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Abstract

Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran

insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted

bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the

family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the

Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present

the first detailed genomic analysis of a bacteriome-associated endosymbiont of a phytophagous heteropteran, present in the seed

bug Henestaris halophilus (Hemiptera: Heteroptera: Lygaeoidea). Using phylogenomics and genomics approaches, we have

assigned the newly characterized endosymbiont to the Sodalis genus, named as Candidatus Sodalis baculum sp. nov. strain

kilmister. In addition, our findings support the reunification of the Sodalis genus, currently divided into six different genera. We

have also conducted comparative analyses between 15 Sodalis species that present different genome sizes and symbiotic

relationships. These analyses suggest that Ca. Sodalis baculum is a mutualistic endosymbiont capable of supplying the amino acids

tyrosine, lysine, and some cofactors to its host. It has a small genome with pseudogenes but no mobile elements, which indicates

middle-stage reductive evolution. Most of the genes in Ca. Sodalis baculum are likely to be evolving under purifying selection with

several signals pointing to the retention of the lysine/tyrosine biosynthetic pathways compared with other Sodalis.
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Introduction

Most insects have established specific associations with bac-

terial symbionts. These associations show a broad range of

symbiotic interactions, ranging from parasitism to mutualism.

Bacterial symbionts can be found on the surface of the insects

but also inside their bodies (e.g. the gut system). Often,

mutualistic symbionts and insects establish a more intimate

relationship, where the symbionts are maintained inside spe-

cialized host cells, called bacteriocytes, that can form an

organ-like termed bacteriome (Buchner 1965). These intracel-

lular symbionts (hereafter endosymbionts) are usually defined

as primary, or obligate, if the insect requires the symbiotic

relationship for survival, and secondary, or facultative, if the

relationship is not essential for its survival. However, in some

cases, a secondary endosymbiont can act as a coprimary one,

if its presence is also essential for the insect or the primary

endosymbiont (Sudakaran et al. 2017). Although different

bacterial lineages are capable of establishing a stable
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endosymbiotic relationship with insects, representatives of the

Bacteroidetes as well as Alpha-, Beta-, and

Gammaproteobacteria, especially Enterobacteriaceae, are

the most prominent groups (Moya et al. 2008; Moran et al.

2008; Sabree et al. 2009; Husn�ık et al. 2011; Sudakaran et al.

2017).

Among others, species of the Sodalis group

(Gammaproteobacteria: Enterobacterales: Pectobacteriaceae)

offer a spectrum of various types of endosymbiosis. The epon-

ymous strain was originally described as a secondary endo-

symbiont of the tsetse fly Glossina morsitans (Dale and

Maudlin 1999). Because then, numerous different Sodalis or

Sodalis-allied species were found in several insect groups,

such as weevils (Heddi et al. 1999; Oakeson et al. 2014),

hippoboscid louse fly (Nov�akov�a and Hyp�sa 2007;

Chrudimsk�y et al. 2012), chewing lice (Fukatsu et al. 2007;

Smith et al. 2013) and seal lice (Boyd et al. 2016). In addition,

hemipteran insects such as aphids (Burke et al. 2009), psyllids

(Sloan and Moran 2012; Arp et al. 2014), scale insects

(Gruwell et al. 2010; Husn�ık and McCutcheon 2016), spittle-

bugs (Koga and Moran 2014), and stinkbugs (Kaiwa et al.

2010, 2011; Matsuura et al. 2014; Hosokawa et al. 2015)

frequently harbor Sodalis endosymbionts. Recently, a

Sodalis-allied bacterial strain was also isolated from a human

wound infection (Clayton et al. 2012), possibly representing a

free-living ancestral state of Sodalis. This Sodalis, named

Sodalis praecaptivus, and the one from G. morsitans are the

only species cultivable so far.

Based on their pattern of occurrence in different ecological

niches and insects, the “characteristics” of each Sodalis spe-

cies and their specific effects on their hosts are quite diverse.

For example, Sodalis species are often described as facultative

endosymbionts, but have also been found in insect bacterio-

cytes, showing strict mutualistic obligatory relationship with

their weevil hosts (Oakeson et al. 2014), or as copartners,

complementing missing metabolic functions of an obligatory

endosymbiont in the Carsonella-psyllid system (Sloan and

Moran 2012). This illustrates that representatives of the genus

Sodalis, or allied bacteria, cover a broad spectrum, ranging

from free-living species, over facultative commensals to obli-

gate mutualists of insects. The phylogeny and taxonomy of

Sodalis-allied symbionts, mainly derived from analyses of their

16S rRNA and few other gene sequences, present several

inconsistencies produced by events of horizontal transmission

and new hosts acquisition (Dale et al. 2001; Snyder et al.

2011; Smith et al. 2013).

Numerous primary and secondary endosymbiotic bacteria,

and hosts’ structures that harbor them, were described in

stinkbugs or true bugs (Heteroptera) (Buchner 1965).

Sodalis-allied endosymbionts were also detected in some

members, for the first time in the superfamily

Pentatomoidea (Heteroptera: Pentatomomorpha), more spe-

cifically in the families Acanthosomatidae, Pentatomidae,

Scutelleridae, and Urostylididae (Kaiwa et al. 2010, 2011,

2014; Matsuura et al. 2014; Hosokawa et al. 2015). It is gen-

erally argued that Sodalis endosymbionts do not play an es-

sential role in the biology of most of their heteropteran hosts,

although such functions could not be completely excluded in

urostylidid stinkbugs, due to the high infection rates in these

species (Kaiwa et al. 2014; Hosokawa et al. 2015). Until pre-

sent, no Sodalis symbiont has been found in the superfamily

Lygaeoidea (reviewed in Sudakaran et al. 2017). The reason

for this is not clear, because most lygaeoid bugs also harbor a

broad range of endosymbiotic bacteria accommodated in

specific structures, ranging from midgut crypts to bacter-

iomes, depending on the (sub)families (Kuechler et al. 2010,

2011, 2012; Kikuchi et al. 2011; Matsuura et al. 2012).

One of these bacteriome-associated endosymbiosis was

also described in Henestaris halophilus, a member of the

lygaeoid subfamily Henestarinae (Heteroptera: Lygaeoidea:

Geocoridae), but has not been analyzed in detail so far

(Kuechler et al. 2012). The subfamily Henestarinae is mainly

distributed in southern Palearctic and African regions and

contains about 19 species placed in 3 genera (Schuh and

Slater 1995). All species, mainly characterized by their stalked

eyes, live in saline-affected habitats both inshore and inland.

The genus Henestaris is phytophagous and H. halophilus

mainly feeds on seeds and infructescence of halophytes, like

Plantago maritima, Artemisia maritima, Aster trifolium or

Atriplex spp., (Wachmann et al. 2007), but occasionally also

on grasses, especially Puccinella distans (Hiebsch 1961).

In the present work, we provide the first detailed descrip-

tion of the bacteriome-associated endosymbiont of H. halo-

philus, identified as a member of the Sodalis group, including

molecular characterization, ultrastructural morphology and

localization and transmission route. We also present the

endosymbiont’s complete genomic sequence which is char-

acterized by a reduced genome size and a very low coding

density. Our metabolic reconstruction analysis suggests that

the main contribution of the endosymbiont to its insect host

involves processes related to cuticle hardening and the pro-

duction of vitamins. Finally, several Sodalis-allied species were

compared at both the metabolic and sequence levels, and the

taxonomic status of the whole Sodalis group was revisited.

Materials and Methods

Insect Material

Adults and larval stages of Henestaris halophilus were col-

lected from their natural habitat in Talamone (Italy) and

Sülldorf (Saxony-Anhalt, Germany). Live individuals were

brought to the laboratory and maintained at 25 �C under

long day conditions (16:8 h) on sunflower seeds and distilled

water enriched with 0.05% ascorbic acid. Laid eggs were

carefully collected and allowed to develop at 25 �C.

Developing eggs were extracted for fixation (eggs were dis-

sected in 90% [vol/vol] ethanol to remove chorion and
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vitelline membrane) followed by whole mount fluorescence in

situ hybridization (wFISH) analysis. Insect bacteriomes and

ovaries were dissected in Ringer’s solution (8.0 g NaCl, 0.4 g

KCl, 0.4 g CaCl2, and 1.0 g Hepes per liter, pH 7.2).

Microscopy Analysis

For wFISH, freshly dissected bacteriomes, ovaries, and em-

bryos were incubated overnight at room temperature in

Carnoy’s solution (ethanol:chloroform:acetate, 6:3:1) and

then washed in an ascending ethanol series (70%, 90%,

and 2� 100%). After washing, the fixed samples were stored

at�20 �C until use. Afterwards, all samples were washed

with PBSTw [PBS (137 mM NaCl, 2.7 mM KCl, 8.1 mM

Na2HPO4, 1.5 mM KH2PO4, pH 7.4) containing 0.3%

Tween 20] three times for 10 min. After thorough washing,

the samples were equilibrated with hybridization buffer [30%

(vol/vol) formamide, 0.02 M Tris–HCl (pH 8.0), 0.9 M NaCl,

0.01% SDS] three times for 10 min, followed by overnight

incubation at 28 �C in hybridization buffer containing 1%

of 10 nmol/ml symbiont specific probe Hen500 (5’-Cy3-

CCATTGTCTTCTTCTCCGCC-3’) and helper probe

Hen500_H1 (5’-GAAAGTGCTTTACAACCCTAAGG-3’).

Next, the samples were incubated for 20 min at 42 �C in

hybridization buffer without probe. The samples were

washed again with PBSTw three times for 15 min, and then

incubated with 1% (vol/vol) SYBR Green I (1:10,000). The

staining was stopped by washing in PBSTw. At the final

step, the samples were mounted onto glass slides using anti-

fade solution (citifluor) and glycerol (1:1) containing medium.

The samples were examined under an SP5 confocal laser-

scanning microscope (Leica). Electron microscopy was per-

formed as described by Kuechler et al. (2012).

DNA Extraction, Sequencing, and Genome Annotation

A pool of bacteriomes dissected from 25 females was utilized

for total genomic DNA extraction using the PureLink Genomic

DNA Mini Kit (Invitrogen). Six independent whole-genome

amplification reactions (GenomiPhi v2, GE Healthcare) were

performed following manufacturer instructions. Because chi-

mera formation seems to be a random process, samples were

mixed to maintain possible chimeras at a low ratio relative to

the amplified nonchimeric DNA. Amplified DNA was used for

sequencing by the Illumina HiSeq2000 (350-bp paired-end

library and 2� 100 bp) platform at Macrogen, Inc. Genome

assembly and annotation procedures are presented in

Supplementary Material online.

Genome and Metabolism Comparisons

Several Sodalis genomes and allied-species genomes were

downloaded from NCBI and other sources (see table 1).

Pantoea ananatis LMG 5342 (NC_016816) was used as an

outgroup to allow topology comparisons (Husn�ık and

McCutcheon 2016). The proteomes of the above species

were used as input for OrthoMCL v2.0.9 (1.5 inflation value)

using USEARCH v9.1 (ublast -id 0.5 -maxhits 10,000 -accept-

all -evalue 1e�5 -accel 1 -weak_evalue 0.1) (Li et al. 2003;

Edgar 2010). The orthologous clusters of proteins (hereafter

OCPs) output from OrthoMCL (supplementary files: phyloge-

nomics) was used to calculate the number of clusters com-

posing the core genome, pangenome, pairwise shared

clusters and strain specific clusters in Python (supplementary

table S1, Supplementary Material online). Cluster of

Orthologous (COG) and KEGG groups were assigned to

each species using DIAMOND v0.8 (e-value 1e�5, Buchfink

et al. 2015) and MEGAN6 Community Edition (Huson et al.

2016) using the RefSeq database (accessed: July 5, 2016)

clustered at 98% identity with CD-HIT v4.6 (Fu et al. 2012).

Pathway tools v19 (Karp et al. 2002) was used to reconstruct,

and compare, the metabolism of each Sodalis endosymbiont

(supplementary files: pathway-tools-databases).

TyrA Protein Analysis

Tridimensional structure plays a crucial role in protein activity.

To predict if TyrA protein of Henestaris endosymbiont is likely

to be still functional, its tridimensional (tertiary) structure was

modeled with the I-TASSER server (Yang et al. 2015).

Putative dimerization (quaternary structure) of TyrA was

modeled with the COTH server (Mukherjee and Zhang

2011). Pdb files were viewed, aligned, and compared with

UCSF Chimera v1.11.2 (Pettersen et al. 2004) (supplemen

tary files: tyrA_analysis).

Phylogenomic Analysis

A core set of 153 single copy proteins were codon-aligned

with a Perl wrapper using MAFFT v7.215 (Katoh et al. 2002),

Transeq (EMBOSS: 6.6.0.0, Rice et al. 2000), PAL2NAL v14

(Suyama et al. 2006), and Gblocks v0.91b (codon data with

no gaps allowed) (Castresana 2000). Alignments with more

than 70% of the columns present in all the species were se-

lected and screened for the saturation of the phylogenetic

signal with a custom R script (R Core Team 2016). Briefly,

saturation was measured using the correlation coefficient be-

tween raw genetic distances and the corrected distances

(K80) (supplementary files: phylogenomics). Only protein

alignments that showed a coefficient greater than 0.7 at

the codon-level were selected for further analysis (77

proteins).

Maximum-Likelihood (ML) phylogenetic tree reconstruc-

tion was performed on IQ-TREE v1.5.5 (Nguyen et al. 2015)

using ModelTest (Kalyaanamoorthy et al. 2017) with seven

partition schemes: 1) a single partition (concatenated align-

ment), 2) fully partitioned (each protein as a partition) with

each partition having its own evolutionary model, 3) as 2) with

different branch lengths, 4) as 2) but allowing partition mix-

ing, 5) as 3) but allowing partition mixing, 6) a single partition
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with JTTþCAT20 (profile mixture models), and 7) partitions

obtained in 2) but with CAT20. In addition, a Bayesian pos-

terior consensus tree was inferred with MrBayes v3.2.2 (4

chains, 2,000,000 generations, 1,000 sampling frequency,

1,000 burn-in) (Ronquist et al. 2012). The standard deviation

of split frequencies was below 0.01 in the four chains and

their convergence was checked with Tracer v1.6. The approx-

imately unbiased (AU) test (Shimodaira 2002) implemented in

IQ-TREE was used to select the best possible tree under three

partitions model: a single partition, full partitioned and parti-

tioned with a mixing strategy. The selected tree was plotted

with Figtree v1.4.3 and modified with InkScape v0.92.

Averaged Nucleotide Identity/Averaged Amino Acid
Identity Values Calculation

The aforementioned genomes (table 1) plus some phyloge-

netically related genomes, including some endosymbionts,

were downloaded (Dickeya, Pantoea, Serratia, Brenneria,

Pectobacterium, Erwinia, Wigglesworthia, and Blochmannia;

see supplementary table S2, Supplementary Material online)

were used for calculating the averaged nucleotide identity

(ANI) and averaged amino acid identity (AAI). Some

Wolbachia strains were used as representatives of a non

Gammaproteobacteria endosymbiont genus. ANI values

were calculated with JSpecies v1.2.1 (Richter and Rossell�o-

M�ora 2009). AAI values were obtained with the enveomics

toolbox using USEARCH v9.1 (ublast -id 0.1 -maxhits 1,000 -

acceptall -evalue 1e�5 -accel 1) as alignment algorithm

(Edgar 2010; Rodriguez-R and Konstantinidis 2016).

Heatmaps and hierarchical clustering (Euclidean distances

and complete clustering) were produced with the gplots

package from R (R Core Team 2016).

Molecular Evolution within the Sodalis Genus

Codeml from PAML v4.7 package (Yang 2007) was used to

calculate dS, dN, and their omega ratio (x) values in the dif-

ferent OCPs. Divergence times between different Sodalis spe-

cies were standardized using a triplet approach, which utilized

the species of interest, one reference Sodalis (S. glossinidius or

S. praecaptivus) from the opposite branch of the species se-

lected (see fig. 4 for more details) and Pantoea ananatis as an

outgroup. This set-up allowed us to fix the time, in the com-

mon branch, from P. ananatis to the Sodalis last common

ancestor, making the time because divergence of the

Sodalis species equal (e.g. S. melophagi—S. glossinidius—

P. ananatis or Sodalis of Heteropsylla cubana—S. praecapti-

vus—P. ananatis).

For each orthologous group in each triplet, three branch

models were computed: m0 (one x), m1 (free x ratios in

each branch) and m2 (two x setting the species of interest

the foreground branch). Each model was computed three

times and the iteration with the greater likelihood was

Table 1

Genome Features of Several Sodalis Symbionts Ordered by Genome Size

Organism Host Short

Name

Accession Contigs Genome

(Mb)

GC (%) CDSjw CDS (%) rRNAsj
tRNAsj
ncRNAs

Ca. Mikella endobia Mealybug MiEn LN999831 1 0.35 30.6 273j7 75, 5 3j41j6
Ca. Moranella endobia PCVAL Mealybug MoEn NC_021057 1 0.54 43.5 411j15 76, 2 5j41j1
Ca. Moranella endobia PCIT Mealybug MoPC CP002243 1 0.54 43.5 406j29 77 5j41j0
Ca. Hoaglandella endobia Mealybug HoEn LN999835 1þ2 0.64c 42.8 517j16 80, 4 3j41j10

Ca. Doolittlea endobia Mealybug DoEn LN999833 1þ1 0.85c 44.2 568j99 59, 8 3j41j11

Ca. Gullanella endobia Mealybug GuEn LN999832 1 0.94 28.9 461j29 48, 1 3j39j7
S-endosymbiont of Heteropsylla cubana Psyllid SoHc NC_018420 1 1.12 28.9 532j19 47, 3 3j38j2
Sodalis-like symbiont of

Philaneus spumarius PSPU

Froghopper SoPSb BASS01000000 562 1.38 54.1 1400jNA NA 4j39j44

S-endosymbiont of Ctenarytaina eucalypti Psyllid SoCe NC_018419 1 1.44 43.3 758j21 47, 9 3j40j2
P-endosymbiont of Henestaris halophilus True bug SoBaa PRJEB12882 1 1.62 44.5 713j166 37, 3 3j42j10

Sodalis-like endosymbiont of

Proechinophthirus fluctus str. SPI-1

Seal louse SoPf LECR01000000 92 2.18 50 695j683 NA 16j40j2

Sodalis glossinidius str. “morsitans” Tsetse fly SoGl NC_007712-15 1þ3 4.29c 54.7 3177j1280 52, 9 22j72j1
Ca. Sodalis pierantonius str. SOPE Weevil SOPE CP006568 1 4.51 56 2309j1771 46, 2 9j55j3
Ca. Sodalis melophagi Hippoboscid

louse fly

SoMeb http://users.prf.jcu.

cz/novake01/d
236 4.57 50.8 4545jNA NA NA

Sodalis praecaptivus Human wound SoHS NZ_CP006569-70 1 4.16c 57.5 4429j25 81 23j76j1
aThe acronym refers to the proposed name Ca. Sodalis baculum sp. nov. strain kilmister see below. It is introduced here to have a consistent abbreviation in each part.
bNo annotation available, annotation was done using prokkav1.12 with default parameters plus gram negative and metagenome options (Seemann et al. 2014).
cIncluding plasmids.
dLast accessed September 29, 2017.
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stored. The best model was selected using the likelihood

ratio test (LTR) and comparing first the m1 against the m2,

and the winner against the m0. P-values of LTR tests were

corrected using a Bonferroni method (two tests). Python

and related scripts are presented in the supplementary files:

dNdS_analysis. COG groups were assigned using the out-

put from MEGAN6.

All statistical tests were performed in R. In general, statistical

tests were performed on OCPs with x values below 1, as most

of the genes were evolving at this ratio. Only few genes had x
values greater than 1. Some of these values should be taken

cautiously, as they can represent alignment artifacts (e.g. open

reading frames from fragmented genes in draft genomes).

Briefly, raw and log transformed data were checked for nor-

mality (Shapiro’s test and QQ-plots) and heteroscestaticity

(Levene’s test). Parametric tests were used on normal (or close

to normal) and homoscedastic data while nonparametric tests

were used in case of heteroscedasticity data. Ordinary Linear

Modeling (OLM) was used to detect significant correlation in

single Sodalis symbionts. Phylogenetic generalized least

squares (PGLS) was used to detect significant correlations

across species as it accounts for phylogenetic autocorrelations.

All the statistical analyses are presented as an Rmd file (supple

mentary files: dNdS_analysis).

Results

Bacteriome Characterization

All dissected individuals of Henestaris halophilus (fig. 1A) pos-

sessed a pair of elongated, tubular-shaped, red-colored bac-

teriomes, located on either side of the abdomen adjacent to

the gonads (fig. 1B). The bacteriomes extended in adults from

the second to the fourth abdominal segment and were sub-

divided into three sections, not completely separated from

each other. Male individuals often presented slender

bacteriomes.

Fluorescence in situ hybridization (FISH) was used for local-

ization of the H. halophilus endosymbionts. A specific endo-

symbiont signal was detected in the tubular-shaped

bacteriomes (fig. 1C). In addition, fluorescent activity was

detected in the ovaries (fig. 1D), where several bacteriocytes

formed an infection zone, and in the developing embryos. At

the beginning of the embryonic development (�36 h), a sym-

biont mass, in general described as a “symbiont ball,” was

observed on the anterior pole side of the egg (fig. 1E). After

embryonic katatrepsis, the developing bacteriomes were

recorded at the same position in the abdomen as described

for adults (fig. 1F). Initially, bacteriomes were of spherical

shape, but were extended to their final tubular shape during

the postkatatrepsis embryonic development (data not

shown). These observations strongly indicate that the de-

scribed endosymbiont is transferred to offspring via vertical

maternal transmission.

Ultrastructural examinations by electron microscopy (TEM)

revealed that the bacteriocytes present a single nucleus and

are densely filled with rod-shaped bacteria, presenting the

typical gammaproteobacterial structure and three mem-

branes (the bacteria cell wall and a host-derived one) (fig.

2A and B).

Endosymbiont Identification

A 1.5 kb 16S rRNA bacterial gene fragment was amplified by

PCR from DNA samples of H. halophilus bacteriomes, derived

from geographically distant localities. Cloning and sequencing

indicated that all nucleotide sequences are nearly identical

(99.6–100%). Comparison with GenBank databases indi-

cated that the bacteriome-associated endosymbiont of H.

halophilus is related to the gammaproteobacterial Sodalis

cluster (supplementary fig. S1, Supplementary Material on-

line). The 16S rRNA sequence showed the highest similarity

(94–95%) to sequences of Sodalis-allied endosymbionts of

scale insects from the Coelostomidiidae family and Sodalis-

allied endosymbionts of stinkbugs and weevils. The complete

16S rRNA sequence of the H. halophilus bacteriome-

associated endosymbiont was obtained by genome sequenc-

ing (see below). Sequences of two additional bacteria, Ca.

Lariskella arthropodarum and Rickettsia sp. were also

detected in the Illumina genomic reads, but with very low

coverage. However, no FISH signals of Lariskella and

Rickettsia were detected in the analyzed bacteriomes and

ovaries (data not shown), suggesting that these endosym-

bionts might have sporadic appearance or that they are pre-

sent in H. halophilus in very low amounts.

Comparative Genomics of H. Halophilus Endosymbiont
and Related Species

The genome of the bacteriome-associated endosymbiont of

H. halophilus was assembled as a single closed circular chro-

mosome with a coverage of 527�. The genome was found to

be of intermediate size (1.62 Mb), showed no AT enrichment

(45% GC content) and displayed low coding density (37.3%)

(table 1). In addition, it presented a reduced number of coding

genes (713), pseudogenes (166), no active mobile elements, a

single rRNA operon, and a reduced set of tRNA genes (42).

Among the pseudogenes, several transcription factors (11),

cell wall and transporter genes (29), genes encoding enzymes

involved in amino acid and cofactors metabolism (19) or

genes related to the replication, transcription and translation

machinery (50) were identified (supplementary fig. S2 and

table S3, Supplementary Material online). Comparisons

against 14 related Sodalis and Sodalis-allied endosymbionts

genomes suggested an intermediate to advanced stage of

reductive evolution (supplementary table S1, Supplementary

Material online).
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FIG. 1.—The endosymbiotic system of Henestaris halophilus (A) Adult female. (B) Dissected bacteriome (b) of tubular shape on the right side of the

abdomen. The paired bacteriomes are slightly separated into three parts by contractions. (C) Fluorescence in situ hybridization (FISH) of the Sodalis

endosymbiont inside the bacteriome, stained with the specific probe Hen500 (Cy3; green) and SYBR Green I (blue). (D) Extensive signals were also detected

in the ovaries. The symbionts are located in ovarial bacteriocytes forming an “infection zone” (iz), where from symbionts are transferred into the

developing oocyte by an emerging “symbiont ball” (sb). (E) During early embryogenesis (�36h after egg deposition), the symbiont ball is attached to

abdomen, followed by infection of the embryo. (F) After katatrepsis, an embryonic back flip within the egg, the symbionts are already located inside the

bacteriome.
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Three duplicated segments, remnants of two duplication

events, of 12, 10, and 2 kb, including the groS–groL operon

among other genes, were found. For most of these duplicated

genes, one of the duplicated copies is pseudogenized while

the other (or the two others, in the case of groS and groL)

retains the functionality.

Orthologous clusters of proteins (OCPs) were com-

puted for the Sodalis endosymbiont of H. halophilus,

the 14 Sodalis-allied species and P. ananatis (supplemen

tary table S1, Supplementary Material online). The Sodalis

core genome, mainly driven from the most reduced

Sodalis, harbors 166 OCPs, 75% of them belonging to

the J, K, L, and O COG categories (translation, transcrip-

tion, replication, and post-translational machinery, re-

spectively). Among the other categories, three OCPs

were classified as E (amino acid metabolism). From

them, two were related to the Fe–S sulfur cluster protein

biosynthesis (IscS, SufS) and one to the chorismate pathways

(AroK). Three OCPs were classified as H (coenzyme metabo-

lism), including LipA and LipB that compose the complete

salvage lipoate pathway, and RibE/H, which is an intermediate

reaction in the riboflavin pathway. The rest of OCPs were

found to belong to other COG categories (21) or remained

without an ascription to a specific COG (12).

The Sodalis endosymbiont of H. halophilus presented 146

strain-specific OCPs, but only three of them were annotated

as nonhypothetical proteins: HBA_0606 (DeaD division pro-

tein), HBA_0622 (a duplicated GroS), and HBA_0766 (secre-

tion monitor precursor SecM). Most of the hypothetical

proteins were short proteins (60 amino acids in average) with-

out hits in the databases used for their annotation (see

Supplementary Material online). Also, these proteins were

not classified to a COG category. One possibility is that these

proteins are open reading frames (ORFs) derived from unrec-

ognizable pseudogenes or small proteins with an unidentified

function.

Taxonomy of the Sodalis Clades

A phylogenomic tree, based on 77 single copy core proteins

belonging to all 15 analyzed Sodalis species, was obtained.

The tree clearly indicated the presence of two main clades,

with the two cultivable species of Sodalis, S. glossinidius, and

S. praecaptivus, being associated with clade A and clade B,

respectively. The Sodalis endosymbiont of H. halophilus was

placed in clade B (fig. 3). In addition, no clear association was

observed between the phylogeny of the Sodalis species and

the taxonomy of their insect hosts (fig. 3).

The presence of the two cultivable species of Sodalis in

different clades made us question the taxonomic status of

the other 13 Sodalis-allied species, by utilizing a genome com-

parison approach (using ANI and AAI methods). As a

reference, free-living and endosymbiotic bacterial species, be-

longing to eight additional genera of Gammaproteobacteria

(which are phylogenetically related to Sodalis) and one

Alphaproteobacteria (outgroup) were considered. Multiple

comparisons indicated that a restrictive threshold of �80%

(75-81%) AAI, discriminates well between the eight genera

used as reference.

When clustering analysis was applied to the ANI/AAI ma-

trices, one large cluster including almost all the Sodalis-allied

species was recovered for both, with the exception of the

three fast-evolving lineages (Mikella, Gullanella, and S. of H.

cubana) (fig. 4). AAI values among the five Sodalis species

with the largest genomes: S. glossinidius, Sodalis of P. spu-

marius (clade A), S. praecaptivus, S. pierantonius, and S. melo-

phagi (clade B), ranged between 85 and 96%. Moreover, the

averaged AAI values between the aforementioned five Sodalis

species and the remaining Sodalis-allied species (except

Mikella and the symbiont of H. cubana), were higher or close

to 80%, clearly suggesting that all analyzed species belong to

one Sodalis genus. In comparison, AAI values between the

Sodalis group and the reference genera showed a range of

values lower than 70% AAI.

FIG. 2.—Transmission electron microscopy (TEM) micrographs of the Sodalis endosymbiont of Henestaris halophilus. (A) Overwiew of a bacteriocyte

completely filled by rod-shaped endosymbiont (S). (B) Enlarged image of dividing endosymbionts showing the characteristic gammaproteobacterial cell

structure. Nucleus (N).
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Applying the 95% ANI threshold (Konstantinidis and Tiedje

2005), the Sodalis endosymbiont of H. halophilus was identi-

fied as a new Sodalis species. It also confirmed the strain

status of the two M. endobia species and indicated that al-

though S. praecaptivus, S. pierantonius, and S. melophagi are

likely to be undergoing a speciation process within their dif-

ferent hosts, they can still be considered strains of the same

species.

Based on our phylogenomics and the ANI/AAI results, we

propose the name Candidatus Sodalis baculum sp. nov. strain

kilmister for the newly described endosymbiont of H. halophi-

lus. The species epitheton refers to the structure of the bac-

teriome. The slender, tubular-shaped appearance is similar to

a baculum (penis bone) that can be found in many placental

mammals. The strain name is proposed in honor of the mu-

sician Ian “Lemmy” Fraser Kilmister (1945–2015).

Metabolic Capabilities of Candidatus Sodalis Baculum

The full metabolism of Ca. Sodalis baculum (hereafter abbre-

viated as SoBa) was reconstructed (fig. 5). Despite the low

coding density of its genome, SoBa still harbors a complete

glycolytic pathway and a functional pentose phosphate path-

way that produces several intermediate metabolites and re-

ducing agents (NADPH). Furthermore, SoBa is capable of

producing its own cell wall, reflected by its rod shaped cell

appearance (fig. 2), which is comparable to free-living related

species.

In contrast, the SoBa genome does not contain all the re-

quired pathways for the synthesis of nucleotides. The genes

encoding for enzymes synthesizing inosine monophosphate

from 5-phosphoribosyl 1-pyrophosphate (PRPP) have been

lost or pseudogenized, while the genes involved in the syn-

thesis of uridine monophosphate from uracil using PRPP have

been retained. Consequently, the capability of synthesizing

pyrimidines importing/using only uracil is still present, while

purines have to be imported from the insect host.

Furthermore, SoBa has lost most of the genes encoding

enzymes required for amino acid biosynthesis, limiting its ca-

pabilities to the production of five amino acids (alanine, gly-

cine, lysine, serine, and tyrosine). Alanine may be produced in

a single step, probably as a byproduct of the transfer of sulfur

to tRNAs, from imported cysteine (ABC transporter CydD).

The presence of the enzyme glycine/serine hydroxymethyl-

transferase (encoded by glyA) might reflect an ability to pro-

duce glycine from serine or vice versa, but also to produce

tetrahydrofolate, which serves as a one-carbon carrier of the

biosynthesis of purines and other compounds.

The tyrosine and lysine biosynthetic pathways are present

in SoBa (fig. 5). The tyrosine pathway is partially shared by the

phenylalanine and tryptophan pathways, but the loss of one

phenylalanine and several tryptophan biosynthetic genes sig-

nificantly reduces the possibility that SoBa is capable of syn-

thesizing these amino acids. The essential amino acid lysine is

synthesized using aspartate, which is likely imported from the

hosts’ cytosol by the glutamate/aspartate transporter GltP.

Although the argD gene encoding succinyldiaminopimelate

transaminase is missing, the specific catalytic reaction might

be performed by phosphoserine aminotransferase (SerC) as

reported in Escherichia coli (Lal et al. 2014). The synthesis

of L-homoserine is theoretically possible, but the conservation

of this pathway is more likely to be associated with the fact

that the thrA and asd genes encoded enzymes are required

also in the lysine biosynthetic pathway.

FIG. 3.—Phylogenomic tree of several Sodalis and Sodalis-allied species. The two clades used in subsequent analysis are denoted by the letters A (blue)

and B (green). Only the best topology found by the AU-test is displayed: ML tree with a single partition schema under JTTþCAT20 model. Node legends

denote ML boostrap and Bayesian posterior probabilities; * in Bayesian posterior probabilities denotes alternatives topologies found in MrBayes partitioned

reconstruction (S-endosymbiont of H. cubana together with Mikella endobia and Sodalis-like of P. fluctus as a basal clade of S-endosymbiont of C. eucalypti).
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In addition to the biosynthesis of intermediate metabolites

and amino acids, SoBa preserves the complete pathways for

the biosynthesis of several cofactors and vitamins, such as

acetyl-CoA, lipoate, NAD, riboflavin and its derivatives, pyri-

doxal 5-phosphate (vitamin B6), thiamin diphosphate (TDP),

ubiquinol-8, S-adenosyl-L-methionine (SAM), and tetrahydro-

folate (vitamin B9). Finally, the SoBa genome also contains the

whole Fe–S biosynthesis pathway cluster and is capable of

producing glutathione.

Metabolic Pathways Comparisons among Sodalis

Amino acid and cofactors biosynthetic potential of each

Sodalis-allied species was explored at the pathway level (fig.

6). With respect to the ability to synthesize essential amino

acids, we found that tryptophan can be produced by all of the

Sodalis-allied species of hosts that feed exclusively on plant

sap. In hosts feeding on other diets, tryptophan can probably

be obtained in other ways, as indicated by the loss of

the pathway in SoBa, Sodalis endosymbiont of

Proechinophthirus fluctus and S. pierantonius. The lysine

biosynthetic pathway, which is present in SoBa, was lost in

all Sodalis-allied species present in mealybugs, the psyllid H.

cubana and the louse P. fluctus. The Sodalis from psyllids,

mealybugs and the froghopper retain some genes that com-

plement the essential amino acid production of their hosts’s

primary endosymbionts. Sodalis of P. fluctus cannot produce

any essential amino acid, but is still able to produce several

vitamins. Only the recently acquired Sodalis maintain the abil-

ity to produce most (8 or more) of the 10 essential amino

acids, including tryptophan and lysine.

The analysis of the synthesis of nonessential amino acids in

Sodalis indicated that Sodalis-allied species with reduced

genomes only rarely synthesize these amino acids.

Moreover, the nonessential amino acids that are produced

are probably byproducts of essential pathways for the symbi-

otic relationship. This phenomenon could be explained by the

settlement of these endosymbionts in the host environment,

acquiring most of the amino acids from their hosts’ cytosol.

Tyrosine biosynthesis was found to be conserved only in SoBa,

while all the other Sodalis-allied species with reduced

genomes have lost this ability. In addition, a functional

FIG. 4.—Hierarchical clustering of pairwise Average Nucleotide Identity (ANI, left) and Average Amino Acid Identity (AAI, right). Clusters containing

Sodalis-allied species are highlighted in blue. SoBa is highlighted in purple. Values greater than 95% start at blue in the color scale.
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chorismate biosynthetic pathway was only detected in

Sodalis-allied species that are capable of producing trypto-

phan, tyrosine, or phenylalanine (fig. 6).

Cofactors and vitamins biosynthesis pathways are mainly

lost in the Sodalis of mealybugs with the exception of lipoate.

The restof the Sodalis species showtheconservationofa larger

cofactor/vitamins biosynthetic potential, with Sodalis of H.

cubana, Sodalis of Ctenarytaina eucalypti, and SoBa being an

exception. Comparisons to other Sodalis outside the mealybug

group showed that SoBa has lost the ability to synthesize some

important cofactors such as panthotenate, biotin, and siro-

heme. On theother hand, the riboflavinpathway ismaintained

in SoBa, while other Sodalis species, with a broad range of

genome sizes and diets, are likely to have lost it (fig. 6).

Patterns of Molecular Evolution in the Sodalis Genus

The evolutionary trends of the different COG categories in

SoBa were analyzed. According to their x values, the fastest

evolving COG categories were L (Replication) and J

(Translation), while the slowest evolving category was G

(Carbohydrates metabolism) (fig. 7A).

When all the Sodalis species were compared, on average,

the values of both dN and dS were very different among

lineages although the evolutionary time of all branches was

forced to be identical (see Materials and Methods for more

details). Relatively to the free-living S. praecaptivus, four major

groups were identified (fig. 7B): Sodalis lineages that evolve at

nearly similar rate as S. praecaptivus (S. glossinidius, S. melo-

phagi, S. pierantonius, Sodalis of P. fluctus, and Sodalis of P.

spumarius), those evolving at medium accelerated rate

(Doolittlea, Moranella PCVAL, Moranella PCIT, SoBa, Sodalis

of C. eucalypti), and two groups showing high (Gullanella)

and very high substitution rates (Mikella and Sodalis of H.

cubana). A strong positive linear relationship, on both linear

(not shown, see supplementary files: dNdS_analysis) and log–

log scales (PGLS P-value< 0.05, r2 ¼ 0.89, fig. 7B), exists be-

tween the average genomic dS and dN values. However,

most of the linear relationships between dN and dS values

of individual genes in lineages with highly reduced genomes

were nonsignificant. A slightly different picture was observed

when dN and dS values of individual genes were obtained

from free-living (S. praecaptivus) and Sodalis with genomes

larger than 1 Mb. Although the linear relationships were pos-

itive and significant in most of these Sodalis (OLM P-val-

ue<0.05), the variance explained by the linear models was

higher in free-living and recently acquired endosymbionts

(e.g. S. praecaptivus r2 ¼ 0.34, S. glossinidius, r2¼0.24; see

supplementary files: dNdS_analysis), than the variance

explained in endosymbionts with a longer relationships with

FIG. 5.—Metabolic reconstruction of Ca. Sodalis baculum. Intact pathways are shown in solid black lines, while incomplete ones are shown in gray.

Essential, nonessential amino acids and cofactors are shown in rose, yellow, and blue boxes, respectively. Green lettering was applied to biosynthetic steps

and precursors that are not executed or formed in the endosymbiont.
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their hosts (e.g. SoBa r2¼0.05, Sodalis of C. eucalypti

r2¼0.04), possibly suggesting the presence of a general

mechanism affecting both substitution rates simultaneously

and some slight effect of natural selection on synonymous

codon usage in the free-living and less reduced genomes

(see discussion part below).

Although the averaged x were significantly different be-

tween the various Sodalis (fig. 7C), most of the genes showed

x values below 1 (purifying selection), while only 232 genes

had x values greater than 1 (positive or relaxed selection).

Most of the genes with an x greater than 1 were present

in the Sodalis with larger genomes (see supplementary files:

dNdS_analysis). It should be noted that some of the x> 1

values need to be interpreted carefully. These genes pre-

sented low dS values (203 genes with dS values below

0.01) which produced the high x values reported (greater

than 10), which can reflect calculation/alignment artifacts.

For example, only five of the 17 genes with x> 1 in SoBa

presented dS values greater than 0.01 and x values lower

than 10: slyA, pdxB, manX, nadE, and mreD. Details of the

conducted analyses are presented in the supplementary files:

dnds_analysis, Supplementary Material online.

Evolution of the Tyrosine and Lysine Pathways in Sodalis

Genes from the tyrosine and lysine biosynthetic pathways

showed different evolutionary patterns (fig. 7D and supple

mentary files: dNdS_analysis, Supplementary Material online).

Genes from the lysine pathway presented a positive and sig-

nificant linear relationship between dN and dS values across

FIG. 6.—Amino acid and cofactors metabolism of several Sodalis and Sodalis-allied species. Circles represent complete MetaCyc pathways colored

according to their completeness. Sodalis species are ordered by genome size (increasing order). See table 1 for organism acronyms.
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Sodalis species (PGLS P-value<0.05, r2 ¼ 0.95), but also

within most of the analyzed species (e.g. OLS SoBa P-val-

ue<0.05, r2¼0.77), suggesting the action of some mecha-

nisms (maybe synergistic to natural selection) acting on both

nonsynonymous and synonymous changes for pathway con-

servation. This is supported by the data from Sodalis of P.

fluctus and C. eucalypti, which have an incomplete lysine bio-

synthetic pathway and present a negative, although no sig-

nificant, linear relationship between dN and dS (higher

accumulation of dN than dS).

In contrast, genes from the tyrosine pathway presented a

positive and significant linear relationships between dN and

dS values across species (PGLS P-value<0.05, r2 ¼ 0.96)

but only few positive significant correlations were found

within species (S. melophagi and S glossinidius). SoBa pre-

sented a nonsignificant negative correlation between dN

and dS for the tyrosine pathway. From all the genes in

this pathway, the tyrA gene of SoBa was identified as an

outlier, showing a larger dN value than all other tyrosine

biosynthetic genes (fig. 7D, black arrow). Under the possi-

bility that this pathway is being lost in SoBa, we tested if

the predicted accumulation of nonsynonymous substitutions

in tyrA of SoBa could affect the protein functionality. For

that, comparisons of TyrA 3 D structures of SoBa, S. pier-

antonius and S. praecaptivus were performed (supplemen

tary fig. S3 and files tyrA_analysis, Supplementary Material

FIG. 7.—Molecular evolution in different Sodalis species. (A) SoBa omega single gene values across different COG groups. (B) dN/dS correlation across

different Sodalis lineages. Each dot represents the median dN/dS of all analyzed genes in each Sodalis lineage. (C) Omega single gene values across the

different Sodalis species. (D) Scatter plot showing the dN and dS values for the OCPs belonging to the Tyr and Lys pathways in several Sodalis. The tyrA gene

of SoBa is denoted by a black arrow. Only OCPs with omega values below 1 were used on (A) and (C). Lowercase letters in (A) and (C) represent the statistical

significant groups obtained. Regression line on (B) was calculated using the PGLS method under a Brownian model of evolution.
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online). The active pocket, composed by a set of b-sheets,

was found to be maintained in all compared TyrA proteins.

The N-terminal region was found to be highly polymorphic

between the three species. Specific differences were

detected at the end of the PDH domain and at the C-ter-

minal region of the TyrA enzyme of SoBa, when compared

with both the S. pierantonius and S. praecaptivus enzymes.

Moreover, comparisons of the C-terminal region of the TyrA

enzyme of SoBa to that of E. coli, S. pierantonius, and S.

praecaptivus, indicated that only in SoBa, this region con-

tains more changes relatively to the rest of the protein

(28% versus 12% on average, window size of 50 amino

acids). Some mutations previously described in E. coli

were detected in TyrA of SoBa. Among these, we iden-

tified two mutations that are expected to reduce the

inhibition of the enzyme by Tyr (A354T and F357C)

and one mutation that is expected to interfere with

the binding of the inhibitor Tyr (Y303C). Despite these

differences, our 3D predictions suggested that TyrA of

SoBa is still capable of forming an active quaternary

(homodimeric) structure (supplementary fig. S3 and files:

tyrA_analysis, Supplementary Material online).

Discussion

The Bacteriome-Associated Endosymbiosis of H. halophilus

This work presents the first molecular characterization of a

bacteriome-associated symbiotic system harbored by the

lygaeoid bug Henestaris halophilus. Our phylogenetic and ge-

nomic characterization revealed that the endosymbiont

belongs to the genus Sodalis (Gammaproteobacteria).

Sodalis-allied species were already found to be associated

with different heteropteran taxa, especially in species of the

superfamily Pentatomoidea (Hosokawa et al. 2015).

Moreover, it is generally assumed that these symbiotic asso-

ciations are common in stinkbugs and are of facultative na-

ture, as infection rates are usually found to be low (less than

15% of individuals harboring the Sodalis symbiont, with the

exception of the family Urostylididae which shows 95% in-

fection rate) (Hosokawa et al. 2015). It is important to note

that until now, no Sodalis-allied symbionts were detected in

the superfamily Lygaeoidea (Kikuchi et al. 2011; Hosokawa

et al. 2015), but this could be related to the low number of

species screened so far. In addition, it is not clear if the

bacteriome-associated symbiosis we found in H. halophilus

is a singularity within the Henestarinae subfamily (�20 spe-

cies). No bacteriome or any Sodalis-allied endosymbionts

could be detected in the sister species H. laticeps, although

this species is morphologically similar to H. halophilus and can

be jointly found in the same habitats. One possibility of course

is that the bacteriome was lost in H. laticeps and that other

uncharacterized Henestarinae species harbor bacteriome-

associated symbiosis systems as well. Further screening of

additional Henestarinae species is likely to provide more

insights on this currently remaining “open issue.”

Genome Reduction in the Sodalis Endosymbiont of H.
halophilus

The genome of SoBa displays several typical features of endo-

symbionts that are in an intermediate genome reduction

stage: genome size below 2 Mb, no AT bias, and low coding

density. Some other characteristics of the SoBa genome were

found to be closer to genomes of endosymbionts that are in

an advanced reduction stage: reduced set of protein coding

and tRNA genes, one rRNA operon, only two annotations of

potentially transposase pseudogenes and one phage inte-

grase (Toft and Andersson 2010). Analyses of four newly

established endosymbiont species (S. praecaptivus, S. melo-

phagi, S. pierantonius, and S. glossinidius) suggested that the

putative free-living ancestral Sodalis genome (i.e. before the

switch to an intracellular life-stage), should have been larger

than 4 Mb and had a GC content>50%.

In contrast to the facultative species S. glossinidius (Toh

et al. 2006; Belda et al. 2010) or the recent-obligatory species

S. pierantonius (Oakeson et al. 2014), the number of pseudo-

genes in the SoBa genome is estimated to be very low.

However, due to the low coding density in the genome, it

could be possible that the intergenic regions of SoBa contain

DNA from some pseudogenes that have lost their nucleotide

identity to other orthologous genes during the long evolution-

ary period. Once these regions will be lost, the size of the SoBa

genome will probably drop below 700 kb with a coding den-

sity higher than 70%, as observed in other advanced endo-

symbiont systems (table 1) (Moran et al. 2008; Moya et al.

2008).

A clear indication that the reductive evolution process is in

an intermediate stage in SoBa comes from the presence of

two duplicated functional copies of the groS and groL genes

and one groL pseudogene. Endosymbionts that are in an ad-

vanced stage of genome reduction, such as Buchnera, contain

only one copy of each gene (Shigenobu et al. 2000). In con-

trast, endosymbionts in an ongoing genome reduction pro-

cess could contain more than one copy, such as in S.

pierantonius (Oakeson et al. 2014). The presence of pseudo-

genes also supports our argument on the ongoing genome

reduction process in SoBa. As found before in other endo-

symbionts that went through a genome reduction process,

parts of DNA replication and repair machinery (topoisomerase

IV, uvrABC, recA, and rarA), transcription factors, energy pro-

duction (cyoABE), specific transporters, and components of

cell wall are lost (supplementary table S3, Supplementary

Material online). For example, we found that a key gene in

the synthesis of Kdo-lipid A and several genes in the lipid A-

core synthesis were lost or pseudogenized, leading to a less

virulent capacity, an important feature of mutualistic endo-

symbiotic life (Toft and Andersson 2010).
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Finally, the OCPs comparisons indicates that SoBa is only

losing genetic material instead of gaining, as 565 from the

711 protein coding genes in the SoBa genome are shared

with other Sodalis species. Moreover, 98% of the strain spe-

cific clusters were found to be hypothetical proteins. Taken

together, these findings reinforce the hypothesis that the

SoBa gene content is just a subset of its free-living ancestor

(Silva et al. 2001).

New Hints on the Sodalis-Allied Species Relationships

Our phylogenomics analysis suggested that the Sodalis-allied

species can be divided into two major clusters, without clear

signals of cospeciation events. This is in agreement with the

recently reported phylogenomic analysis of Husn�ık and

McCutcheon (2016), which showed that Sodalis-allied strains

of mealybugs do not form a monophyletic group but are

found interspersed in different clades harboring also Sodalis

present in psyllids and spittlebugs, clearly suggesting multiple

Sodalis acquisitions in different insect lineages.

In addition, we followed Richter and Rossell�o-M�ora (2009)

and used ANI/AAI values, complemented with phylogenom-

ics, for endosymbionts taxonomic classification. ANI/AAI val-

ues are computational methods that show a strong

correlation with the DNA–DNA hybridization technique used

so far to define bacterial species (Konstantinidis and Tiedje

2005; Goris et al. 2007). Using Enterobacteriaceae genomes,

comparisons of free-living and symbiotic species from the

same genus placed the threshold (for within genus similarity)

to��80% AAI (fig. 4), with the exception of the closely

related genera of Brenneria and Pectobacterium. Moreover,

Wolbachia or Serratia, two genera that contain endosym-

bionts, showed values similar to those observed here for

Sodalis (fig. 4). Our results strongly suggest that all the

Sodalis-allied species analyzed in this work belong to the

same genus and therefore, should be renamed accordingly

(e.g. Ca. Sodalis mikella) (Dale and Maudlin 1999).

Alternatively, designation of the genus followed by the

name of its insect host (e.g. Sodalis endosymbiont of

Paracoccus marginatus) could also be considered (Ram�ırez-

Puebla et al. 2015; Lindsey et al. 2016).

Ca. Sodalis Baculum as a Mutualistic Endosymbiont

The metabolic capacities of SoBa suggest an important role in

complementing its host diet. Among the amino acids synthe-

sized by SoBa, two large pathways have been preserved for

the production of the essential amino acid lysine and the non-

essential amino acid tyrosine. The most plausible reason why

natural selection has preserved the lysine and tyrosine path-

ways, in spite of the strong reductive evolution, is that large

amounts of these amino acids are required for the insect host,

at least in some period of its life cycle. While the high require-

ments for lysine cannot be compensated by the insect metab-

olism, tyrosine may be directly synthesized by the insect

phenylalanine hydroxylase if the substrate phenylalanine is

available in sufficient amounts (PAH, E.C. 1.14.16.1). In

insects, the metabolism of tyrosine is involved in, at least,

three types of physiological processes: neurotransmission,

melanin formation and sclerotization (cuticle hardening). For

the latter, large amounts of several dopamine derivatives are

required. These compounds act as cross-linking agents of cu-

ticular proteins through their covalent binding to amino acid

residues of these proteins (Andersen 2010; Suderman et al.

2010). The requirement for high amounts of lysine may also

be related to the hardening of the cuticle, as lysine, potentially

present in H. halophilus cuticular proteins, is known to be

involved in creating adducts between cuticular proteins and

dopamine derivatives (Suderman et al. 2010).

Higher tyrosine quantities are likely to be needed for scler-

otization, as was demonstrated in the pea aphid

Acyrthosiphon pisum, where the endosymbiont Buchnera

delivers precursors such as phenylpyruvate and phenylanala-

nine, which are converted by the insect metabolism to tyro-

sine (Rabatel et al. 2013). The RNAi-mediated disruption of

the insect phenylalanine hydroxylase activity produces, among

other effects, an impairment in embryonic development

which may not be compensated by Buchnera as it does not

have the ability to synthesize tyrosine (Simonet et al. 2016).

The endosymbiont S. pierantonius also provides its weevil host

with phenylalanine and tyrosine, needed for the production of

catecholamines involved in cuticle synthesis (Wicker and

Nardon 1982; Oakeson et al. 2014; Vigneron et al. 2014).

Following the argument of a high tyrosine demand by H.

halophilus, our results suggest a similar strategy to the one

reported for Buchnera in A. pisum. In Buchnera, the prephen-

ate dehydratase PheA (a related TyrA enzyme) shows a feed-

back inhibition insensitiveness to phenylalanine (Jiménez et al.

2000). The prephenate dehydrogenase TyrA have the same

regulatory mechanism, being its function inhibited by high

tyrosine concentrations. The allosteric inhibition region in

TyrA was reported to be in the C-terminus using E. coli mu-

tation analysis (Chen et al. 2003; Lütke-Eversloh and

Stephanopoulos 2005; Raman et al. 2014). Interestingly, the

prephenate dehydrogenase gene (tyrA) from SoBa presents

higher nonsynonymous substitution rates, mainly at its C-ter-

minus, compared with other genes from the tyrosine biosyn-

thetic pathway. Changes in this region could cause the SoBa

prephenate dehydrogenase to be continuously active at high

tyrosine concentrations, due to the loss of the allosteric inhi-

bition, producing high amounts of this amino acid.

Amino Acids and Cofactors Production in the Sodalis
Genus

In general, the ability of the different Sodalis species to syn-

thesize amino acids and cofactors is correlated with their ge-

nome sizes and their symbiotic status (primary, coprimary, or

secondary). Pathways in which more than 75% of the
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reactions still appear to be functional in the endosymbiont are

likely to be complemented by the host cells, as observed in

several symbiotic systems (e.g. Wilson et al. 2010), or by a

symbiotic partner (if present). However, when complementa-

tion takes place between two bacterial symbionts, many dif-

ferent combinations of a shared pathway can evolve (Sloan

and Moran 2012; Husn�ık et al. 2013; Koga and Moran 2014;

Husn�ık and McCutcheon 2016). As expected, recent acquired

Sodalis present the most complete set of metabolic pathways,

and this is independent of their symbiotic status (primary or

secondary) (Toh et al. 2006; Oakeson et al. 2014; Nov�akov�a

et al. 2015). SoBa has a metabolic potential close to the

coprimary Sodalis from psyllids and the seal louse P. fluctus

(Sloan and Moran 2012; Boyd et al. 2016) with some specific

signatures: the ability to produce lysine, tyrosine, and ribofla-

vin. SoBa is the only endosymbiont with reduced genome that

is able to produce tyrosine and, with the exception of Sodalis

from P. spumarius, also the amino acid lysine. As indicated

earlier, these two amino acids are likely to play an important

role in H. halophilus–endosymbiont interaction.

It has been demonstrated that the provisioning of riboflavin

by endosymbiotic bacteria is essential to aphid’s growth

(Nakabachi and Ishikawa 1999). Moreover, the ability to pro-

vision riboflavin has likely played a major role in the establish-

ment of Ca. Serratia symbiotica as a coprimary endosymbiont

in some aphid lineages (Manzano-Mar�ın et al. 2016). In this

context, it is interesting to note the presence of a complete

riboflavin biosynthetic pathway (including yigB) in SoBa. This is

in contrast to Sodalis of mealybugs, psyllids and cicadas where

the pathway is almost lost or incomplete (fig. 6). The possi-

bility of complementation by the insect host (by horizontally

acquired genes) or by an endosymbiotic partner in mealybgus,

psyllids, and cicadas cannot be ignored, although so far, no

yigB or ybjI orthologous genes have been reported yet in these

groups (Husn�ık et al. 2013; Sloan et al. 2014; Husn�ık and

McCutcheon 2016). In any case, the ability to produce ribo-

flavin might have played an important role, in addition to the

ability to produce lysine and tyrosine, in the establishment of

the H. halophilus–SoBa relationship.

We notice that lipoate, an essential cofactor in many oxi-

dative reactions, including pyruvate decarboxylation, but also

an important antioxidant (Spalding and Prigge 2010; Cronan

2016), is present in all the Sodalis analyzed. Lipoate can be

acquired by de novo biosynthesis or by scavenging (Spalding

and Prigge 2010). Maintenance of both pathways has been

proposed as a signature of pathogenic (if a lipoamidase is

present) or gut-associated bacteria, which scavenges lipoate

only when it is available from the environment (Spalding and

Prigge 2010). As many other endosymbionts, most Sodalis

produce de novo lipoate from acetyl-CoA (fatty acids biosyn-

thesis pathway), or other intermediate metabolites (Mikella

and Hoaglandella use acetoacetyl). Recently acquired Sodalis

present both the biosynthetic and the scavenging pathways,

while only the biosynthetic one is maintained in Sodalis

endosymbionts with reduced genomes. It therefore seems

that the loss of the scavenging pathway together with the

lpd gene, reflects in the Sodalis genus, a change from a pu-

tative pathogenic or gut-associated bacteria to a mutualistic

endosymbiont. This way, the competition with the host/mito-

chondria for lipoate is avoided both by maintaining the ability

to de novo synthetize lipoate and by losing the ability to ex-

ploit the host lipoate by scavenging (Spalding and Prigge

2010).

Molecular Evolutionary Trends in the Sodalis Genus

The overall x values in the different Sodalis species (0.05-

0.11) indicated a strong effect of natural (purifying) selection

for preserving the amino acid sequences of the retained

genes. Our analysis indicated large (and significant) differen-

ces among lineages in dS and dN values. The averaged values

of these parameters were highly correlated, although this cor-

relation was not extended within each lineage to individual

genes, except for recently acquired Sodalis species.

Correlation in individual genes suggests a selection of synon-

ymous codon usage in highly expressed genes, which have

been almost completely lost in Sodalis species with longer

times of coevolution with their hosts. The large differences

among nucleotide divergence rates in different Sodalis species

and the correlation between averaged dN and dS values

may be explained by among-lineage differences in: 1) the

efficiency of the replication and repair machineries: the

diversity, concentration, error rate, and activity of DNA

replication and repair enzymes, 2) the endosymbiont gen-

eration time: species with shorter generation times are

expected to have larger rates of mutations per year be-

cause the larger numbers of DNA replications per unit of

time generate larger numbers of mutations, and 3) the

control of the endosymbiont by its host cell: mutations

in genes coding for enzymes involved in replication and

repair may be compensated by the import of host-

encoded enzymes (Silva and Santos-Garcia 2015).

Conclusions

Based on the structure of the H. halophilus bacteriome and

the phylogenetic placement of its endosymbiont Sodalis ba-

culum, the symbiosis of H. halophilus can be typified as a rare

event within the Lygaeoidea. Based on the low coding density

and several other evolutionary characteristics of the S. bacu-

lum genome, it can be concluded that it is still on an ongoing

genome reduction process. Sodalis baculum is not only the

first Sodalis to be described in lygaeoid bugs, but is also the

first Sodalis, within heteropteran insects, that may hold a mu-

tualistic relationship with its host, mainly supplying tyrosine,

lysine, and some cofactors. Finally, our results allow us to

propose the reunification of all the Sodalis-allied species

known to date into a single genus.
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