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Summary 

The dissipation of heat is a crucial parameter e.g. in the field of modern electronic 

devices and circuits, caused by an ongoing miniaturization and concomitant 

increase in energy density. The nanostructuring of matter represents a promising 

route to address these arising challenges. This necessitates a full understanding of 

heat transport in nano-, and mesoscale materials, wherefrom it is possible to 

develop novel concepts for specific device design. Therefore, in this thesis, 

polymer colloidal crystals are used as a versatile platform to study heat transport 

in nanostructured materials fundamentally. The highly-defined structure, 

combined with the possibility to control the thermal properties of these structures, 

allows studying thermal transport systematically, as well as to develop novel 

concepts for thermally functional materials. The investigated system is based on 

monodisperse polymer particles, consisting of either polystyrene or statistic 

copolymers of acrylate monomers. The chosen monomers allow to control the size, 

as well as to adjust the glass transition temperature Tg of the obtained particles, 

respectively. These particles can self-assemble into open-porous nanostructures, 

possessing pore sizes in the range of several tens up to hundreds of nanometers. 

The thermal transport through these colloidal structures is governed by the high 

interface density and the small interface areas between adjacent particles, serving 

as geometrical constrictions for heat to travel through the material.  

It is first demonstrated that the investigated polymer colloidal assemblies show 

a comparatively low thermal conductivity at still high densities. Additionally, 

these assemblies are hardly affected by the surrounding atmosphere due to the 

small pore sizes in the range of the mean free path of the gas-phase. Furthermore, 

the particle-particle interface can be manipulated by inducing dry sintering of the 

particles, based on the glass transition temperature Tg of the polymer particles. 

During the sintering, the contact areas enlarge and the porosity vanishes, leading 
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to an almost three-fold increase in the thermal conductivity during film formation. 

Secondly, the dry sintering is further studied in more detail by the time-dependent 

evolution of the thermal transport properties of polymer assemblies at 

temperatures near Tg. Combining time-dependent thermal transport 

characterization and UV-vis spectroscopy, it is possible to separate volume- and 

interface-driven effects. This allows to extract apparent activation energies for the 

film formation process by a size-independent and label-free characterization 

technique. Thirdly, the unique increase of the thermal conductivity by exceeding 

Tg is used to specifically tailor the temperature-dependent thermal conductivity of 

the particle assemblies. Taking advantage of various established assembly 

methods, it is shown how to fabricate crystalline, binary co-assemblies from 

particles possessing different Tgs, as well as multilayer structures, in which every 

layer consists of one specific Tg. This enables to i) adjust the transition at the desired 

temperature, ii) tune the transition range between two temperatures, iii) introduce 

multiple discrete transition steps, iv) control the degree of transition change, as 

well as to combine these approaches as desired. Finally, the influence of ordering 

in colloidal assemblies is demonstrated by investigating the thermal transport 

properties of binary assemblies from various mixing ratios of two differently sized 

particles. The thermal conductivity of disordered, binary assemblies is found to be 

reduced experimentally by roughly 40 %. Using complementary molecular 

dynamics and finite element modeling, it is demonstrated that this reduction is not 

only based on the reduced pathways for heat to travel through the structure due 

to the random packing of the particles, but additionally depends on a broadening 

of the number of next neighbor distribution in the high number region. This can 

be rationalized with the formation of particle clusters, leading to an even further 

geometrical extension of the thermal path and thus, to a further reduction of the 

thermal conductivity. 
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This thesis provides novel and conceptual insights into thermal transport in 

particulate systems. It specifically demonstrates the significant influence of 

nanoscopic constriction to the effective thermal transport properties. Building on 

this concept, clear structure-property relationships could be established, which 

will be of high value for the development of nanostructured materials possessing 

tunable thermal transport properties.  
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Zusammenfassung 

Das Abführen von Wärme ist ein entscheidender Parameter, z. B. auf dem Gebiet 

moderner elektronischer Bauteile und Schaltungen. Dies ist vor allem auf eine 

fortlaufende Miniaturisierung und gleichzeitige Erhöhung der Energiedichte 

dieser Materialien zurückzuführen. Das Nanostrukturieren von Materialien 

eröffnet eine vielversprechende Möglichkeit diesen neuen Herausforderungen zu 

begegnen. Daraus ergibt sich die Notwendigkeit den Wärmetransport in nano- 

und mesoskaligen Materialien vollständig zu verstehen, um neuartige Konzepte 

für eine gezielte Materialsynthese abzuleiten. Daher werden in dieser Arbeit 

polymere Kolloidkristalle als vielseitige Plattform verwendet um den 

grundsätzlichen Wärmetransport in nanostrukturierten Materialien zu 

untersuchen. Die hoch definierte Struktur ermöglicht die systematische 

Untersuchung des thermischen Transports durch diese Materialien. Weiterhin 

eröffnet die Kontrolle über die thermischen Eigenschaften dieser Strukturen 

anhand der Partikelsynthese und der Partikelassemblierung, die Möglichkeit neue 

Konzepte für thermisch funktionelle Materialien zu entwickeln. Das untersuchte 

System basiert auf monodispersen Polymerpartikeln, die entweder aus Polystyrol 

oder statistischen Acrylat-copolymeren bestehen. Die gewählten Monomere 

erlauben es, die Größe sowie die Glasübergangstemperatur  der erhaltenen 

Partikel gezielt einzustellen. Diese Partikel selbst-assemblieren in offenporöse 

Nanostrukturen mit Porengrößen im Bereich von einigen zehn bis zu hunderten 

Nanometern. Der Wärmetransport durch diese kolloidalen Strukturen wird durch 

die hohe Grenzflächendichte und die Größe dieser Grenzflächen zwischen 

benachbarten Partikeln dominiert. Die Partikel-Partikel Grenzflächen verhalten 

sich wie geometrische Verengungen für den Wärmefluss. Es wird zunächst 

gezeigt, dass die untersuchten Polymer-Kolloidkristalle eine vergleichsweise 

geringe Wärmeleitfähigkeit bei vergleichbar hohen Dichten aufweisen. Aufgrund 
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der geringen Porengrößen im Bereich der mittleren freien Weglänge der 

vorliegenden Gasphase wird der Wärmetransport durch diese Strukturen nur 

wenig von der umgebenden Atmosphäre beeinflusst. Weiterhin ist es möglich die 

Partikel-Partikel-Grenzfläche durch Sintern der Polymerpartikel bei 

Temperaturen über ihrer Glasübergangstemperatur Tg zu manipulieren. Während 

des Sinterns vergrößern sich die Kontaktflächen, die Porosität verschwindet, was 

in einer fast dreifachen, stufenartigen Erhöhung der Wärmeleitfähigkeit während 

der Filmbildung resultiert. In einem zweiten Schritt wird die zeitabhängige 

Entwicklung der thermischen Transporteigenschaften polymerer Kolloidkristalle 

bei Temperaturen nahe Tg untersucht. Durch die Kombination von zeitabhängiger 

Charakterisierung der thermischen Transporteigenschaften und 

UV-vis Spektroskopie, ist es möglich volumen- und grenzflächengetriebene 

Effekte getrennt voneinander zu untersuchen. Das ermöglicht es, apparente 

Aktivierungsenergien für den Filmbildungsprozess durch eine 

größenunabhängige und Labelfreie Charakterisierungstechnik zu berechnen. In 

einem dritten Schritt wird die einzigartige Erhöhung der Wärmeleitfähigkeit 

während des Sinterns ausgenutzt, um die Temperaturabhängigkeit der 

Wärmeleitfähigkeit dieser Partikelstrukturen gezielt maßzuschneidern. Mit 

Zuhilfenahme verschiedener, etablierter kolloidaler Assemblierungsmethoden 

wird gezeigt, wie man aus Partikeln mit verschiedenen Tgs kristalline, binäre 

Co-Assemblies sowie mehrschichtige Strukturen herstellt. Dies ermöglicht es, i) 

den Anstieg auf die gewünschte Temperatur einzustellen, ii) einen 

kontinuierlichen Anstieg zwischen zwei Temperaturen zu realisieren, iii) mehrere 

diskrete Übergangsschritte einzuführen, iv) die Höhe des Anstiegs bei einer 

bestimmten Temperatur zu kontrollieren und diese Einstellmöglichkeiten zu 

kombinieren. Schließlich wird der Einfluss der Partikelordnung in kolloidalen 

Strukturen auf deren thermischen Transporteigenschaften anhand von binären 

Partikelassemblies zweier Partikel mit unterschiedlichen Durchmessern 
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untersucht. Basierend auf der eingeführten Unordnung zeigen binäre Assemblies 

eine reduzierte thermische Leitfähigkeit um ~40 %. Mit Hilfe von komplementären 

Molekulardynamik und Finite-Elemente Simulation wird gezeigt, dass diese 

Reduktion nicht nur auf eine geringere Anzahl an Partikel-Partikel 

Kontaktpunkten in diesen Strukturen zurückzuführen ist. Zusätzlich führt eine 

Verbreiterung der Verteilung der Anzahl der nächsten Partikelnachbarn zu einer 

weiteren Reduzierung. Dies kann anhand der Bildung von Partikelclustern 

verstanden werden, die zu einer weiteren, geometrischen Verlängerung der 

thermischen Weglänge und damit in eine weitere Reduktion der 

Wärmeleitfähigkeit resultiert. 

Diese Arbeit liefert konzeptionelle Einblicke in den thermischen Transport in 

Partikelsystemen. Sie zeigt den signifikanten Einfluss der nanoskopischen 

Verengung auf die effektiven thermischen Transporteigenschaften. Auf diesem 

Konzept können klare Struktur-Eigenschafts-Beziehungen aufgebaut werden, die 

für die Entwicklung von nanostrukturierten Materialien mit abstimmbaren 

thermischen Transporteigenschaften von hohem Wert sein werden 
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Abbreviations and Symbols 

2D  two-dimensional 

3D  three-dimensional 

AA  acrylic acid 

AMM  acoustic mismatch model 

Cp  specific heat capacity 

Cv  volumetric heat capacity 

DMM  diffusive mismatch model 

fcc  face-centered cubic 

FEM  finite element modeling 

hcp  hexagonal close-packed  

IR  infrared radiation 

KPS  potassium peroxodisulfate 

LCST  lowest critical solution temperature  

MD  molecular dynamics 

MFP  mean free path 

MMA  methyl methacrylate 

n-BA  n-butyl acrylate  

NIPAM n-isopropylacrylamide 

nm  nanometer 

PS  polystyrene 

PSS  styrene sulfonic acid 

SAM  self-assembled monolayers  

SEM  scanning electron microscopy 

SiO2  siliciumdioxid, silica 

T  temperature 

TEM  transmission electron microscopy 
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Tg  glass transition temperature  

UV  ultra violet 

v.d.W.  van der Waals 

vg  sound velocity 

Vis  visible 

  thermal diffusivity 

  thermal conductivity 

  density 
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1 Motivation 

Heat – as physical term describes the energy, exchanged between two systems 

which reside themselves outside their thermodynamic equilibrium due to a 

difference in temperature. According to the second law of thermodynamics, heat 

always flows from the hot to the cold side, until both systems reach their thermal 

equilibrium. Whereas this behavior is commonly known and appears to be trivial, 

it has strongly influenced our past developments and is constantly affecting our 

daily life. The irrevocable behavior of the flow of heat from hot to cold has always 

been a major concern e.g. for wildlife within the process of adaptation to nature. 

Animals have steadily been under the constraint to evolve highly insulating furs 

or feathers to resisted cold temperatures. These adoptions have influenced how 

fast energy is exchanged between the animal’s skin and the ambient environment, 

enabling the animal to save energy. The property “how fast” thermally energy is 

exchanged is commonly known as the thermal conductivity. Still, not only 

animals were forced to adapt to the intrinsically defined direction of the flow of 

heat, but also human society has been forced to protect itself from energy 

exchange to the environment, leading to the inhabitation of caves and the 

fabrication of clothing. Even nowadays, thermal insulation of buildings plays a 

central role within the construction sector to protect ourselves from undesired 

energy exchange and thus, to save waste heat and scarce resources.  

Today, the focus of current research is not only laid on how to create highly 

insulating or conducting systems but is more and more narrowed to fabricate 

novel strategies, which allow to mold the flow of heat as desired and to create 

space-saving, functional materials. This is based on the ongoing miniaturization 

of devices and their steadily increasing operation speeds, in combination with an 

increasing worldwide energy consumption. Whereas dissipation of thermal 
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energy is a crucial parameter e.g. for the efficiency of electronics, the possibility 

to control the flow of thermal energy may also lead to novel materials possessing 

unique properties. Several examples exist in literature, already pointing out the 

great potential of such materials, describing dynamic insulation materials,1,2 

thermal diodes,3,4 thermal rectifiers5-7 or thermal memories,8-10 to name a few. Still, 

the challenges of controlled thermal transport are active topics of current 

research, and tremendous effort has been done within the field over the past two 

decades.11,12 

Nanostructuring of matter represents a promising route to overcome the 

challenges of controlled heat transport since it allows to realize functionality in 

very small dimensions, as well as to manipulate heat on a structural level. Still, 

the fundamentals of thermal transport in nanostructures need to be fully explored 

to develop novel concepts for specific material design. Within the field, heat 

transport is mostly studied within bulk crystalline materials. This originates from 

the ballistic transport behavior of heat carriers present in such highly ordered 

materials. Therefrom, it is possible to derive the underlying mechanisms of heat 

transport and fundamentally manipulate heat transport. To name a short 

example, by nanostructuring on the right length scale it is possible to introdue 

thermal band gaps,13 similar to the concept known for photonics.14 This can help 

to mold the flow of heat as desired. However, the realization of full band gap 

materials is still a great challenge, and up to now thermal band gaps do not cover 

the whole amount of heat carriers present in the material.15,16 

In contrast, thermal transport in well-defined mesostructures has only been 

poorly in the focus of thermal transport studies yet. This is even more surprising 

since there is a material class which obviously provides several advantages to 

investigate thermal transport: Colloidal crystals. A qualitative overview of the 

benefits of colloidal assemblies is given in Figure 1. 
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Figure 1: Advantages of a colloidal assembly related to thermal transport. A variety of hard and 

soft colloids is accessible to fabricate these assemblies.17-22 Colloidal assemblies possess a high 

interface density.23 Interface chemistry is crucial for thermal transport.24 Based on their highly 

defined nanostructure, systematic investigations of thermal transport are possible.25 Colloidal 

assembly fabrication is easily scalable.26 

The building blocks of colloidal crystals are easily accessible by common 

synthesis techniques and can be synthesized from various materials and in various 

shapes, allowing to introduce an as desired functionality into the assembly 

(Chapter 2.1).27-29 Their high amount of interfaces offers the potential of application 

as ultra-low conducting, solid thin film materials.23,30,31 Furthermore, these 

interfaces can be chemically functionalized.32 This is favorable since the thermal 

interface conductance strongly depends on the surface chemistry of the interfaces 

(Chapter 2.4).24,33 Additionally, the size of the particles is variable during the 

synthesis (Chapter 2.2). This allows addressing a large length scale from several 

hundred nanometers up to a few micrometers. Moreover, their defined 

nanostructure is highly favorable to systematically study the influence of 

structural parameters on the thermal transport in mesostructured matter.25,34 
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Furthermore, molding of the heat flux is potentially possible by manipulating the 

colloidal structure to realize thermally functional, space-saving materials. 

This thesis contributes to the investigations of the thermal transport properties 

of nanostructured materials, choosing polymer colloidal assemblies as a model 

platform. The investigated assemblies are fabricated from monodisperse polymer 

nanospheres. Polymer particles have been chosen as building blocks due to their 

versatile synthesis, allowing the full control over the size and glass transition 

temperature of the particles.35,36 Furthermore, various self-assembly methods are 

established,37,38 enabling a precise control over the desired, final colloidal 

architecture. The particles can self-assemble into open-porous, highly ordered 

colloidal crystals, possessing a high interface density, small pore size as well as 

thermally inducible functionality due to the glass transition temperature Tg of the 

polymer particles. On the one hand, the crystalline packing of the particles allows 

drawing fundamental structure-property conclusions from the experiments. On 

the other hand, the thermally inducible dry sintering of the assemblies at 

temperatures above Tg strongly increases the thermal conductivity of the 

assembly due to the loss of porosity and interfaces. This behavior can be 

specifically exploited to tailor the material’s temperature-dependent thermal 

conductivity by advanced colloidal assembly strategies of polymer particles 

possessing various Tgs. Therefrom, novel concepts can be established to design 

novel materials specifically. A controllable temperature dependence of the 

thermal conductivity is of great importance in the field of thermally functional 

devices e.g. thermal switches and diodes.3,4,7,39 
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2 Fundamentals 

2.1 Colloidal Particles and Crystals 

Colloidal crystals are commonly assembled from monodisperse building blocks 

in the size range between one nanometer and several micrometers. Particles of 

this size are generally termed as colloids. The colloidal domain, therefore, closes 

the gap from the nanometer to the micrometer scale. Colloidal particles already 

find application in various fields such as paints, coatings, and packing,40,41 and 

can also be found within current research, e.g. as anisotropic clays and minerals 

or in biology as viruses, proteins, and cells.42 The colloidal domain is accessible 

by either top-down or bottom up approaches. Top-down approaches refer to the 

removal of excess material from a bulk material until the desired size and shape 

is obtained. Bottom-up approaches describe the construction of the desired 

material from smaller entities, which can reach down to the single molecule level. 

The following section will give an idea of the variety of colloids and colloidal 

architectures that have been reported in literature, starting with a selection of 

transmission- and scanning electron microscope (TEM, SEM) images of hard and 

soft colloidal particles fabricated from various materials (Figure 2). 
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Figure 2: Several soft and hard colloidal particles possessing different functionality. a) TEM 

image of spherical CdSe nanocrystals.17 b) Scanning electron micrograph of Ag nanocubes.18 c) 

TEM image of multi-compartment polymer particles.19 d) TEM image of hollow silica 

nanospheres.20 e) TEM image Core-shell particles possessing a silver core and a thermos-

responsive PNIPAAM shell.21 f) SEM images of conjugated polymer particles prepared by 

Suzuki-Miyaura dispersion polymerization.22 

To point out the different shapes and sizes which are accessible, Figure 2a, b 

show SEM and TEM micrographs of semiconductor (CdSe) and metal (Ag) 

nanoparticles. Several other metal compounds can be used for the fabrication of 

such nanoparticles,43 and various other shapes are also possible.44-47 TEM images 

of multi-compartment polymer colloidal particles are illustrated in Figure 2c. The 

particles are assembled from ABC triblock terpolymers by selective dialysis. Due 

to the well-defined polymer patches on the surface of the particles, they can 

assemble into segmented, supracolloidal polymers on a micrometer length scale 

with a defined interface design.19,48 Figure 2d shows TEM images of hollow silica 

(SiO2) nanospheres fabricated using polystyrene (PS) spheres as templates.20 

Based on the low thermal conductivity of this materials, they may find application 

as nano-insulation materials.49 Figure 2e shows plasmonic silver nanoparticles 

(black), embedded in a stimuli-responsive shell consisting of poly n-isopropyl 

acrylamide (poly-NIPAAM). By exceeding the lowest critical solution 
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temperature (LCST) of the poly-NIPAAM shell, the hydrogel shell collapses 

allowing to manipulate the plasmonic resonance of the silver particle. Conjugated 

polymer particles are illustrated in Figure 2e. Such materials could act as both, an 

optical filter due to the photonic bandgap, and as frequency converter based on 

the photoluminescence.22 

From this variety of particles, it is possible to fabricate colloidal crystals, 

possessing additional properties, based on the colloidal structuring. In general, it 

is possible to assemble colloidal crystal from particles with a polydispersity below 

1.05.43 Therefrom, colloidal structures are obtainable, owning a second level of 

structural hierarchy.50 Assuming a sufficiently narrow size distribution, these 

building blocks arrange into highly crystalline symmetries, similar as found for 

atoms. Therefore, colloidal assemblies can be used as a model platform, e.g. to 

study crystal growth processes.46,51-53 They offer the great advantage of a much 

larger length compared to their atomic counterpart. This allows a much easier 

experimental observation. To give an idea of the wide variety of architectures 

accessible by colloidal assembly, some exemplary colloidal structures are 

summarized in Figure 3. 

  



-Fundamentals- 

 

-30- 

 

Figure 3: Exemplary structures accessible by colloidal crystallization. (a) A colloidal monolayer 

of close-packed, monodisperse SiO2 spheres.54 (b) Ordered binary PS colloidal monolayer.55 c,d) 

SEM and optical micrograph of a microsphere decorated with 400 nm colloidal particles. Grating 

colors arise from the periodic arrangement of the particles at the surface.56 e) Silicon cone array 

obtained via reactive ion etching using a 2D colloidal crystal as mask.57 f) Gold nanohole array 

fabricated by colloidal lithography.58 g) SiO2 inverse opals from infiltrating a 3D PS colloidal 

crystal with SiO2 nanoparticles followed by pyrolysis of the polymer template particles.59 

Figure 3a and b show SEM images of two examples of 2D colloidal monolayers, 

which find application as potential anti-reflective coatings60,61 or as template 

structures for surface patterning.62-64 Figure 3c and d exhibit SEM and optical 

micrographs of a photonic ball assembled from 400 nm colloidal particles. Based 

on the internal and external particle structure within the photonic ball a variety 

of optical effects is present.56,65-67 

The bottom row of Figure 3 indicates structures accessible using colloidal 

assemblies as sacrificial templates, starting with a periodical array of silicon cones 

(Figure 3e). The cones are fabricated by reactive ion etching using a monolayer of 

SiO2 spheres as a mask.68 Figure 3f shows gold nanohole arrays prepared by the 

evaporation of gold on a plasma etched 2D hexagonally close-packed PS colloidal 

monolayer, which may serve as a transparent electrode material in organic solar 

cells58 or as a platform to study particle-substrate interactions.69 Figure 3d 

illustrate a SiO2 inverse opal made from a 3D PS colloidal crystal representing the 
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inverse structure of the former crystals.70,71 Due to their high surface area these 

structures are suitable as a framework for catalysts,72 or to investigate diffusion 

process through interconnected networks.73 

Whereas the property of the single particle is still present within the assembly, 

additional functionality can be achieved by the further structural hierarchy of the 

assembly.74-78 Most common is the evolution of photonic band gaps, leading to a 

complete reflection of light of a specific wavelength.14,79 In this thesis, monitoring 

the Bragg reflection during the colloidal film formation process of polymer 

colloidal crystals is used as a complementary method to thermal transport 

characterization of the film formation process (see Chapter 4.2). To observe a 

photonic bandgap, two requirements are necessary i) the particles have to be 

arranged in a periodic lattice, and ii) the lattice spacing is about the size of a 

specific wavelength of the incident light. The periodic arrangement of the 

particles leads to a periodic refractive index contrast and thus, to a periodic 

variation of the dielectric constant within the materials. This variation is 

responsible for the manipulation of electromagnetic waves. The incident light is 

then reflected according to Bragg’s law:80 

mλm = λB = 2nedhklsinαB    (1) 

where m corresponds to the diffraction order, B is the Bragg diffraction 

wavelength and ne the effective refractive index of the assembly. dhkl represents 

the distance between two lattice planes with Miller indices (h,k,l) and B is the 

angle of incidence of the light beam. Since colloidal crystals behave similar to 

atoms, this behavior is well-known from X-ray diffraction at atomic lattices. 

Therefore, indicated by Equation 1, the reflected wavelength depends on the size 

of the particles defining the lattice spacing and on the angle of the incident light, 

normal to the crystal planes. The angle dependence is illustrated by a photograph 

of a SiO2 colloidal crystal monolayer, displayed in Figure 4a. 
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Figure 4: Bragg reflection of colloidal assemblies. a) Photograph of a colloidal crystal monolayer 

consisting of hexagonal close-packed SiO2 nanospheres with a diameter of 315 nm.81 b) Core-shell 

particles arranged in a colloidal crystal lattice. The shell (blueish) is responsive to the ionic 

strength. From this, the interplanar spacing can be varied, leading to a shift of the Bragg reflection 

peak.32 

The varying angle of the observer relative to the crystal plane shifts the 

wavelength of the Bragg reflectivity peak, leading to the observed rainbow colors. 

This behavior offers great potential of colloidal materials acting as optical filters 

and switches,82 or as chemical sensors.83-85 By chemically modifying the particle 

surfaces, a stimuli-responsive behavior can be further introduced to the 

assembly,32,86 e.g. in photonic crystals from core-shell particles possessing a PS 

core forming the crystal lattice, and a poly (styrene sulfonic acid) shell layer 

(Figure 4b). In the swollen state, the polyelectrolyte shell is responsive to the ionic 

allowin to vary the lattice spacing. 

As pointed out in this chapter, a great toolbox of particles and assemblies is 

present in literature, and a large number of articles can be found exploring their 

unique properties. Still, only little work has been done to investigate thermal 

transport in colloidal structures, and fundamental studies are necessary. 

Therefore, this thesis is narrowed to a relatively simple and common system: 

polymer colloidal crystals. The methods used for particle synthesis are described in 

the following chapter. 
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2.2 Polymer Particle Synthesis 

A countless number of approaches and variations exist in literature to fabricate 

polymer colloidal particles,42,87 including emulsion35,88-90 and dispersion 

polymerization,91-93 seed growth techniques 94-96 and mini-emulsion 

polymerization.97,98 In this work, emulsifier-free emulsion polymerization has 

been used exclusively to obtain highly monodisperse polymer particles from 

styrene, methyl methacrylate (MMA) and n-butyl acrylate (n-BA) as monomer 

source. This method provides some advantages compared to other techniques. 

Firstly, the synthesis is carried out in a single batch synthesis, which reduces 

experimental complexity. Secondly, the synthesis is scalable, allowing to 

synthesize a sufficient number of particles in only one batch. Therefore, the same 

particle type can be used throughout the entire experiments, ensuring a necessary 

sample’s consistency. Furthermore, no surfactant is used within this type of 

emulsion polymerization, since the amphiphilic species is formed during an early 

stage of the synthesis. This strongly facilitates the purification of the particle after 

the synthesis because surfactants are generally hard to remove from the final 

particle dispersion. Additionally, different monomers are accessible wherefrom 

colloidal particles can be synthesized. Moreover, the size of the particles is 

adjustable by the experimental parameter,99,100 e.g. temperature, initiator 

concentration, the addition of charged co-monomers or the amount of monomer. 

Besides, using a mixture of MMA and n-BA as the monomer source, it is further 

possible to accurately adjust the glass transition temperature of the resulting 

polymer particles.36 A schematic sketch of the reaction mechanism of an 

emulsifier-free emulsion polymerization is shown in Figure 5. 
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Figure 5: Sketch of the mechanism of an emulsifier-free emulsion polymerization. 

The monomer droplets are dispersed in a continuous water phase. Whereas the 

initiator is water-soluble, the monomer component is poorly soluble in the 

aqueous phase. Still, some monomer molecules will be dissolved in the water 

phase and therefore, are able to react with the dissolved initiator. This leads to 

the formation of oligomers possessing a charged head group, based on the 

initiator, and a nonpolar tail due to chain growth of the monomer (Figure 5.1). 

These charged oligomers are now capable to homogeneously nucleate micelles, 

as known from amphiphiles (Figure 5.2).101 A constant particle growth is then 

observed by a continuous diffusion of monomer molecules from the monomer 

droplets to the micelles (Figure 5.3) until the entire amount of monomer is 

consumed. In general, the number of nucleated micelles fairly exceeds the 

number of monomer droplets present in the water phase. Thus, the 

polymerization is predominantly conducted within the micelles. This results in 

monodisperse polymer particles possessing a charged surface. 
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2.3 Colloidal Self-Assembly 

Typically, a small amount of charged co-monomer, e.g. styrene sulfonic acid 

(PSS) or acrylic acid (AA) is added to the reaction mixture. This is necessary to 

obtain a sufficiently high electrostatic repulsion of the particles, preventing them 

from agglomeration. In general, aqueous colloidal dispersions are 

thermodynamically unstable due to their high surface energies. Therefore, these 

systems tend to reduce their large interface area by the formation of agglomerates. 

The attractive force between two colloidal particles can be quantified by the 

Hamaker constant.102 If two charged colloids approach each other as close as their 

counterion layers start to interpenetrate, a repulsive potential arises as a function 

of particle-particle distance.100 The concept of attraction and repulsion of charged 

particles has been introduced by Derjaguin, Landau, Verwey and Overbeek in the 

1950s.103,104 The DLVO potential U of two individual particles versus the 

particle-particle distance d is displayed in Figure 6. 

 

Figure 6: DLVO potential versus the particle-particle distance. (blue) Born repulsion prevents 

particles from overlapping. (I) Primary minimum based on van der Waals interactions. (II) 

Electrostatic repulsion causes a primary maximum.105 

At a sufficiently small distance, a primary minimum is visible (Figure 6.I) based 

on van der Waals attraction. This minimum is ascribed to irreversible particle 
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agglomeration and must be prevented for stable colloidal dispersions. 

Agglomeration can be surpressed by a sufficiently strong electrostatic repulsion 

potential (Figure 6.II). This is why the addition of charged co-monomers is 

essential to receive stable colloidal dispersions. 

Besides electrostatic repulsion, functionalizing the particle surface with a 

water-soluble polymer layer is another common approach to sterically stabilize 

aqueous particle dispersions. Here, the interpenetration of the polymer chains of 

two approaching particles leads to an increasing polymer concentration between 

the particles. This, in turn, causes an osmotic pressure due to local concentration 

differences of the polymer layer. The solvent tends to diffusive into the regions of 

highly concentrated polymers, forcing the particles to separate from each other.106 

A sufficient particle repulsion is crucial to obtain crystalline colloidal ensembles. 

Nowadays, a large amount of assembly methods for spherical colloidal particles 

has been established.37,38,51,107 Most common for colloidal crystal fabrication are the 

Langmuir Blodgett technique,108-110 vertical deposition from aqueous particle 

dispersions,111,112 and floating techniques.113,114 Attractive and repulsive 

interactions of the particles such as capillary forces, electrostatic interactions and 

van der Waals forces play a key role during the self-assembly into highly ordered 

colloidal crystals. Typically, monodisperse hard spheres crystallize in a 

face-centered cubic (fcc) symmetry, since this is the thermodynamically favored 

crystalline phase, compared to hexagonally closed packings (hcp).115,116 The 

various interaction forces, which can occur during the assembly of colloidal 

particles are schematically illustrated in Figure 7. 
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Figure 7: Sketch of interactions and forces during colloidal assembly. (red) Repulsive 

interactions. (blue) Attractive interactions and (black) external forces applied to the particles. a) 

Dipolar, b) Coulomb (electrostatic) and c) steric repulsion. d,h) Capillary forces, e) drag forces, f) 

Coulomb attraction, g) agglomeration, i) v.d.W attraction, k) depletion attraction. i) Barrier 

compression, m) Brownian motion, n) gravitational sedimentation.37 

Repulsive interactions are summarized in Figure 7, red, showing electrostatic 

(Figure 7a,b) and steric interactions (Figure 7c), as discussed above. A stronger 

particle-particle repulsion based on dipolar repulsion at an oil-water interface is 

additionally displayed. In this case, the stronger particle repulsion is due to an 

only partial ion dissociation in the water phase. Attractive forces are pointed out 

in Figure 7, blue. From the various attractive interactions, capillary attraction 

(Figure 7d) plays the most important role in the vertical deposition and floating 

assembly techniques, as well as for simple evaporation-induced self-assembly. 

Here, during the evaporation of the aqueous phase, the dispersed particles 

approach each other due to capillary attractions. Based on the electrostatic 

repulsion between the particles, the particles will be oriented into their 

energetically minimum position. This results in a crystalline structure, 

representing the most energetically preferable particle arrangement. Figure 

7, black indicates different external forces, which can be used to conduct colloidal 

assembly e.g. compression (Figure 7l), as it is applied by the Langmuir Blodgett 
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technique, or gravitational force leading to the sedimentation of the particles 

(Figure 7n), e.g. for assembly by filtration or centrifugation 

In this thesis, colloidal crystals and assemblies were fabricated by either 

evaporation-induced self-assembly, vertical deposition (dip-coating) or filtration. 

Evaporation-induced self-assembly yields highly crystalline colloidal monoliths 

of a uniform thickness of several hundred micrometers, preferably for thermal 

transport characterization. From vertical deposition, highly crystalline assemblies 

are obtainable, possessing thicknesses of tens of micrometers. Based on the 

preparation on a substrate of choice, this technique is preferable for determining 

the optical properties of the investigated assemblies. Assembly by filtration 

allows fabricating multi-layer colloidal assemblies with precise control over the 

thicknesses of the individual layers. Therefore, the properties of different 

particles can be combined in only one colloidal ensemble. Noteworthy, 

assemblies received from filtration do not possess an as high crystallinity, due to 

the fast assembly process.  
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2.4 Thermal Transport in Bulk Materials 

The manipulation of electrons and photons is commonly known in 

semiconducting materials, or in optical fibers or photonic crystals, respectively. 

Besides, another quasi-particle exists, which is responsible for the transmission of 

sound and heat in dielectric materials: The Phonon. As known from the concept of 

wave-particle duality for photons and electrons, phonons can also be described 

as particles or as waves. Phonons can be understood as cooperative, mechanical 

vibrations, transmitted through the atomic lattice. Whether a phonon is resposible 

for the transmission of sound or heat depends on its oscillation frequency. The 

phononic spectrum is shown Figure 8. 

 

Figure 8: The phononic spectrum.13 

Whereas sound waves oscillate at low frequencies (kilohertz) and can propagate 

over long distances, as known for sonar systems, high-frequency phonons 

(terahertz) are responsible for the transport of heat and can only propagate over 

short distances. Since phonons can be treated as quasi-particles, the thermal 

conductivity  of a dielectric solid is describable by the Debye equation according 

to the kinetic theory: 

𝜅 =
1

3
𝐶𝑣𝑣𝑔Λ      (2) 

Here, Cv is the volumetric heat capacity, describing how much thermal energy 

can be stored in the material. vg represents the sound group velocity of the 

phonons, excited at a specific temperature T, and Λ is the average phonon mean 
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free path (MFP), giving the characteristic length that a phonon can travel freely 

between two scattering events. The thermal conductivity is a quantity how much 

energy is conducted through a material per unit time. To give an impression of 

the thermal conductivity, the values of some highly conducting, and insulating 

materials are summarized in Table 1. 

Table 1: Thermal conductivity of several selected materials. 

 Thermal conductivity at 25 °C [Wm-1K-1] 

Diamond (crystalline) >3000117,118 

Diamond (amorphous) ~4119 

Copper ~400120 

Silica ~1.4120 

Polymers ~0.1 - 0.5121,122 

As easily seen by the comparison of the thermal conductivity of crystalline and 

amorphous diamond, the thermal conductivity strongly depends on the atomic 

structure of a material. Whereas crystalline materials generally possess high 

thermal conductivities, this is reversed for disordered/amorphous solids.123 That 

behavior is based on the long phonon MFPs present in crystalline materials, in 

contrary to very short MFPs present in disordered materials. The length of the 

phonon MFP is influenced by various scattering events which may occur during 

the propagation process. Important phononic scattering processes are 

summarized in Figure 9a. 
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Figure 9: Scattering events in dielectric materials. a) Schematic sketch of several scattering 

mechanisms i) Phonon-phonon scattering occurs from the anharmonicity of the atomic lattice. ii) 

Scattering at the boundaries is observed in materials which thickness is in the range of the MFP. 

iii) Scattering of phonons at impurities or iv) imperfections. v) Scattering at grain boundaries e.g. 

differently oriented crystallites.124 b) Temperature-dependent thermal conductivity of crystalline 

silicon materials.125 c) Thickness-dependency of the thermal transport in silicon membranes.125 d) 

Influence of surface roughness on the thermal conductivity.126 

Phonon-phonon scattering occurs due to the anharmonic oscillation character 

of the lattice potential.127 Noteworthy, phonon-phonon scattering is the main 

reason why the thermal conductivity of an ideally crystalline material is finite 

with temperature and does not steadily increase due to the increase of the heat 

capacity. Below the Debye temperature, only few phonon modes exist, enabling 

long mean free paths. Above the Debye temperature, the full phonon population 

is excited, leading to an increasing phonon-phonon scattering and thus, to a finite 

thermal conductivity. Therefore, the thermal conductivity of crystalline material 

increases with a ~T3 dependence of the heat capacity below the Debye 

temperature and decreases with ~T-1 at higher temperatures (Figure 9b).125 
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Furthermore, boundary scattering can occur, which is of interest in thin film 

materials, where the thickness of the samples is in the range of the phonon MFP 

(Figure 9c). Besides, scattering at the surface roughness (Figure 9d), impurities, 

imperfections and grain boundaries will certainly reduce the thermal transport 

through a material.124,128-130 

In particular, for materials possessing a high interface density, e.g. colloidal 

structures, the transport of heat across these interfaces plays a crucial role for their 

thermal transport properties, since these systems are dominated by their 

interfaces. Quite obvious, the size of interface area is decisive for the thermal 

transport across the interface.131,132 With increasing interface area, the thermal 

conductivity is increased and vice versa.133  

Additionally, the bonding strength between the interfaces strongly influences 

the thermal transport across an interface, described by thermal interface 

conductance. Heat transmission by phonons across an interface can be 

rationalized by two models: i) the acoustic mismatch model (AMM),134 

considering differences in the speed of sound on each side of the interface. Here, 

phonons are expected to cross the interface elastically without being scattered. ii) 

the diffusive mismatch model (DMM),135 where differences in the density of states 

are assumed. In this model, a complete and random scattering of phonons occurs 

by crossing the interface. The influence of the bonding strength on the thermal 

interface conductance has been experimentally studied by Losego et al.24 on 

self-assembled monolayers (SAMs), sandwiched between a quartz substrate and 

a transfer-printed gold film. The SAM head group binding to the transfer-printed 

gold layer is varied, allowing to control the bonding strength at the SAM-gold 

interface. The experimental system is schematically sketched in Figure 10a, as 

well as the different head groups. 
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Figure 10: Influence of bonding strength on the interface conductance. a) Sketch of the 

experimental system and possible end groups (red). b, left) Interface thermal conductance of 

SAMs, differently bonded to a gold layer. b, right) Influence of increasing SH-group content on 

the thermal conductance of a SAM, allowing to tailor the thermal interface conductance.24 

Based on the chosen head group, the interface thermal conductance increases 

from methyl to hydroxyl groups, and possesses the highest value for thiol 

terminated SAMs (Figure 10b, left). This correlates well with the increasing 

bonding strength. Furthermore, the mixture of methyl and thiol terminated SAMs 

allows to directly tune the interface thermal conductance, depending on the 

mixing ratio (Figure 10b, left). 

The depicted concept of phonons, outlined in the previous section, is valid to 

describe heat conduction in crystalline solids, but it becomes less applicable to 

describe heat conduction in disordered materials e.g. silica or amorphous 

polymers. This is based on the lack of translational symmetry of the atomic lattice 
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within these materials. In an ideal crystalline material heat conduction can be 

described as ballistic transport of phonons, in which their mean free path largely 

exceeds the unit cell size and phonons transverse the systems with minimum 

scattering. In contrary, diffusive transport is present in amorphous matter. Here, 

the mean free path is reduced to less than the interatomic distances, due to a 

strong scattering at the disordered atomic structure. For this reason, it is 

challenging to predict the thermal transport behavior of amorphous materials. 

Einstein theoretically described heat conduction in amorphous solids as a random 

walk of independent oscillators, termed as diffusion modes (diffusons).136 The 

picture of a random walk of interacting, but independent oscillators already point 

out the complexity to accurately describe heat conduction in these materials. 

Allen and Feldman137,138 extended the theoretical descriptions of Einstein by 

introducing two further vibrational modes termed as locons and propagons. 

Propagons represent propagating, wave-like vibrational modes with MFPs 

longer than the interatomic spacing. Whereas propagons and diffusion can 

contribute to heat transport due to their delocalized, propagating character, 

locons represent localized, non-propagation vibrational modes which therefore 

do not contribute to heat transport but to the specific heat capacity.139 

2.5 Thermal Transport in Polymers 

Since this thesis deals with the thermal transport of polymer based colloidal 

materials, heat transport in polymers is briefly discussed in the following. In 

general, polymers are known to be thermal insulators due to several occurring 

scattering events, resulting in diffusive heat transport. Thermal transport in 

polymers is slightly different than known for other material classes. This is based 

on their chain-like structure, as well as their ability to form crystalline and 

amorphous regions, in which the chains are either extended and highly oriented, 

or possess a random-coiled structure. The transmission of vibrational energy in 
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an extended and a randomly coiled polymer chain is schematically compared in 

Figure 11. 

 

Figure 11: Transmission of thermal vibrations along a polymer chain. a) Phonon propagation 

along an extended polymer chains. b) Propagation along a random-coiled chain. 

Thinking about an extended polymer chain, e.g. in the crystallite regions of a 

semi-crystalline polymer, the transmission of thermal vibrations along the 

oriented chain axis is favorable, due to a reduced curvature of the chain (Figure 

11a). Therefore, less structural scattering occurs at the chain backbone structure, 

leading to an efficient transport of vibrational energy along the chain. In contrary, 

structural scattering of vibrational modes is strongly increased within a 

random-coiled chain, based on its strong curvature (Figure 11b). Therefore, the 

alignment of the polymer chain can strongly affect the polymer’s thermal 

conductivity. Noteworthy, thermal transport perpendicular to the chain 

alignment is less efficient, leading to a strong anisotropic thermal conductivity of 

crystalline polymer regions. 140,141 This is based on a less efficient transmission of 

heat from chain to chain due to weak bonding forces present between the chains. 

Since chain ends, mass and boundary variations within the backbone, as well as 

the interfaces between amorphous and crystalline regions can act as additional 

scattering events,142,143 it is apparent why bulk polymers are commonly known as 

thermal insulators. Still, several examples can be found in literature, describing 

exceptionally high thermal conductivity along the chain axis for highly oriented, 

crystalline polymer fibers.144-149 This is achieved by stretching the polymer fibers 
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to increase the crystallinity of the fibers towards the crystallinity of a polymer 

single crystal. Therefore, phonon scattering is strongly suppressed, leading to 

thermal conductivity of nearly ~100 Wm-1K1.144 

2.6 Thermal Transport in Porous Materials 

In this thesis, thermal transport is investigated in nanoporous colloidal 

structures, fabricated from amorphous polymer particles. Here the structural size 

strongly exceeds the phonon MFP of high frequent phonons. Thus, diffusive 

thermal transport is present within the investigated structures. The effective 

thermal conductivity eff of such open-porous particle networks can be expressed 

by the following contributions: 

𝜅𝑒𝑓𝑓 = 𝜅𝑠𝑜𝑙𝑖𝑑 + 𝜅𝑔𝑎𝑠 + 𝜅𝑐𝑜𝑛𝑣 + 𝜅𝑟𝑎𝑑    (3) 

Where solid represents the contribution of heat transport by conduction through 

the solid phase and depends on the bulk thermal conductivity. conv describes heat 

transport by mass transport and convection, and rad is the ratio of thermal energy 

transmitted by infrared (IR) radiation. Convective gas transport in colloidal 

structures is negligible since it primarily emerges at pore diameters larger than 

4 mm.150 Radiative transport increases with temperature and is influenced by the 

density and emissivity of the investigated porous material.151 gas expresses the 

contribution of heat transport by conduction through the gas phase and depends 

on the pore sizes present within the structure. By reducing the pore size to sizes 

in the range of the mean free path of the gas phase, gas-gas molecule collisions 

are replaced by a higher probability of the gas-interface collisions within the 

constraining geometry. The probability of a molecule-molecule or 

molecule-interface collision in a porous material is described by the 

Knudsen-number KN.152 
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𝐾𝑁 =
𝑙𝐺

𝐿𝑐ℎ
       (4) 

The Knudsen-number quantifies the ratio of the mean free path of the gas 

molecules lG and the pore size Lch. In the case of KN ≪ 1, the molecule-molecule 

collisions predominate and the thermal conductivity κG of the cell gas can be 

calculated according to the kinetic theory of free gases.153 In contrary, when  KN ≫

1, the pore size is much smaller than the mean free path of the gas molecules. This 

is the case for low pressures (long MFP of gas phase) or in very small cavities. 

Therefore, molecule-interface collisions predominate. Here, the thermal energy of 

the molecule is not completely transferred to the interface based on a partial 

elastic reflection of the molecule. This results in a reduction of the thermal 

conductivity with decreasing sizes of the cavities.152 

2.7 Thermal Transport in Colloidal Materials 

The thermal transport within a colloidal material is mainly affected by the 

following four key parameters, which are related to the previous chapters: 

 The chosen bulk material 

 The colloidal architecture  

 The interface density 

 The interface thermal conductance 

The colloidal structure can be either fabricated from highly conducting 

materials, e.g. metals, or it consists of low conducting materials, e.g. silica or 

polymers (see Chapter 2.1). This obviously will affect the thermal transport 

properties of the resulting colloidal material and can be decisive if thermal 

transport within a colloidal material is either ballistic25,34 and influenced by the 

structuring on the colloidal length scale, or diffusive. 
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Furthermore, the thermal transport is affected by the structuring itself. The 

material can be fully dense, as it is for polymer nanocomposites or 

organoclays,28,29,154 or it possesses a more or less well-defined porous structure, 

known from the assembly of spherical particles, or inverse opals and aerogels.155-

158 Here, the introduction of porosity will affect the density of the material and, 

therefore, its thermal conductivity (see Chapter 2.6). In general, colloidal 

materials further possess a high interface density, leading to a large number of 

phonon scattering sites. The higher the interface density, the more scattering sites 

are present in the material. This is favorable for the development of highly 

insulating thin films. Due to their high interface density, colloidal materials are 

additionally strongly influenced by the thermal interface conductance, as briefly 

discussed in Chapter 2.4.  

In the following, the potential of colloidal structuring in the field of heat 

transport is emphasized, related to the four key parameters mentioned above. 

Colloidal structuring is only rarely used to study phonon heat transport 

fundamentally. Noteworthy, polymer colloidal crystals from particles with a 

diameter of ~250 nm have been used as phononic crystals. These crystals possess 

a phononic bandgap, at which the propagation of acoustic waves of a certain 

frequency is forbidden.159 Still, the introduced band gaps only cover low phonon 

frequencies, which mainly do not contribute to heat transport.  

To mention one example for a fundamental study of heat transport using 

colloidal structures, Barako et al.34 took advantage of highly ordered colloidal 

nanostructures investigating thermal transport in metal inverse opals. Here, the 

MFP of heat carries is long enough to interfere with the metallic colloidal 

structure. Figure 12a shows the investigated metal opals and the results of their 

thermal transport characterization.  
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Figure 12: Thermal transport in metal inverse opals and influence of a high interface density. 

a) SEM side-view of a nickel inverse opal with a pore size of about 600 nm and thermal 

conductivity of a copper and nickel inverse opal in dependence of the pore size.34 b) SEM image 

of an organoclay nanolaminate supported on a silicon substrate and thermal conductivity of these 

laminates in dependence of the d-spacing.23 

They demonstrate quasi-ballistic thermal transport present within the 

investigated metal inverse opals. Noteworthy in this work, thermal transport is 

governed by electrons, since the fabricated inverse opals consist of electrically 

conducting materials. They were able to observe the transition between diffusive 

to ballistic transport behavior by adjusting the pore sizes of the opal structures 

during the colloidal fabrication. Metal inverse opals were also used to study 

coherent grain boundary scattering of phonons.25 

To point out the influence of a high interface density, Figure 12b, left exhibit a 

SEM cross-section of organoclay nanolaminates on a silicon substrate. Due to the 
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low thickness of only a few nanometers of these anisotropic colloids, a high 

interface density of 1-1.5 interfaces/nm is reached. Therefore, an ultra low thermal 

conductivity of < 0.1 Wm-1K-1 is obtained, still in a fully dense thin film.23,30 

 

Figure 13: Influence of interfacial bonding and surface chemistry. a) Thermal transport in silica 

hollow sphere colloidal crystals. Based on the calcination temperature, the interfacial bonding 

between the particle and the internal shell structure can be varied.20 b) Influence of surface 

chemistry on the thermal conductivity of PbS nanocrystal composites.160 

As mentioned, the contact strength between two interfaces can be decisive for 

thermal transport through interface dominated materials. Ruckdeschel et al.20 

studied the influence of the interfacial contact strength on the thermal 

conductivity of a hollow silica nanosphere colloidal crystals (Figure 13a). The 

calcination of a colloidal crystal leads to an enhancement of the interfacial 

bonding between neighboring hollow silica spheres, which in turn results in a 

drastic increase in the thermal conductivity. This points out the strong influence 

of the interfacial bonding strength on heat transport through particulate colloidal 

structures. 
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Furthermore, the influence of the surface chemistry has been systematically 

studied for colloidal nanocrystal arrays possessing a semiconducting particle 

core.28,29,160 The system used by Liu et al.160 is schematically sketched in Figure 13b, 

left. The investigated nanocrystals were sterically stabilized by a thin organic 

layer, and self-assembled into ordered nanocrystal arrays (Figure 13b, middle). 

Based on the versatility of this platform, they investigated several parameters 

such as core diameter, ligand length, and binding group. They found the 

influence of the binding group to be negligible and that the ligand predominantly 

dictated the thermal transport properties. 

As outlined in this introductory section, a wide variety of colloidal materials 

and structures are present in literature. Depending on the chosen materials, these 

structures possess various unique properties, and may be utilized to study 

different aspects of thermal transport in colloidal architectures. In the following 

main part, the existing work is extended by detailed studies on the thermal 

conductivity of polymer colloidal crystals and assemblies. 

2.8 References 

1. Liu, M., Ma, Y., Wu, H. & Wang, R. Y. Metal matrix–metal nanoparticle 

composites with tunable melting temperature and high thermal conductivity for 

phase-change thermal storage. ACS Nano, 9, 1341-1351, (2015). 

2. Chau, M. et al. Reversible transition between isotropic and anisotropic thermal 

transport in elastic polyurethane foams. Materials Horizons, 4, 236-241, (2017). 

3. Li, Y. et al. Temperature-dependent transformation thermotics: From switchable 

thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett., 115, 195503, 

(2015). 

4. Chen, Z. et al. A photon thermal diode. Nat. Commun., 5, 5446, (2014). 

5. Wu, G. & Li, B. Thermal rectification in carbon nanotube intramolecular 

junctions: Molecular dynamics calculations. Phys. Rev. B, 76, 085424, (2007). 

6. Zhu, J. et al. Temperature-gated thermal rectifier for active heat flow control. 

Nano Lett., 14, 4867-4872, (2014). 

7. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. 

Science, 314, 1121-1124, (2006). 

8. Kubytskyi, V., Biehs, S.-A. & Ben-Abdallah, P. Radiative bistability and thermal 

memory. Phys. Rev. Lett., 113, 074301, (2014). 



-References- 

 

-52- 

9. Wang, L. & Li, B. Thermal memory: A storage of phononic information. Phys. 

Rev. Lett., 101, 267203, (2008). 

10. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. 

Nat. Mater., 6, 824-832, (2007). 

11. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys., 93, 793-818, 

(2003). 

12. Cahill, D. G. et al. Nanoscale thermal transport. Ii. 2003-2012. Appl. Phys. Rev., 

1, 45, (2014). 

13. Maldovan, M. Sound and heat revolutions in phononics. Nature, 503, 209-217, 

(2013). 

14. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: Putting a new 

twist on light. Nature, 386, 143-149, (1997). 

15. Alonso-Redondo, E. et al. Phoxonic hybrid superlattice. ACS Applied Materials 

& Interfaces, 7, 12488-12495, (2015). 

16. Lanzillotti-Kimura, N. D., Fainstein, A., Lemaître, A. & Jusserand, B. Nanowave 

devices for terahertz acoustic phonons. Appl. Phys. Lett., 88, 083113, (2006). 

17. Zeng, J., Wang, X. & Hou, J. G. in Nanocrystal   (ed Yoshitake Masuda)  Ch. 03 

(InTech, 2011). 

18. Skrabalak, S. E., Au, L., Li, X. & Xia, Y. Facile synthesis of ag nanocubes and au 

nanocages. Nat. Protocols, 2, 2182-2190, (2007). 

19. Gröschel, A. H. et al. Precise hierarchical self-assembly of multicompartment 

micelles. Nat. Commun., 3, 710, (2012). 

20. Ruckdeschel, P., Kemnitzer, T. W., Nutz, F. A., Senker, J. & Retsch, M. Hollow 

silica sphere colloidal crystals: Insights into calcination dependent thermal 

transport. Nanoscale, 7, 10059-10070, (2015). 

21. Honold, T., Volk, K., Rauh, A., Fitzgerald, J. P. S. & Karg, M. Tunable plasmonic 

surfaces via colloid assembly. Journal of Materials Chemistry C, 3, 11449-11457, 

(2015). 

22. Kuehne, A. J. C., Gather, M. C. & Sprakel, J. Monodisperse conjugated polymer 

particles by suzuki–miyaura dispersion polymerization. Nat Commun, 3, 1088, 

(2012). 

23. Losego, M. D., Blitz, I. P., Vaia, R. A., Cahill, D. G. & Braun, P. V. Ultralow 

thermal conductivity in organoclay nanolaminates synthesized via simple self-

assembly. Nano Lett., 13, 2215-2219, (2013). 

24. Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects 

of chemical bonding on heat transport across interfaces. Nat. Mater., 11, 502-506, 

(2012). 

25. Ma, J. et al. Coherent phonon-grain boundary scattering in silicon inverse opals. 

Nano Lett., 13, 618-624, (2013). 

26. Parchine, M., McGrath, J., Bardosova, M. & Pemble, M. E. Large area 2d and 3d 

colloidal photonic crystals fabricated by a roll-to-roll langmuir–blodgett method. 

Langmuir, 32, 5862-5869, (2016). 

27. Abad, B., Borca-Tasciuc, D. A. & Martin-Gonzalez, M. S. Non-contact methods 

for thermal properties measurement. Renew. Sust. Energ. Rev., 76, 1348-1370, 

(2017). 

28. Ong, W.-L., Majumdar, S., Malen, J. A. & McGaughey, A. J. H. Coupling of 

organic and inorganic vibrational states and their thermal transport in nanocrystal 

arrays. J Phys. Chem. C, 118, 7288-7295, (2014). 



-References- 

 

-53- 

29. Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. 

Surface chemistry mediates thermal transport in three-dimensional nanocrystal 

arrays. Nat. Mater., 12, 410-415, (2013). 

30. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered wse2 

crystals. Science, 315, 351-353, (2007). 

31. Costescu, R. M., Cahill, D. G., Fabreguette, F. H., Sechrist, Z. A. & George, S. M. 

Ultra-low thermal conductivity in w/al2o3 nanolaminates. Science, 303, 989-990, 

(2004). 

32. Nucara, L. et al. Ionic strength responsive sulfonated polystyrene opals. ACS 

Applied Materials & Interfaces, 9, 4818-4827, (2017). 

33. Yuan, C., Huang, M., Cheng, Y. & Luo, X. Bonding-induced thermal transport 

enhancement across a hard/soft material interface using molecular monolayers. 

Phys. Chem. Chem. Phys., 19, 7352-7358, (2017). 

34. Barako, M. T. et al. Quasi-ballistic electronic thermal conduction in metal inverse 

opals. Nano Lett., 16, 2754-2761, (2016). 

35. Goodwin, J. W., Hearn, J., Ho, C. C. & Ottewill, R. H. Studies on the preparation 

and characterisation of monodisperse polystyrene latices. Colloid. Polym. Sci., 

252, 464-471, (1974). 

36. Still, T. et al. Vibrational eigenfrequencies and mechanical properties of 

mesoscopic copolymer latex particles. Macromolecules, 43, 3422-3428, (2010). 

37. Vogel, N., Retsch, M., Fustin, C.-A., del Campo, A. & Jonas, U. Advances in 

colloidal assembly: The design of structure and hierarchy in two and three 

dimensions. Chem. Rev., 115, 6265-6311, (2015). 

38. Phillips, K. R. et al. A colloidoscope of colloid-based porous materials and their 

uses. Chem. Soc. Rev., 45, 281-322, (2016). 

39. Li, B., Wang, L. & Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. 

Lett., 93, 184301, (2004). 

40. Gregory, J. Basic principles of colloid science - everett,dh. Nature, 338, 182-182, 

(1989). 

41. Keddie, J. L. Film formation of latex. Mat. Sci. Eng. R., 21, 101-170, (1997). 

42. Xia, Y. N., Gates, B., Yin, Y. D. & Lu, Y. Monodispersed colloidal spheres: Old 

materials with new applications. Adv. Mater., 12, 693-713, (2000). 

43. and, C. B. M., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of 

monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. 

Mater. Sci., 30, 545-610, (2000). 

44. Manna, L., Scher, E. C. & Alivisatos, A. P. Synthesis of soluble and processable 

rod-, arrow-, teardrop-, and tetrapod-shaped cdse nanocrystals. J. Am. Chem. Soc., 

122, 12700-12706, (2000). 

45. Ehlert, S. et al. Polymer ligand exchange to control stabilization and 

compatibilization of nanocrystals. ACS Nano, 8, 6114-6122, (2014). 

46. Redl, F. X., Cho, K. S., Murray, C. B. & O'Brien, S. Three-dimensional binary 

superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature, 

423, 968-971, (2003). 

47. Mehdizadeh Taheri, S. et al. Self-assembly of smallest magnetic particles. 

Proceedings of the National Academy of Sciences, 112, 14484-14489, (2015). 

48. Groschel, A. H. et al. Guided hierarchical co-assembly of soft patchy 

nanoparticles. Nature, 503, 247-251, (2013). 



-References- 

 

-54- 

49. Gao, T., Jelle, B. P., Sandberg, L. I. & Gustavsen, A. Monodisperse hollow silica 

nanospheres for nano insulation materials: Synthesis, characterization, and life 

cycle assessment. ACS Appl. Mater. Inter., 5, 761-767, (2013). 

50. Cheng, Z., Russel, W. B. & Chaikin, P. M. Controlled growth of hard-sphere 

colloidal crystals. Nature, 401, 893-895, (1999). 

51. Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: The road from particles 

to colloidal molecules and crystals. Angew. Chem. Int. Ed., 50, 360-388, (2011). 

52. Bartlett, P., Ottewill, R. H. & Pusey, P. N. Superlattice formation in binary 

mixtures of hard-sphere colloids. Phys. Rev. Lett., 68, 3801-3804, (1992). 

53. Chen, M., Cölfen, H. & Polarz, S. Centrifugal field-induced colloidal assembly: 

From chaos to order. ACS Nano, 9, 6944-6950, (2015). 

54. Wu, Y. et al. Fabrication of wafer-size monolayer close-packed colloidal crystals 

via slope self-assembly and thermal treatment. Langmuir, 29, 14017-14023, 

(2013). 

55. Vogel, N., de Viguerie, L., Jonas, U., Weiss, C. K. & Landfester, K. Wafer-scale 

fabrication of ordered binary colloidal monolayers with adjustable 

stoichiometries. Adv. Funct. Mater., 21, 3064-3073, (2011). 

56. Vogel, N. et al. Color from hierarchy: Diverse optical properties of micron-sized 

spherical colloidal assemblies. Proceedings of the National Academy of Sciences, 

112, 10845-10850, (2015). 

57. Zhang, X. et al. Morphology and wettability control of silicon cone arrays using 

colloidal lithography. Langmuir, 25, 7375-7382, (2009). 

58. Stelling, C. et al. Plasmonic nanomeshes: Their ambivalent role as transparent 

electrodes in organic solar cells. Sci. Rep., 7, 42530, (2017). 

59. Retsch, M. & Jonas, U. Hierarchically structured, double-periodic inverse 

composite opals. Adv. Funct. Mater., 23, 5381-5389, (2013). 

60. Stelling, C., Bernhardt, C. & Retsch, M. Subwavelength etched colloidal 

monolayers: A model system for tunable antireflective coatings. Macromol. Chem. 

Phys., 216, 1682-1688, (2015). 

61. Zhao, Y., Wang, J. & Mao, G. Colloidal subwavelength nanostructures for 

antireflection optical coatings. Opt. Lett., 30, 1885-1887, (2005). 

62. Deckman, H. W. & Dunsmuir, J. H. Natural lithography. Appl. Phys. Lett., 41, 

377-379, (1982). 

63. Yang, S.-M., Jang, S. G., Choi, D.-G., Kim, S. & Yu, H. K. Nanomachining by 

colloidal lithography. Small, 2, 458-475, (2006). 

64. Hulteen, J. C. & Van Duyne, R. P. Nanosphere lithography: A materials general 

fabrication process for periodic particle array surfaces. Journal of Vacuum Science 

& Technology A: Vacuum, Surfaces, and Films, 13, 1553-1558, (1995). 

65. Zhao, Y., Shang, L., Cheng, Y. & Gu, Z. Spherical colloidal photonic crystals. 

Acc. Chem. Res., 47, 3632-3642, (2014). 

66. Rastogi, V. et al. Synthesis of light-diffracting assemblies from microspheres and 

nanoparticles in droplets on a superhydrophobic surface. Adv. Mater., 20, 4263-

4268, (2008). 

67. Velev, O. D., Lenhoff, A. M. & Kaler, E. W. A class of microstructured particles 

through colloidal crystallization. Science, 287, 2240-2243, (2000). 

68. Choi, D.-G., Yu, H. K., Jang, S. G. & Yang, S.-M. Colloidal lithographic 

nanopatterning via reactive ion etching. J. Am. Chem. Soc., 126, 7019-7025, 

(2004). 



-References- 

 

-55- 

69. Stelling, C., Mark, A., Papastavrou, G. & Retsch, M. Showing particles their place: 

Deterministic colloid immobilization by gold nanomeshes. Nanoscale, 8, 14556-

14564, (2016). 

70. Antonietti, M., Berton, B., Göltner, C. & Hentze, H.-P. Synthesis of mesoporous 

silica with large pores and bimodal pore size distribution by templating of polymer 

latices. Adv. Mater., 10, 154-159, (1998). 

71. Stein, A. & Schroden, R. C. Colloidal crystal templating of three-dimensionally 

ordered macroporous solids: Materials for photonics and beyond. Curr. Opin. 

Solid State Mater. Sci., 5, 553-564, (2001). 

72. Parlett, C. M. A., Wilson, K. & Lee, A. F. Hierarchical porous materials: Catalytic 

applications. Chem. Soc. Rev., 42, 3876-3893, (2013). 

73. Cherdhirankorn, T., Retsch, M., Jonas, U., Butt, H.-J. & Koynov, K. Tracer 

diffusion in silica inverse opals. Langmuir, 26, 10141-10146, (2010). 

74. Mikosch, A., Ciftci, S. & Kuehne, A. J. C. Colloidal crystal lasers from 

monodisperse conjugated polymer particles via bottom-up coassembly in a sol–

gel matrix. ACS Nano, 10, 10195-10201, (2016). 

75. Volk, K., Fitzgerald, J. P. S., Retsch, M. & Karg, M. Time-controlled colloidal 

superstructures: Long-range plasmon resonance coupling in particle monolayers. 

Adv. Mater., 27, 7332-7337, (2015). 

76. Fitzgerald, J. P. S. & Karg, M. Plasmon resonance coupling phenomena in self-

assembled colloidal monolayers. physica status solidi (a), 1600947, (2017). 

77. Ai, B., Yu, Y., Mohwald, H., Zhang, G. & Yang, B. Plasmonic films based on 

colloidal lithography. Adv Colloid Interface Sci, 206, 5-16, (2014). 

78. Farcau, C., Giloan, M., Vinteler, E. & Astilean, S. Understanding plasmon 

resonances of metal-coated colloidal crystal monolayers. Appl. Phys. B, 106, 849-

856, (2012). 

79. John  D. Joannopoulos, S. G. J., Joshua N. Winn, Robert D. Meade. Photonic 

crystals: Molding the flow of light. Princeton University Press, 2008. 

80. Reculusa, S. & Ravaine, S. Synthesis of colloidal crystals of controllable thickness 

through the langmuir-blodgett technique. Chem. Mater., 15, 598-605, (2003). 

81. Fang, Y. et al. Scalable bottom-up fabrication of colloidal photonic crystals and 

periodic plasmonic nanostructures. Journal of Materials Chemistry C, 1, 6031-

6047, (2013). 

82. Pan, G., Kesavamoorthy, R. & Asher, S. A. Optically nonlinear bragg diffracting 

nanosecond optical switches. Phys. Rev. Lett., 78, 3860-3863, (1997). 

83. Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as 

intelligent chemical sensing materials. Nature, 389, 829-832, (1997). 

84. Fenzl, C., Hirsch, T. & Wolfbeis, O. S. Photonic crystals for chemical sensing and 

biosensing. Angew. Chem. Int. Ed., 53, 3318-3335, (2014). 

85. Ge, J. & Yin, Y. Responsive photonic crystals. Angew. Chem. Int. Ed., 50, 1492-

1522, (2011). 

86. Chen, M., Zhou, L., Guan, Y. & Zhang, Y. Polymerized microgel colloidal 

crystals: Photonic hydrogels with tunable band gaps and fast response rates. 

Angew. Chem. Int. Ed., 52, 9961-9965, (2013). 

87. Matijevic, E. Preparation and properties of uniform size colloids. Chem. Mater., 

5, 412-426, (1993). 

88. Tzirakis, M. D. et al. Surfactant-free synthesis of sub-100 nm poly(styrene-co-

divinylbenzene) nanoparticles by one-step ultrasonic assisted 

emulsification/polymerization. RSC Advances, 5, 103218-103228, (2015). 



-References- 

 

-56- 

89. Goodall, A. R., Wilkinson, M. C. & Hearn, J. Mechanism of emulsion 

polymerization of styrene in soap-free systems. Journal of Polymer Science Part 

a-Polymer Chemistry, 15, 2193-2218, (1977). 

90. Bolt, P. S., Goodwin, J. W. & Ottewill, R. H. Studies on the preparation and 

characterization of monodisperse polystyrene latices. Vi. Preparation of 

zwitterionic latices. Langmuir, 21, 9911-9916, (2005). 

91. Barrett, K. E. Dispersion polymerisation in organic media. British Polymer 

Journal, 5, 259-271). 

92. Lok, K. P. & Ober, C. K. Particle-size control in dispersion polymerization of 

polystyrene. Can J Chem, 63, 209-216, (1985). 

93. Kawaguchi, S. & Ito, K. Dispersion polymerization. Polymer Particles, 175, 299-

328, (2005). 

94. Lee, C.-F., Young, T.-H., Huang, Y.-H. & Chiu, W.-Y. Synthesis and properties 

of polymer latex with carboxylic acid functional groups for immunological 

studies. Polymer, 41, 8565-8571, (2000). 

95. Slawinski, M., Schellekens, M. A. J., Meuldijk, J., Van Herk, A. M. & German, 

A. L. Seeded emulsion polymerization of styrene: Influence of acrylic acid on the 

particle growth process. J. Appl. Polym. Sci., 76, 1186-1196, (2000). 

96. Shim, S. E., Cha, Y. J., Byun, J. M. & Choe, S. Size control of polystyrene beads 

by multistage seeded emulsion polymerization. J. Appl. Polym. Sci., 71, 2259-

2269, (1999). 

97. Asua, J. M. Miniemulsion polymerization. Prog. Polym. Sci., 27, 1283-1346, 

(2002). 

98. Landfester, K. Miniemulsion polymerization and the structure of polymer and 

hybrid nanoparticles. Angew. Chem. Int. Ed., 48, 4488-4507, (2009). 

99. Shouldice, G. T. D., Vandezande, G. A. & Rudin, A. Practical aspects of the 

emulsifier-free emulsion polymerization of styrene. Eur. Polym. J., 30, 179-183, 

(1994). 

100. Fikentscher, H., Gerrens, H. & Schuller, H. Emulsionspolymerisation und 

kunststoff-latices. Angew. Chem., 72, 856-864, (1960). 

101. Song, Z. Q. & Poehlein, G. W. Particle nucleation in emulsifier-free aqueous-

phase polymerization - stage-1. J. Colloid. Interf. Sci., 128, 486-500, (1989). 

102. Hamaker, H. C. The london—van der waals attraction between spherical particles. 

Phy, 4, 1058-1072, (1937). 

103. Derjaguin, B. & Landau, L. Theory of the stability of strongly charged lyophobic 

sols and of the adhesion of strongly charged particles in solutions of electrolytes. 

Prog. Surf. Sci., 43, 30-59, (1993). 

104. Verwey, E. J. W. & Overbeek, J. T. G. Theory of the stability of strongly charged 

lyophobic sols and of the adhesion of strongly charged particles in solutions of 

electrolytes. Acta Physico Chemica USSR, 14´, 30-59, (1941). 

105. Vogel, N., Weiss, C. K. & Landfester, K. From soft to hard: The generation of 

functional and complex colloidal monolayers for nanolithography. Soft Matter, 8, 

4044-4061, (2012). 

106. Napper, D. H. Steric stabilization. J. Colloid. Interf. Sci., 58, 390-407, (1977). 

107. Zhang, J., Li, Y., Zhang, X. & Yang, B. Colloidal self-assembly meets 

nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. 

Adv. Mater., 22, 4249-4269, (2010). 

108. Rauh, A. et al. Compression of hard core-soft shell nanoparticles at liquid-liquid 

interfaces: Influence of the shell thickness. Soft Matter, 13, 158-169, (2017). 



-References- 

 

-57- 

109. Reculusa, S. & Ravaine, S. Synthesis of colloidal crystals of controllable thickness 

through the langmuir−blodgett technique. Chem. Mater., 15, 598-605, (2003). 

110. van Duffel, B., Ras, R. H. A., De Schryver, F. C. & Schoonheydt, R. A. Langmuir-

blodgett deposition and optical diffraction of two-dimensional opal. J. Mater. 

Chem., 11, 3333-3336, (2001). 

111. Dimitrov, A. S. & Nagayama, K. Continuous convective assembling of fine 

particles into two-dimensional arrays on solid surfaces. Langmuir, 12, 1303-1311, 

(1996). 

112. Goldenberg, L. M., Wagner, J., Stumpe, J., Paulke, B.-R. & Görnitz, E. Ordered 

arrays of large latex particles organized by vertical deposition. Langmuir, 18, 

3319-3323, (2002). 

113. Vogel, N., Goerres, S., Landfester, K. & Weiss, C. K. A convenient method to 

produce close- and non-close-packed monolayers using direct assembly at the air–

water interface and subsequent plasma-induced size reduction. Macromol. Chem. 

Phys., 212, 1719-1734, (2011). 

114. Retsch, M. et al. Fabrication of large-area, transferable colloidal monolayers 

utilizing self-assembly at the air/water interface. Macromol. Chem. Phys., 210, 

230-241, (2009). 

115. Woodcock, L. V. Entropy difference between the face-centred cubic and 

hexagonal close-packed crystal structures. Nature, 385, 141-143, (1997). 

116. Bolhuis, P. G., Frenkel, D., Mau, S.-C. & Huse, D. A. Entropy difference between 

crystal phases. Nature, 388, 235-236, (1997). 

117. Wei, L., Kuo, P. K., Thomas, R. L., Anthony, T. R. & Banholzer, W. F. Thermal 

conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett., 70, 

3764-3767, (1993). 

118. Olson, J. R. et al. Thermal conductivity of diamond between 170 and 1200 k and 

the isotope effect. Phys. Rev. B, 47, 14850-14856, (1993). 

119. Bullen, A. J., O’Hara, K. E., Cahill, D. G., Monteiro, O. & Keudell, A. v. Thermal 

conductivity of amorphous carbon thin films. J. Appl. Phys., 88, 6317-6320, 

(2000). 

120. Lide, D. R. Handbook of chemistry and physics. CRC Press,Boca Raton, 2003. 

121. Henry, A. Thermal transport in polymers. Annu. Rev. Heat Trans., 485-520, 

(2013). 

122. Choy, C. L. Thermal conductivity of polymers. Polymer, 18, 984-1004, (1977). 

123. Cahill, D. G. & Pohl, R. O. Lattice-vibrations and heat-transport in crystals and 

glasses. Annu. Rev. Phys. Chem., 39, 93-121, (1988). 

124. Asheghi, M., Kurabayashi, K., Kasnavi, R. & Goodson, K. E. Thermal conduction 

in doped single-crystal silicon films. J. Appl. Phys., 91, 5079-5088, (2002). 

125. Marconnet, A. M., Asheghi, M. & Goodson, K. E. From the casimir limit to 

phononic crystals: 20 years of phonon transport studies using silicon-on-insulator 

technology. J. Heat Transfer, 135, 061601-061601, (2013). 

126. Neogi, S. et al. Tuning thermal transport in ultrathin silicon membranes by surface 

nanoscale engineering. ACS Nano, 9, 3820-3828, (2015). 

127. Peierls, R. Zur kinetischen theorie der wärmeleitung in kristallen. Ann. Phys. 

(Berlin), 395, 1055-1101, (1929). 

128. Chavez-Angel, E. et al. Reduction of the thermal conductivity in free-standing 

silicon nano-membranes investigated by non-invasive raman thermometry. APL 

Mater., 2, 012113, (2014). 



-References- 

 

-58- 

129. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon 

nanowires. Nature, 451, 163-167, (2008). 

130. Zhou, Y. & Hu, M. Record low thermal conductivity of polycrystalline si 

nanowire: Breaking the casimir limit by severe suppression of propagons. Nano 

Lett., 16, 6178-6187, (2016). 

131. Gusarov, A. V. & Kovalev, E. P. Model of thermal conductivity in powder beds. 

Phys. Rev. B, 80, 024202, (2009). 

132. Gusarov, A. V., Laoui, T., Froyen, L. & Titov, V. I. Contact thermal conductivity 

of a powder bed in selective laser sintering. Int. J. Heat Mass Tran., 46, 1103-

1109, (2003). 

133. Lu, X., Caps, R., Fricke, J., Alviso, C. T. & Pekala, R. W. Correlation between 

structure and thermal conductivity of organic aerogels. J. Non-Cryst. Solids, 188, 

226-234, (1995). 

134. Little, W. A. in From high-temperature superconductivity to microminiature 

refrigeration   (eds Blas Cabrera, H. Gutfreund, & Vladimir Kresin)  15-30 

(Springer US, 1996). 

135. Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys., 61, 

605-668, (1989). 

136. Einstein, A. Elementare betrachtungen über die thermische molekularbewegung 

in festen körpern. Ann. Phys. (Berlin), 340, 679-694, (1911). 

137. Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. 

Phys. Rev. B, 48, 12581-12588, (1993). 

138. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and 

propagons: Character of atomie yibrations in amorphous si. Philos. Mag. B, 79, 

1715-1731, (1999). 

139. Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow 

thermal conductivity of fullerene derivatives. Phys. Rev. B, 88, 075310, (2013). 

140. Kurabayashi, K., Asheghi, M., Touzelbaev, M. & Goodson, K. E. Measurement 

of the thermal conductivity anisotropy in polyimide films. J. Microelectromech. 

S., 8, 180-191, (1999). 

141. Liu, J. & Yang, R. Tuning the thermal conductivity of polymers with mechanical 

strains. Phys. Rev. B, 81, 174122, (2010). 

142. Liu, J. & Yang, R. Length-dependent thermal conductivity of single extended 

polymer chains. Phys. Rev. B, 86, 104307, (2012). 

143. Liao, Q., Zeng, L., Liu, Z. & Liu, W. Tailoring thermal conductivity of single-

stranded carbon-chain polymers through atomic mass modification. Sci. Rep., 6, 

34999, (2016). 

144. Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with 

very high thermal conductivities. Nat. Nanotechnol., 5, 251-255, (2010). 

145. Choy, C. L., Fei, Y. & Xi, T. G. Thermal-conductivity of gel-spun polyethylene 

fibers. J. Polym. Sci., Part B: Polym. Phys., 31, 365-370, (1993). 

146. Gibson, A. G., Greig, D., Sahota, M., Ward, I. M. & Choy, C. L. Thermal-

conductivity of ultrahigh-modulus polyethylene. J. Polym. Sci. Pol. Lett., 15, 183-

192, (1977). 

147. Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-

modulus polymer fibers. Macromolecules, 46, 4937-4943, (2013). 

148. Choy, C. L., Luk, W. H. & Chen, F. C. Thermal-conductivity of highly oriented 

polyethylene. Polymer, 19, 155-162, (1978). 



-References- 

 

-59- 

149. Choy, C. L., Wong, S. P. & Young, K. Model calculation of the thermal-

conductivity of polymer crystals. J. Polym. Sci., Part B: Polym. Phys., 23, 1495-

1504, (1985). 

150. Hrubesh, L. W. & Pekala, R. W. Thermal-properties of organic and inorganic 

aerogels. J. Mater. Res., 9, 731-738, (1994). 

151. Koebel, M., Rigacci, A. & Achard, P. Aerogel-based thermal superinsulation: An 

overview. J. Sol-Gel Sci. Technol., 63, 315-339, (2012). 

152. Knudsen, M. Die gesetze der molekularströmung und der inneren 

reibungsströmung der gase durch röhren. Ann. Phys. (Berlin), 333, 75-130, (1909). 

153. Atkins, P. W. Physical chemistry. Oxford University Press,Oxford, 1978. 

154. Losego, M. D., Blitz, I. P., Vaia, R. A., Cahill, D. G. & Braun, P. V. Ultralow 

thermal conductivity in organoclay nanolaminates synthesized via simple self-

assembly. Nano Lett., 13, 2215-2219, (2013). 

155. Dorcheh, A. S. & Abbasi, M. H. Silica aerogel; synthesis, properties and 

characterization. J. Mater. Process. Technol., 199, 10-26, (2008). 

156. Feng, J., Wang, X., Jiang, Y., Du, D. & Feng, J. Study on thermal conductivities 

of aromatic polyimide aerogels. ACS Appl. Mater. Inter., 8, 12992-12996, (2016). 

157. Fricke, J. & Emmerling, A. Aerogels. J. Am. Ceram. Soc., 75, 2027-2035, (1992). 

158. Hrubesh, L. W. Aerogel applications. J. Non-Cryst. Solids, 225, 335-342, (1998). 

159. Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning 

of hypersonic bandgaps in colloidal crystals. Nat. Mater., 5, 830-836, (2006). 

160. Liu, M., Ma, Y. & Wang, R. Y. Modifying thermal transport in colloidal 

nanocrystal solids with surface chemistry. ACS Nano, 9, 12079-12087, (2015). 

161. Moore, R. G. et al. A surface-tailored, purely electronic, mott metal-to-insulator 

transition. Science, 318, 615-619, (2007). 

162. Lyeo, H.-K. et al. Thermal conductivity of phase-change material ge2sb2te5. Appl. 

Phys. Lett., 89, 151904, (2006). 

163. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal 

conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett., 

15, 1791-1795, (2015). 

164. Chen, R. et al. Controllable thermal rectification realized in binary phase change 

composites. Sci. Rep., 5, 8884, (2015). 

165. Pekcan, O., Winnik, M. A. & Croucher, M. D. Fluorescence studies of polymer 

colloids .25. Fluorescence studies of coalescence and film formation in 

poly(methyl methacrylate) nonaqueous dispersion particles. Macromolecules, 23, 

2673-2678, (1990). 

166. Wang, Y. C. & Winnik, M. A. Polymer diffusion across interfaces in latex films. 

J. Phys. Chem., 97, 2507-2515, (1993). 

167. Wang, Y. C., Zhao, C. L. & Winnik, M. A. Molecular-diffusion and latex film 

formation - an analysis of direct nonradiative energy-transfer experiments. J. 

Chem. Phys., 95, 2143-2153, (1991). 

168. Hahn, K., Ley, G. & Oberthur, R. On particle coalescence in latex films (ii). 

Colloid. Polym. Sci., 266, 631-639, (1988). 

169. Hahn, K., Ley, G., Schuller, H. & Oberthur, R. On particle coalescence in latex 

films. Colloid. Polym. Sci., 264, 1092-1096, (1986). 

170. Chen, X. et al. Structural reorganization of a polymeric latex film during dry 

sintering at elevated temperatures. Langmuir, 27, 8458-8463, (2011). 



-References- 

 

-60- 

171. Hu, S. S. et al. In-situ observation of drying process of a latex droplet by 

synchrotron small-angle x-ray scattering. Macromolecules, 41, 5073-5076, 

(2008). 

172. Dames, C. Solid-state thermal rectification with existing bulk materials. J. Heat 

Transfer, 131, 061301, (2009). 

173. Ben-Abdallah, P. & Biehs, S.-A. Near-field thermal transistor. Phys. Rev. Lett., 

112, 044301, (2014). 

174. Cahill, D. G. et al. Nanoscale thermal transport. Ii. 2003-2012. Appl. Phys. Rev., 

1, (2014). 

175. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys., 93, 793-818, 

(2003). 

176. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity 

of disordered crystals. Phys. Rev. B, 46, 6131-6140, (1992). 

177. Nutz, F. A., Ruckdeschel, P. & Retsch, M. Polystyrene colloidal crystals: Interface 

controlled thermal conductivity in an open-porous mesoparticle superstructure. J. 

Colloid. Interf. Sci., 457, 96-101, (2015). 

178. Wang, J. et al. Structural and optical characterization of 3d binary colloidal crystal 

and inverse opal films prepared by direct co-deposition. J. Mater. Chem., 18, 981-

988, (2008). 

179. Kommandur, S. & Yee, S. K. An empirical model to predict temperature-

dependent thermal conductivity of amorphous polymers. J. Polym. Sci., Part B: 

Polym. Phys., 1160–1170, (2017). 

 



-Thesis Overview- 

 

-61- 

3 Thesis Overview 

The main part of this thesis is divided into four Chapters (Chapters 4.1 - 4.4), 

containing two publications and two submitted manuscripts. In these chapters, 

polymer colloidal assemblies and their thermal transport properties play the key 

role. In general, bottom-up self-assembly of spherical polymer colloidal particles 

has been utilized to obtain highly ordered colloidal crystal monoliths (Chapters 

4.1, 4.2 and 4.3), as well as disordered colloidal assemblies by using two 

differently sized particles during the assembly process (Chapter 4.4). 

Furthermore, multi-layer colloidal assemblies and binary, crystalline structures 

have been fabricated by choosing different methods for the assembly (Chapter 

4.3). The findings of this thesis are of general relevance to other particulate 

systems as well. Therefore, it provides an important contribution to better 

understand and potentially tune thermal transport in nanostructured materials. 

A survey of the different topics of the subchapters is illustrated in Figure 14. 



-Thesis Overview- 

 

-62- 

 

Figure 14: Summary of the different topics presented in this thesis. I.) The thermal conductivity 

of a polystyrene colloidal crystal. II.) Thermal transport and photonic bandgap study of the dry 

sintering process. III.) Polymer colloidal assemblies with tunable temperature-dependent thermal 

conductivity. IV.) Role of order and disorder on the thermal transport properties of colloidal 

assemblies. 

The assembly of the particles results in an open-porous and well-defined 

nanostructure. The thermal conductivity through these structures is governed by 

the small interfaces between adjacent particles, serving as bottle necks for heat to 

travel through the material. This leads to a constriction-controlled heat transport. 

The sizes of these interfaces can be influenced by exceeding the glass transition 

temperature of the polymer particles (Figure 14. I.). Therefrom, it is possible to 

induce dry sintering of the colloidal assembly, which drastically increase the 

thermal conductivity of the structures in a step-like fashion. Such a step-like 

behavior is known from metal-to-insulator transitions,161 semiconducting 
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materials,162 ferroelectric thin films,163 and binary composites164 and can contribute 

to the development of thermal memory or switching materials. 

Since thermal transport in these structures is dominated by the interfaces, it is 

possible to follow the sintering process of polymer particle assemblies of any particle 

size and shape and without specific labeling (Figure 14. II.). This is different to 

established experiments, were either labeling/deutering165-169 or a sufficient 

particle size is necessary.170,171  

By taking advantage of the unique temperature-dependent increase, a concept 

is furthermore presented how to specifically tailor the temperature-dependent 

thermal conductivity of particle assemblies (Figure 14. III.). Therefrom, the 

temperature-dependent behavior of the thermal conductivity can be adjusted. 

This is of particular importance since a tunable temperature-dependence is a 

major challenge in the field of thermal devices, such as thermal diodes and 

thermal transistors.172,173 

Moreover, the influence of order and disorder within colloidal particle assemblies 

is investigated on binary colloidal structures (Figure 14. IV.). Here, the basic ideas 

known from thermal transport in crystalline13,123,174,175 and amorphous solids136,176 

are extended to larger length scales by investigating the heat flux through ordered 

and disordered colloidal assemblies. 

Whereas chapter 4.1-4.3 mainly focus on the dry sintering of polymer colloidal 

assemblies, chapter 4.4 clarifies the influence of the symmetry on the thermal 

transport properties of such assembly. A detailed summary of the chapters is 

given in the following. 

The fundamental basis of this thesis has been laid in chapter 4.1. A significant 

portion of these result have been obtained during my master thesis in the group 

of Prof. Retsch from November 2013 to April 2014. Here, the thermal conductivity 

of a polystyrene colloidal crystal consisting of 366 nm particles has been 

investigated. The chapter focuses on the crystal’s room-temperature thermal 
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conductivity, the thermal conductivity behavior during the dry sintering of the 

particles by exceeding the glass transition temperature Tg, as well as on the 

sensitivity of the thermal conductivity to the gas-phase.  

On the one hand, these colloidal crystals possess a low thermal conductivity in 

vacuum. The strong insulation behavior is based on the high interface density due 

to the nanostructuring, as well as the small contact area of the interparticle contact 

points, as discussed above. This leads to a material with a low thermal 

conductivity of 51 mWm-1K-1, at a comparatively high density of 750 kgm-3 (Figure 

15a). 

 

Figure 15: Thermal transport of a polystyrene colloidal crystal. a) Ashby plot of the thermal 

conductivity versus density. b) Temperature-dependent thermal conductivity measured in 

vacuum. c) The thermal transport is hardly affected by the surrounding atmosphere (red circle).177 
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Based on the influence of the interfaces, the thermal conductivity of the particle 

skeleton is even further reduced by ~35 %, compared to theoretical predictions by 

the Maxwell-Eucken equation.  

On the other hand, the temperature-dependent thermal conductivity shows a 

drastic, irreversible increase by exceeding the Tg (~105 °C) of the polymer (Figure 

15b). By exceeding Tg, dry sintering occurs, leading to a loss of porosity and an 

enlargement of the interparticle contact area. Therefore, the geometrical 

constriction for heat vanishes, resulting in an increased thermal transport. Still, 

this increase is irreversible owing to the thermoplastic properties of polystyrene.  

Besides, the thermal conductivity of these colloidal structures is hardly sensitive 

to the surrounding atmosphere (Figure 15c, red circle). This is based on the small 

pore sizes within the open porous nanostructure. The different pore sizes present 

within a colloidal crystal from 366 nm spheres are schematically sketched in 

Figure 16. 

 

Figure 16: Different pore types present in a colloidal assembly from 366 nm spheres. The 

different pores can be classified into a) octahedral voids, b) tetrahedral voids and c) exchange 

sides.178 

Since the present pore sizes of 151, 83 and 57 nm are in the range of the mean 

free path of the gas phase (He ~175 nm, Nitrogen ~65 nm), gas-wall collisions 

dominate, which strongly reduces thermal transport through the gas phase. Thus, 

the investigated colloidal crystals are nearly insensitive to the surrounding 

atmosphere. 

The unique increase of the thermal conductivity of polymer colloidal crystals is 

further investigated in more detail in Chapter 4.2. Here, the focus is laid on the 
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kinetics of the film formation process by monitoring changes of the thermal 

transport properties. Therefore, colloidal particles were fabricated by a statistic 

copolymerization of methyl methacrylate (MMA) and n-butyl acrylate (n-BA). 

Based on the n-BA content, the Tg of the polymer particles can be adjusted. The 

sintering process has been monitored by time-resolved UV-vis reflectivity and 

thermal transport measurements. Both methods yield a different experimental 

response during the colloidal film formation process at temperatures near Tg. On 

the one hand, the thermal transport during the sintering is mainly governed by 

the size of the interfaces (constrictions for heat). On the other hand, the 

time-dependent Bragg reflectivity is mainly sensitive to volume changes affecting 

the refractive index contrast (loss of porosity). Therefrom, it is possible to extract 

different time constants describing the film formation rate, either driven by 

interface or the volume changes, respectively. Even small interfacial fusion and 

enlargements of the contact areas strongly facilitate heat transport through the 

structure. In contrary, for variations in the porosity, the polymer has to flow into 

the voids of the structure and creeps over longer distances. Thus, less material is 

necessary to enlarge the interfaces than to fill the porosity of the structure. The 

decay of the Bragg reflectivity spectra, as well as the increasing thermal 

diffusivity of an n-BA-co-MMA colloidal crystal possessing a Tg at ~75 °C is 

illustrated in Figure 17a and b, respectively. 
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Figure 17: Following the dry sintering process of a polymer colloidal crystal with a Tg of ~72 °C. 

a) Decay of Bragg reflectivity peak, based on the loss of porosity during sintering. b) The thermal 

diffusivity increases with elapsing sintering time. (red) Single exponential fit function. c) 

Arrhenius plot obtained from different time constants from UV-Vis and thermal conductivity 

measurements. d) Correlation between viscoelastic properties and time constants, extracted from 

time-dependent thermal conductivity experiments. 

Both, the decay of the reflectivity maximum and the increasing thermal transport 

behavior is well-described by a single-exponential function. Therefrom, it is 

possible to extract the time constant , to quantify the film formation process. 

Based on the time constants, extracted at various temperatures around Tg, it is 

possible to set up an Arrhenius plot from both types of experiments (Figure 17c). 

The offset between both experiments results from the interface or volume driven 

response of the thermal transport or UV-vis experiments, respectively. 

Noteworthy, both datasets show a linear behavior with possessing a similar slope. 

This reflects in similar apparent activation energies of ~270 kJmol-1 for the 

sintering process. 
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The time-dependent increase of the thermal diffusivity has been additionally 

performed near the glass transition temperature on different n-BA-co-MMA 

colloidal crystals with various n-BA contents. The measured time constants of the 

different polymer colloidal crystals are correlated to their storage modulus, 

shown in Figure 17d. A master curve is obtained where  is solely depending on 

the viscoelastic properties of the various polymers, rather than on the polymer 

composition. 

Whereas the step-like increase of the thermal conductivity has been studied in 

Chapter 4.1 and 4.2, this unique behavior is utilized to specifically tailor the 

temperature-dependent thermal conductivity of polymer colloidal assemblies 

(Chapter 4.3). Here, the precise control over the glass transition temperature of 

n-BA-co-MMA particles is combined with various assembly methods used for 

these particles. This allows to realize colloidal architectures with tailor-made 

temperature-dependent thermal conductivities. 

In general, the thermal conductivity of crystalline materials increases with ~T3 

up to the Debye temperature, and decrease at higher temperatures with ~T-1 to -3 

(details see Chapter 2.4).172 In contrary, amorphous materials, e.g. polymers, 

possess a monotonically increasing thermal conductivity across the entire 

temperature range, possessing one or two plateau regimes.179  Here, by choosing 

either evaporation-induced self-assembly or filtration for the assembly process, it 

is possible to, i) shift the step-like increase of the thermal conductivity of these 

assemblies to the desired temperature, ii) realize a broad transition between two 

temperatures, iii) introduce multi-step transitions, and iv) control the transition 

height of such multi-step assemblies. Furthermore, the flexibility of the presented 

concept is demonstrated by combining evaporation-induced and filtration 

assembly. The colloidal structures needed for i) and ii) are schematically sketched 

in Figure 18a, top row and Figure 18b, left. 
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Figure 18: Tuning the transition temperature and broadening of the transition by evaporation 

induced self-assembly. a) Fabrication of colloidal crystals from particles possessing different Tg 

allows shifting the temperature-dependent increase of the thermal conductivity along the 

temperature axis. b) Binary co-assembly of two equal-sized particles with different Tgs. Highly 

crystalline monoliths are obtained (b,middle), possessing a broad increase of the thermal 

conductivity between both Tgs (b, right). 

i) The Tg of the particles increases from blue (~54 °C) to green (~75 °C) to red 

(102 °C). For pure assemblies of these particles, the sharp increase of the thermal 

conductivity can be adjusted to a desired temperature (Figure 18a), as long as the 

temperatures range between the Tg of pure n-BA (~-55 °C) and pure PMMA 

particles (~125 °C). 

ii) It is further possible to span the transition over a temperature range between 

two temperatures by assembling two equal-sized particles with different Tgs into 

a binary colloidal monolith. Based on the equal size, highly crystalline assemblies 

are obtainable (Figure 18b, middle), indicating a homogeneous distribution of 

both particle species. By exceeding the Tg of the lower melting particle the thermal 
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conductivity of the binary assembly increases. Still, the higher melting particles 

partially retain the structure upon heating and therefore prevent a sharp increase 

in the thermal conductivity. Thus, a broad transition between both Tgs is 

accessible (Figure 18b, right). 

iii) Using filtration as assembly method, it is further possible to fabricate discrete 

multilayer colloidal assemblies, in which every layer possesses a different glass 

transition temperature (Figure 19a, top row). 

 
Figure 19: Introduction of multiple transition and control over transition height by filtration 

assembly. a) Sintering of the individual layers at their Ts leads to a multi-step increase of the 

thermal conductivity. b) By adjusting the layer thickness, it is possible to control the height of the 

increase. 

By exceeding the Tgs of the individual layers, a step-like increase is observable 

at that specific temperature (Figure 19a, bottom row). The already molten layer 

becomes better conducting, resulting in a partial increase in the thermal 

conductivity of the assembly at that temperature. Depending on the number of 



-Thesis Overview- 

 

-71- 

different layers, double (Figure 19a, middle), or triple steps (Figure 19a, right) can 

be realized. In general, even more steps are introducible, as long as their glass 

transition temperatures are sufficiently separated. iv) Furthermore, the height of 

the transition at a certain Tg is controllable by adjusting the layer thickness of the 

specific layer during the assembly process (Figure 19b).  

Finally, the flexibility of the presented concept is demonstrated by the 

combination of evaporation-induced and filtration assembly. The resulting 

colloidal architecture is sketched in Figure 20. 

 
Figure 20: Combination of both assembly approaches. The bottom layer is fabricated by 

evaporation induced self-assembly, whereas the top layered is assembled by filtration. Therefrom, 

it is possible to combine a broad and sharp increase of the temperature-dependent thermal 

conductivity of these colloidal assemblies. 

The bottom layer consists of a crystalline, binary co-assembly of particles 

possessing different Tgs, equal to the binary monoliths displayed in Figure 18b. 

After the fabrication of the bottom layer by evaporation-induced self-assembly, 

the top layer is stacked onto the bottom layer by filtration. This allows to combine 

a broad increase of the thermal conductivity between both Tgs of the bottom layer 

(Figure 20, between 50 °C to 100 °C), and a sharp, step-like increase of the thermal 

conductivity at the Tg of the top layer (Figure 20, at 125 °C). 
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As discussed in Chapter 4.1, the thermal transport properties of polymer 

colloidal crystals are governed by the small interparticle contact points. Still, the 

overall heat flux is additionally depending on the structural arrangement of the 

polymer particles within the assembly. The arrangement of the particles 

determines the thermal path length, which heat has to travel along through the 

material. By mixing two differently sized particles, it is possible to introduce 

disorder into the obtained colloidal monoliths. This allows studying the influence 

of order and disorder on the thermal transport properties of colloidal assemblies. 

Optical micrographs of the edges of split of binary polystyrene colloidal crystals 

made from particles with Ds = 243 nm and Dl = 305 nm (size ratio ~0.8) are shown 

in Figure 21a, top row. The composition ranges from 0 vol% to 100 vol% of large 

particles. 

 

Figure 21: Thermal conductivity of binary PS colloidal assemblies. a) Optical microscopy 

images of the edges of the split of the colloidal monoliths with varying vol% of the large particle 

species. b) Thermal conductivity of these monoliths measured in vacuum. The thermal 

conductivity decrease by ~20 % based on the introduced disorder. c) Next neighbor analysis by 

FEM simulations. 
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A strong opalescence is observable for pure 0 vol%-L and 100 vol%-L monoliths, 

whereas a decreasing opalescence is visible for intermediate mixing ratios, based 

on a hindered crystallization of both particle species within these monoliths. This 

indicates a crystalline particle arrangement at the edges of the mixing diagram, 

and a rather random-packed structure for intermediate mixing ratios. SEM 

side-view images of the monoliths further prove the impression gained from 

optical microscopy (Figure 21a, bottom row). The normalized thermal 

conductivity of binary colloidal assemblies with varying volume fraction of large 

particles is presented in Figure 21b. High thermal conductivities can be found for 

crystalline assemblies (0 and 100 vol%-L) as well as for assemblies containing a 

small amount of differently sized species (9 and 18 vol%-L, 95 and 97 vol%-L). A 

reduced thermal conductivity of ~80 % of the initial value is observed for 

intermediate mixing ratio, and can only be partially explained by the reduced 

density of these assemblies (~90 %). From molecular dynamics (MD) simulations 

of the assembly process, it is possible to determine the number of next neighbors 

per particles in dependence of the mixing ratio. The mean number of neighbors 

rapidly drops from 12 to ~10 for intermediate mixing ratios, based on a more 

random packing of the particles. Thus, the structure offers less path ways for heat 

to travel through the assembly. The heat flux has to take a detour, leading to an 

elongation of the thermal transport path.  Furthermore, by using finite element 

modeling (FEM) to calculate the thermal conductivity of binary assemblies, the 

random walk behavior can be qualitatively visualized by a bending of the heat 

flux streamlines along the structure (Figure 21c, insets). Interestingly, from FEM, 

a global minimum of thermal conductivity is found at mixing ratios of 

~18 vol%-L, as well as a further local minimum at ~90 vol%-L (Figure 21c). Still, 

both mixing ratios possess a comparable mean number of neighbors of ~10. The 

further reduction at ~18 vol%-L can be attributed to a significantly broadening of 

the next neighbor distribution. Surprisingly, a maximum number of next 
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neighbors increases at this global minimum, which is counterintuitive to the 

observed reduction based on a reduced number of neighors. Here, the further 

reduction is based on the formation particle clusters of a large particle, decorated 

with small particles. These clusters distort the particle lattice more strongly, 

leading to a further elongation of the thermal transport path, although the 

maximum number of next neighbors is increased. This is verified by the next 

neighbor distribution and the relative streamline lengths of binary mixtures, now 

possessing different size ratios (Figure 22a). The mixing ratio is kept constant at 

~18 vol%-L to demonstrate the influence of the broadening of the next neighbor 

distribution at the global minimum. 

 

Figure 22: Influence of size ratio on the thermal conductivity of binary assemblies. a) Number 

of next neighbors and relative streamline length in dependence of the size ratio. Mixing ratio is 

18 vol%-L. b) Influence of the size ratio of the thermal conductivity of binary assemblies. c) Heat 

flux density (FEM) in assemblies possessing different size ratios. 

From the number of next neighbors, a further broadening of the distribution is 

visible with decreasing size ratio. Noteworthy, even a second population of high 

numbers next neighbors arises for a size ratio of 0.54 (Figure 22a, left, inset), 
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indicating the formation of particle clusters. The relative streamline lengths are 

systematically shifted to longer lengths with decreasing size ratio (Figure 22a, 

right). This leads to an even further reduction of the thermal conductivity with 

decreasing size ratio, proven by experimental data and complementary FEM 

analysis (Figure 22b). The influence of the elongation of the thermal transport 

path is visualized by heat flux density images from FEM displayed in Figure 22c. 

A uniform heat flux density is observable for crystalline assemblies. This 

uniformity systematically decreases with decreasing size ratio. Based on the less 

and less favorable size ratio, the heat flux is bent along the particle network. This 

is especially visible from the heat flux density image for a size ratio of 0.54 (Figure 

22c, left), where one large particle heavily constrains the heat flux density through 

the structure. Thus, the thermal conductivity of the assembly can be further 

reduced to ~44%, compared to their crystalline counterpart. 

3.1 Individual Contributions to Joint Publications 

Chapter 4.1: Polystyrene Colloidal Crystals: Interface Controlled Thermal 

Conductivity in an Open-Porous Mesoparticle Superstructure 

This work is published in the Journal of Colloid and Interface Science 457, 96-

101, 2015 by F. A. Nutz, P. Ruckdeschel, M. Retsch  

I performed all experiments including, material preparation and material 

characterization as well as data evaluation. A significant part of this work has 

been conducted throughout my master thesis. I corrected the manuscript. 

Pia Ruckdeschel took part in discussion.  

Markus Retsch supervised the work, took part in discussion and wrote the 

manuscript. 



-Thesis Overview- 

 

-76- 

Chapter 4.2: Interfacial and Volumetric Sensitivity of the Dry Sintering Process 

of Polymer Colloidal Crystals: a thermal transport and Photonic Bandgap 

Study 

This work is published in Physical Chemistry Chemical Physics 19, 16124-16130, 

2017 by F. A. Nutz and M. Retsch 

I wrote the manuscript, and I performed all experiments including, material 

preparation and material characterization as well as data evaluation.  

Markus Retsch supervised the work, took part in discussion and corrected the 

manuscript. 

Chapter 4.3: Tailor-Made Temperature-Dependent Thermal Conductivity: The 
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Abstract 

Colloidal crystals typically consist of sub-micron sized monodisperse particles, 

which are densely packed on a face-centered cubic lattice. While many properties 

of this material class have been studied over the past decades, little is known about 

their thermal transport properties. The high amount of interfaces and their small 

interparticle contact area should result in efficient thermal insulation. Using Xenon 

flash analysis we report for the first time on the temperature dependent thermal 

conductivity of a free-standing 366 nm polystyrene (PS) colloidal crystal. 

Macroscopic monoliths of these samples were fabricated by colloidal self-

assembly. We demonstrate a very low thermal conductivity  of 51 mWK-1m-1 ( of 

bulk PS ~140 mWK-1m-1). Remarkably, this low thermal conductivity is reached at 

a comparatively high density of 750 kgm-3. It can be further increased by almost 

300 % upon film formation and loss of the colloidal mesostructure. Additionally, 

this open porous structure is largely independent of the surrounding atmosphere. 

This can be rationalized by the small size (~100 nm) of the pores present within 

this colloidal crystal. 

 

Introduction 

In the light of the globally increasing energy consumption new materials and 

concepts are necessary to satisfy the growing demand. Nanostructured materials 

can become an indispensable component in this emerging field. They combine 

interfaces and interphases on a length scale and symmetry that can be tuned to 

specifically mold the flow of heat, quite analogously to the field of photonics or 

electronics.1 Consequently, the interest on understanding thermal transport 

properties on the nanoscale has gained increasing attention over the past decade.2 

Here we investigate the thermal transport properties of polymer based colloidal 

crystals. The bottom-up self-assembly of these nanostructured materials allows for 

a good control on many of the most important parameters, i.e. length scale and 
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interfaces. We introduce colloidal crystals as a class of highly insulating matter, 

however, with added functionality compared to established polymer foams or 

packed particle beds.  

Polystyrene (PS) based materials are widely used in commercial applications for 

thermal insulation, most prominently as PS foam for construction insulation. Such 

foams possess a very low thermal conductivity, for instance Neopor® from BASF 

with 32 mWm-1K-1 at a density of 15 kgm-3.3 Thermal transport in such closed-cell 

foams is achieved by the additive contributions of solid conduction through the PS 

network (κsolid), conduction through the gas phase (gas), which greatly depends on 

the dimensions of the cellular structure, and radiation (rad) between the hot and 

the cold side. In order to access even lower thermal conductivities and better 

insulation properties, one needs to reduce gas by the fabrication of smaller cells 

and rad by reflection or absorption of IR radiation at a maintained low density to 

keep solid at a minimum.4 

Another well-studied class of thermal insulation materials are packed powder 

beds. These granular materials typically consist of micro- to millimeter sized 

particles of various materials and shapes. Thermal transport in these materials is 

governed by the porosity, the mutual contact points and the environment.5-7 Of 

major importance is the interfacial contribution, which consist of geometric 

constriction due to the contact area and the grain boundary thermal resistance.8 In 

particular for inorganic powders micro-roughness on the particle interface can 

severely reduce the actual contact area leading to a reduced effective thermal 

conductivity.  

Compared to state-of-the-art PS foams or powder beds, colloidal crystals have 

far less degrees of freedom as the three-dimensional structure is determined by the 

fcc symmetry of the crystal. Therefore the crystal density will always be at a rather 

high value of ~ 74 % of the constituting materials density and the interstitial space, 

which amounts to 26 vol%, can be considered an open porous structure. 
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Furthermore, in contrast to micron-sized beads the adhesion between the spheres 

is governed by van der Waals attraction rather than gravity and external pressure.9  

Colloidal crystals constitute a highly periodically ordered material class, which 

has been well investigated over the past 30 years.10-11 The literature on colloidal 

crystals offers a wide range of studies, which have been devoted to the constituting 

materials,12 the assembly into (hierarchically) structured devices,13-14 the physics 

involved in particle-particle interaction,9, 15 and the usage of such ordered 

superstructures as templates,16-17 sensors,18-19 or waveguides20 to name a few. The 

most prominent and well-known property of colloidal crystals is their opalescent 

color, which is also found in their natural counterpart – opals.21-22 A very analogous 

behavior has been observed by Cheng et al. for mechanical waves in refractive 

index matched colloidal crystals.23 24 In this case the periodic contrast in density 

leads to interference of the mechanical waves. This opens a band gap for 

hypersonic waves in the low GHz regime. While many physical properties of 

colloidal crystals have been well investigated, little is known about their thermal 

properties. The coherent phononic stopband observed in previous studies will 

certainly only play a negligible role for the transport of heat.23-24 This is due to the 

very low frequency (GHz) of such phonons compared to the high frequencies 

necessary for thermal transport (THz). Furthermore, many polymers are glassy 

materials, in which consequently the mean free path of phonons is reduced to less 

than one nanometer. Analogously to amorphous silica, one should rather consider 

diffusons and propagons as well as the anharmonic coupling between localized 

and delocalized modes to contribute to the heat transfer process.25-26 While typical 

colloidal particles in the size range from 100 nm to 1000 nm can be considered 

“bulk” (i.e. the thermal conductivity of the individual sphere is size-independent), 

the transport across the particle-particle interfaces will become the rate-

determining step. Here colloidal superstructures and crystals in particular 

represent an excellent model system as the mutual interfaces are defined by the 
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crystal structure. The aim of this work is to characterize the thermal transport 

properties of a polymer colloidal crystal for the first time, and to compare its 

thermal conductivity to established materials. 

 

Materials and Methods 

Materials: Potassium persulfate (KPS, ≥ 99 % Aldrich), styrene (≥ 99 %, Aldrich), 

4 styrenesulfonic acid sodium salt hydrate (NaSS, Aldrich) were used as received. 

Water was taken from a Millipore Direct Q3UV unit for the entire synthesis and 

purification steps. 

PS particle synthesis: Monodisperse PS nanoparticles were synthesized by 

emulsifier-free emulsion polymerization adapted from Ottewill.27 The synthesis 

was carried out under a slight argon flow. A three-neck flask equipped with a 

reflux condenser and a gas inlet was charged with 240 ml milliQ water and 30 ml 

styrene. The mixture was heated up to 75 °C and allowed to equilibrate for 30 

minutes at a stirring rate of 850 rpm. Subsequently, 5 mg of NaSS, dissolved in 5 

mL milliQ water and 5 mg KPS, dissolved in 5 mL were added to the mixture. The 

reaction was carried out overnight. To terminate the polymerization, the mixture 

was exposed to ambient atmosphere. Typically, 100 mL of the received dispersion 

were purified by dialyzing for 3 days against 2 L of milliQ water, changing water 

twice a day. Our particles have a hydrodynamic diameter of 393 nm with a PDI ~ 

0.008 as determined by DLS measurement. Scanning electron microscopy confirms 

the monodispersity and yields a dry particle diameter of 366  ± 14 nm. The surface 

of our PS spheres is smooth and electrostatically stabilized by the sulfate-moieties 

of the initiator and sulfonate groups from the added co-monomer. 

Colloidal crystals: PS colloidal crystals were fabricated by evaporation induced 

self-assembly of the PS nanospheres. Therefore, 3 mL of a 7.3 wt% aqueous particle 

dispersion were allowed to slowly evaporate for several days at room temperature 
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in a PTFE beaker. After drying, disk-shaped PS colloidal crystals were obtained 

with a diameter of ~2 cm. 

Characterization: The particle size and size distribution were determined by 

dynamic light scattering (DLS) on a Malvern Zetasizer with 175° backscattering 

geometry. Measurements were done on strongly diluted aqueous particle 

dispersions.  

Correlated light and electron microscopy (CLEM) were performed on a Carl 

Zeiss Axio Imager.A2m light microscope equipped with an AxioCam Icc 1 camera 

and a motorized stage, and a Zeiss Leo 1530 scanning electron microscope. The 

samples were transferred on a KorrMik MAT universal B sample holder. Using the 

shuttle & find module, it was possible to study specific spots on the specimen, 

which were predetermined on the optical microscope image. 

Heat capacity was determined according to the ASTM E1269 standard test 

method on a Mettler Toledo DSC 2 under a nitrogen flow of 50 mLmin-1 and a 

heating rate of 20 °Kmin-1. Two heating cycles were conducted to 200°C. Only the 

second cycle was used for evaluation.  

The thermal diffusivity of the PS colloidal crystals was measured by laser flash 

analysis (LFA) on a Linseis XFA 500 XenonFlash apparatus with InSb infrared 

detector. Previously, the thickness of the samples was determined with a Mitutoyo 

Litematic VL-50 and the samples were spray coated with approximately 15 µm of 

graphite on each side. Data evaluation was done by the software Aprosoft Laser 

Flash Evaluation v1.06. The received data was fitted with the given radiation fit 

model and manually adapted. 

 

Results 

We base our study on one particle size, namely 366 nm PS spheres (termed PS-

366), which are easily accessible by emulsifier-free emulsion polymerization 

(details are given in the supporting information). For the determination of thermal 
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conductivity using laser flash analysis (LFA), one needs to fabricate freestanding 

colloidal crystals with a size of several millimeters in lateral dimensions and 

several hundred micrometer in thickness. We achieved this by very slow drying of 

the aqueous colloidal dispersion in a PTFE beaker. Figure 1 shows the cross section 

optical microscope image of a typically obtained, freestanding colloidal crystal 

monolith. The opalescence of such a photonic crystal is clearly visible by the bright 

greenish coloration from top to bottom. From this macroscopic impression, one 

can already deduce the high crystalline order on the few hundred nanometer scale. 

We used correlative light and electron microscopy to investigate the structure of 

the colloidal crystal in more detail. Two spots at various locations within the 

interior of the colloidal crystal are marked in Figure 1. Both demonstrate the high 

degree of crystallinity with various facets of the fcc ordered particles being exposed 

to the surface. The inset on the top right corner further shows the smooth surface 

of the individual PS spheres as well as the small contact points between adjacent 

particles. 
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Figure 1. Bright field light microscopy image of a side view of PS-366 assembled into a 3D PS 

colloidal crystal (left). A strong opalescence is visible over the entire sample due to Bragg reflection. 

Correlated SEM images of the colloidal crystal (right) pointing out the high order of the particles 

within the crystal. 

We fabricated several colloidal crystal monoliths, which possessed an overall 

film thickness ranging from 579 µm to 951 µm. The uniformity of layer thickness 

is an important quantity in the characterization by LFA. Based on our fabrication 

method, the colloidal crystal monolith always exhibits an increase in layer 

thickness towards the edges of the disk. This is caused by some pinning of the 

water meniscus at the walls of the PTFE beaker. In order to constrain the thickness 

variation to a minimum, we performed LFA measurements on a small spot (3 mm 

diameter) on the monolith. The variation in sample thickness within this area is 

typically less than 5 % and will therefore amount to an uncertainty in the LFA 

measurement of less than 10 %. 

The principle method of LFA is detailed in Figure S1. The sample has to be coated 

with a thin layer of graphite spray on both sides (< 15 µm each). The bottom coating 

absorbs the light pulse and instantaneously converts it into a small increase in 

temperature, which then diffuses through the colloidal crystal to the colder top 



-4.1 Interface-Controlled Thermal Conductivity- 

 

-89- 

surface. The top coating improves the emissivity of the surface and thereby, 

increases the IR detector signal, which measures the time-dependent temperature 

increase at the top surface. A typical measurement is shown in Figure S1b along 

with the fit using a radiation model provided by Linseis. This fit yields the thermal 

diffusivity α of the colloidal crystal. Using the equation 

κ(T)= α(T)∙cp (T)∙ρ(T)   equation (1) 

one obtains the thermal conductivity of the sample. The temperature dependent 

specific heat capacity cp can be measured by DSC using a sapphire standard for 

calibration. The density ρ of the colloidal crystal can be measured using a 

buoyancy balance. The measured value of 750 kgm-3 coincides with the 

theoretically expected value for an fcc crystal with 74 vol% of PS spheres. 

As outlined above, for the case of polymer foams, various pathways can 

transport thermal energy. Due to the small temperature jump caused by the light 

pulse and the transient manner of the LFA measurement, contributions from 

thermal radiation are negligible. Gaseous transport can be effectively suppressed 

by measuring under vacuum conditions. The influence of thermal conduction 

through the gas phase in this open porous structure will be discussed later. 

Therefore, the LFA measurement in vacuum solely determines the thermal 

diffusivity through the polymer particle network. 
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Figure 2. Left panel top: Density of the colloidal crystals determined by the buoyancy balance 

method, before and after Tg of the PS particles. Left panel middle: Temperature-dependent 

measurement of the thickness of a colloidal crystal. Left panel bottom: heat capacity of the PS 

particles determined by DSC. Right: Temperature-dependent thermal diffusivity (black symbols) 

and thermal conductivity (red symbols) of a PS colloidal crystal determined by LFA in vacuum. A 

hysteresis between the heating (closed symbols) and the cooling cycle (open symbol) is observed. 

Figure 2 summarizes all temperature dependent quantities, which need to be 

determined in order to measure the thermal transport properties of a colloidal 

crystal. When heating a PS colloidal crystal up to 150 °C, one quite expectedly 

losses the crystalline structure. The polymer particles soften beyond their Tg at 

around 105 °C and start to fuse together. Side-view images (Figure S2) reveal that 

the particulate structure has been entirely lost, and that a continuous polymer film 

has been formed. In the molten film image (Figure S2 right), one can very faintly 

discern the former particle positions. The interstitial space has been filled with 

polymer, but some captured gas (micro) bubbles could still exist in this continuous 

polymer film. We measured the density of this molten film and found the density 

to essentially resemble bulk PS of ρmolten = 1039 kgm-3. The colloidal crystal shrinks 

during the transition from a particulate to a continuous film. We followed this 

shrinkage by measuring the film thickness at various temperatures (Figure 2, left 

panel middle). The monolith thickness remains constant up to ~ 80 °C and slightly 
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increases when approaching the Tg. Beyond the Tg the layer thickness drops 

significantly from 1094 µm to 964 µm. We found similar layer thickness reductions 

for all samples, which ranged between 84 % and 89 %. This is important as the 

layer thickness is an important parameter used during the determination of the 

thermal diffusivity α. For the sake of simplicity, we analyzed the temperature 

dependent measurement by a step function. This means during the first heating 

cycle, we used the thickness of the colloidal crystal at room temperature (Figure 2, 

red arrows). After crossing the Tg we considered the colloidal crystal to be molten 

and determined α by inserting the lower layer thickness. As the crystal remains in 

its filmed state upon cooling (Figure 2, blue arrows) the lower layer thickness is 

then also used for measurements below Tg. 

The resulting thermal diffusivity data can be seen in Figure 2 (right panel, black 

symbols). Even though the data has been corrected to the reduced layer thickness, 

a step between the thermal diffusivity before and after the Tg can be observed. The 

temperature-dependent data presented in Figure 2 are obtained from five 

individual monoliths. Each data point represents the average of four 

measurements at the same spot. The deviation from sample to sample increases 

after the colloidal crystal has undergone film formation (Figure 2 and Figure 3b, 

open symbols). This can be understood by the fact that the colloidal crystals 

undergo a major rearrangement beyond Tg with internal stresses and potentially 

even cracks evolving. These changes cannot be controlled and lead to a spread in 

the data. 

We calculated the thermal conductivity of the colloidal crystal based on , cp, and 

 as explained above. Analogously to the step function of the sample thickness, we 

also considered the density to abruptly change at the Tg and to remain constant 

during the cooling cycle. The result is given by the red symbols for the heating 

(solid symbols) and cooling (open symbols) cycle (Figure 2). At first, native 

colloidal crystals at room temperature demonstrate a very low thermal 
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conductivity of CC, 25 °C = 51 ± 6 mWm-1K-1. While this is higher compared to 

polymer foams or aerogels, it demonstrates the large influence of constriction and 

grain boundary thermal resistance to the thermal transport – in a homogenous 

material of high density (CC, PS = 750 kgm-3). Considering a parallel mixing model28 

for the case of our open porous structure, one can deduce that the thermal 

conductivity of the polystyrene skeleton amounts to PS particulate ≈ 69 mWm-1K-1. The 

influence of interfaces is quite impressively demonstrated by the marked increase 

in thermal conductivity beyond Tg. While the thermal conductivity remains 

approximately constant up to 80 °C, as it is expected for amorphous polymers,29 an 

almost step-like increase occurs after exceeding the Tg, which reaches up to 

148 mWm-1K-1 at 150°C. Upon cooling the thermal conductivity decreases slightly 

to 139 mWm-1K-1 at room temperature. A small increase close to Tg is caused by the 

step in the cp. These values agree well with typical thermal transport properties of 

amorphous bulk polymers. From these temperature-dependent measurements one 

can deduce, that colloidal crystals demonstrate quite unique thermal transport 

properties. Firstly, even though close to the density of bulk polymers, colloidal 

crystals possess a very low thermal conductivity, which is on the order of polymer 

foams. Secondly, a rather small structural change (~15 % decrease in film thickness) 

is amplified to an almost threefold increase in thermal conductivity. 

Figure 3a puts our new findings in relation to other well-characterized polymer 

classes. Colloidal crystals populate a yet empty area at the bottom right corner of 

an Ashby plot of density vs. thermal conductivity. It also visualizes the large 

increase in thermal conductivity upon film formation, which results in bulk 

polymer thermal conductivity. 



-4.1 Interface-Controlled Thermal Conductivity- 

 

-93- 

 

Figure 3. a) Ashby plot of the thermal conductivity of a range of polymer materials versus the 

density of the material. Colloidal crystals (red) populate an area of low thermal conductivity at 

comparatively high density, which is not accessible by other polymer materials so far. b) Influence 

of the environment on the thermal conductivity of a colloidal crystal. Measurements were 

conducted on the pristine colloidal crystals (solid symbols) in vacuum, air, and helium at 25 °C; 

film formation was carried out at 150 °C (open symbols). c) Pressure dependence of the thermal 

conductivity in air (red triangles) and helium (blue circles). 

When comparing colloidal crystals to established foam materials or powder beds, 

one needs to consider their thermal conductivity dependence on the surrounding 

atmosphere. Polymer foams typically feature closed-cell pores on a length scale of 

several tens of micrometers. Powder beds comprise a broad range of length scales, 

depending on the particle size, their shape and surface roughness, but can be 

considered an open porous structure. Colloidal crystals also represent an open-cell 

structure, however, with well-defined porosity and a discrete range of void sizes 

given by the fcc symmetry.30 We measured the effective thermal conductivity in 

helium and air at standard pressure (Figure 3b). For both, helium and air, a slight 

increase from 51 mWm-1K-1 (vacuum) to 62 ± 2 mWm-1K-1 (air) and 72 ± 2 mWm-1K-1 

(helium) was observed, which can be rationalized by the additional conduction 

contribution through the gas phase. The small difference in the effective thermal 

conductivity between the bad thermal conductor air (~ 26 mWm-1K-1) and good 

thermal conductor helium (~ 150 mWm-1K-1) indicates the influence of the small 

size of the open porous cells. This is corroborated by Figure 3c, where the pressure 

dependent thermal conductivity is shown. For the system under consideration 

here, the open pores can be classified into three categories, referring to octahedral, 
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tetrahedral or connecting voids and amount to ~151 nm, ~83 nm, and ~57 nm, 

respectively.30 These are extremely fine pores, which are smaller or on the order of 

the mean free path of gases such as He, N2, or O2. Consequently, the thermal 

conductivity through the gas phase in the colloidal crystal is greatly reduced for 

the case of He.31-32 This is expected due to the Knudsen number Kn > 1 and can also 

be inferred from Figure 3c, where no saturation even at high pressure was 

observed. Based on the simple parallel mixing model the He gas conductivity was 

found to be only ~50 % of its bulk value. Using the same model we find an 

unreasonably high thermal conductivity of air ~38 mWm-1K-1, which could be due 

to water condensation at the contact points of adjacent spheres at ambient 

pressure. Upon film formation the thermal conductivity increases as outlined 

above to 139 ± 10 mWm-1K-1 (vacuum). A similar increase is observed for the 

measurement in air (132 ± 15 mWm-1K-1) and He (158 ± 14 mWm-1K-1) atmosphere. 

Expectedly, within the experimental error no difference between the various gases 

can be observed for these solid films any more.  

 

Conclusion 

In summary we characterized the thermal transport properties of a polymer 

colloidal crystal for the first time. This study adds significantly to the well 

established field of colloidal assembly structures. Despite their well-defined 

hierarchical structure only little is known about their thermal conductivity, yet. 

Our study was based on one particular example of a colloidal crystal consisting of 

366 nm poly(styrene) spheres. We identified three major properties of this colloidal 

crystal: 

 The thermal conductivity is remarkably low ~ 51 mWm-1K-1, particularly in 

the light of the high density of ~ 750 kgm-3. 

 Upon crossing the Tg film forming takes place. While the film thickness 

drops only by about 15 %, the thermal conductivity increases by about 270 %. Thus, 
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colloidal crystals can be regarded as a single use thermal switch – at least in the 

range of low conducting materials. 

 Despite the open porous structure, the thermal insulation properties of 

colloidal crystals depend only slightly on the surrounding atmosphere.  

 

We are convinced that colloidal crystals can serve as a model platform to study 

thermal transport properties in nanostructured materials with well-defined 

interfaces and contact points. Future research will be directed towards the 

influence of size and crosslinking of the colloidal particles to gain further control 

on the thermal conductivity as well as the switching behavior. 
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Figure S1. (a) Schematic illustration of a XFA experiment and the sample setup. Experimental data 

(b, black line) obtained from a single shot XFA measurement of a PS-366-CC at 25°C in vaccum. t1/2 

is received from the radiation fit function of the experimental data (b, red line). 

 

 

Figure S2. SEM sideview of a PS colloidal crystal before and after exceeding Tg. 
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Abstract 

We introduce the in-situ characterization of the dry sintering process of face-

centre cubic colloidal crystals by two complementary techniques: thermal 

transport and photonic stopband characterization. Therefore, we employed time 

dependent isothermal laser flash analysis and specular reflectivity experiments 

close to the glass transition temperature of the colloidal crystal. Both methods yield 

distinctly different time constants of the film formation process. This discrepancy 

can be attributed to a volume- (photonic stopband) and interface-driven (thermal 

transport) sensitivity of the respective characterization method. Nevertheless, both 

methods yield comparable apparent activation energies. Finally, we extended the 

sintering process characterization to further polymer compositions, with vastly 

different glass transition temperatures. We could show that the film formation rate 

is governed by the viscoelastic properties of the polymers at the respective 

annealing temperature. 

 

Introduction 

Colloidal crystals are an intensely studied material class in the focus of a wide 

variety of recent research.1-6 They are employed in many active research fields such 

as photonics and phononics,7-9 lithography,10 defined particle immobilization11 and 

many more.12 Recently, colloidal crystals have also drawn attention in the field of 

thermal transport in nanostructured materials.13, 14 Due to their highly defined 

structure on the colloidal length scale, they can serve as a model system to get a 

deeper understanding of thermal transport in porous, particulate matter. Heat 

flow through a colloidal crystal is extremely sensitive to the size and bonding 

strength of the interfaces between neighboring particles. This characteristic can be 

utilized to trace particle dry sintering within polymer colloidal crystals at 

temperatures above the glass transition Tg of the polymer. 
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Usually, polymer colloidal crystals are formed of closed packed arrays from 

monodisperse polymer particles with a diameter ranging from 100-1000 nm. These 

crystals are predominantly assembled from aqueous particle dispersions. Based on 

the widespread application of particle dispersions as paints, paper coatings and 

adhesives, a deep understanding of film formation and particle sintering is 

necessary, to achieve the desired performance.15-17 The film formation process of 

latex dispersions can be generally separated into three stages (see figure S1):16 In 

stage I the particles self-assemble during the evaporation of water. If the particles 

possess a sufficient narrow size distribution, they assemble into a colloidal crystal. 

Stage II only happens above the minimum film forming temperature (MFT). The 

MFT is strongly related to the glass transition temperature Tg of the polymer. 

Exceeding Tg leads to the softening of the particles, allowing them to deform into 

dodecahedrons, where each facet is in full contact to a facet of the neighboring 

particles. This results in optically clear polymer films due to the loss of the 

refractive index contrast within the structure. For most applications, e.g. paints, 

the MFT is below room temperature, resulting in wet sintering of the particles as 

the water evaporates. If the particles possess a Tg above room temperature, the 

polymer is still in its glassy state and deformation of the particles is prevented 

during water evaporation. Heating the assembly above its Tg leads to dry sintering 

of the particles.18-21 The closure of the porosity and the formation of mutual full 

contact areas is not only driven by the viscosity of the polymer at the specific 

temperature, but also by the surface tension between the water-polymer or the air 

polymer interface in the case of wet and dry particle sintering, respectively .19, 22, 23 

Thus, the particle deformation in stage II is additionally size dependent.24 In stage 

III, polymer diffusion across the particle-particle interfaces takes place, yielding a 

continuous polymer film.  

During the past decades, a range of methods, such as small angle neutron 

scattering (SANS),25-31 direct non-radiative energy transfer (DET),32-36 small-angle 
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x-ray scattering (SAXS),21, 37-40 atomic force microscopy (AFM)19, 41, 42 and solid state 

NMR42, 43 haven been established to investigate latex film formation and dry 

particle sintering. Most of these methods need a quite elaborate experimental setup 

or a specific labelling with dyes/deuterated compounds of the sample. Some of 

these methods are furthermore restricted to assemblies comprising a sufficient 

particle size.  

Hence, in this work, we want to contribute to the understanding of the dry 

sintering process by a novel approach. Therefore, we monitor changes of the 

thermal transport properties of polymer colloidal crystals by time-dependent laser 

flash analysis (LFA) for the first time. This method is capable to follow the sintering 

process in-situ. It can be applied to particles of any size and no labelling of the 

polymers or the use of deuterated monomers is needed. Our system is based on 

monodisperse nanoparticles comprising a random copolymer of methyl 

methacrylate (MMA) and n-butyl acrylate (nBA). As we demonstrated in a recent 

publication on polystyrene colloidal crystals, the thermal transport in such 

structures is strongly governed by the small contact points between the particles.13 

These interfaces serve as geometrical constrictions for heat to travel through the 

material. Therefore, the size of these contact points is crucial for the thermal 

transport. Beyond the glass transition of the polymer, the polymer chains become 

mobile. This leads to a strong enlargement of the contact points between the 

adjacent spheres and thus, to a drastically increase of ~300 % of the thermal 

conductivity (Scheme 1).   
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Scheme 1: Schematically illustration of the increasing thermal conductivity during sintering of a 

polymer colloidal crystal. Due to the small contact points, the crystals is thermally insulating at 

temperatures below its Tg. By exceeding Tg the particles deform into dodecahedrons with every 

facet in full contact to the facet of the neighbouring particle. This leads to an increased thermal 

transport through the structure. 

Scheme 1: Schematically illustration of the increasing thermal conductivity 

during sintering of a polymer colloidal crystal. Due to the small contact points, the 

crystals is thermally insulating at temperatures below its Tg. By exceeding Tg the 

particles deform into dodecahedrons with every facet in full contact to the facet of 

the neighboring particle. This leads to an increased thermal transport through the 

structure. 

We take advantage of this effect and trace the dry sintering of 20 vol%-nBA-co-

80 vol% MMA colloidal crystals (Tg ~74 °C) at 70, 75 and 80 °C. The high ordering 

within the crystals additionally allows following the sintering process by time 

dependent UV Vis reflectivity measurements, recording the decrease of the Bragg 

reflection. Whereas LFA is extremely sensitive to changes at the interfaces of the 

crystal, UV Vis is mainly responding to volume changes, influencing the refractive 

index contrast. We finally show the sintering process to be independent of the 

polymer composition, but being mainly governed by the viscoelastic properties of 

the respective polymer. 

 

Materials and methods 

Methyl methacrylate (MMA, 99 %, Aldrich) and n-Butyl acrylate (nBA; ≥ 99 %, 

Aldrich) were purified by filtration over an alumina column (activated, basic, 

Brockmann I, Sigma Aldrich) prior to the synthesis. Potassium peroxodisulfate 
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(KPS, ≤ 99 %, Sigma Aldrich) and 4-styrenesulfonic acid sodium salt hydrate 

(NaSS, 99 %, Aldrich) were used as received. Throughout the synthesis and 

purification steps, water was taken from a Millipor Direct Q3UV unit. 

Synthesis: Copolymer particles were synthesized by emulsifier free emulsion 

polymerization according to literature.44 In a typical synthesis, 240 mL milliQ 

water and 10 mL of total monomer mixture (8 mL MMA and 2 mL n-BA for 

20 %vol nBA-co-80 %vol MMA particles) were charged in a 250 mL 3-neck flask, 

equipped with a reflux condenser and a gas inlet. The mixture was heated to 80 °C 

and stirred under a constant argon flow. The mixture was allowed to equilibrate 

for 15 min. 10 mg of NaSS and 200 mg of KPS were separately dissolved in 5 mL 

milliQ water each. After equilibration, the aqueous solution of NaSS was added, 

and the mixture was allowed to further equilibrate for 5 min. The polymerization 

was started by rapidly adding the KPS solution to the mixture. The reaction was 

carried out at 80 °C overnight under argon atmosphere. To remove residual educts 

(nBA, MMA, NaSS, KPS), the particles were dialyzed against milliQ water for 3 

days, changing water twice a day. For the synthesized polymers, the molecular 

weight can be expected to be in the range of 90 to 120 kgmol-1.45 Calculation of the 

theoretical glass transition temperature were done by the Fox equation assuming 

100 % conversion of the monomers.  

Crystal assembly: Colloidal crystals were fabricated by slowly drying a given 

amount of particle dispersions in a PTFE beaker for several days under ambient 

conditions. Disk-shaped colloidal crystals with a diameter of ~20 mm were 

obtained after drying (Figure 1a). 

 

Methods 

Dynamic light scattering: The hydrodynamic diameter of the particles and their 

size distribution were determined by dynamic light scattering (DLS) on dilute 
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aqueous particle dispersions. Measurements were performed on a Malvern 

Zetasizer with 175° backscattering geometry. 

Light microscopy: Bright field light microscopy images onto the edges of split of 

the colloidal crystals were recorded on a Carl Zeiss Axio Imager.A2m light 

microscope equipped with an AxioCam Icc 1 camera. 

Scanning electron microscopy: Scanning electron microscopy (SEM) was 

performed on a Zeiss Leo 1530 electron microscope to determine the hard sphere 

diameter of the particles. Dilute particle dispersions were drop-casted on a silicon 

wafer and sputtered with 1.3 nm platinum. Additionally, side-view SEM images 

along the edges of split of the colloidal crystals were recorded to investigate the 

order of the particles within the interior of the monoliths.  

Differential scanning calorimetry: Heat capacity determination was carried out 

on a TA Instruments Q1000 differential scanning calorimeter according to ASTM 

E1269. Three individual measurements were performed under a nitrogen flow of 

50 mLmin-1 at a heating rate of 20 Kmin-1. Two heating cycles were conducted 

between –40 °C and 200 °C. The specific heat capacity was evaluated from the 

second heating cycle. Based on the low weight content of the gas phase within the 

crystal, only the heat capacity of the polymer is considered in the calculation of the 

thermal conductivity. 

Density determination: The density of the pristine colloidal crystal was 

determined from the mass and volume of the monolith. The mass was determined 

by weighting the crystals. The volume was measured on a Keyence V 3100 3D 

digital macroscope. The density of the molten crystals has been obtained by a 

buoyancy balance according to Archimedes principle. 

Rheology: The storage and loss modulus of the polymers were determined using 

oscillating rotational rheology with plate to plate geometry at a frequency of 1 

rad/s in a temperature range of 25 to 150 °C. Measurements were performed on 

disk-shaped samples with a diameter of 8 mm. Strain sweeps were performed 
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before the measurements to determine the linear viscoelastic regime of the samples 

(Figure S5). The samples were prepared by hot-pressing dry nanoparticle powder 

at 150 °C in a vacuum hot-press, to ensure no enclosure of air bubbles within the 

samples. 

UV-VIS: Temperature-dependent UV-Vis reflectivity measurements were 

conducted on an Agilent Cary 5000 with Universal Measurement Accessory 

equipped with a heat stage. UV Vis experiments were carried out on colloidal 

crystals, dip coated from a 3 wt% particle dispersion on 170 µm glass slides. 

Reflectivity spectra were recorded from 350-550 nm at an angle of 10° between 

sample and incident light beam. The range of the detected wavelength is chosen 

as such to detect Bragg reflection of the colloidal crystals. 

Laser flash analysis: Laser flash analysis was performed on a Linseis XFA 500 

XenonFlash apparatus equipped with an InSb infrared detector to obtain the 

thermal diffusivity α of the colloidal crystals. Previous to the measurement the 

sample surfaces were coated with a 100-200 nm metal layer. The metal layer serves 

as an optical blocking layer and prevents light transmission through the colloidal 

crystal. Additionally, the samples were coated with a thin graphite layer (< 15 µm) 

to ensure a good absorbance at the bottom, and a high emissivity at the top side of 

the sample. Due to the small thickness of the coating, compared to the sample 

thickness (~800 µm) the influence of the coating on the measurements is negligible. 

Measurements were performed in helium atmosphere at a pressure of 950 mbar to 

ensure a homogenous temperature distribution inside the sample chamber. The 

raw data was fitted with the radiation fit model provided by the software Aprosoft 

Laser Flash Evaluation v.1.06. Measurements were performed on at least three 

samples. 

Thickness determination: The thicknesses of the colloidal crystals were 

determined on a Mitutoyo Litematic VL-50 equipped with a heat stage. The sample 

thickness was measured before and after each laser flash experiment. For time-
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dependent thickness determination, a home built heat stage was used to provide a 

comparable thermal environment to the laser flash measurements. 

 

Results and discussion 

Copolymer particles with a diameter of 214 ± 7 nm determined by SEM were 

synthesized by emulsifier free emulsion polymerization. Colloidal crystals of these 

particles were self-assembled by drying the dispersion at ambient conditions. 

Typically, disc shaped free standing colloidal crystals with a thickness of several 

hundred micrometers and a diameter of ~20 mm were obtained with this method 

(Figure 1a).  

 

Figure 1. a) Photograph of a free-standing, self-assembled colloidal crystal monolith. b) Side view 

optical microscopy image along the edge of a split colloidal crystal. The opalescence is indicative 

of a high crystalline order. c) Side-view SEM image of the interior of the colloidal crystal monolith 

confirming the long range, crystalline order. d) Temperature dependent heat capacity of 20 vol% 

nBA-co-80 vol% MMA possessing a glass transition temperature of ~74 °C. e) Temperature 

dependent thermal conductivity of the colloidal crystal. By exceeding Tg of the polymer a drastic 

increase of the thermal conductivity is visible. 

Optical microscopy side-view images of typically obtained monoliths are shown 

in Figure 1b. A strong opalescence is visible throughout the entire monolith. This 
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demonstrates the high order of the particles within the crystal on a length scale of 

several hundred micrometers. SEM confirms the high degree of crystallinity of the 

crystal (Figure 1c). From optical microscopy and SEM, the samples under 

investigation can be regarded as fully crystalline. The polymer microstructure, 

however, is of course in a completely amorphous state due to the atactic 

polyacrylate backbone. 

The temperature dependent heat capacity of the copolymer is displayed in Figure 

1d. A glass transition temperature of ~74 °C can be determined (Figure 1d, dashed 

line). This is in perfect agreement with the prediction of 74 °C, calculated by the 

Fox equation. 

The thermal conductivity of such monoliths was measured by laser flash 

analysis. A schematic setup of this method and details about the measurement can 

be found in Figure S2. A typical measurement to obtain the thermal diffusivity is 

finished after roughly 10 seconds, depending on the thickness of the crystals. The 

temperature dependent mean thermal conductivity of three individual samples is 

presented in Figure 1e. 20 vol% nBA-co-80% MMA colloidal crystals show a low 

thermal conductivity of 84 ± 2 mWm-1K-1 at 25°C. By exceeding the Tg of the 

constituting polymer, the mobility of the polymer chains strongly increases, 

resulting in a fast sintering of the particles. Consequently, the thermal conductivity 

of the crystal increases in a step-like, irreversible fashion due to a strong 

enlargement of the particle-particle interfaces.  

To investigate the dry sintering process, this transition is monitored by 

isothermal, time-resolved LFA and UV-VIS reflectivity measurements at 

temperatures close to the glass transition temperature. The dry sintering was 

followed at 70, 75 and 80 °C. For time-dependent laser flash analysis, the changes 

in sample thickness have to be assessed separately (for details see supporting 

information, figure S3a). The time dependent behavior of a laser flash raw signal 

and the intensity of the Bragg peak at 75 °C are displayed in Figure 2a and b. 
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Figure 2. a) Time-dependent XFA raw signal. With elapsing time, the signal intensity is increasing 

and its maximum is shifted to shorter times caused by the sintering process. b) Decay of the Bragg 

peak of the colloidal crystal due to the loss of refractive index contrast. Inset: blue shift of the peak 

maxima based on the shrinking of the unit cell during sintering at 75 °C. c) Time-dependent 

decrease of the maximum reflectivity at the specified temperature. d) Time dependent increase in 

thermal diffusivity obtained by laser flash analysis at 70, 75 and 80 °C. From both experiments,  

decreases with increasing temperature. 

For both methods a qualitatively comparable behavior could already be deduced 

by the time dependent laser flash raw signal and the reflectivity spectra. The laser 

flash raw signal (Figure 2a) increases in signal intensity with elapsing time. This is 

based on a decrease of crystal thickness due to the loss of porosity during film 

formation. Moreover, the signal maximum is shifted to shorter times. This time 

shift arises from an increased thermal transport through the sample due to the 

enlargement of the particle-particle interfaces. This leads to smaller t1/2 values and 

thus, to an increase of  with elapsing time.  

An intense Bragg peak of the neat colloidal crystal with a maximum at a 

wavelength of 473 nm is visible at the beginning of the experiment (Figure 2b). 

This maximum corresponds to a colloidal crystal formed by particles with a 

diameter of 213 nm calculated by Bragg`s law, assuming an fcc-symmetry and an 

effective refractive index of 1.379 for the structure. This is in very good agreement 

with the experimental particle diameter of 214 ± 7 nm determined by SEM. In 
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addition, the spectra exhibit Fabry-Pérot fringes (Figure 2b, red stars) caused by 

interference of light waves, reflected at the crystal/air and crystal/substrate 

interface. This indicates a high order and homogeneity of the sample. With 

increasing annealing time, the intensity of the Bragg peak decreases. This is caused 

by the onset of polymer flow into the voids of the crystal. Due to the resulting loss 

of porosity, the refractive index contrast vanishes, leading to a decreasing Bragg 

peak intensity. Additionally, a blue shift of the peak`s maxima is visible in the 

spectra. The evaluation of blue shift of the peak maxima for UV-Vis experiments 

at 75 °C is displayed in the inset for Figure 2b, for the first 1000 s. At longer 

sintering times, the allocation of the peak maxima was not possible due to peak 

broadening. The blue shift can be ascribed to the deformation of the polymer 

particles into dodecahedrons during the sintering, leading to an isotropic 

shrinking of the crystal’s unit cell. Therefore, the lattice parameter of the crystal 

decreases, indicating a blue shift of the spectra. 

The time-dependent decay of the maximum intensity of the Bragg peak at 70, 75 

and 80 °C are shown Figure 2c. The grey area marks the time needed for thermal 

equilibration. The isothermal condition was typically reached within 2 minutes. 

We found the decrease of the Bragg peak intensity to follow a single-exponential 

behavior (Figure 2c, red lines). The fit function yields a time constant , which is 

utilized to describe the rate of the film formation process at different temperatures. 

With increasing annealing temperature, the decay rate of the Bragg peak increases. 

This results in a decrease of the extracted time constants. Noteworthy, the Bragg 

peak reflectivity of the colloidal crystal vanished almost completely after ~50 

minutes for annealing temperatures of 75 °C and 80 °C, whereas a strong reflection 

remains within the spectra for measurements at 70 °C (Figure 2c). This is based on 

a preserved crystalline structure within the sample, as shown by SEM side view 

micrographs in figure S3b of the annealed colloidal crystal. For crystals sintered at 

70 °C, it is still possible to deduce the crystalline structure as well as the original, 
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spherical shape of the particles. For samples annealed at 75 °C and 80 °C, one is 

able to retrace the lattice planes but the interstitial voids between the particles are 

completely filled with polymer. 

The thickness-corrected, time-dependent thermal diffusivity measured at 70, 75 

and 80 °C, is displayed in Figure 2d. Within the equilibration period (grey area), it 

was not possible to perform any measurement. For every time dependent 

isothermal series, the thermal diffusivity  of the colloidal crystals exhibit a 

comparable behavior. Whereas  strongly increases in the first minutes of the 

experiment, it plateaus after a certain period. The obtained thermal diffusivity 

consequently follows a single exponential behavior for each isothermal condition 

(Figure 2d, red line). Analogously to the UV-Vis experiment,  decreases with 

increasing temperature. This can be ascribed to a higher mobility of the polymer 

chains at higher temperatures, which results in a faster enlargement of the 

interparticle contact points and therefore, to a faster increase of the thermal 

transport through the structure. 

The time constants  from the UV-Vis measurement are significantly higher than 

the values received from XFA, indicating a slower sintering process, observed by 

the UV-Vis experiments. We attribute this predominantly to the following reason: 

The thermal transport properties of the colloidal crystal are mainly driven by the 

interfaces between the polymer particles. Even small changes at these interfaces by 

a slight interfacial fusion of the polymer can already lead to a strongly increased 

thermal diffusivity through the structure. On the contrary, the film formation 

process monitored by UV-Vis is driven by changes of the volume affecting the 

porosity of the structure. The polymer has to flow into the voids of the crystal 

structure to induce a change of the refractive index contrast. In this case, the 

polymer needs to creep over longer distances and a larger amount of material 

needs to start moving in order to affect the crystal’s reflectivity. It is further 

important to note that, despite the macroscopic dimensions of the colloidal crystal 
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film, the sintering process happens homogeneously throughout the bulk of the 

colloidal crystal. 

We can use the temperature-

activation energy Ea for the relaxation of the polymer. The Arrhenius plot based on 

the extracted 1/ values of both, UV Vis and XFA experiments is displayed in 

Figure 3a. The values from XFA are systematically located at higher values than 

the data received from UV-VIS due to the higher interfacial sintering rate. Both 

data sets show a linear behavior. From the slope of the linear fit (Figure 3a, red 

lines), Ea can be determined according to the Arrhenius equation. We found Ea 

from UV Vis and XFA to be almost equal with 268 and 283 kJ/mol, respectively. 

Therefore, both methods yield a comparable, apparent activation energy for the 

sintering process, but constitute distinctly different pathways. The interfacial 

fusion happens about three time faster than the bulk void filling.  

The received Ea values are comparably high. This can be ascribed to several 

reasons. First, the relaxation of the polymer at temperatures near Tg can be 

understood as a beginning cooperative intermolecular motion. Since the 

measurements were performed only slightly above Tg, this process might consume 

high energies due to the beginning entanglement of the nearly glassy polymer 

chains. Second, the temperature range used for the linear fitting is quite limited, 

which can lead to an only apparent linear behavior of the data. Third, since the 

measurements were performed on an amorphous polymer close to Tg, the viscosity 

might rather follow a Williams-Landel-Ferry behavior than an Arrhenius 

behavior.  



-4.2 Interfacial- and Volumetric Sensitivity of the Dry Sintering Process- 

 

-115- 

 

Figure 3: a) Arrhenius plot based on the fitted  values from time-dependent UV-Vis (green) and 

XFA (blue) experiments. Whereas the absolute 1/ values differ between the XFA and UV-Vis 

experiment, the respective slopes are comparable. b) Correlation between the storage modulus and 

time constants τ, obtained from laser flash analysis.  strongly depends on the viscoelastic 

properties of the polymer rather than its composition. 

In a further step, we correlated the results obtained by XFA with the viscoelastic 

properties of three other nBA-co-MMA colloidal crystals possessing different 

polymer compositions. By varying the nBA content between 10 to 30 vol% the glass 

transition can be shifted to lower temperatures, according to the Fox equation. The 

sintering process should be independent of the actual polymer composition, but it 

certainly depends on the viscosity of the polymer at a given temperature. 

Moreover, it depends on the surface tension between the air-polymer interface22, 23 

and consequently on the particle size.24 The differently composed particles were 

synthesized such that they all possess an almost equal diameter ranging between 

182 nm and 215 nm. Thus, the influence of the surface tension is nearly negligible 

for the comparison of the sintering process of the differently composed colloidal 

crystals. Furthermore, based on the emulsion polymerization process used, one 

can also expect comparable high molecular weights among all polymer 

compositions.45 

The temperature dependent storage and loss moduli of the investigated 

polymers are shown in Figure S5b. All copolymers under investigation show a 

similar G’ and G’’ temperature dependence, which is typical for amorphous, 
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thermoplastic polymers. Depending on the nBA content of the polymer, the 

moduli are shifted to lower temperatures. This is in accordance with a decreasing 

glass transition temperature with increasing nBA content (100 °C, 74 °C, and 52 °C 

for 10, 20, and 30 vol% nBA, respectively). We then correlate the obtained time 

constants τ with the temperature dependent storage modulus G’ of the polymer 

(Figure 3b). A master-curve is obtained for all polymer compositions, where  only 

depends on the storage modulus in a monotonic, but non-linear way. Thus, the 

temperature dependent viscoelastic properties of the constituting polymer can be 

used to estimate the time needed for the interface- and volume-driven sintering 

process. 

 

Conclusion 

We investigated the dry sintering process of well-ordered colloidal crystals via 

two label free and size-independent methods. Using UV-Vis spectroscopy to 

monitor changes in the refractive index environment and laser flash analysis to 

monitor changes of the thermal diffusivity through such a colloidal ensemble, we 

were able to follow the film formation in real time. We find a comparable film 

formation activation barrier for both cases of about 270 kJ/mol. The characteristic 

film formation rate can be described by a time constant . This time constant 

decreases with increasing temperature relative to the Tg of the polymer under 

investigation. The time constants obtained from the UV-Vis experiment is 

systematically higher compared to the XFA analysis, which we attribute to the 

difference between an interface- and a volume-driven response. Finally, using 

three different polymer compositions, we were able to show that the film 

formation rate is only a function of the viscoelastic properties of the polymers 

forming the particles. We are convinced that the analysis of thermal transport 

properties will be used in the future for the characterization of other particulate 

systems, where not only kinetic but also structural information is necessary. 
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Supporting Information 

Interfacial- and Volumetric Sensitivity of the Dry Sintering 

Process of Polymer Colloidal Crystals: A Thermal Transport 

and Photonic Bandgap Study 

 

Fabian A. Nutz and Markus Retsch* 

Stages of latex film formation 

 

Figure S1: Schematic view on the three stages of the colloidal film formation process. 

(I.) Self-assembly of the particles; (II.) particle coalescence by exceeding the particles minimum film 

formation temperature (MFT); (III.) continuous film formation due to interpenetration of the 

polymer chains across the particle-particle interfaces. 
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Details on laser flash analysis 

 

Figure S2: Schematic setup of a Laser flash apparatus.  

Measurements were carried out under helium atmosphere to enable a good heat 

transfer from the oven to the sample. Before the measurement, the top and bottom 

of the samples were metalized with a 100-200 nm gold or silver layer, which serves 

as blocking layer for the light pulse. Additionally, both sides were coated with a 

thin layer of graphite (<20 µm), to ensure a high absorbance of the light pulse at 

the bottom side and a high IR emission at the top side. The generated heat of the 

light pulse at the bottom side is transported through the sample and emitted as IR 

radiation at the top side of the sample. The intensity of the IR signal is then 

recorded in dependence of time. The raw data is fitted using a radiation fit model 

provided from Linseis. From laser flash analysis, the sample’s thermal diffusivity 

 is calculated according to equation 1. 

 

𝛼 =  
1.38∙𝑑2

𝑡1/2
      


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where d represents the thickness of the sample and t1/2 is the time needed to reach 

half of the maximum temperature rise. The thermal conductivity  can then be 

calculated as follows: 

 

𝜅(𝑇) =  𝛼(𝑇) ∙ 𝑐𝑝(𝑇) ∙ 𝜌(𝑇)    (2) 

 

Cp is the specific heat capacity of the sample, which is determined by DSC. ρ 

representing the density of the sample. The density of the colloidal crystals and the 

molten colloidal films is determined by 3D macroscopy and a buoyancy balance, 

respectively. 

The thickness and the density of the crystal will undergo significant changes 

during film formation (thickness decreases, density increases). However, it is not 

possible to follow these changes during the laser flash experiment in-situ. 

Therefore, a step-function behavior was assumed at Tg for the thickness and the 

density of the crystal by determining both quantities before and after the laser flash 

experiment. 

For time-dependent laser flash analysis the changes in sample thickness have to 

be considered more precisely. Since it is not possible to follow the decrease in 

thickness during laser flash analysis in-situ, we determined the time-dependent 

behaviour of the sample thickness at 70, 75, and 80 °C separately (Figure S3A). The 

crystal thickness was found to follow a single-exponential function. By measuring 

the sample thickness before and after the experiment it is possible to incorporate 

this behaviour into the calculations of  according to equation 1 assuming the same 

exponential behaviour between the measurable initial and final sample thickness 

within the laser flash experiment. 
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Figure S3: a) Time-dependent decay of the thickness of different colloidal crystals: the thickness 

reduction can be described by an exponential decay. b) SEM side-view micrographs of 80% 

MMA-co-20% nBA colloidal crystals annealed for 50 min at the denoted temperature. 

 

The crystal thickness behaves similarly for every temperature under 

investigation. The thickness decreases faster with increasing temperature due to a 

higher mobility of the polymer chains at higher temperatures. This leads to a faster 

softening of the particles, resulting in a faster loss of porosity and thus, to a faster 

decrease in height of the crystal. 



-4.2 Interfacial- and Volumetric Sensitivity of the Dry Sintering Process- 

 

-124- 

 

Figure S4: left) Time-dependent UV-Vis of an 80% MMA-co- 20%-nBA colloidal crystal at 70, 75 

and 80 °C, respectively. right) Time-dependent laser flash analysis of three individual samples at 

the specified temperatures. 

 

 

Figure S5: a) strain sweep for 80% MMA-co- 20%-nBA polymer at 70, 75 and 80 °C to determine 

the viscoelastic regime. b) Temperature-dependent storage/loss modulus of the three different 

polymers. 
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Abstract 

Managing heat is a major challenge to meet future demands for a sustainable use 

of our energy resources. This requires materials, which can be custom-designed to 

exhibit specific temperature-dependent thermal transport properties to become 

integrated into thermal switches, transistors, or diodes. Common crystalline and 

amorphous materials are not suitable, owing to their gradual changes of the 

temperature dependent thermal conductivity. Here we show how a second-order 

phase transition fully controls the temperature-dependent thermal transport 

properties of polymer materials. We demonstrate four major concepts based on a 

colloidal superstructure: 1) control of transition temperature, 2) width of phase 

transition regime, 3) multistep transitions, and 4) step height of the transition. Most 

importantly, this unique control over the thermal conductivity is only governed 

by the interparticle constriction, the particle composition, and its mesostructure. 

Our concept is therefore also applicable to a wide variety of other particulate 

materials. 

 

Introduction 

With increasing energy consumption and further miniaturization of electronic 

devices a need for new, space-saving and functional materials to manage heat 

arises. Recent examples report on the theory and realization of thermal memory,(1-

3) thermal rectification,(4-6) dynamic insulation,(7, 8) phase change materials,(9) thermal 

cloaking(10) and thermal switching materials.(11) The experimental realization of 

many of these emerging applications is still a great challenge. One major limiting 

factor is given by the typical power-law temperature dependence of the thermal 

conductivity of most materials. For crystalline materials one usually finds a power-

law exponent of +3 up to the Debye temperature and a -1 to -3 exponent at higher 

temperatures.(12) Amorphous materials merely exhibit a monotonic increase across 

the entire temperature range, combined with commonly one or two plateau 
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regimes.(13) To pave the way towards advanced heat management devices and 

thermal logic circuits, tailor-made materials with non-power-law but well-

controlled temperature dependent properties are needed. E.g. for thermal diodes, 

non-linearity is required,(12) whereas abrupt changes with a small input of excess 

heat is necessary for the gate material of thermal transistors.(14) State-of-the-art 

materials utilize a first-order phase transition either in their homogeneous bulk 

form(9, 14-17) or in a heterogeneous blend(18-21) to manipulate the temperature 

dependent thermal transport. In homogeneous bulk materials, the thermal 

properties are governed by the material composition, rendering it difficult to target 

a specific application. Composite materials provide a higher degree of flexibility, 

owing to the selection of certain material combinations. 

Quite importantly, the temperature-dependent properties of a material can 

additionally be strongly influenced by the underlying micro- and nanostructure.(22, 

23) A premier example are colloidal crystals, which have received much attention, 

predominantly within the field of photonics,(24-27) phononics,(25, 28, 29) or as template 

structures.(30-32) Highly-defined colloidal superstructures are accessible in a simple 

and scalable way by established fabrication methods.(30-32) Surprisingly, colloidal 

crystals represent a strongly underexplored field with respect to their thermal 

transport properties. When going through the second-order phase transition, 

namely the glass transition temperature of the constituting polymer, the increase 

in polymer mobility leads to a loss of the particulate nanostructure. Consequently, 

the thermal conductivity increases sharply.(33) The versatile structural fabrication 

can be complemented by specific particle design to add further functionality to the 

colloidal ensemble. This allows to widely program the thermal transport 

properties to a specific need. 

In this work, we demonstrate the vast potential of constriction controlled thermal 

transport through particulate ensembles. We choose polymer colloidal crystals as 

a case study to specifically tune the temperature-dependent thermal conductivity. 
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We emphasize that this tuning is solely based on the geometric constriction. 

Precisely, the thermal conductivity is governed by the thermally induced changes 

of the nanosized interparticle contact area between adjacent particles in a close-

packed colloidal superstructure. Figure 1 outlines the unique possibilities 

provided by constriction controlled thermal transport.  

 

Figure 1: Key aspects for heat management devices and their realization based on constriction 

controlled thermal transport in colloidal assembly structures. (A) By exceeding Tg, the thermal 

conductivity irreversibly increases based on the enlargements of contact points during particle 

sintering. (B) The transition temperature can be tailored by assembling the crystal from particles 

possessing different Tg. (C) The random co assembly of equal sized particles but different Tg results 

in a broad transition. (D) Multiple transition steps can be introduced by a discrete layer-by-layer 

assembly. (E) The height of the transition steps is controllable by the thickness of the respective 

layer. 

We demonstrate four key aspects, which are of paramount importance for future 

heat management devices, and become accessible for the first time via our concept: 
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1) Figure 1b: adjustment of the (second-order) phase transition to a desired 

temperature. 2) Figure 1c: tuning of the phase transition range. 3) Figure 1d: 

introduction of multiple discrete transition steps. 4) Figure 1e: controlling the 

degree of transition change. 

We show how to program the described transition behavior of these assemblies 

by adjusting the thermal properties of the polymer particles and by selecting a 

suitable mesoscopic colloidal crystal architecture. Our system is based on 

copolymer particles consisting of n-butyl methacrylate (n-BA) and methyl 

methacrylate (MMA). By adjusting the n-BA content of the particles, it is possible 

to control the glass transition temperature of the copolymer.(26) 

 

Results  

Adjustment of the phase transition to the desired temperature  

We start by tailoring the onset transition temperature of the thermally inducible 

increase of the thermal conductivity. Therefore, highly monodisperse 

n-BA-co-MMA particles possessing different glass transition temperatures and a 

nearly equal diameter (182 and 223 nm, Table S1, Set 1) were synthesized. The 

particle self-assembly typically yields free-stranding disk shaped monoliths with 

a diameter of ~20 mm and a thickness of several hundred micrometers. Optical and 

scanning electron microscopy (SEM) images of the split edges of such monoliths 

are shown in Figure 2a. 
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Figure 2: Thermal conductivity of polymer colloidal crystals possessing different Tg. (a) Optical and 

scanning electron microscopy images of the split edges of the assembled crystals. The strong 

opalescence indicates a long range crystalline order within the free-standing monoliths. The high 

crystallinity is confirmed by SEM images, (b) Specific heat capacity of the synthesized copolymer 

particles. With increasing MMA content, the Tg of the polymer is shifted to higher temperatures. 

(c) Temperature dependent thermal conductivity of polymer colloidal crystals from particles 

possessing different Tg (heating and cooling cycle). By adjusting the copolymer composition, it is 

possible to tailor the transition temperature systematically. Error bars represent the standard 

deviation derived from three individual measurements. 

A strong opalescence is visible throughout the entire monoliths based on Bragg 

reflection. This indicates a highly crystalline order of the particles within the 

specimen. Different reflectivity colors within a monolith arise from various crystal 

planes exposed to the surface. The slightly varying colors between the different 

monoliths are based on the size dependency of the Bragg reflection. SEM images 

confirm the optical microscopy impression. The polymer particles arrange into a 
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well-defined, close-packed fcc symmetry. Overall, the samples can be regarded as 

fully crystalline. 

Figure 2b shows the temperature dependent heat capacity of the synthesized 

copolymers with a varying MMA content of 70, 80, 90 and 100 %. The absolute heat 

capacity increases with increasing n BA content. The systematic shift of the glass 

transition from 54 °C (70 vol% MMA) to 127 °C (100 % MMA) further proves the 

successful random copolymerization. In general, copolymers possessing a glass 

transition temperature between the Tg of pure poly(n BA) (-49 °C) and pure 

poly(MMA) (125 °C) would accessible via the random copolymerization of the two 

monomers. This leaves ample degrees of freedom to tailor the temperature 

response towards specific needs in a broad ambient temperature range. 

The thermal conductivity data are summarized in Figure 2c. All samples show a 

sharp step like increase of the thermal conductivity near the glass transition 

temperature of the corresponding polymer. At this point, the interparticle contact 

points enlarge and the porosity within the sample vanishes, resulting in a strongly 

increased thermal conductivity. The kinetics of this transition have been examined 

elsewhere.(34) In all cases, a sharp increase in thermal conductivity by at least 200 % 

could be programmed to a specific temperature, simply by controlling the second-

order phase transition of the constituting polymer. 

Tuning of the phase transition range 

For a seamless adjustment of the thermal conductivity between the pristine 

(< 100 mWm-1K-1) and the sintered state (> 200 mWm-1K-1) a random co-assembly 

of two particle types with comparable size can be used (Figure 3a).  
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Figure 3: Temperature dependent thermal conductivity of co-assembled polymer colloidal 

assemblies. (A) Schematic illustration of the composition of a co-ssembled colloidal crystal. The co-

assembly leads to structurally homogeneous colloidal crystals due to the comparable particle size. 

(B) Optical micrographs of the split edges of pure colloidal crystals (Mixing ratios: 0 % and 100 % 

of Tg = 103 °C particles) in comparison to a co assembled binary crystal (Mixing ratio: 50 %:50 %). 

(C) Temperature dependent thermal conductivity of the 50 %:50 % colloidal crystal compared to its 

pure counterparts. The binary colloidal crystal shows a broad transition ranging between the glass 

transition temperatures (dashed lines) of the pure copolymer particles. Error bars represent the 

standard deviation derived from three individual measurements. Thermal diffusivity data can be 

found in Figure S3a. 

We demonstrate this capability with a Tg,2 = 103 °C and Tg,1 = 61 °C particle with 

403 nm and 434 nm diameter, respectively. The indicated particle ratios represent 

number mixing ratios of the binary particle dispersions. Number and volume 

ratios can be treated equivalently here, due to the comparable particle size and 

density. Due to the almost equal size of the particles, the overall crystallinity of the 

colloidal ensemble is preserved. This can be inferred from the bright opalescent 

colors in the side-view optical micrographs (Figure 3b).  
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The initial and final temperature of the transition can be freely chosen based on 

the Tg of the constituting particles. Whereas the crystals made from only one 

particle type (Figure 3c blue/red) show the familiar sharp increase in thermal 

conductivity, the co-assembled colloidal crystal shows a broad, linear increase 

from the lower to the higher Tg (Figure 3c, orange circles). This trend is also readily 

confirmed in the thermal diffusivity data (Figure S3). It is therefore inherent to 

thermal transport changes within the colloidal crystal and does not originate from 

variations in the density or specific heat capacity used to calculate the thermal 

conductivity (DSC Data are given in Figure S1). We ascribe this broad transition to 

the following reason. By exceeding the first Tg, the lower melting particles deform 

and thereby increase the contact area to the surrounding higher melting particles. 

Also, clusters and probably percolating trusses of the lower melting component 

may form at this stage. Still, a skeleton of higher melting particles partially retain 

the structure and prevents a sharp increase of the thermal conductivity. By further 

increasing the temperature, the lower melting particles become softer, and the 

polymer chains become more mobile. This can lead to a further increase of the 

interparticle contact area and progressively results in a dense film formation. 

Additionally, the softening of the higher melting particles starts to take place. 

Ultimately, by exceeding the glass transition temperature of the higher melting 

particle, the remaining structure vanishes completely, and the bulk thermal 

conductivity of the polymer film (~ 200 mWm-1K-1) is obtained. Thus, a continuous 

adjustment of the thermal conductivity is possible via a simple binary colloidal 

crystal and the gradual loss of the constricting interparticle contact points. 

Noteworthy, we also prepared binary colloidal crystals with various mixing ratios 

(Figure S4). These, however, retain a sharp transition feature at the Tg of the 

majority component. This hints towards the importance of cluster and percolation 

formation, which we observed for the 50 % : 50 % mixture. 
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Introduction of multiple discrete transition steps 

To program distinct steps into the temperature-dependent thermal conductivity, 

we fabricated more intricate colloidal superstructures. Therefore, we employed 

filtration, which easily allows fabricating layered colloidal ensembles. Filtration 

represents a much faster self-assembly method compared to the evaporation 

induced self-assembly. This, however, comes at the expense of the long-range 

crystalline order (Figure S5a). Nevertheless, filtration provides direct access to 

tailor-made colloidal superstructures in a layer-by-layer fashion. Thus, we 

fabricated multi layered, free-standing colloidal monoliths in which every layer 

consisted of particles with a pre-defined Tg. We demonstrate the thermal transport 

properties of three particles of ~ 500 nm diameter with Tg,1 = 61 °C, Tg,2 = 103 °C, and 

Tg,3 = 124 °C. This introduces multiple transition steps of the thermal conductivity 

by a discrete sintering of the individual layers at the respective Tg. The schematic 

structure for such monoliths is illustrated in Figure 4a. 

 

Figure 4: Introduction of multiple step transitions. (A) Schematic illustration of the structure of a 

colloidal monolith consisting of one, two and three particles layers where each layer possesses a 

different Tg (blue, green and red). (B) Temperature dependent thermal conductivity of colloidal 

monoliths consisting of one, two and three particle layers. Based on the discrete layer assembly, 

multiple step like increases (dashed red lines) at the specific Tg of the copolymer particle are 

observed. Error bars represent the standard deviation derived from three individual 

measurements. Thermal diffusivity data can be found in FigureS3a and b. 
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The temperature dependent thermal conductivity of colloidal assemblies 

consisting of one, two and three particle layers are illustrated in Figure 4b. In 

contrast to the randomly mixed binary colloidal crystal discussed above (Figure 3), 

the discrete layer assembly evokes distinct steps in the thermal conductivity 

profile. This is based on the sintering of the homogenous, individual layer at its 

corresponding Tg. The unmolten layers remain in their pristine state. Exceeding 

the Tg of the remaining layers results in a further, multistep increase of the effective 

thermal conductivity of the entire ensemble. Conceptually, an arbitrary number of 

distinct steps could be introduced in this fashion to a particulate material. We 

demonstrate a three-step material by layering three particle types. The respective 

transition temperatures coincide with the pre-determined Tg (Figure 4b, orange). 

Controlling the degree of transition change 

Finally, it is also important to control how much the thermal conductivity will 

change upon crossing a specific temperature. Building upon our experience of the 

multilayered structure introduced above, we conceived a suitable colloidal 

architecture. This is achieved by adjusting the layer thickness of the assembly. The 

structure of such assemblies is schematically sketched in Figure 5a. Our sample 

consists of two particles (Tg,1 = 61 °C and Tg,2 = 124 °C).  
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Figure 5: Tuning the transition height. (A) Schematic illustration of the structure of a colloidal 

monolith with varying layer thickness. The thickness of the red particle layer increase from left to 

right. (B) Temperature dependent thermal conductivity of different colloidal assemblies with 

varying particle layer thickness. The thickness of the higher melting layer is increased from left to 

right, leading to an increasing transition height at the second Tg (red arrow). Error bars represent 

the standard deviation derived from three individual measurements. Thermal diffusivity data can 

be found in Figure S3d and e. 

Based on the amount of particle dispersion used in the filtration process, it is 

readily possible to adjust the thicknesses of the different layers within the final 

assembly. Figure 5b shows the temperature dependent thermal conductivity of 

three different colloidal assemblies with varying thickness ratios between both 

particle layers. The layer thickness of the higher melting particle layer increases 

from left to right.  

Whereas a strong increase of the thermal conductivity at the lower glass 

transition temperature (Figure 5b, left, blue arrow) is visible for monoliths 

containing only a thin layer of high Tg particles, this behavior reverses for 

assemblies containing a thick layer of high Tg particles (Figure 5b, right, red arrow). 

Consequently, this concept allows for a precise adjustment of the target thermal 

conductivity after exceeding a specific temperature – simply by controlling the 

relative amount of material changing from the insulating to a more conducting 

state. Furthermore, this could also be extended to three or more layers.  
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Finally, we want to demonstrate that the four fundamental concepts outlined so 

far can be combined with each other. This gives even more degrees of freedom to 

design any specific temperature-dependent thermal conductivity profile. We 

therefore, chose a two-layer assembly, combining evaporation induced self-

assembly of a random mixture with the filtration aided buildup of a layered 

structure. A schematic sketch of the intended colloidal architecture is shown in 

Figure 6, as well as the temperature dependent thermal conductivity of such an 

assembly. Optical microscopy images of this structure are shown in Figure S5b.  

 

Figure 6: Combining a broad and a step like transition. Temperature dependent thermal 

conductivity of a two layer colloidal assembly. Whereas the bottom layer is fabricated by 

evaporation induced self-assembly of two particles possessing different Tg (90 vol%-MMA 2; Tg = 

103°C, 70 vol%-MMA 2; Tg = 61 °C), the upper layer consists of only on particle type (100 vol%-

MMA 1; Tg = 127 °C). Thermal diffusivity data can be found in Figure S3f. 

The bottom layer consists of a crystalline co assembly of two equally sized 

particles with Tg,1 = 103 °C and Tg,2 = 61 °C (equal to the assembly shown in Figure 

3c). The top layer comprises only one particle type Tg,3 = 127 °C and is not 

crystalline, due to the faster filtration self-assembly process. With this architecture, 

it is possible to tailor the thermal conductivity to show a broad transition between 

60 °C and 100 °C, analogous to Figure 3, and a sharp, step like increase of the 
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thermal conductivity at ~125 °C, similar to Figure 2. The respective step heights are 

governed by the relative layer thicknesses of the two components. 

 

Discussion  

These four concepts show that colloidal assembly structures can control the 

temperature dependent thermal transport properties with an unprecedented 

degree of flexibility. This capability becomes even more relevant, since the 

fabrication method is scalable and can be flexibly adapted to other materials, too. 

This allows introducing even further functional properties. Furthermore, the 

constriction controlled thermal transition represents a purely solid state transition, 

with no liquids involved. Whereas the polymer platform presented here is not 

allowing for a reversible adjustment of the thermal properties, we are convinced 

that this concept can be expanded to other material systems, too. These may then 

provide the required reversibility for future applications. Our findings outline a 

general approach to specifically tailor the temperature dependent thermal 

conductivity of a nanostructured material. We want to stress the high relevance of 

the interparticle contact points, which is the first ingredient to allow for this 

impressive degree of flexibility. The ability to adjust the onset of the glass 

transition temperature of the polymer particles by simple chemical synthesis is the 

second key ingredient. Combining these two parameters in tailor-made colloidal 

superstructure allowed us to show four key properties, which will be of relevance 

for future heat management device: 1) adjustable onset temperature, 2) width of 

transition, 3) multi-step transitions, and 4) height of transition steps. Yet, one also 

has to consider the current short coming of this simple material composition, 

namely the irreversibility of changes to the interparticle contact area. Nevertheless, 

we are convinced that this contribution will motivate more research on the thermal 

transport through particulate structures. This may very likely lead to the 

availability of more functional particle compositions, which may circumvent the 
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irreversibility of the polymer particle sintering. Furthermore, these may allow for 

the introduction of other external stimuli such as pH, solvents, light, electric 

currents or electric fields to trigger the necessary transition. Considering the 

inherent and well-known photonic and phononic properties of colloidal crystals 

and glasses adds even another dimension of functionality, which we did not 

elaborate on in this contribution. Thus, this concept paves the way towards a 

genuinely multiphysical and multifunctional heat-management material. 

 

Materials and Methods 

Methyl methacrylate (MMA, 99 %, Aldrich) and n-Butyl acrylate (nBA; ≥ 99 %, 

Aldrich) were purified by filtration over an alumina column (activated, basic, 

Brockmann I, Sigma Aldrich). Potassium peroxodisulfate (KPS, ≤ 99 %, Sigma 

Aldrich), 4-styrenesulfonic acid sodium salt hydrate (NaSS, 99%, Aldrich) and 

acrylic acid (AA, 99 %, Sigma Aldrich) were used as received. Ultrapure water was 

taken from a Millipore Direct Q3UV unit and was used throughout the entire 

synthesis. 

Particle synthesis. Polymer particles were synthesized by emulsifier free 

emulsion polymerization.(35, 36) In a typical synthesis 50 mL of the monomer mixture 

(e.g. 40 mL MMA/ 10 mL nBA for 20 vol% nBA particles) and 450 ml ultrapure 

water were charged in a 3 necked flask, heated to 75 °C and equilibrated for 15 

minutes under a slight argon flow. Subsequently, 2 ml of acrylic acid were added 

to the mixture followed by a further equilibration step of 5 min. The 

polymerization was initiated by adding 150 mg KPS, dissolved in 5 ml ultrapure 

water. The reaction was carried out overnight. For purification, the particles 

dispersion was dialyzed against ultrapure water for five days, changing water 

twice a day. The diameters and glass transition temperatures of the synthesized 

particles are summarized in Table S1. Almost equal-sized particles with varying n 

BA content have been synthesized (Set 1: ~220 nm and Set 2: ~500 nm).  
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Crystal assembly. The colloidal crystals were fabricated by evaporations induced 

self-assembly, by filtration, or by a combination of both techniques. Evaporation 

induced self-assembly of a given amount of particle dispersion yields disk shaped, 

highly crystalline colloidal monoliths of a diameter of ~20 mm. Particle assembly 

by filtration was carried out to fabricate multi-layered, colloidal monoliths by 

sequential filtration of different particle dispersions. After the filtration of the last 

layer, the specimens were allowed to dry overnight under ambient conditions. 

Dynamic light scattering: Dynamic light scattering was performed on diluted 

particle dispersions a Malvern Zetasizer with 175° backscattering geometry to 

obtain the hydrodynamic diameter and the size distribution of the synthesized 

particles. 

Light microscopy: The edges of split colloidal crystals were investigated on a Carl 

Zeiss Axio Imager.A2m bright field light microscope equipped with an AxioCam 

Icc 1 camera to study the macroscopic order within the fabricated colloidal 

monoliths. 

Scanning electron microscopy: Scanning electron microscopy (SEM) was 

performed on a Zeiss Leo 1530 electron microscope to obtain the hard sphere 

diameter of the particles. Furthermore, SEM images along the edges of split 

colloidal crystals were obtained to get an idea of the particle ordering within the 

interior of the monoliths. 

Laser flash analysis: Laser flash analysis was conducted on a Linseis XFA 500 

XenonFlash apparatus equipped with an InSb infrared detector. The sample 

surfaces were coated with a thin layer of graphite (<15 µm) on the bottom and top 

side. The measurements were conducted in helium atmosphere at a pressure of 

980 mbar. The measurement was fitted with the radiation fit model provided by 

the software Aprosoft Laser Flash Evaluation v.1.06. Three measurements were 

performed at every temperature to obtain a mean thermal diffusivity of every 

individual sample. For data evaluation, the mean thermal diffusivity of three 



-4.3 Tailor-Made Temperature-Dependent Thermal Conductivity- 

 

-141- 

individual samples was taken into account. Due to the changes in thickness of the 

sample during sintering, the thickness of the samples has to be corrected 

accordingly. Further details are provided in the supporting information. 

Density determination: The density of the pristine crystals was obtained by 

determining the mass and volume of the monolith. The mass was obtained by 

weighting the crystals. The volume was determined on a Keyence V 3100 3D digital 

macroscope. The density of the molten crystals was measured by a buoyancy 

balance according to Archimedes principle. 

Differential scanning calorimetry: Differential scanning calorimetry was 

performed on a TA Instruments Q1000 differential scanning calorimeter according 

to ASTM E1269. 

Three individual measurements were performed under a nitrogen flow of 50 

mLmin-1 at a heating rate of 20 Kmin-1. Two heating cycles were conducted 

between –40 °C and 200 °C. The specific heat capacity was extracted from the 

second heating cycle. 
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Tailor Made Temperature Dependent Thermal Conductivity: The Power of 

Interparticle Constriction 
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Table S1: Hydrodynamic diameter, PDI, hard sphere diameter and Tg of particles employed in 

this study 

 dh (DLS) 

nm 

PDI (DLS) 

nm 

d (SEM) 

nm 

Tg 

°C 

100% MMA-1 

100% MMA-2 

258 

495 

0.008 

0.034 

223 ± 8 

427 ± 18 

127 

124 

10 vol% nBA-co-90 vol% MMA-1 

10 vol% nBA-co-90 vol% MMA-2 

212 

493 

0.039 

0.022 

182 ± 11 

403 ± 13 

103 

103 

20 vol% nBA-co-80 vol% MMA-1 

20 vol% nBA-co-80 vol% MMA-2 

20 vol% nBA-co-80 vol% MMA-3 

239 

517 

370 

0.008 

0.020 

0.024 

214 ± 7 

421 ± 9 

339 ± 7 

74 

80 

75 

30 vol% nBA-co-70 vol% MMA-1 

30 vol% nBA-co-70 vol% MMA-2 

236 

499 

0.029 

0.058 

215 ± 7 

434 ± 12 

54 

61 

 

Laser flash Analysis (LFA) 

Laser Flash Analysis (LFA) was measured on colloidal monoliths possessing a 

thickness of several hundred micrometers. The monoliths were coated with a thin 

graphite layer on the bottom a top side before the measurement. The coating 

ensures a sufficient IR absorption and emission. A xenon lamp emits a light pulse 

onto the sample. The thermal energy of the light pulse is absorbed at the bottom 

graphite layer and travels through the specimen. The thermal energy is then 

emitted from the top side. This temperature rise is recorded in dependence of the 

elapsed time since the light pulse by a fast mid-infrared detector. A numerical 
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fitting procedure provided by the commercial software package Aprosoft Laser 

Flash Evaluation v1.06 based on the one-dimensional temperature diffusion 

equation was used to determine the thermal diffusivity .(37) For this, accurate 

knowledge of the sample thickness is a prerequisite, as the thickness strongly 

influences half-rise time as given by:  

2

2

1

2

1.38 d

t








 

t1/2 represents the time need for the half maximum temperature rise at the top 

surface.(38) The thermal conductivity  of the sample is calculated by  

( ) ( ) ( ) ( )pT T c T T      

with the specific heat capacity cp and the density ρ. 

The temperature dependent specific heat of the investigated polymers are 

displayed in Figure S1. 

 

Figure S1: Temperature dependent specific heat capacity of the investigated samples. (A) broad 

transition (see Figure 3); (B) multiple transitions (see Figure 4); (C) transition height (see Figure 5); 

(D) combination of broad and step like transition (see Figure 6). Error bars are standard deviations 

based on three individual measurements of the polymers. 
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Thickness and density assumptions for LFA evaluation 

Due to experimental limits, it is not possible to follow changes of the sample 

thickness d in-situ during the LFA measurement. Since  is proportional to d2 and 

the polymer colloidal crystals decrease their thickness during the sintering process, 

it is necessary to pre-determine the temperature dependent thickness behavior of 

the investigated samples to obtain accurate values for , as well as changes in 

density based on the loss of porosity. The assumptions made for the differently 

assembled specimens are elucidated in the following. 

Single Tg colloidal monoliths (Figure 2): The thickness and density of the colloidal 

monoliths was measured before and after the temperature dependent LFA 

experiment. Since these crystals show a sharp increase of its thermal conductivities 

at Tg, a step function has been applied to the temperature dependent thickness and 

density behavior.(33) This was done by using the thickness/density measured before 

the LFA experiment until Tg, and the thickness/density values measured after the 

LFA experiment after exceeding Tg for calculations of and . 

Co-assembled colloidal crystals (broad transition, Figure 3): The initial and final 

thickness and density were determined before and after the LFA measurement. To 

determine the temperature dependent thickness/density behavior, several co 

assembled colloidal crystals were annealed at various temperatures for 30 min. The 

thickness and density of the co-assembled crystals were measured after the 

annealing step. The relative loss in thickness and the temperature-dependent 

density are shown in Figure S2. 
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Figure S2: Temperature dependent behavior of thickness (A) and density (B) for co assembled 

colloidal crystals. The linear interpolation is displayed as a red line. While the thickness decreases 

during heating, the density increases. Error bars result from three individual measurements. 

The temperature dependent thickness and density profile were then adapted for 

the calculations of  and . 

Multi-layered colloidal monoliths (multiple steps): The thickness and density of 

the colloidal monoliths were measured before and after the temperature 

dependent LFA experiment. The thickness/density was assumed to 

decrease/increase in a step like manner at the specific Tg, corresponding to the 

relative amounts of particle dispersion used for each layer. 

The combination of a broad transition followed by a step like increase: A linear 

decrease/increase of the thickness/density to 50 % of the overall decrease/increase 

has been assumed for the broad transition until the glass transition temperature of 

the higher melting particle within the co-assembly layer. Additionally, a 

decreasing/increasing step function was applied for the thickness and density at 

the Tg of the upper PMMA particle layer. 

Thickness-corrected thermal diffusivity  

To ensure that the presented trends do not arise from density or specific heat 

corrections, the thickness corrected thermal diffusivity obtained from the XFA 

experiment are displayed in Figure S3. Without thickness correction, the steps and 

transitions would be even more pronounced. 
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Figure S3: Temperature-dependent and thickness corrected thermal diffusivity of the measured 

colloidal specimens. The structure is indicated by the schemes within the graphs. (A) broad 

transition; (B) two step and (C) three step transition; tuning the transition height (D) 65 % : 35 % 

and (e) 35 % : 65 %; (F) Combination of broad and sharp transition. Error bars arise from three 

individual measurements. 

Thermal conductivity of co-assembled colloidal crystals 

Although 50 %:50 % co assembled colloidal crystals do show a broad transition 

between both Tg of the particles used for the assembly, this behavior has not been 

observed for other mixtures. The temperature dependent thermal conductivity of 

a 75 %:25 % and 25 %:75 % mixture are illustrated in Figure S4. 
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Figure S4: Temperature-dependent thermal conductivity of co assembled colloidal crystals from 

two particles possessing a Tg of ~61 °C and ~103 °C. Only a step like increase is visible for 

compositions of (A) 25 %:75 % and (B) 75 %:25 %. Error bars arise from three individual 

measurements. 

Only a step-like increase of the thermal conductivity of these assemblies is visible 

at the correspond Tg of the majority polymer particle. 

 

Figure S5: Optical micrographs of a two layer colloidal monolith) made by filtration, and a two 

layer monolith fabricated by a combination of evaporation induced self-assembly and filtration. (A) 

Only weak opalescence is visible throughout the entire monolith based on the fast sample 

preparation which prevents the particles from large area crystallization. (B) Based on the 

evaporation induced co assembly of the bottom layer, this layer shows opalescence colours due to 

Bragg reflection, whereas the upper layer fabricated by filtration does not. 
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Abstract 

Heat transport plays a critical role in modern batteries, electrodes, and capacitors. 

This is caused by the ongoing miniaturization of such nanotechnological devices, 

which increases the local power density and hence temperature. Even worse, the 

introduction of heterostructures and interfaces is often accompanied by a 

reduction in thermal conductivity – which can ultimately lead to the failure of the 

entire device. Surprisingly, a fundamental understanding of the governing heat 

transport processes even in simple systems, such as binary particle mixtures is still 

missing. This contribution closes this gap and elucidates how strongly the 

polydispersity of a model particulate system influences the effective thermal 

conductivity across such a heterogeneous system. In a combined experimental and 

modelling approach, well-defined mixtures of monodisperse particles with 

varying size ratios were investigated. The transition from order to disorder can 

reduce the effective thermal conductivity by as much as ~50 %. This is caused by 

an increase in the thermal transport path length and is governed by the number of 

interparticle contact points. These results are of general importance for many 

particulate and heterostructured materials and will help to conceive improved 

device layouts with more reliable heat dissipation or conservation properties in the 

future. 

 

Introduction 

Materials with low thermal conductivity are employed in many fields such as 

clothing, refrigeration, building insulation, or thermoelectrics.[1] Concepts to 

reduce the thermal conductivity of a given material either target the material 

composition or its nano-, meso-, or microstructure. Generally, for bulk materials, a 

high thermal conductivity is found in crystalline solids where phonons are able to 

transport thermal energy over several hundred nanometers based on a well-

defined crystal lattice.[2-5] In contrary, low thermal conductivities are mostly found 
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in disordered, amorphous materials. Based on an increased scattering at the 

disordered structure, the mean free path of phonons is strongly reduced, resulting 

in diffusive thermal transport.[6, 7] Allen and Feldman[8, 9] proposed three different 

vibrational modes, namely diffusons, propagons, and locons, to describe thermal 

transport in amorphous matter. Increasing phonon scattering in bulk materials, 

subsequently leads to a reduction in thermal conductivity. In dense materials this 

can be achieved by layered structures,[10, 11] doping[12, 13] or the embedding of 

nanoparticles,[14, 15] where particularly crystalline solids are strongly affected. 

Zhang and Minnich investigated how nanoparticle clusters with a particular size 

distribution can lower the thermal conductivity in crystalline silicon even below 

its amorphous limit.[14] 

Besides the chemical composition of a certain material, the influence of the 

overall structure is of high importance, too. The most obvious and well-known 

structural influence is given by the introduction of porosity. This severely 

decreases the density of a bulk material and consequently reduces the effective 

thermal conductivity. Depending on the cell size of the porous material, highly 

insulating properties are accessible.[16-19] Moreover, classical porous, granular 

matter becomes increasingly important for a range of applications, which involve 

heterostructures and interfaces. For instance, thermal management in high-density 

storage devices such as batteries or supercapacitors is a critical safety concern. [20-

22] 

Colloidal assembly structures have been proven to be particular suitable to 

investigate the influence of three-dimensional nanostructuring on the effective 

thermal transport in granular matter.[23] The thermal conductivity of colloidal 

crystals is mainly governed by the geometrical constrictions at the interparticle 

contact points, and the material of the particles itself.[23-25] While most colloidal 

assembly structures targeted periodically ordered materials, the controlled 
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introduction of disorder also showed to provide fundamental insights, for instance 

into the physics of phononic bandgaps.[27] 

In this work, we provide a conceptual understanding of the influence of 

structural order on the thermal transport properties in particulate mesostructures. 

Therefore, binary colloidal assemblies were fabricated from two monodisperse, 

differently sized polystyrene (PS) particles. These buildings blocks are easily 

accessible by common polymerization techniques [27, 28] and their self-assembly into 

superstructures is well established.[29] By mixing two differently sized particles, it 

is possible to control the structural order of the resulting colloidal assembly. We 

clarify the underlying effect of the thermal conductivity reduction by finite 

element modeling combined with molecular dynamic simulations. We further 

demonstrate how to reduce heat transport in disordered binary assemblies in a 

rational way. 

Binary colloidal assemblies of PS particles possessing a diameter of 243 nm (S) 

and 306 nm (L) were fabricated by evaporation-induced self-assembly (size ratio 

~0.8). For spectroscopic characterization, binary assemblies were additionally 

immobilized on a glass slide by dip coating of a 3 wt% of aqueous particles 

dispersions. The mixing ratio ranged from 0 vol%-L to 100 vol%-L. Optical 

microscopy and scanning electron images of the edges of split monoliths are 

shown in Figure 1a and b and provide a qualitative expression of how the mixing 

ratio translates into order and disorder. 
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Figure 1. Structural characterization of binary colloidal assemblies. (a) Optical and (b) scanning 

electron microscopy side view images of the edges of split colloidal monoliths. (c) UV-vis 

transmission spectra measured on dip-coated assemblies. (d) Fast Fourier transformation (FFT) 

images from scanning electron micrographs with a mixing ratio of 18 vol%-L compared to a FFT 

image of 100 vol%-L colloidal crystal. 

From optical microscopy (Figure 1a), strong opalescent colors are visible for 

samples consisting of only one particle type (0 vol%-L and 100 vol%-L) as well as 

for binary assemblies only containing a small amount of differently sized specimen 

(9 vol%-L, 95 vol% L, and 97 vol%-L). This is due to Bragg reflection. The difference 

in color between 0 vol%-L and 100 vol%-L monoliths arises from the size 

dependence of the Bragg reflectivity. Different colors within one monolith can be 

attributed to the angle dependence of the Bragg law, based on different crystal 

planes exposed to the surface.  

For other mixing ratios, only weak overall Bragg reflection (66 vol%-L and 86 

vol%-L) or almost only diffuse scattering (18 vol%-L and 40 vol%-L) is visible. At 

these mixing ratios, the polydispersity of the binary particle dispersion prevents 

large area particle crystallization. Noteworthy, some embedded crystalline regions 

are observable for several intermediate mixing ratios (40 vol%-L, 66 vol%-L, and 
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86 vol%-L). This can be explained by the strong tendency of demixing in binary 

colloidal dispersions.[30-32] The slow self-assembly process (several days) of the 

dispersion enables the formation of phase separated, multicrystalline, and 

amorphous areas. 

Scanning electron microscopy (SEM) images validate the optical impression 

(Figure 1b). The pure colloidal crystals feature a high degree of crystalline particle 

ordering. In contrast, for intermediate mixing ratios, only a random packing of the 

particles is observed. This is additionally highlighted by fast Fourier 

transformation (FFT) images of the SEM images illustrated in Figure 1d. Whereas 

distinct reflexes are visible for 100 vol%-L due to the hexagonal symmetry of the 

particle lattice, only smeared Debye-Scherrer rings are obtained for 18 vol%-L 

monoliths. The smearing is based on the disordered mesostructure whereas the 

observed Debye-Scherrer rings arise from the different particle diameters present 

within the monoliths. 

We further quantify the intrinsic order of the binary colloidal films by UV-vis 

transmission spectra of dip coated samples, displayed in Figure 1c. A strong Bragg 

peak is visible for 0 vol%-L colloidal crystals at a wavelength of 559 nm. At small 

mixing ratios of 9 vol%-L, the Bragg peak broadens and the maxima is less 

allocable due to the disturbance of the crystal lattice. A further increase of the large 

particle volume fraction to 18 vol%-L leads to a vanishing of the Bragg peak. For 

intermediate mixing ratios from 44 vol%-L to 86 vol%-L no distinct Bragg peaks 

are observable, indicating a randomly packed structure. The Bragg peak of the 

larger particle species reoccurs at 95 vol%-L and reaches a maximum intensity for 

100 vol%-L at a wavelength 667 nm. 

Optical microscopy, SEM, and UV-vis characterization prove the highly 

crystalline nature of the homo-particle ensembles, which define the edges of the 

mixture phase diagram. The long range order is quickly lost, when mixing two 

particles with a size ratio of 0.8. Depending on the assembly process a complete 
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suppression of crystallinity can be found (dip-coating) or small, multicrystalline 

regions caused by demixing prevail (dispersion drying). 

Laser flash analysis (LFA) was performed on colloidal monoliths obtained from 

evaporation induced self-assembly. By determining the sample density and 

specific heat capacity, it is possible to calculate the specimen’s effective thermal 

conductivity (details see supporting information). The thermal conductivity, 

normalized to the maximum initial value of the pure colloidal assemblies, as well 

as the normalized thermal conductivity of intermediate mixing ratios are show in 

Figure 2a. The color code helps to separate highly ordered samples (blueish) from 

randomly packed assemblies (greenish) and correspond to the mixing ratios given 

in Figure 1.  
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Figure 2. Thermal conductivity of the investigated assemblies with a size ratio of 0.8. Color code 

indicates ordered (blueish) and disordered assemblies. (a) Normalized thermal conductivity of 

binary PS colloidal assemblies possessing different mixing ratios. Red arrow indicates the reduction 

of the thermal conductivity due to the introduced disorder. (b) Normalized density of the colloidal 

assemblies. (c) Thermal conductivity vs. volume fraction of large particles obtained by FEM. Error 

bars arise from three individual simulations boxes at three different directions in space. (d) 

Exemplary streamlines present within a crystalline and a disordered assembly with a size ratio of 

0.8 and 16 vol%-L. (e) Thermal conductivity vs. relative streamline length of various size ratios. 

Error bars arise from three individual simulations boxes at three different directions in space. 

Homo-particle colloidal assemblies (mixing ratio 0 vol% L and 100 vol% L) show 

a thermal conductivity of 73 mWm-1K-1 and 77 mWm-1K-1 in absolute numbers, 

respectively. At small mixing ratios of differently sized particles, the thermal 

conductivity slightly drops to ~0.93 of the initial value. For intermediate mixing 

ratios, the thermal conductivity drops significantly to ~0.80. This reduction can 

only partially be explained by the reduced density of the intermediate assemblies 

as displayed in Figure 2b. The reduction of the density for intermediate mixing 

ratios originates from the prevented close packing of the particles during 

assembly. This leads to a space filling which deviates from the maximum of 74 %. 
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Still, the density only decreases to ~90 % of its initial value. Therefore, an additional 

effect is present, which is responsible for the overall reduction of the thermal 

conductivity to 80 %. 

To elucidate this additional contribution, we performed finite element modeling 

(FEM) on binary particle mixtures possessing a size ratio of 0.8. The required 

virtual assemblies were obtained by molecular dynamic (MD) simulations of the 

assembly process. Exemplary particle assemblies obtained from MD simulations 

are shown in Figure S2a. We found highly crystalline particle assemblies at the 

edges of the mixing diagram. In contrast to our experimental findings, the 

crystallization process is already fully prevented at very small mixing ratios 

(Figure S2a, left). This is caused by the lack of demixing or phase separation of the 

particles due to the short assembly time-scale used for the MD simulation. FFT 

images of 0 vol%-L and 9 vol%-L assemblies from MD simulation are compared to 

the experiment in Figure S2a, right. Thus, the fully amorphous structure obtained 

from the MD simulation can be regarded as an ideally disordered case. 

Experimentally, some degree of crystallization will be difficult to exclude owing 

to the long timescale allowed for the self-assembly process. FEM has been done 

using the software COMSOL Multiphysics®. Details on the modeling are 

described in the Supporting Information. The calculated thermal conductivity 

against the volume fraction of large particles is displayed in Figure 2c. Analogous 

to Figure 2a, the color code indicates ordered (bluish) and disordered assemblies 

(green). The mixing diagram shows a similar trend for the thermal conductivity as 

observed for the experiment, with high thermal conductivities for ordered, and a 

reduced thermal conductivity for disorder assemblies. A minimum thermal 

conductivity of only 55 % of the initial value is observed at a volume fraction of 

~16 vol%-L. This is an almost two fold enhancement of the insulation capability 

caused by the disordered structure, and it is significantly lower compared to the 

experimental results. We ascribe this deviation to the structural difference between 
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the MD simulation and the experiment. As outlined before, by MD simulation one 

can observe a more homogeneous distribution of both particle types within the 

monolith, leading to a stronger reduction of the thermal conductivity. 

To explain the origin of the thermal conductivity reduction beyond the decrease 

in density, we utilized FEM to analyze the length of the thermal transport pathway 

through such a particulate assembly structure. This can be done by evaluating the 

length of heat flux streamlines, which reach from the hot to the cold side of the 

simulation box. Figure 2d shows two individual cases through an ordered (100 

vol%-L) and disordered (~16 vol%-L) particle ensemble. Whereas in the ordered 

case, a rather straight and unperturbed streamline is obtained, the introduction of 

disorder strongly bents and perturbes the thermal transport path. The statistic 

evaluation over the entire simulation box is given in Figure 2e, where we 

normalized the streamline length on the length of the simulation box. The relative 

streamline length increases with increasing disorder, which can be inferred from 

the bluish to greenish color code. One also finds a direct correlation between the 

streamline length and the thermal conductivity reduction. This finding can be 

intuitively explained by a sort of effective thermal length, which differs from the 

plain geometric size of the box. One may draw an analogy to the concept of optical 

path length in a material, which is governed by its refractive index.  

Most interestingly, the FEM simulation finds a strongly asymmetric shape of the 

thermal conductivity reduction with two minima at moderately high and low 

mixing ratios, respectively. These are not found in the experiment, presumably due 

to the presence of mesocrystalline domains, embedded in the amorphous 

structure. We now want understand the origin of these minima and how the 

thermal conductivity could be reduced even further. This question could be 

rephrased to how the thermal streamline lengths can be further increased in such 

colloidal superstructures. We therefore return to MD simulation and evaluate the 

local structure around one particle more explicitly. Quite expectedly, when 
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introducing disorder the average number of next neighbors is reduced. For 

crystalline assemblies, one can find an average number of next neighbors per 

particles of ~12, based on the face centered cubic symmetry. For all disordered 

intermediate mixing ratios, the number of next neighbors is reduced to ~10 (Figure 

S2b). One can imagine that this reduction leads to less pathways for heat to travel 

through the particle structures and therefore reduces the thermal conductivity of 

the assemblies. However, we find that the mean number of next neighbor particles 

merely reaches a broad plateau, and doesn’t explain the asymmetric shape shown 

in Figure 2c. We therefore evaluated the actual number of next neighbor particles 

explicitly. This is shown in Figure 3, where we present the next neighbor 

histograms at selected mixing ratios (bottom row). We chose a special illustration, 

to highlight the structural heterogeneity, when heat travels through such a system. 

We, therefore, present a projection of all particles with the same number of next 

neighbors that can be found within the simulated box. The color code indicates 

particles possessing different numbers of next neighbors from high (blue) to low 

(red). It therefore provides a direct impression of how many interparticle contact 

points are available for thermal transport from one particle to the next.  
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Figure 3. Molecular dynamics simulations of the assembly process of a binary particle mixture. 

Number of next neighbors per particle against volume fraction of large particles. Size ratio is 0.8. 

Projection of the assemblies visualize the particles possessing the indicated number of neighbors. 

Histograms show the relative frequency of particle neighbors per particle present within the 

different assemblies. 

For mixing ratios of 0 vol%-L and 100 vol%-L almost every particle possesses 

twelve next neighbors. This indicates a nearly fully crystalline face-centered cubic 

assembly, with few line and point defects being visible. The particle neighbor 

distribution function quickly broadens at intermediate mixing ratios. Most 

importantly, this distribution function shows a strongly asymmetric behavior. For 

mixing ratios of 9 vol%-L to 66 vol%-L, even more than twelve neighbors per 

particles are present within the assembly, whereas for high mixing ratios, the 

number of next neighbors is limited to twelve. For a low number of large particles 

(small mixing ratios), it is possible that one large particle is decorated by a high 

number of smaller particles. In contrary, for high mixing ratios of large particles, it 
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is geometrically not possible to decorate a small particle with a high number of 

large particles, since there is simply not sufficient space. 

The consequence for the effective thermal length is rather surprising. A reduction 

of next neighbor contact points indeed leads to a reduction in thermal 

conductivity. However, even more efficient is the introduction of a large amount 

of many interparticle contact points, since this leads to an even stronger 

disturbance of the streamline length due to a geometric extension of the 

predetermined thermal transport path.  

To clarify how this transport pathway is governed by the size mismatch of the 

two particles, we varied the size ratio of the particles between 0.9 and 0.54 at the 

mixing ratio around 20 vol%-L, which showed the lowest thermal conductivity. 

Noteworthy for this data set, the experimental samples were prepared by filtration 

to speed up the assembly time and therefore obtain particles structure, more 

comparable to the virtual assemblies. Both, experiment and FEM simulation, show 

a systematic decrease of the thermal conductivity with a decreasing size ratio from 

0.9 to 0.54 (Figure 4d).  
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Figure 4. Influence of the size ratio (DS/DL) on the thermal conductivity at ~20 vol% L. (a) 

Comparison of the heat flux densities of particles assemblies possessing different size ratios. (b) 

Histograms of the streamline length and (c) next neighbors per particle of the assemblies. (d) 

Resulting thermal conductivity from FEM compared to experimental data. 

The increase of the thermal conductivity for the smallest size ratio (0.54) for the 

experiment can be explained by an increasing tendency to demix as outlined 

above. One also needs to take into account that fully crystalline binary assemblies 

can be obtained for size ratios of <0.41 owing to the octahedral voids in face 

centered cubic structures, which we approach with this small size ratio.[34] 

Figure 4a compares the heat flux density of the particle assemblies from size 

ratios of 0.54, 0.8, and, 0.9 to the heat flux density of a fully crystalline assembly 

(size ratio: 1.0). Crystalline assemblies feature uniform and straight streamlines 

(Figure 4a, 1.0), whereas a decreasing size ratio evokes a high degree of distortion. 

This is especially obvious for the heat flux density of the size ratio 0.54, where one 

large particle heavily impedes the heat flux through the entire particle box. The 

qualitative impression from the heat flux density images is verified by comparing 

the relative streamline lengths of the different size ratios (Figure 4b). The smaller 

the size ratio, the higher the number of long streamlines, which can reach up to 
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140 % relative to the length of the simulation box. This indicates that the less the 

particle sizes match, the stronger the heat flux is bent along the particle network, 

leading to an elongation of the thermal transport path. 

The higher fraction of long streamlines coincides with a broadening of the next 

neighbor distribution function with decreasing size ratio (Figure 4c). The 

broadening increases the number of >10 next neighbors, indicating an increasing 

decoration of a large particles with small particles. However, due to the small 

number of large particles at this volume fraction and size ratio combination (about 

4 % large particles) this effect is not visible in the average number of neighbors for 

the whole assembly. Only when looking at the detailed next neighbor histograms 

the results from the heat flux simulations can be understood (Figure 4c). For a size 

ratio of 0.54 a second fraction with even 25-30 next neighbors is found. This points 

to a small amount of large particle clusters, decorated with smaller particles. 

Overall, the higher mismatch between the two particle sizes led to a thermal 

conductivity reduction by 40 % (size ratio 0.6) in the experiment and 53 % (size 

ratio 0.54) in the FEM simulation. We finally also checked, whether 19 vol%-L 

represents the absolute minimum with respect to the mixing ratio. We, indeed, find 

the highest fraction of >25 next neighbor particles for this mixing ratio (Figure S4). 

Higher or lower mixing ratios (± 5 vol%-L) lead rapidly to a reduced number of 

next neighbors. Therefore, a mixing ratio of 19 vol%-L of large particles is sufficient 

to strongly reduce the effective thermal transport across a binary particle mixture. 

Considering number ratios, this is readily achieved by only ~10 %. 

 

Conclusion 

In summary, we investigated the influence of order and disorder in particle 

mixtures on their thermal transport properties. We therefore choose a controlled 

mixture of binary latex particles as a model system. In a combined approach, which 

comprised experimental characterization, MD simulation as well as FEM, we were 
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able to relate the observed reduction in thermal conductivity to the local 

environment of the colloidal particles. Quite surprisingly, the increase of next 

neighbor contact points at low mixing ratios and at a high size mismatch between 

the binary spheres, represents the most efficient way to attain a minimum thermal 

conductivity. The decisive concept is the increase in the effective thermal length, 

across which the thermal energy needs to be transported. Overall, disorder in a 

binary colloidal glass can reduce the thermal conductivity by as much as ~50 % 

compared to its single phase, crystalline counterpart. Our findings are of high 

importance for heterostructured and particulate materials, for applications were a 

high insulation, but also a good heat dissipation are paramount. Owing to the 

diffusive thermal transport in our system, our findings are of conceptual nature 

and applicable to many other nano-, micro- and macrostructured materials, 

beyond simple latex beads. Most importantly, we want to stress the relevance of 

the concept of an effective thermal length, which cannot only be increased by 

constriction but may be even more strongly affected by additional pathways and 

detours. 

 

Experimental Section 

Details on the particle synthesis, binary colloidal self-assembly methods, and 

characterization methods, as wells as a detailed description on thermal transport 

characterization by laser flash analysis, molecular dynamics simulations, and finite 

element modeling can be found within the Supporting Information. 

 

Supporting Information  

Supporting Information is available from the Wiley Online Library or from the 

author. 
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Constricted Thermal Conductivity through Dense Particle Packings with 

Optimum Disorder 

 

Fabian A. Nutz, Alexandra Philipp, Martin Dulle, Markus Retsch* 

 

Experimental Section 

Materials:  

Potassium persulfate (KPS, ≥ 99 % Aldrich), styrene (≥ 99 %, Aldrich) and acrylic 

acid (99 %, AA, Aldrich) were used as received. Water was taken from a Millipore 

Direct Q3UV unit for the entire synthesis and purification steps.  

Particle Synthesis: In a typical synthesis, a 500 mL three neck flask was charged 

with 245 mL milliQ water and 30 mL of styrene. The mixture was heat to 75 °C at 

a stirring speed of 650 rpm and allowed to equilibrate under a slight argon flow 

for ~15 min. Subsequently, 3 mL of acrylic acid were added, and the mixture was 

allowed to further equilibrate for ~10 min. To initiate the polymerization, 100 mg 

KPS, dissolved in 5 mL milliQ water were rapidly added to the mixture. The 

polymerization was carried out overnight under a slight argon flow. To adjust the 

size of the particles the amount of acrylic acid has been varied.[1, 2] The reaction was 

stop by exposing the mixture to ambient atmosphere. The particles were purified 

by dialysis against milliQ water for five days, changing water twice a day.  

Binary colloidal self-assembly: Binary colloidal assemblies were fabricated by 

evaporation induced self-assembly of a given amount of prior mixed binary 

particle dispersions in a PTFE beaker. The obtained monoliths generally possess a 

diameter of ~20 mm and a thickness of several hundred micrometers.  

Dip-coating: Samples for UV-vis measurements were prepared on glass slides by 

dip-coating 3 wt% of binary particle solutions. The glass slides were purified with 
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Hellmanex solution an ethanol prior to use. Furthermore, the dip-coating process 

the glass slides were treated with oxygen plasma to ensure a constant wetting of 

the particle solutions. 

 

Methods: 

Dynamic light scattering: Dynamic light scattering measurements were 

performed on aqueous particle dispersion at a Malvern Zetasizer with 175° 

backscattering geometry to determine the hydrodynamic diameter of the particles 

and their size distribution 

Light microscopy: Bright field light microscopy side view images of the edges of 

split of the colloidal assemblies were recorded on a Carl Zeiss Axio Imager.A2m 

light microscope equipped with an AxioCam Icc 1 camera to get a qualitative 

impression about the long range ordering of the colloidal particles. 

Scanning electron microscopy: To determine the hard sphere diameter of the 

particles, Scanning electron microscopy (SEM) was performed on a Zeiss Leo 1530 

electron microscope. Therefore, dilute particle dispersions were drop-casted on a 

silicon wafer and sputtered with 1.3 nm platinum. Furthermore, SEM side-view 

images of the edges of split of the colloidal monoliths were obtained to gain an 

impression of the order within the interior of the monoliths. Fast Fourier 

transformation was applied on the recorded images using the FFT function, 

implemented in the software ImageJ 146.r. 

Differential scanning calorimetry: Heat capacity determination was carried out 

according to ASTM E1269 on a TA Instruments Q1000 differential scanning 

calorimeter under a nitrogen flow of 50 mLmin-1 at a heating rate of 20 Kmin-1. Two 

heating cycles were conducted between -40 °C and 200 °C. The specific heat 

capacity was evaluated from the second heating cycle. The mean value from all 

polystyrene particles under investigation has been used for evaluation (Figure S1). 
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Figure S1. Mean specific heat capacity of the various polystyrene binary assemblies. Error arise 

from measuring every assembly. 

Density determination: The density of the colloidal assemblies was determined 

by the volume and mass of the samples. The volume was obtained from a Keyence 

V3100 3D digital macroscope.  

Laser flash analysis: Laser flash analysis was performed on a Linseis XFA 500 

XenonFlash apparatus equipped with an InSb infrared detector to obtain the 

thermal diffusivity of the colloidal assemblies. The thickness of the samples were 

determined on a Mitotoyo Litematic VL 50. Prior to the measurement, the bottom 

and top side of the samples were coated with a thin layer of black air brush color 

serving as a blocking layer. Furthermore, the samples were coated with a thin 

graphite layer (< 15 µm). This enables a good absorbance at the bottom, and high 

emissivity at the top side of the monoliths. Measurements were performed on at 

least three individual samples. Experiments were conducted in vacuum 

atmosphere at a pressure of ~5x10-2 mbar to exclude any influence of the ambient 

atmosphere. The raw data was fitted with the radiation fit model provided by the 

software Aprosoft Laser Flash Evaluation v.1.06. Measurements were performed 

on at least three samples. 

A xenon lamp emits a light pulse onto the sample. The thermal energy of the light 

pulse is absorbed at the bottom graphite layer and travels through the specimen. 
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The thermal energy is then emitted from the top side. This temperature rise is 

recorded in dependence of the elapsed time since the light pulse by a fast mid-

infrared detector. A numerical fitting procedure provided by the commercial 

software package Aprosoft Laser Flash Evaluation v1.06 based on the one-

dimensional temperature diffusion equation was used to determine the thermal 

diffusivity .[5] For this, accurate knowledge of the sample thickness is a 

prerequisite, as the thickness strongly influences half-rise time as given by:  

 

𝛼(𝑇) =  
1.38∙𝑑2

𝜋2𝑡1
2

     (S1) 

 

t1/2 represents the time needed for the half maximum temperature rise at the top 

surface.[6] The thermal conductivity  of the sample is calculated by  

 

𝜅(𝑇) =  𝛼(𝑇) ∙ 𝑐𝑝(𝑇) ∙ 𝜌(𝑇)    (S2) 

 

with the specific heat capacity cp and the density ρ. 

 

Molecular dynamics (MD) simulations 

All dense colloidal assemblies used in the finite element modeling were obtained 

using LAMMPS.[3] Visualization was done with Ovito[4] Every simulation consisted 

of 10000 arbitrarily placed spheres of the desired size and number ratio. The 

simulation box had periodic boundaries and was elongated in the z-direction at 

the start. This was done to mimic the evaporation of solvent for the real-world 

system. Using the NPT barostat we compressed the box first along the z-axis up to 

a pressure where all axes had a comparable length. After that the box was 

compressed isometrically to a pressure at which no more compression without 
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overlap of the spheres was possible. We used the colloidal Yukawa potential 

included in the LAMMPS code with a short range repulsive part.  

The analysis of the resulting dense colloidal assemblies was done with a self-

written software using C++. The software calculates the radial distribution function 

(G(r)) for the given set of coordinates and uses the first three peaks to determine 

the three possible next neighbor distances as well as the next neighbor distance cut 

off. According to this cut off it counts the neighbors of each individual particle and 

identifies it as a small or big sphere and therefore enabled us to obtain very 

detailed information on the local structure around each particle. It also calculates 

the density as well as the average number of neighbors.  

Finite element modeling: Heat transport through colloidal assemblies was 

simulated using the finite element modeling (FEM) software COMSOL 

Multiphysics®. For this, the crystalline (0 and 100 % large particles) and 

amorphous particle structures (size ratios: 0.54, 0.8, and 0.9) obtained from the MD 

simulations were used. The particle size has been adjusted such that the contact 

areas between adjacent spheres are comparable to the experimental values. All 

particles were fused into one object and, thus no thermal resistance between the 

particles was considered. Due to the limited physical memory (128 GB), the system 

size has been reduced to a feasible size. Therefore, three cubes with around 100 

particles were cut out of each investigated colloidal assemblies. The mesh size was 

as chosen to ensure mesh size independent results (see Figure S5c). A temperature 

difference was imposed to two opposite surfaces of the cubes. Since all remaining 

surfaces were kept thermally insulating, purely one-dimensional thermal 

transport is obtained. The simulation was conducted along all three directions of 

the cube (x, y, and z). Using Fourier’s law (see Equation S4), the effective thermal 

conductivity of the assembly is calculated from the computed heat flux, normal to 

the isothermal faces. Figure S6 demonstrates that three cubes are sufficient to 

calculate a meaningful average value. Furthermore, heat flux streamlines have 
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been plotted to visualize the heat path length through the different colloidal 

assemblies. The length of the streamlines (𝐿𝑆𝐿) has been normalized by the total 

length of the cube (𝐿𝐶) to calculate the relative streamline length (𝐿𝑆𝐿 𝐿𝐶⁄  in %).  

 

Assembly structures from MD simulation 

We chose the colloidal Yukawa potential in LAMMPS[7] because it treats the 

spheres as impenetrable bodies with a fixed radius which prevents unwanted 

overlap even at very high pressures. The Yukawa potential was necessary in order 

to facilitate the formation of the fcc phases at the edges of the phase diagram and 

the real particles also carry a negative net charge. The pairwise interaction is 

calculated using the formula: 

𝐸 =
𝐴

𝜅
𝑒−𝜅(𝑟−(𝑟𝑖+𝑟𝑗));    𝑟 < 𝑟𝑐    (S3) 

 

With being the screening length (inverse distance units), ri and rj are the radii 

of the two interacting spheres. The prefactor A has to be specified for each pair 

type. It is determined from the relationship of the surface charge to surface 

potential in the presence of an electrolyte. In our case this prefactor is proportional 

to only the radius of each particle. All other parameter are the same.  

We chose a large screening length of 50 which corresponds to 1/50 of the diameter 

of the large particles in order to hinder crystallization at higher interparticle 

distances and ensure good mixing of the differently sized particles. As the particles 

in the experiments are a few hundred nanometers in size this large screening 

length also approximates the charge interaction distance relative to the particle 

size. An example of the interaction parameters is given in Table S1. 

Table S1. MD simulation interaction parameters for the size ratio 0.54. 

Pair style Screening length Interaction cutoff (rc) A for 1:1 A for 1:2 A for 2:2 

Yukawa/colloid 50 1.5 10000 7500 5000 
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Comparison between MD simulation and experimental colloidal glass 

fabrication 

 

Figure S2. Side views received from MD simulations and number of next neighbors per particles. 

(a, left) typically obtained particle assemblies from MD studies; (a, right) FFT comparison between 

experiment and simulation. (b) Average next neighbors per particle vs. volume fraction of large 

particles. Color code indicates order (blueish) and disordered (greenish) assemblies. 

 

 

Figure S3. FFT comparison between the particle structures received from MD simulations and SEM 

side view images. Particularly at low and high mixing ratios a partial crystallinity can be inferred 

from the experimental SEM images. It indicates an easier colloidal glass formation in the MD 

simulation compared to the experimental conditions.  
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Influence of mixing ratio on next neighbor distribution function of size ratio 

0.54 

 

Figure S4. Histograms of the next neigbors per particle for a size ratio of 0.54. Various particle 

volume ratios close to the minimum thermal conductivity (19 vol%-L) are compared. All assemblies 

have the same average number of next neigbors (~10-11), but only the assembly with 19 vol%-L 

shows a second fraction with the highest number of next neighbors (20-30). Thus, this assembly is 

expected to have the lowest thermal conductivity. 

Finite element modeling 

Fourier’s law is used to calculate the effective thermal conductivity κeff: 

𝜅𝑒𝑓𝑓 =
𝑄/𝐴

𝛥𝑇/ℎ
      (S4) 

Q is the heat flow rate normal to the cross-sectional area A of the cube, ΔT the 

temperature difference, and h the cube length. 

Table S2. Specific heat capacity, density, and thermal conductivity of polystyrene used in FEM 

simulations. 

Specific heat capacity Density Thermal conductivity 

[Jg-1K-1] [gcm-3] [mWm-1K-1] 

1.25 1.05 150 
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Figure S5. (a) Comparison of the effective thermal conductivity divided by the bulk thermal 

conductivity of polystyrene obtained for an ideal fcc unit cell and the fcc structure from MD 

simulation. The average particle contact area of the fcc structure from MD simulation was used to 

create the unit cell. The slight reduction of the MD simulation compared to the ideal unit cell 

originates from line and point defects, which are not present in the ideal case. (b, c) The effective 

thermal conductivity is independent of the number of DOFs and, thus of the mesh size. (c) The data 

are exemplarily plotted for one position in the fcc structure from MD simulation, respectively. 

 

 
Figure S6. Effective thermal conductivity of the particle assembly with 16 vol% large particles (size 

ratio 0.8) obtained for six cubes cut out of different positions of the amorphous particle structure 

(red circles). The error bars arise from the three different simulation directions per cube (x, y, and 

z). The black solid line represents the mean effective thermal conductivity calculated from the first 

three values, the dashed line is the corresponding standard deviation. This plot shows that three 

positions are sufficient to calculate a meaningful average value.  
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5 Outlook 

In summary, the thermal transport properties of polymer colloidal crystals and 

assemblies have been investigated. Taking advantage of the unique properties of 

this material class, it has been shown that this material class can either serve as a 

model system to study fundamental heat transport in a mesoscale system, or can 

be used a versatile platform to develop novel strategies for the specific design of 

thermally functional particulate matter. Still, there are some questions, which need 

to be addressed to get a comprehensive picture of the thermal transport properties 

of polymer colloidal assemblies. i) The influence of the diameter of the particles 

forming the assembly is still not clarified. ii) It is unclear how many particle layers 

are necessary to reach the observed strong insulation behavior of the material. 

Since the insulation behavior evolves from the colloidal structuring, insulation 

materials, possessing a strong insulation behavior at very low thicknesses may be 

achievable. iii) Although the temperature-dependent increase of the thermal 

conductivity has been exploited to precisely tailor the temperature-dependent 

increase of the thermal conductivity, this transition is yet irreversible. Spending 

effort into the right choice of the particle material, e.g. shape-memory compounds, 

semi-crystalline, cross-linked or stimuli-responsive polymers, may promise to 

overcome the irreversibility of the transition. Once this is achieved, the presented 

concepts can be transferred to the fabrication of thermal devices such as switching 

materials, diodes and rectifiers, made from a colloidally structured, solid-state 

material. Therefore, the presented results serve as a general basis, wherefrom it is 

possible to answer fundamental questions of thermal transport further, as well as 

to improve the development of thermally functional materials. 
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