 

were repeated for those who responded to at least 25 of 26 text-messages (N=148). Finally, 

analyses were repeated after additional adjustment for maternal smoking (yes/no), child sex, 

day-care attendance (yes/no) and exclusive breastfeeding (continuous, number of weeks), 

even though PFAS exposure recently was found to be associated with decreased duration of 

breastfeeding and thus may be an intermediary factor (Romano et al. 2016; Timmermann et 

al. 2016).  

The assumptions underlying both the negative binomial regression model and the logistic 

regression model were examined and accepted. As general significance level, we used p = 

0.05; given the multiple comparisons, a Bonferroni adjusted significance level (α=0.002) was 

also considered. 
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3. Results 

Of the 1,540 families who agreed to participate in this substudy on infections, 439 had PFAS 

concentrations measured during early pregnancy and thus composed the study population. 

Eighty participants were excluded during the study period; thirty-six due to no reply within 

the first 1.5 months and 44 due to lack of response to at least four consecutive text messages 

when the study had been running for 7 months. This left 359 participants. The 80 excluded 

mothers did not differ from the participating mothers according to serum-PFAS 

concentrations, educational level and parity but were younger (data not shown). During each 

14-day period an average of 86 % (range: 79.9-92.8 %) of the 359 participants replied to the 

text message, whereas 23 % answered all text messages during the 26 periods.  

Baseline characteristics of the participants including maternal serum concentrations of PFAS 

are shown in Table 1. The mean age of the participating mothers was 30.5 (±4.4 SD) years, 

59% were nulliparous and 20% were in the highest educational group. The mean pre-

pregnancy BMI was 24.6 (±4.4) kg/m2 and 3% smoked during pregnancy. Of the children, 

54% were boys, 3.6 % were preterm and the mean birth weight was 3,557 (±540) grams. On 

average the duration of exclusive breastfeeding was 19.2 (±8.1) weeks and at age 18 months 

the majority of children were attending day-care (82%).   

The concentrations of PFOS, PFOA, PFHxS and PFNA were significantly higher in 

nulliparous compared to multiparous women. Further, the PFAS concentrations tended to 

decrease with both increasing maternal age and increasing educational level, which was 

statistically significant for both PFOS and PFOA. An increase in pre-pregnancy BMI was 

associated with lower PFDA concentrations and the same tendency was seen for the 

remaining PFAS. Finally, higher maternal serum concentrations of the compounds were seen 

when the child was older (this was opposite for PFHxS) and when the child was a boy. 
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Table 1: Maternal pregnancy median serum concentrations of PFAS (ng/mL) in the Odense Child Cohort during 
2010-2012 by maternal and child characteristics  

 Na(%) PFOS PFOA PFHxS PFNA PFDA 
Median 359(100) 8.07 1.68 0.32 0.70 0.27 
Range (min.-max)  2.36-25.10 0.32-10.12 0.02-1.03 0.21-3.64 0.10-1.67 
Maternal characteristics during pregnancy    

 Age (years)       
<25 31(8.6) 10.06* 1.90* 0.32 0.82 0.29 

25-29 123(34.3) 8.21 1.87 0.31 0.72 0.28 
>29 200(55.7) 7.52 1.50 0.32 0.64 0.26 

Missing 5(1.4)      
Pre-pregnancy BMI (kg/m2)      

 <20 31(8.6) 9.66 1.87 0.34 0.73 0.31* 
20-24.9 187(52.1) 8.13 1.68 0.32 0.72 0.28 

>25 136(37.9) 7.73 1.64 0.31 0.64 0.26 
Missing 5(1.4)      

Smoking        
Yes 11(3.1) 7.95 1.92 0.30 0.57 0.28 
No 343(95.5) 8.12 1.68 0.32 0.70 0.24 

Missing 5(1.4)      
Educational level      

 High school or less 99(27.6) 8.51* 1.87* 0.32 0.73 0.29 
High school + 1-4 years 180(50.1) 8.32 1.61 0.30 0.68 0.27 
High school + >4 years 73(20.3) 7.26 1.50 0.32 0.71 0.27 

Missing 7(1.9)      
Parity       

Nulliparous 211(58.8) 8.85* 2.01* 0.36* 0.75* 0.28 
Multiparous 143(39.8) 7.08 1.24 0.24 0.59 0.25 

Missing 5(1.4)      
Child characteristics       

 Sex       
Boy 194(54) 8.36 1.75* 0.33* 0.71 0.27 
Girl 165(46) 7.72 1.57 0.29 0.66 0.27 

Missing 0      
Age at inclusion (years)       

1 59(16.4) 7.52 1.68 0.30* 0.57* 0.26 
2 212(50.1) 8.04 1.67 0.33 0.76 0.28 
3 82(22.8) 8.43 1.74 0.22 0.62 0.27 

Missing 6(1.7)      
Attending day-care at age 18 
months      

 Yes 293(81.6) 8.21 1.71 0.32 0.71 0.27 
No 5(1.4) 8.55 1.68 0.37 0.71 0.37 

Missing 61(17.0)      
Exclusive breastfeeding 
(weeks)       

<4 112(31.2) 7.82 1.55 0.32 0.64 0.25 
4-19 103(28.7) 7.86 1.70 0.30 0.70 0.27 
>19 144(40.1) 8.34 1.70 0.32 0.71 0.28 

Missing 0      
Birth weight (grams)      

 <2500 6(1.7) 7.62 1.82 0.36 0.57 0.25 
2500-4499 334(93.0) 8.17 1.70 0.32 0.70 0.28 

>4499 14(3.9) 7.38 1.47 0.27 0.64 0.28 
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Missing 5(1.4)      
Preterm (<37 weeks)      

 Yes 13(3.6) 7.52 1.87 0.37 0.64 0.27 
No 341(95.0) 8.13 1.68 0.31 0.70 0.28 

Missing 5(1.4)      
a: For all analyses including PFHxS, N was 357,  
*: P<0.05 when comparing the PFAS concentrations in all categories of the characteristics, T-test for binary 
variables and F-test for variables with more than two categories 
 
During the one-year period, the mean number of days for which the participants reported on 

the presence of symptoms was 314.2 (42-365). The mean number of days with any symptom 

was 65.7 (0-305) and thus, the children on average experienced symptoms 23% of the time 

(65.7 days out of 314.2 days). A stuffed or runny nose was the most commonly reported 

symptom, appearing in 337 children and representing almost 16% of the time at risk, 

followed by cough (10%), which was experienced by 335 children. At least one day with 

fever was reported by 283 children and seen on 1.6% of the days at risk during the one-year 

period. Diarrhea (0.6%) and vomiting (0.4%) were rare symptoms. 

Table 2: Number of children who experienced symptoms of infection, unadjusted mean number of 
days with symptoms and mean proportion of days with symptoms 

 

Children experiencing  
symptom, Na 

Mean number 
of days (range) 

Mean proportion 
of daysb (range)   

Any symptom 354 65.7 (0-305) 23.0 (0-100) 

    Stuffed or runny nose 337 46.3 (0-291) 15.7 (0-83.1) 
Cough 335 28.8 (0-176) 9.8 (0-66.2) 
Felt unwell 267 6.5 (0-53)) 2.2 (0-17.4) 
Temperature of 38.5 degrees or above 283 4.7 (0-35) 1.6 (0-10.3) 
Wheezy or whistling breathing 98 2.1 (0-48) 1.1(0-100) 
Diarrhea 143 1.6 (0-29) 0.6 (0-14.8) 
Eye inflammation 90 1.5 (0-21) 0.5 (0-8.5) 
Ear pain 108 1.5 (0-49) 0.5 (0-18.4) 
Vomiting 178 1.1 (0-12) 0.4 (0-2.4) 
Discharge from ears 37 0.7 (0-43) 0.3 (0-25.6) 
Blood in stool 4 <0.1 (0-7) 0.01(0-2.2) 

a: The total number of participating children who experienced at least one day with the symptom during one year 
b: The mean number of days experiencing a symptom divided by the mean number of days at risk of experiencing a 
symptom 
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The adjusted results on the association between PFAS exposure and the days with symptoms 

as a binary variable below or above the median (model 1) are shown in Table 3. The results 

were similar to the results found in the crude analysis (data not shown).  

Higher serum concentrations of all PFASs tended to increase the odds of having a proportion 

of days with fever above the median, and this was statistically significant for PFOS and 

PFOA exposure in the high tertile as compared to the low tertile (IRR, PFOS: 2.35 (95% CI: 

1.34, 4.11), PFOA: 1.97 (95%CI: 1.07, 3.62)). In contrast, higher exposure to PFNA and 

PFDA generally tended to reduce the odds of having days with symptoms above the median. 

This association was statistically significant for nasal discharge. No associations were 

statistically significant at the Bonferroni adjusted significance level. 
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Table 3: Adjusted associations (ORa (95%CI)) between maternal serum concentrations of PFAS and proportion of days with symptoms of infection 
(under/above median) among 346 children  

  
Fever Cough Nasal discharge Diarrhea Vomiting 

PFOS Low (0-6.93) Reference Reference Reference Reference Reference 

N=346 Medium (6.94-10.18) 1.41 (0.81, 2.44) 1.16 (0.67, 2.01) 1.11 (0.65, 1.93) 0.89 (0.51, 1.56) 1.47 (0.86, 2.54) 

 
High (10.19-25.10) 2.35* (1.34, 4.11) 1.03 (0.59, 1.79) 1.07 (0.62, 1.85) 1.04 (0.59, 1.82) 0.78 (0.45, 1.35) 

PFOA Low (0-1.27) Reference Reference Reference  Reference Reference 

N=346 Medium (1.28-2.03) 1.55 (0.90, 2.95) 0.72 (0.42, 1.24) 1.19 (0.70, 2.04) 1.10 (0.64, 1.89) 1.05 (0.62, 1.78) 

 
High (2.04-10.12) 1.97* (1.07, 3.62) 1.01 (0.42, 1.24) 1.37 (0.75, 2.51) 0.94 (0.51, 1.74) 0.95 (0.52, 1.72) 

PFHxS Low (0-0.23) Reference Reference Reference Reference Reference 

N=344 Medium (0.24-0.37) 0.99 (0.58, 1.71) 1.04 (0.60, 1.79) 1.36 (0.79, 2.36) 1.16 (0.66, 2.02) 0.91 (0.53, 1.56) 

 
High (0.38-1.01) 1.29 (0.72, 2.28) 0.97 (0.54, 1.73) 0.76 (0.42, 1.35) 1.39 (0.77, 2.51) 0.61 (0.34, 1.09) 

PFDA Low (0-0.22) Reference Reference Reference Reference Reference 

N=346 Medium (0.23-0.31) 1.07 (0.63, 1.81) 0.63 (0.37, 1.07) 0.59* (0.35, 1.00) 0.91 (0.53, 1.56) 0.90 (0.53, 1.51) 

 
High (0.32-1.67) 1.45 (0.85, 2.49) 0.85 (0.50, 1.46) 0.61 (0.36, 1.05) 0.91 (0.52, 1.57) 0.72 (0.42, 1.22) 

PFNA Low (0-0.55) Reference Reference Reference Reference Reference 

N=346 Medium (0.56-0.81) 1.00 (0.59, 1.71) 0.74 (0.43, 1.27) 0.53* (0.31, 0.92) 0.75 (0.44, 1.30) 0.89 (0.53, 1.52) 

 
High (0.82-3.64) 1.49 (0.86, 2.59) 0.59 (0.33, 1.03) 0.55* (0.31, 0.97) 0.94 (0.54, 1.65) 0.86 (0.50, 1.48) 

Adjusted for maternal age, maternal educational level, parity and child age 
a: Odds-ratio between low exposure, and medium and high exposure, respectively  
*: P<0.05
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When the number of days with symptoms was used as the outcome (model 2), the crude and 

adjusted results were similar (data not shown) and the overall direction and size of the 

estimates were the same as when analyzing the outcome binary (model 1). However, the 

association between PFOS and fever was now statistically significant also after Bonferroni 

adjustment (Table 4). PFOS exposure in the high tertile as compared to the low tertile 

significantly increased the expected proportion of days with fever (IRR: 1.65 (95% CI: 1.24; 

2.18). There was a statistically significant linear trend across exposure groups (p<0.001), and 

the association was also present when PFOS was entered as a continuous variable; a 1 ng/mL 

increase in PFOS was associated to a 6 % increase in the expected proportion of days with 

fever (IRR: 1.06 (95% CI: 1.03; 1.09). The tendency of a reduced proportion of days with 

symptoms when exposed to higher levels of PFNA and PFDA was statistically significant at 

the 5% significance level for diarrhea when comparing PFDA exposure in the medium to the 

low tertile (IRR: 0.46 (95 % CI: 0.26, 0.81)).
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Adjusted for maternal age, maternal educational level, parity and child age 

a: Incidence-rate ratio comparing the medium or high exposure to low exposure  
*: P<0.05 
**: P<0.002 (Bonferroni adjusted) 

 

Table 4: Adjusted associations (IRRa (95%CI)) between maternal serum concentrations of PFAS and the number of days with symptoms of infection among 346 children 

  
Fever Coughing Nasal discharge Diarrhea Vomiting 

PFOS Low (0-6.93 ng/mL) Reference Reference Reference Reference Reference 

N=346 Medium (6.94-10.18  ng/mL) 1.23 (0.93, 1.63) 1.03 (0.80, 1.34) 1.22 (0.93, 1.61) 1.41 (0.79, 2.51) 1.18 (0.80, 1.74) 

 
High (10.19-25.10  ng/mL) 1.65** (1.24, 2.18) 0.88 (0.67, 1.15) 1.02 (0.76, 1.35) 1.19 (0.67, 2.12) 0.87 (0.58, 1.31) 

PFOA Low (0-1.27 ng/mL)) Reference Reference Reference Reference Reference 

N=346 Medium (1.28-2.03 ng/mL) 1.14 (0.87, 1.51) 1.02 (0.79, 1.32) 1.08 (0.83, 1.42) 1.07 (0.61, 1.89) 0.89 (0.61, 1.32) 

 
High (2.04-10.12 ng/mL) 1.12 (0.82, 1.54) 1.00 (0.75, 1.33) 1.04 (0.76, 1.41) 1.08 (0.55, 2.13) 0.95 (0.62, 1.47) 

PFHxS Low (0-0.23 ng/mL) Reference Reference Reference Reference Reference 

N=344 Medium (0.24-0.37 ng/mL) 1.07 (0.80, 1.42) 1.14 (0.87, 1.48) 1.23 (0.93, 1.61) 1.18 (0.64, 2.19) 0.91 (0.61, 1.34) 

 
High (0.38-1.01 ng/mL) 1.20 (0.89, 1.62) 1.00 (0.76, 1.31) 0.94 (0.70, 1.25) 1.71 (0.92, 3.16) 0.72 (0.47, 1.12) 

PFDA Low (0-0.22 ng/mL) Reference Reference Reference Reference Reference 

N=346 Medium (0.23-0.31 ng/mL) 0.97 (0.73, 1.27) 0.85 (0.66, 1.09) 0.85 (0.65, 1.10) 1.15 (0.67, 1.99) 0.76 (0.53, 1.11) 

 
High (0.32-1.67 ng/mL)  1.14 (0.86, 1.50) 0.87 (0.67, 1.13) 0.89 (0.68, 1.17) 0.75 (0.43, 1.31) 0.78 (0.53, 1.14) 

PFNA Low (0-0.55 ng/mL) Reference Reference Reference Reference Reference 

N=346 Medium (0.56-0.81 ng/mL) 0.94 (0.71, 1.24) 0.85 (0.66, 1.10) 0.90 (0.69, 1.18) 0.46* (0.26, 0.81) 0.74 (0.51, 1.08) 

 
High (0.82-3.64 ng/mL) 1.12 (0.84, 1.49) 0.82 (0.63, 1.07) 0.87 (0.66, 1.15) 0.74 (0.42, 1.30) 0.80 (0.54, 1.19) 
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The results of the analyses in which the symptoms were combined are shown in table 5 

(Model 3) and the tendencies were similar to those reported for the symptoms separately. 

Again, no notable differences were observed between the crude and adjusted analyses (data 

not shown). Greater exposures to PFOS, PFOA, and PFHxS tended to increase the expected 

proportion of episodes with fever and coughing. The same pattern was seen for PFOS and 

PFOA in regard to episodes with co-occurrence of fever and nasal discharge, and this 

tendency was statistically significant for PFOA exposure in the medium tertile as compared 

to the low tertile (IRR: 1.38 (95%CI: 1.03,1.86)). For PFNA and PFDA, no clear pattern was 

observed. 
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Adjusted for maternal age, maternal educational level, parity and child age 
a: Incidence-rate ratio comparing the medium or high exposure to low exposure  
*: P<0.05 
 

 
 

Table 5: Adjusted associations (IRRa (95%CI)) between maternal serum concentrations of PFAS and the number of episodes of co-occurrence of fever and coughing, and 
fever and nasal discharge among 346 children 

  
Fever and coughing Fever and nasal discharge 

PFOS Low (0-6.93 ng/mL) Reference Reference 

N=346 Medium (6.94-10.18  ng/mL) 1.16 (0.86, 1.58) 1.07 (0.78, 1.45) 

 
High (10.19-25.10  ng/mL) 1.33 (0.99, 1.80) 1.28 (0.94, 1.73) 

PFOA Low (0-1.27 ng/mL)) Reference Reference 

N=346 Medium (1.28-2.03 ng/mL) 1.22 (0.91, 1.64) 1.38* (1.03, 1.86) 

 
High (2.04-10.12 ng/mL)  1.11 (0.80, 1.56) 1.20 (0.85, 1.70) 

PFHxS Low (0-0.23 ng/mL) Reference Reference 

N=344 Medium (0.24-0.37 ng/mL) 1.14 (0.84, 1.54) 0.97 (0.72, 1.31) 

 
High (0.38-1.01 ng/mL) 1.13 (0.82, 1.55) 0.92 (0.66, 1.27) 

PFDA Low (0-0.22 ng/mL) Reference Reference 

N=346 Medium (0.23-0.31 ng/mL) 0.91 (0.68, 1.23) 0.89 (0.66, 1.20) 

 
High (0.32-1.67 ng/mL)  1.27 (0.96, 1.70) 1.18 (0.88, 1.58) 

PFNA Low (0-0.55 ng/mL) Reference Reference 

N=346 Medium (0.56-0.81 ng/mL) 0.95 (0.70, 1.27) 0.86 (0.64, 1.15) 

 
High (0.82-3.64 ng/mL) 1.02 (0.76, 1.38) 0.90 (0.66, 1.22) 
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Repeating the adjusted negative binomial regression analyses (model 2 and 3) only for those 

who replied to at least 25 of 26 text messages (N=148) showed the same overall tendency. 

Further, adjusting for duration of breastfeeding, day-care attendance, maternal smoking and 

child sex did not materially change the estimates  (data not shown). 

 

4. Discussion 

In this prospective study of 359 mother-child pairs, we found an association between higher 

maternal serum concentrations of PFOS and PFOA, and a higher prevalenc of fever during a 

one-year period among children aged 1-4 years. We observed a linear trend from the low to 

the high PFOS exposure group on the expected proportion of days with fever, suggesting a 

dose-response relationship, which was further supported by analyzing the exposure as a 

continuous variable. Additionally, PFOS and PFOA exposure tended to increase the number 

of episodes with co-occurrence of fever and cough or nasal discharge during the one-year 

period. Higher levels of PFDA and PFNA tended to decrease the prevalence of coughing, 

nasal discharge, vomiting and diarrhea, although a protective effect of PFAS exposure seems 

biologically implausible. Of the clinical outcomes investigated here, fever was assumed to be 

the most specific indicator of an affected immune system, and was also the symptom that 

showed the clearest association to PFAS exposure. Thus, fever seems to be an appropriate 

indicator to use in future studies.  

Five previous birth cohort studies have been conducted examining the adverse effects of 

prenatal PFAS exposure on clinical infectious or allergic disease (Fei et al. 2010; Granum et 

al. 2013; Kishi et al. 2013; Okada et al. 2012; Wang et al. 2011). To our knowledge no 

previous studies have obtained information about fever as such but only about infectious 

diseases, as assessed by parental questionnaire or hospital diagnosis, and their findings 

appear to be somewhat inconsistent (Fei et al. 2010; Granum et al. 2013). In a Norwegian 
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cohort study, a positive association between the maternal serum concentration of PFOA, 

PFNA and PFHxS and the number of episodes of common cold and gastroenteritis was found 

in 99 children up to the age of 3 years (Granum et al. 2013). We did not observe any clear 

associations between the exposures and the symptoms tied specifically to those diseases 

(cough, nasal discharge, diarrhea and vomiting) when analyzed separately. We did, however, 

observe a tendency of an increased prevalence of co-occurrence of both fever and cough, and 

fever and nasal discharge in children exposed to higher levels of PFOS and PFOA. This 

tendency was only statistically significant for PFOA in regard to the co-occurrence of fever 

and nasal discharge, even though PFOS, PFOA and PFNA concentrations in our study were 

higher than in the Norwegian study (median, PFOS: 5.5 ng/ml; PFOA: 1.1 ng/ml; PFNA: 0.3 

ng/ml). Part of the difference in PFAS concentrations may be due to the fact that Granum et 

al. measured PFASs just before birth, whereas we measured in early pregnancy; serum-PFAS 

concentrations are known to decrease throughout pregnancy (Glynn et al. 2012). In addition, 

in the Norwegian study, fever was not assessed, and infections were not considered 

dependent on an elevated body temperature. Finally, the validity of our findings is supported 

by the fact that information on infections was collected prospectively every second week 

during one year, as compared to retrospectively once a year in the Norwegian study. Overall, 

the two studies suggest that prenatal exposure to PFASs may be immunotoxic.  

In a Danish cohort study among 1,400 mother-child pairs, no association was found between 

prenatal exposure to PFOA and PFOS and incidence of hospitalization due to infectious 

diseases up to 11 years of age, even though PFOS and PFOA concentrations were higher than 

in the present study (mean PFOA: 5.6 ng/ml and PFOS: 35.3 ng/ml) (Fei et al. 2010).  

However, hospitalizations only occur in severe cases of infections and may depend on 

sociodemographic circumstances, whereas we studied self-reported fever and four other 

symptoms associated with infections repeatedly during a one-year period. Also, prenatal 



	

22	

exposures were previously found to affect vaccine responses at age 5 years, but not in older 

children (Grandjean et al. 2012) and hospitalization rates in children up to age 11 years may 

have been affected by unknown postnatal exposures as well as a variety of other factors.  

The findings in the present study suggest that PFASs may be able to affect the activation of 

the immune system, which seems biologically plausible. Briefly, fever arises due to 

temperature regulation in the hypothalamus after stimulation by endogenous pyrogens 

(cytokines) that are produced and released by macrophages or T-lymphocytes, when 

stimulated by bacteria or viruses. Animal studies have shown that both PFOS and PFOA 

exposure affects and possibly increases the release of fever inducing cytokines like IL-1, IL-6 

and TNF-α after stimulation (DeWitt et al. 2011; Fair et al. 2011), which might explain why 

we observed an increase in the prevalence of fever in the highest exposure groups. This is 

supported by animal studies. In pregnant mice exposure to PFOS resulted in a decrease in 

natural killer cell activity, specific IgM response, and a decrease in lymphocyte 

subpopulations (Keil et al. 2008) in the offspring. Similar studies of mice have found a 

reduced spleen weight and affected PPARs after prenatal exposure to PFOA (Abbott et al. 

2012; Hines et al. 2009). In addition, PFOS exposure has been shown to suppress immunity 

to influenza A in adult mice (Guruge et al. 2009).  

A major strength of this study was the longitudinal design and the prospectively collected 

data. However, only 42% of the eligible pregnant women participated in the Odense Child 

Cohort and they were more likely to be non-smokers, older and nulliparous than non-

participants (Kyhl et al. 2015). However, since the serum-PFAS concentrations as well as the 

health of the babies were unknown to the women at the time of inclusion, this factor is not 

likely to have affected our results. Further, it was possible to invite only 1,647 of the 2,547 

active cohort members to participate in the study on infections, and only 649 of the mothers 

in the cohort had their serum-PFAS concentrations measured. However, the attrition is 
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assumed to be random, and the participants with PFAS measurements did not differ from 

those without (Lind et al. 2016). Of the initially 439 eligible mother-child pairs for this sub 

study, almost 20% were excluded during the one-year study period due to lack of response, 

reducing the sample size to 359 and 346 in adjusted analyses. However, since the 

concentration of PFAS at this point was still unknown to the mothers and since the excluded 

mothers did not differ materially from those participating, we do not believe that the dropout 

introduced selection bias.  

The maternal serum concentration of PFASs before GA 16 weeks was used as proxy for 

prenatal exposure since PFAS has been shown to cross the placenta (Gützkow et al. 2012; 

Needham et al. 2011). Serum concentrations of PFAS are known to decrease throughout 

pregnancy, but PFAS measurements at different time points during pregnancy are highly 

correlated (Glynn et al. 2012) and the compounds have long half-lives of 4-5 years (Olsen et 

al. 2007). The exposure level measured in early pregnancy was therefore believed to be 

representative of the exposure level during the entire pregnancy. Of the PFASs, PFOS clearly 

appeared to be most important and also appeared in the highest concentrations in maternal 

serum. To what extent other PFASs contribute to this tendency is difficult to determine due to 

the inter-correlations between the substances (range of correlation coefficients, 0.20-0.78).  

Data on infectious symptoms was self-reported, which possibly may cause misclassification. 

However, we have no reason to believe that it was differential since the women did not know 

their PFAS concentration when they were answering the text messages. Additionally, due to 

the frequent and repeated collection of data on symptoms, the risk of recall problems was 

minimized. Further, the parents were instructed to only register a rectal temperature above 

38.5°C. However, symptoms like nasal discharge and coughing could be due to allergic 

diseases rather than infection, but we did not obtain information about this. Incomplete 

response constituted a potential problem, as on average only 86% of the mothers answered 
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the text message in each period and thereby reported information on symptoms for only 314 

days during the one year study period. Non-response could be due to both the fact that the 

child did not have any symptoms or did have symptoms, which would either overestimate or 

underestimate the days with symptoms. Yet, the same tendencies of association between 

PFAS and fever were found among children with almost complete responses from mothers 

(at least 25 of 26 text message responses, N=148) as for the entire study population, and thus 

bias seems unlikely.  

We did not obtain information on childhood PFAS exposure. Prenatal exposure is associated 

with childhood exposure to PFASs as a major source of postnatal exposure is through 

breastfeeding. Further, previous studies have found the childhood serum-PFAS 

concentrations to be associated with reduced antibody concentrations after routine childhood 

vaccination at age 5 (Grandjean et al. 2012). Thus, it would be interesting to include PFAS 

levels in child serum in future studies. Additionally, we did not obtain information on 

treatment for fever or vaccinations during the study period, factors that clearly could have 

influenced the number of days with fever. Further, even though we tried to adjust for a wide 

range of potential confounders without notable changes in the results, unmeasured 

confounding is always of potential concern. Finally, a large number of analyses were 

performed and some of our results could perhaps represent a chance finding, although some 

tendencies remained significant even after Bonferroni adjustment. 

 

5. Conclusions 

We found a positive association between in utero exposure to PFOS and PFOA and the self-

reported prevalence of days with fever in children aged 1-4 years, which may indicate an 

increased incidence of infections as a possible consequence of immunotoxic effects. We 

observed no clear associations between PFOS, PFOA, PFHxS, PFDA or PFNA and other 
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common symptoms of infection when analyzed separately. However, episodes of co-

occurrence of fever and coughing and fever and nasal discharge tended to increase with 

increasing concentrations of PFOS and PFOA. These findings are of public health interest as 

the children in our study on average experienced fever 5 days a year, which has not only 

personal but also financial impact (Yin et al. 2013). Future studies exploring the possible 

association between PFAS exposure and fever as a possible sensitive marker of childhood 

infections are needed. 
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