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Results of an investigation of the O (4) spin model at finite temperature using anisotropic lattices are presented. In both the 
large N approximation and numerical simulations using the Wolff cluster algorithm we find that the ratio of the symmetry resto- 
ration temperature TsR to the Higgs mass mH is independent of the anisotropy ~. From the numerical simulations we obtain a 
lower bound of TSR/mn --~ 0.58 + 0.02 at a value for the Higgs mass mt-ias -~ 0.5, which is lowered further by about 10% at mna~ ~- 1. 
Requiring certain timelike correlation functions to coincide with their spacelike counterparts, quantum and scaling corrections to 
the anisotropy are determined and are found to be small i.e., the anisotropy is found to be close to the ratio of spacelike and 
timelike lattice spacings. 

1. Introduction 

The fate o f  a spontaneously broken gauge theory at 
finite temperatures o f  the order o f  the symmetry 
breaking scale has attracted attention for a consider- 
able period now. Such investigations are o f  impor- 
tance to the physics o f  the very early universe. Two 
prime examples are the inflationary universe and the 
generation o f  the baryon asymmetry. It has been ar- 
gued [ 1 ] that all the baryon asymmetry generated at 
the G U T  scale is washed out by non-perturbative ef- 
fects near the electroweak phase transition. Whether  
any extra mechanism exists to create a fresh baryon 
asymmetry [2 ] near this phase transition remains 
unclear. Although symmetry restoring phase transi- 
tions in spontaneously broken gauge theories are cru- 
cial for these areas, our knowledge about them comes 
chiefly f rom perturbation theory [ 3 ] which can be 
expected to be rather inadequate for dealing with the 
anticipated presence of  certain intrinsic nonpertur-  
bative effects near such phase transitions [ 4 ]. 

Motivated by the desire to learn more about the 
non-perturbative aspects o f  the symmetry restora- 
tion transition, exploratory lattice investigations o f  
S U ( 2 )  Higgs-gauge models and nonlinear O ( N )  
models at finite temperature have been made [ 5-9 ]. 

These models are expected to be trivial, giving rise to 
an upper bound on the Higgs mass o f  about 650 GeV 
at values o f  the (lattice) Higgs mass close to the lat- 
tice cutoff  m n a s  ~-- 1. Correspondingly at finite tem- 
perature one expects a lower bound on the symmetry 
restoration temperature TsR in units of  the inverse 
Higgs mass m ~ .  For the standard model the gauge 
couplings at the weak symmetry breaking scale and 
the Yukawa couplings, with the possible exception o f  
that o f  the top quark, are small. Neglecting them as a 
first approximation,  one arrives at an O (4)  symmet- 
ric scalar model. As in the case of  the bound on the 
Higgs mass, one can then hope that the lower bound 
o n  T s R / m  H can be obtained by studying the 0 ( 4 )  
model, rather than the more complicated SU (2) fer- 
mion-Higgs  model. 

In this note we study the 0 ( 4 )  model at finite tem- 
perature using numerical simulation o f  the euclidian 
path integral on lattices with anisotropic spacings in 
time (temperature)  and spatial directions. We also 
compare our results with analytic results obtained in 
the lowest order large N expansion. Anisotropic cou- 
plings allow, at least in principle, a continuous tuning 
of  the temperature, while the Higgs mass in units o f  
the lattice spacing can stay fixed at values rnr~as ~- 1. 

Consequently a study of  temperature effects o f  the 
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theory at a correlation length of the Higgs particle of 
order unity becomes feasible without changing the 
lattice size or losing the resolution in the temperature 
direction and the relevant information about the 
lower bound on TSR/mH can be extracted. In addi- 
tion, anisotropic lattices allow us to distinguish the 
finite temperature effects, which in the euclidian for- 
mulation that we employ could be regarded as a spe- 
cial type of finite size effects, from other finite size 
effects since the finite temperature effects have to be 
independent of the anisotropy in the scaling region. 

The plan of  this paper is as follows: In the next sec- 
tion we define the model and give details of our 
methods to study it in the large Nlimit  and, for N=  4, 
using numerical simulations. The procedure to ob- 
tain the ratio Tsa/mr~ is described here. Section 3 is 
devoted to the discussion of our results and conclu- 
sions are presented in the final section. Some of our 
results have already been presented in a preliminary 
form in ref. [10]. 

2. The anisotropic O(N) model 

The anisotropic O(N)  symmetric spin model on 
lattices with spatial extension Ns and temporal exten- 
sion Art is defined by the action 

S= -NO 7 S~'Sx+o + 7 Z Sx'S~+] , ( 1 ) 
x,J 

or alternatively 

S= - 2x (7~Sx . Sx+o+l~Sx .S x +f~ .  (2) 
7 ~,j ] 

Here the spins Sx are unit vectors in O(N),  7 is the 
anisotropy coupling and fl or ~ denote the hopping 
parameter. Isotropic lattices are defined by y = 1. For 
the study of the large Nlimit  we take the first form of 
the action, eq. ( 1 ), keeping fl finite, while for the 
0 ( 4 )  model we use the more conventional second 
form, eq. (2). 

Denoting the lattice spacing in spatial directions as 
and in the temporal direction at, the anisotropy pa- 
rameter g is the ratio of spacelike to timelike lattice 
spacings: 

~= a~ .  (3) 
at 

In the naive continuum limit and for noninteracting 
theories ~= 7- However, quantum and scaling correc- 
tions can modify this relation [ 1 1 ]. For a given an- 
isotropy coupling 7, ~ can be determined by the re- 
quirement that physics, e.g. the fall-off of correlation 
functions, is the same in the temporal and spatial di- 
rections. As the O (4) model is weakly interacting we 
expect only a small renormalization of ~ with respect 
to the bare coupling 7. We also expect at the critical 
point ~= 7, as the renormalized coupling of the O (4) 
model vanishes there. The anisotropy ~ is easily cal- 
culable in the large N limit for the symmetric phase 
of the model. There we found that the relevant con- 
tributions to ~ are of order O(a2),  i.e. a scaling vio- 
lation effect. The same conclusion can be inferred for 
the broken phase. We also looked at contributions of 

in renormalized perturbation theory of the ,~4 
model. Up to two loops we again found O(a  2) ef- 
fects, in contrast to theories involving gauge fields 
where quantum corrections of order O(g 2) occur 
[ 11 ]. We conjecture that for our model the differ- 
ence o f (  from y is order O(a  2) to all orders in per- 
turbation theory. 

On the anisotropic lattice the physical three-di- 
mensional spatial volume and the temperature are 
respectively given by 3 3 V3=Nsas and T=l/Ntat= 
~/Ntas. It is therefore possible to vary ~ and Nt simul- 
taneously at fixed ratio ~/Nt, without changing the 
temperature in units a ~- ~, or changing the spatial vol- 
ume. This amounts effectively to a change in resolu- 
tion in the temporal direction: at is changed while Nta t 

is kept fixed. At least in the scaling region physical 
results should then be independent of the anisotropy 
~. A verification of this property will provide a valu- 
able consistency check to our analysis. 

Earlier studies [6,7 ] of the symmetry restoration 
phase transition in the 0 ( 4 )  symmetric spin model 
on isotropic lattices revealed that it was only possible 
to determine the symmetry restoration temperature 
TSR for values of the Higgs mass which barely ex- 
ceeded a value of mHas-~0.4 on reasonable lattice 
sizes. Furthermore, increasing the Higgs mass in units 
of the lattice spacing as, one expects a logarithmically 
slow decrease of TSR/mH, driving numerical simula- 
tions on isotropic lattices to larger temperatures and 
smaller Art values, therefore loosing resolution in the 
time direction. However, choosing the anisotropy 
coupling 7> 1 it is possible to explore the model at 
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values mHas--- 1 and at larger values of  the tempera- 
ture 1/Ntat without giving up a reasonable discreti- 
zation in the time direction, i.e. in our case it was 
possible to simulate the region mHas ~ - l on an Nt=4 
lattice. In this way it will be possible for the first time 
to explore regions of the theory where the Higgs mass 
takes values of  the order of  the cutoff and a numeri- 
cal determination of the lower bound on Tsa be- 
comes feasible. 

In both the large N calculation and the numerical 
simulations our procedure to investigate finite tem- 
perature effects consists of two steps. First we deter- 
mine, at a given value of the anisotropy coupling 7, 
the critical coupling on N 3 × Nt lattices. Studying the 
large N limit in leading order, tic is obtained by solv- 
ing numerically the saddle point equation 

7 1 
flc(Nt) = NtN~ ~p D(p) (4) 

for N s ~ ,  where D(p) is given by 

D (p) = 47 2 sin 2 ( ½P0 ) + 4 ~ sin 2 ( ½pj), ( 5 ) 
J 

with the momenta  Pu given by Pu = 2nnu/Nu, nu = O, 
..., N u -  1 ,where No = Nt and N~= N~. The prime on the 
sum in eq. (4) indicates that the zero mode p = 0 is 
being left out. In Monte Carlo (MC) simulations the 
unique crossing point of  the Binder cumulant g~ = 
( M  4) / ( M 2 )  2 for various volumes N~ and at given 
values of  the anisotropy coupling 7 yields re (oo, Art). 
Here M is the order parameter, defined by 
M= ((M'~M'~)°5), where M ~ is given by 

1 
M'~= N3sNt ~x Sax (6) 

and ot denotes the O(N)  index. Alternatively, one 
may use the peak position of the susceptibility ;t= 
NtN3~( ( M  2) - ( M ) 2 ) ,  to define x¢(N~, Art). Using 
the critical exponents of  the O (4) model in three di- 
mensions, x~(oo, Nt) can then be obtained using the 
finite size scaling theory. We employed both methods 
and checked that they yield consistent results. 

Secondly the Higgs mass and the renormalized field 
expectation value were then determined at zero tem- 
perature at the coupling Xc(OO, Nt) on N~ ×yNs lat- 
tices. For the determination of the renormalized field 
expectation vR in units of a t  t we proceed in case of  
our Monte Carlo simulation as follows: The dimen- 

sionless quantity vRat is given by an estimator for the 
field expectation value 27, which is properly normal- 
ized by its corresponding wave function renormali- 
zation constant Z: VRat =2~/v/-Z. Note here that nei- 
ther quantity 27 nor Z are fixed numbers in the theory. 
It is possible to redefine 27 and Z by overall multipli- 
cative factors, such that the physical quantity PRa t 
stays fixed. In our case we chose the expectation value 
of the mean field multiplied with a convenient factor 
(x /~ /y )  (M)  as an estimator for the field expecta- 
tion value 27. The corresponding wave function re- 
normalization constant can then be derived from the 
behavior of the 0 ( 4 )  symmetric zero momentum 
correlation function 

2x 
G(n) = 4N3y 2 ~ (S~Sx~et) , (7) 

which is defined in the temporal direction of the la t -  
tice. Using chiral perturbation theory one finds for 
large values of  n on a periodic symmetric box, that 
G (n) has the shape of a parabola. This is due to the 
presence of massless Goldstone bosons in the theory: 

G(n) =Z 3 ( n -  ½Nt)2 + const.  (8) 

Expressing the volume V in units of  at, V=~3N3Nt, 
the desired wave function renormalization constant 
Z can in principal be determined. In our actual data 
analysis we have also considered the contribution of 
the scalar particle to eq. (7),  for a detailed descrip- 
tion of the procedure see ref. [ 1 2 ]. 

For the determination of the Higgs mass we project 
the scalar fields S~ individually in each configura- 
tion onto the direction of the mean field M~/IMI and 
we obtain a field operator which has a good overlap 
with the Higgs particle: 

Ot 6 (  
SxM (9) 

S~,x= IMI 

The Higgs mass mHat can then be extracted from the 
exponential decay of the zero (spatial) momentum 
correlation functions of the operator S~.x. 

Introducing O (N) invariant correlation functions 
defined on the main axis of the lattice in time 
direction 

1 
Ct(n)= ~ S~S~+net, (lO) N3Nt 
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and in space direction 

1 
Cs(n) = N3Nt ~x S~S~+ne, ( 11 ) 

we demand invariance with respect to an interchange 
of the spatial and temporal directions. We match the 
correlation functions in temporal and spatial direc- 
tions at equal distance n, by scaling the temporal di- 
rection by a factor ~, which determines the anisot- 
ropy. As we shall see below, the difference of ~ from 
7 was found to be rather small, being of the order of 
at most 3% for all 7 values we studied. 

3. Resul t s  

The numerical computations have been performed 
using the nonlocal Wolff cluster algorithm. The em- 
ployed statistics was about 105 sweeps for each sim- 
ulated lattice size and set of couplings. At finite tem- 
perature we simulated Nt and 7 values as given in table 
1. In each case we performed simulations with N, = 18 
and Ns = 24 at few values of the hopping parameter 
x. We employed the spectral density method in order 
to determine the maximum of the susceptibility and 
the crossing point of the Binder cumulant. At zero 
temperature, with x=  xc(oo, N t),  we performed sim- 
ulations on 183 × 718 lattices with 7 equal to the cited 
values. 

Fig. 1 exhibits our results for both gR and Z on 
183X6 and 243X6 lattices for 7= 1.5. We used the 
spectral density method to obtain the smooth curves 
shown from our data, shown by crosses. Similar re- 
suits have also been obtained for all other values of 
and Nt. In each case we obtained xc(oo, Art) by using 

Table 1 
Critical hopping parameters at given Nand ? for the N,~ oo limit. 
The third column denotes our result from numerical simulations 
while the last column (~) denotes results from the large N 
expansion. 

N, ~, xc( oo, N,) ec(oo, N,) 

6 1.0 0.3060(3) 0.314594 
4 1.0 0.3103(3) 0.320871 
6 1.5 0.3645(3) 0.377673 
8 2.0 0.3912(3) 0.408333 
3 1.5 0.3913(3) 0.415998 
4 2.0 0.4171(3) 0.446373 

g~ 
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Fig. 1. Results for thermodynamic quantities at 7= 1.5. 

, 3 6 6  

both the crossing point of gR and the finite size scal- 
ing of the peak position of the susceptibility. Both es- 
timates were always found to be consistent, although 
we preferred to use the former for determining mH. 
Table 1 contains our results for xc as a function of Nt 
and 7 from the numerical simulations, along with the 
corresponding results from the large Nexpansion. One 
finds a sizable but less than ~ 7% difference between 
the two estimates, which is of the same order as the 
discrepancy observed by comparing the zero temper- 
ature critical hopping parameter from the large N ex- 
pansion with high precision numerical simulations. 

Fig. 2 compares the spacelike correlation function 
C,(n) on an  183X 36 lattice at (x, 7) = (0.3912, 2.0) 
with the corresponding timelike correlation function 
Ct(n/~) at scaled distance n/~. One sees that the two 
are in nice agreement with each other. Table 2 con- 
tains, together with other quantities, the measured 
anisotropy ~. The deviations of ~ from 7 are small, on 
the few percent level, which is in accord with the ex- 
pectations near a gaussian fixed point. 

The Higgs mass mHat was then obtained from an 
exponential fit to the connected zero momentum cor- 
relation functions of the operator (9). These values 
of the Higgs mass are listed together with mHa, in ta- 
ble 2. Using these results, the ratio TSR/mH= 
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Fig. 2. C,(n) and Ct(n/~) at (x, y) = (0.3912, 2.0) on a 183X 36 
lattice. 

1/NtmHa t shown in the table was ob ta ined  for var- 
ious 7 and Art. As expected,  we observe the ~-inde- 
pendence  o f  the rat io  at f ixed values o f  mr~as, dem- 
onstrat ing the internal  consistency o f  our  f inite 
t empera tu re  formula t ion  o f  the theory on aniso-  
t ropic  lattices. Consider ing f luctuat ions a round  the 
saddle poin t  in the large N l imit ,  one can ob ta in  the 
Higgs mass mH at t i c ( a ,  Nt) at given y. Fig. 3 shows 
these large N results for Tsa/mH. They are also seen 
to be a lmost  independen t  o f  the aniso t ropy ~. 

We have also collected in table 2 our  results for the 
expectat ion value o f  the mean  field ( M ) ,  the wave 
function renormal iza t ion  constant  Z, VRat and finally 
the rat io  TSR/Va, which have been de te rmined  f rom 
the Monte  Carlo da ta  by the methods  descr ibed 
above.  Once again the ~ independence  o f  the rat io at  
f ixed mHas in nicely born  out. Large N results for the 

rat io  Tsa/Va are also shown in fig. 3. The renormal-  
ized vacuum expectation value of  the field in the large 
N calculat ion is given by  v2=N(f lc( ( ,L t ) - f lc (oo))  
and we have set N = 4  ~l. Again, the rat io TsR/VR is 
a lmost  independen t  o f  the anisot ropy ~. The large N 
results, shown in fig. 3, agree quite well with the nu- 
merical  results at  N =  4 of  table 2. 

A remark  concerning the error  de te rmina t ion  for 
the quanti t ies  as ci ted in table 2 and a comment  on 
further possible systematic  errors may  be appropr i -  
ate here. As can be noted, the ratios TSR/mH and Tsa/ 
va exhibi t  sizable errors, as compared  to the rela- 
t ively small  and  purely statist ical  errors quoted for all 
the other  quanti t ies.  These errors are mainly  caused 
by the uncer ta in ty  o f  the finite tempera ture  crit ical x 
values ( table 1 ), which is turn lead to relat ively large 
errors for the zero tempera ture  values of  mrtat and 
VRa t to be used in the ratios. Also we have to expect 
zero tempera ture  finite volume correct ions to the 
quant i t ies  mHat and/)Rat used to construct  the rat ios 
as quoted  in table 2. As we ant ic ipate  the finite vol- 
ume correct ions to the quanti t ies  TSR/mH and TSR/ 
VR, quoted in table 2, to be significantly smaller  on 
our  lattices than the errors induced by the uncer- 
ta inty of  the crit ical points,  we refrained from a de- 
tai led zero tempera ture  finite size scaling analysis. 
Future  s imulat ions  yielding more  precise xc values 
will have to incorpora te  them. 

Our  da ta  for Tsa/mH as depic ted  in table 2 de- 
crease, as expected, very slowly as the Higgs mass 
mHas in units o f  as is increased.  Thus, depending  on 
the choice o f  value o f  the correlat ion length up to 

The normalization of ~ in ref. [10] differs by a factor x/~ 
( = 2 for N= 4) from the one used here. This causes a differ- 
ence of a factor 2 in the scale of fig. 2 there as compared to fig. 
3 in this paper. 

Table 2 
Main results from the numerical simulation of the finite temperature O (4) model on anisotropic lattices. 

Ns Nt 3' x ~ ( M) mHa, Z tuna, VRat TSR/mH TSR/UR 

18 18 1.0 0.3060 1.00(1) 0.1305(3) 0.280(3) 0.96(02) 0.280(04) 0.1040(14) 0.593(39) 1.60(10) 
18 18 1.0 0.3103 1.00(2) 0.2082(2) 0.428(3) 0.95(04) 0.428(07) 0.1682(37) 0.583(18) 1.485(64) 
18 27 1.5 0.3645 1.51(2) 0.1913(1) 0.285(5) 0.96(03) 0.433(09) 0.1110(20) 0.583(30) 1.500(76) 
18 36 2.0 0.3912 2.05(2) 0.1879(1) 0.212(1) 0.99(04) 0.436(06) 0.0832(15) 0.587(31) 1.501(91) 
18 27 1.5 0.3913 1.51(3) 0.3838(1) 0.615(3) 0.97(05) 0.934(18) 0.2292(65) 0.541(07) 1.454(52) 
18 36 2.0 0.4171 2.05(5) 0.3716(1) 0.457(5) 0.97(06) 0.937(25) 0.1719(61) 0.547(12) 1.453(66) 
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Fig. 3. Large N results for TsR/t~ and TsR/m H and funct ion of  
the anisotropy parameter  7. 

which an effective theory can be defined, one obtains 
a lower bound on the ratio TSR/mH. Just as in the 
case of  the determination of the upper bound to the 
Higgs mass it is expected, that this lower bound sat- 
urates for the theory under study, i.e. the 0 ( 4 )  model 
at infinite bare quartic coupling. From table 2 we es- 
timate this bound to be 0.58 + 0.02 for a correlation 
length of ~ 2, which further decreased by about 10% 
for a value of mHas--- 1. Our data for TSR/VR show an 
approximate constant behavior as maas is varied. The 
actual value is within the errors consistent with the 
value x/~, which is the prediction of one-loop renor- 
malized perturbation theory, though the data show 
some tendency to lie slightly above the perturbative 
value. 

It is interesting to compare our results for TSR/mH 
with the one-loop result as obtained in renormalized 
perturbation theory in the O (4) model. To this order 
the symmetry restoration temperature is given by [ 7 ] 

TSR ( 6 ~  '/2 
m----~ - \~-R,] ' (12) 

where gR is the renormalized quartic coupling of the 
model. Using previous high precision numerical de- 
terminations ofgR [ 13 ] as an input we draw in fig. 4 
our numerical results for TSR/mH (crosses) together 
with the one-loop prediction as indicated by the curve 
and by the triangles. Here we observe sizable devia- 

TSR/m H 

. 8  I I I I I I I 

. 7  

'6-- O ~  

.5 

. 4 - -  

. 2  . 4  .6 

i,, 

& 

% ,a 

I , I ~ I , I 
. 8  1 1 . 2  1 , 

mHa s 

Fig. 4. TsR/trt H as a function of  mHap The crosses denote our 
numerical results, circles and boxes come from the large N ex- 
pansion at various values of  Art with anisotropy parameter y= 1 
(circles) and y= 2 (boxes),  while the curve and triangles corre- 
spond to one-loop renormalized perturbation theory, eq. (12). 

tions when rnHas takes values ~ 1, indicating that 
higher order corrections are large at finite tempera- 
tures in a region of the model where the scalar corre- 
lation length is close to 1, see also ref. [ 14 ]. Including 
also results from the large N expansion in fig. 4, one 
also notices sizable deviations of  the large N results 
from our data, though the overall trend is reproduced. 

4. Conclusions 

Using anisotropic lattices we have studied the fi- 
nite temperature behavior of the O (4) theory in re- 
gions of the parameter space where the correlation 
length of a scalar particle is as low as ~ 1. Depending 
on the maximal value ofmHas, one is willing to admit 
for a sensible definition of the effective theory, a lower 
bound o n  T s R / m  H is derived. E.g. for a heavy Higgs 
particle which at a value of the cutoff mHas = 0.5 has 
a mass close to its triviality bound of about 650 GeV, 
we find TSR = 370 GeV. This value is close to the value 
predicted by renormalized perturbation theory 
TSR = V/~ Vweak with Vweak = 250 GeV and consistent 
with our finding that the ratio TSR/Z~ follows the per- 
turbative answer in the whole considered correlation 
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length interval. However, at correlation length 1 we 
start finding large deviations from one-loop pertur- 
bation theory for the quantity TsR/mn. Qualita- 
tively, the lowest order large N expansion seems to 
reproduce all the features of the Monte Carlo (MC) 
data well. Even quantitatively the results are consis- 
tent with the naive expectation that they should be 
accurate to O ( 1/N). In the large N expansion we were 
able to explore ~-independence of TsR/mH and TsR/ 
VR over larger ranges of ~ and for more values of Aft. 
This supports our belief that the early scaling evi- 
dence in the MC data even for Nt= 3 and 4 lattices is 
no fluke. But it would be interesting to check this by 
simulating the theory at more ~ and Art values. 
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