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Abstract. Measuring the accuracy of diagnostic tests is crucial in many application areas
including medicine and health care. The Receiver Operating Characteristic (ROC) curve is
a popular statistical tool for describing the performance of diagnostic tests. The area under
the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic
test. In this paper, we interest in developing strategies for combining test results in order to
increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for
combining two diagnostic test results with considering dependence structure using parametric
copula. NPI is a frequentist statistical framework for inference on a future observation based
on past data observations. NPI uses lower and upper probabilities to quantify uncertainty
and is based on only a few modelling assumptions. While copula is a well-known statistical
concept for modelling dependence of random variables. A copula is a joint distribution function
whose marginals are all uniformly distributed and it can be used to model the dependence
separately from the marginal distributions. In this research, we estimate the copula density
using a parametric method which is maximum likelihood estimator (MLE). We investigate the
performance of this proposed method via data sets from the literature and discuss results to
show how our method performs for different family of copulas. Finally, we briefly outline related
challenges and opportunities for future research.

1. Introduction
Many researchers have discussed ways for combining test results, for example in [1, 2]. Often,
linear combinations of the test results are used. For example, Su and Liu [3] derived an optimal
linear combination that maximises the AUC when the test results for the non-diseased and
diseased categories follow bivariate normal distributions. Pepe and Thompson [4] considered
an empirical search of the optimal linear combination that maximises the Mann-Whitney U
statistic of AUC, but this method is computationally complex as a search algorithm must be
used. Liu et al. [5] proposed a linear combination by combining the minimum and maximum
values of the test results. This involves searching for a single coefficient that maximises the
Mann-Whitney U statistic of AUC but not all test results are measured on the same scale
[5]. Esteban et al. [2] proposed a step-by-step algorithm for estimating the parameter of a
linear combination of the test results, which is close to the maximizing the AUC corresponding
to the best linear combination. Kang et al. [6] proposed a nonparametric stepwise approach
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for the linear combination of the test results to search coefficient that maximises the Mann-
Whitney U statistic of AUC. Both methods proposed by Esteban et al. [2] and Kang et al. [6]
are computationally tractable. Recently, Yan et al. [7] proposed a combination method called
pairwise approach, to maximize the AUC, by pairing one biomarker with the other biomarkers
separately specifically for weak biomarkers (0.50 < AUC < 0.70).

All researchers mentioned above did not take dependence structures into account, such
as using copula except Ghosh [8] and Sen [9]. Sen [9] presented the concept of copulas for
multivariate distributions and dependence, and motivated the benefit of copulas via a number
of applications including the design of clinical trials, microarray studies with survival endpoints
and the analysis of dependent ROC curves. Ghosh [8] presented a binormal model for ROC curve
estimation to accommodate multiple test results by considering the dependence using copulas.
As mentioned by Bansal and Pepe [10], the dependence could be very important among the test
results. They investigated the increment in the performance of measure accuracy that is possible
by combining a novel continuous test result with a moderately performing standard continuous
test result (AUC around 0.70 to 0.80) and found that an uncorrelated continuous test result
with moderate performance on its own usually yields only minimally improved performance
on the AUC [10]. The novel test result that has very poor performance on its own but is
highly correlated with the standard test result, and a novel test result with poor (AUC < 0.70)
to moderate performance that is highly correlated with the standard test result gives large
improvements in the performance of measure accuracy [10].

Many articles have addressed the problem of finding the optimal linear combinations to
maximise the AUC, as mentioned above. In this paper, we introduce NPI for combining two
diagnostic test results which detail discussed in [11]. We use NPI with a parametric copula
introduced in [12], to combine two test results. NPI has been used for accuracy of the diagnostic
tests with ordinal outcomes, with the inferences based on data for a disease group and non-
disease group [13]. For accuracy of binary tests, NPI has been presented and discussed by
Coolen-Maturi et al. [14], and for continuous test results in [15]. As NPI does not aim at
inference for an entire population but instead explicitly considers a future observation, this
provides an attractive alternative to standard methods [14].

2. Mathematical Modelling
Consider a bivariate random quantity of diagnostic test results, (X,Y ), let (XD

nD+1, Y
D
nD+1) be

the next future bivariate random quantity of diagnostic test results and TD
nD+1 = αXD

nD+1 +

(1 − α)Y D
nD+1 be the weighted average of the future two test results where α ∈ [0, 1] and D

denote as disease status, where D = 1 for the diseased group and D = 0 for the non-diseased
group. For the diseased group, the lower probability for the event that the sum of the next
future observations will exceed a particular threshold ξ is

S1
c(t) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈L1
t

h1il(θ̂1) (1)

with L1
t = {(i, l) : αx1i−1 + (1− α)y1l−1 > ξ}, and the corresponding upper probability is

S
1
c(t) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈U1
t

h1il(θ̂1) (2)

with U1
t = {(i, l) : αx1i + (1− α)y1l > ξ} where ξ ∈ (−∞,∞), and S1

c(t) and S
1
c(t) are the lower

and upper survival functions for the sum of the next future observations, T 1
n1+1 with considering

copula denotes by subscript c. In line with [12], the probabilities h1il(θ̂1) are defined as

h1il(θ̂1) = PC(X̃1
n1+1 ∈

(
i− 1

n1 + 1
,

i

n1 + 1

)
, Ỹ 1

n1+1 ∈
(
l − 1

n1 + 1
,

l

n1 + 1

)
|θ̂1) (3)
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for i, l = 1, 2, . . . , n1 + 1 where PC(·|θ̂1) represents the copula-based probability with estimated

copula where θ̂1 is a parameter value from parametric copula for diseased group.
For the non-diseased group, the lower probability for the event that the sum of the next

future observations will exceed a particular threshold ξ is

S0
c(t) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈L0
t

h0jk(θ̂0) (4)

with L0
t = {(j, k) : αx0j−1 + (1− α)y0k−1 > ξ}, and the corresponding upper probability is

S
0
c(t) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈U0
t

h0jk(θ̂0) (5)

with U0
t = {(j, k) : αx0j + (1−α)y0k > ξ} where ξ ∈ (−∞,∞), and S0

c(t) and S
0
c(t) are the lower

and upper survival functions for the sum of the next future observation, T 0
n0+1. In line with [12],

the probabilities h0jk(θ̂0) are defined as

h0jk(θ̂0) = PC(X̃0
n0+1 ∈

(
j − 1

n0 + 1
,

j

n0 + 1

)
, Ỹ 0

n0+1 ∈
(
k − 1

n0 + 1
,

k

n0 + 1

)
|θ̂0) (6)

for j, k = 1, 2, . . . , n0 + 1 where PC(·|θ̂0) represents the copula-based probability with estimated

copula where θ̂0 is a parameter value from parametric copula for non-diseased group. Throughout
this paper, the subscript c is used to show the functions are considering the copula.

The NPI lower and upper survival functions from equations (1) - (5) are used to derive lower
and upper false positive fraction (FPF) and true positive fraction (TPF) for the weighted average
of the next future observation per group, for different threshold values ξ, and we combined to
derive the corresponding NPI lower and upper ROC curves. The NPI lower and upper survival
functions are optimal bounds for all survival functions corresponding to A(n) [16], which leads to
the following optimal bounds for the TPF and FPF when considering the dependence structure

TPFc (ξ) = S1
c(ξ) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈L1
t

h1il(θ̂1) (7)

TPFc (ξ) = S
1
c(ξ) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈U1
t

h1il(θ̂1) (8)

FPFc (ξ) = S0
c(ξ) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈L0
t

h0jk(θ̂0) (9)

FPFc (ξ) = S
0
c(ξ) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈U0
t

h0jk(θ̂0) (10)

where P and P the are NPI lower and upper probabilities [17]. As the ROC combines the survival
functions for the two groups, the NPI lower and upper ROC curves are again defined to be the
optimal bounds for all such curves corresponding to any pair of survival functions S1

c (t) and
S0
c (t) for T 1

n1+1 and T 0
n0+1 in between their respective NPI lower and upper survival functions,

as given by equations (7) - (10). The ROC curve with copula clearly depends monotonously on
the survival functions, it is easily seen that the optimal bounds, which are the NPI lower and
upper ROC curves with copula, are

ROCc =
{(
FPF c(ξ), TPF c(ξ)

)
, ξ ∈ (−∞,∞)

}
(11)
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ROCc =
{(
FPF c(ξ), TPF c(ξ)

)
, ξ ∈ (−∞,∞)

}
. (12)

In order to optimize the diagnostic accuracy of the weighted average of the future two
diagnostic test results, we maximize the area under ROC curve by finding the value of α such that
TD
nD+1 = αXD

nD+1+(1−α)Y D
nD+1 maximizes the AUC. For each block B1

il = (x1i−1, x
1
i )�(y1l−1, y

1
l ),

generated by the observed data, let t1i−1,l−1 = αx1i−1 + (1 − α)y1l−1 be the combined weighted

value corresponding to the left-bottom of the block. And t1i,l = αx1i + (1−α)y1l be the combined
weighted value corresponding to the right-top of the block. The same can be defined for each
block B0

jk = (x0j−1, x
0
j )� (y0k−1, y

0
k), let t0j−1,k−1 = αx0j−1 +(1−α)y0k−1 be the combined weighted

value corresponding to the left-bottom of the block, and t0j,k = αx0j + (1−α)y0k be the combined

weighted value corresponding to the right-top of the block. In line with equations (1) - (6), the
NPI lower and upper probabilities AUC associated with the weighted average for the bivariate
diagnostic test results with parametric copula can directly be defined as

AUCc = P (T 1
n1+1 > T 0

n0+1)

=

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j,k < t1i−1,l−1}h0jk(θ̂0) (13)

AUCc = P (T 1
n1+1 > T 0

n0+1)

=

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j−1,k−1 < t1i,l}h0jk(θ̂0) (14)

where 1 {A} is an indicator function which is equal to 1 if event A occurs and 0 else. The
optimal coefficients, αopt’s that maximizes the AUC in equations (13) and (14) can be denoted
by α̂c

L and α̂c
U , respectively.

3. Results and Discussions
The data set considers diagnostic markers for pancreatic cancer and consists of 141 patients
[18]; 90 pancreatic cancer patients and 51 control group patients with pancreatitis. Two serum
markers were measured on these patients, the antigens CA125 and CA19-9 which are positively
correlated [4]. To illustrate our approach, we have adjusted the data to avoid tied observations
as discussed in [11]. Let antigen CA19-9 be the X variable and antigen CA125 be the Y variable.
In this example, the data are transformed to a natural logarithmic scale as used by Pepe and
Thompson in [4]. Then we standardize the data to have mean zero and variance one in order
to assist in the interpretation of α as a relative weight of Y to X in the combination. The
mean values for X are 0.44 for the diseased group and −0.78 for the non-diseased group, and
the mean values for Y are 0.22 for the diseased group and −0.40 for the non-diseased group.
The scatter plot of this data set is presented in figure 1. We consider the dependence structure
by using parametric copulas, as before in [12], we use the Normal, Frank, Clayton and Gumbel
copulas. It should be emphasized that any parametric copulas can be used. Consider a weighted
average, TD

nD+1 = αXD
nD+1 + (1− α)Y D

nD+1 for NPI with copula method as discussed in Section
2. The optimal coefficients and the corresponding AUC values for the method of different family
of copulas are shown in table 1.

Based on table 1, we have different values of α̂c
L, α̂c

U and the AUC values depending on the
choice of copula. The Clayton copula gives the highest lower and upper AUC values compared
to the other parametric copulas used, AUCc = 0.8364 and AUCc = 0.8947, with corresponding
α̂c
L = 0.7066 and α̂c

U = 0.7061, respectively. This feature occurs due to the data set for diseased
and non-diseased groups have a great dependence on the negative tails compared to positive
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Figure 1. Scatter plot for pancreatic cancer data set.

Table 1. AUC values for different family of copulas.
α̂c
L AUCc α̂c

U AUCc

NPI with Normal Copula 0.7160 0.8306 0.7151 0.8896
NPI with Frank Copula 0.7077 0.8324 0.7077 0.8920
NPI with Clayton Copula 0.7066 0.8364 0.7061 0.8947
NPI with Gumbel Copula 0.7215 0.8301 0.7226 0.8880

tails, which is captured by the Clayton copula. This can be seen from figure 1, where for each
group, small x and y observation values are close to each other compared to large x and y
observation values. The second highest of NPI lower and upper AUC values are achieved by the
Frank copula and followed by Normal and Gumbel copulas as shown in table 1.

By considering the weighted average in the combination of these two random quantities, a
quite large increment on AUC values for all approaches is achieved as compared to only one test
results used discussed in [4]. In terms of weighted values, we can see that the NPI with Gumbel
copula puts more weight on X compared to other copula families, as the difference between
mean values of the diseased and non-diseased groups for X greater than Y . We also saw this
effect in the simulation study in [11].

4. Conclusion
As conclusion, the use of a linear combination of the two variables may effectively deal with
this linear dependence, hence the copula has no further opportunity to pick up other aspects of
dependence in the data. We expect that the use of the copula, and particularly nonparametric
copulas which discussed by [19], in our method will make a positive difference to the ROC
approach in this paper if the underlying data have a nonlinear dependence structure.
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