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Abstract 

In recent years, there has been a crisis of confidence in many empirical fields including 

psychology, regarding the reproducibility of scientific findings. Among several causes thought 

to have contributed to this situation, the inferential basis of traditional, or so-called frequentist 

statistics, is arguably chief among them. Of particular concern is null hypothesis significance 

testing (NHST), which inadvertently became the de facto basis of scientific inference in the 

frequentist paradigm. The objective of this paper is to describe some of the most prominent 

issues plaguing frequentist inference, including NHST. In addition, some Bayesian benefits are 

introduced to show that it offers solutions to several problems inherent in frequentist statistics. 

The overall aim is to provide a non-threatening, conceptual overview of these concerns. The 

hope is that this will facilitate greater awareness and understanding of the need to address these 

matters in empirical psychology. 
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1. Introduction 

In recent years, a crisis of confidence has emerged in psychology (Ioannidis, 2005; John, 

Loewenstein, & Prelec, 2012; Nosek & Bar-Anan, 2012; Nosek, Spies, & Motyl, 2012; Pashler 

& Wagenmakers, 2012; Simmons, Nelson, & Simonsohn, 2011). However, psychology is not 

unique in this sense, given that the veracity of scientific findings have been questioned in 

several fields of study (Begley & Ellis, 2012; Button et al., 2013; Osherovich, 2011). 

The problem is multifaceted with a number of factors contributing to reproducibility 

issues in empirical science. For instance, one issue is publication bottlenecks that result from 

too much research competing for space in too few outlets. Another is bias toward aesthetically 

pleasing findings and presentation over genuine concern for truth (Giner-Sorolla, 2012). 

HARKing, or “hypothesizing after the results are known” (Kerr, 1998), is one example where 

aesthetic concern over ‘truth’ has creeped into our science. This happens when findings are 

presented with a perfect fit between one’s hypothesis and results, however, the hypothesis was 

in fact, formulated or amended after seeing the data. One reason for this is the notion that being 

wrong has somehow become a weakness in scientific papers, which only obfuscates the work, 

and confuses readers (Giner-Sorolla, 2012). Indeed, a very small proportion of psychology 

papers report findings that disconfirm their initial hypotheses (Bones, 2012).   

In addition, there is the well-known file-drawer problem arising from journal-based bias 

toward novel findings, along with an unwillingness to publish null results (Ferguson & Heene, 

2012). Even high quality research yielding null results have tacitly been relegated to outlets 

created for this purpose, for example, PLOS Missing Pieces and the Journal of Articles in 

Support of the Null Hypothesis. While it is no doubt positive that such journals do exist, it 

underscores the fact that null results are not typically deemed suitable for publication in 

mainstream journals.   
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However, one of the most problematic practices that have likely contributed to the 

confidence crisis in psychology is the overreliance and misuse of null hypothesis significance 

testing (Szucs & Ioannides, 2017). This, despite substantial and prolonged criticism and calls 

for reform (Cohen, 1994; Halsey, Curran-Everett, Vowler, & Drummond, 2015; Johnson, 

2013; Nuzzo, 2014). A cursory inspection of empirical psychology journals reveal that classical 

(or so-called frequentist) statistics, and the practice of null hypothesis significance testing in 

particular, is still the default and dominant paradigm used for empirical research, and 

subsequent basis of scientific inference.  

Unfortunately, frequentist inference suffer from a number of weaknesses that are the 

cause of considerable issues in psychological science. The nature of these problems constitute 

strong reason to consider seriously these shortcomings and the potential of Bayesian inference 

to advance the way we do empirical research in psychology. The aim of this paper is not to 

‘convert’ frequentist researchers to Bayesians, but to discuss some of the most salient criticisms 

of the frequentist paradigm and to briefly point to some advantages of Bayesian inference (see 

also Dienes, 2008; 2011; Lambert, 2018; Wagenmakers, Lee, Lodewyckx, & Iverson, 2009; 

Wagenmakers et al., 2017).  

The goal is to facilitate conceptual understanding of the inherent problems of 

frequentist statistics, so that researchers get a better ‘feel’ for the reason to change our practice, 

rather than simply being told that they should. This paper in no way represents a comprehensive 

discussion of a large and at times obscure issue, but seeks to prime a recognition of the need to 

change our practice and to provide some guideposts in that direction. 

2. Null hypothesis significance testing 

Broadly speaking, in classical (or frequentist) based research, scientific inference proceeds by 

designing studies in which data are collected and corresponding probabilities (p-values) 

generated. These p-values are the conditional probabilities of obtaining the observed data or 
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more extreme data given the null hypothesis (H0).The p-values are compared to a set criterion 

(level of significance), which is used as a decision mechanism regarding hypotheses of interest. 

Typically, this entails rejecting the H0 when p < .05. Failure to reject the H0 occurs when the 

p-value is larger than the set threshold (p > .05). This p-value driven practice is known as null 

hypothesis significance testing (NHST). Although the use of p-values is essentially routine 

practice in psychological research, it is commonly misunderstood by students and researchers 

alike (Haller & Krauss, 2002; Oakes, 1986). The inferential basis of conclusions drawn from 

data following this routine procedure in the frequentist paradigm has been on the receiving end 

of substantial criticism for decades (Grigerenzer, 1998; 2004).  

According to Cohen (1994), the first book length treatment of this issue appeared as far 

back as 1957. By 1970 an edited book titled ‘The Significance Test Controversy’ was published 

in which NHST was again criticized across the board (Morrison & Henkel, 1970). In it, one of 

the authors, Paul Meehl, portrayed NHST as "a potent but sterile intellectual rake who leaves 

in his merry path a long train of ravished maidens but no viable scientific offspring" (p. 265). 

These legitimate criticisms have not subsided over the years and continues to this day. This is 

because the practice of NHST has continued largely unabated since then. The recent replication 

crisis (Pashler & Wagenmakers, 2012) in psychology again brought the issue to the fore.   

The subsequent 2015 Science article by the Open Science Collaboration, which 

reported results of a large-scale replication effort in psychology, provided empirical support of 

these long-standing criticisms. For the first time the magnitude of the problem was investigated 

empirically and could it now be quantified to some degree. In fairness, NHST is only one of 

several issues contributing to the reproducibility crisis. So, what then is the problem with 

NHST? This question is considered next, followed by a discussion of some additional 

frequentist problems. The paper concludes by presenting selected benefits of Bayesian 

inference as a viable alternative to frequentist inference. 
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2.1. Problems with NHST 

As already mentioned, NHST functions as a decision mechanism in frequentist statistics 

(Dienes, 2008) where we compare an obtained p-value to a set criterion (commonly .05 or .01). 

Conventionally, if the observed p > .05, we fail to reject a null hypothesis, and if p < .05 we 

reject the null hypothesis. This is the way researchers typically report results in journal articles 

and what we teach our students. However, failing to reject the null hypothesis does not 

constitute evidence for it, and neither does rejecting the null hypothesis (H0) necessarily mean 

we found evidence to support the alternative hypothesis (H1). The inferential decision 

procedure based on this routine and ‘mindless’ use of p-values lies at the heart of the issue 

(Dienes, 2008; Grigerenzer, 2004).  

2.2. p-values   

The problem with p-values is that they are highly susceptible to misinterpretation. Common 

misconceptions include the notion that a p-value reflects the probability that an observed result 

is due to sampling error or a chance effect; the probability that the null hypothesis is true based 

on the data; or the probability that the alternative hypothesis is true given the data (Kline, 2004).  

In addition, p-values are believed to reflect the magnitude of an effect, in the sense that small 

p-values are thought to reflect large effects and vice versa; rejection of the H0 is interpreted as 

confirmation of the H1; and failure to reject the H0 is considered evidence in support of it (Kline, 

2004). If none of the above represents a correct interpretation, what then is a p-value?  

A p-value is the conditional probability of encountering a test statistic as extreme, or 

more extreme than the one observed, assuming the null hypothesis is true. It takes the form  

p(D | H0) which is the probability (p) of the observed data (D) given ( | ) the null hypothesis 

(H0). Important to note is that a p-value is a conditional probability that takes the truth of the 

H0 as given. As such, no hypothesis is being tested. Neither the probability of the null p(H0 | 

D) or the probability of the alternative hypothesis  p(H1 | D) is being evaluated. The null is 
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considered true a priori, and what is expected under the alternative hypothesis is just not 

actually considered (Wagenmakers et al., 2017).  

At this point, a frequentist reader may object by arguing that when we design our 

studies, we are really trying to show evidence of some effect, which would typically be our 

alternative hypothesis. If our data suggest that we should reject the null (p < .05), surely we 

have then obtained evidence for the alternative hypothesis? Unfortunately, it does not follow 

logically that if the null hypothesis is extremely unlikely, that the alternative hypothesis must 

therefore be true. Consider the following syllogisms that Wagenmakers et al. (2017) use to 

demonstrate the error contained this view (see also Pollard & Richardson, 1987 and Rouder, 

Morey, Verhagen, Province, & Wagenmakers, 2016). 

Example A:   

(Premise)   If Tracy is an American then it is very unlikely that she is a US congresswoman; 

(Premise)   Tracy is a US congresswoman;        

(Conclusion)   It is very likely that Tracy is not an American.     

or  

Example B: 

(Premise)  If an individual is a man, he is unlikely to be the Pope;  

(Premise)  Francis is the Pope;  

(Conclusion)  Francis is probably not a man. 

 

In both examples, it should be clear that despite the probability of the hypothesis being very 

unlikely, it clearly would make no sense to infer the opposite when the unlikely event is 

realized. To the contrary, it is impossible to become a congresswoman if one is not an 

American, or to become Pope if one is female (Pollard & Richardson, 1987).  
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These syllogisms would however, be valid forms of propositional logic, specifically 

modus tollens arguments, if the terms related to likelihood (i.e., unlikely, very likely, probably) 

were removed. Modus tollens is a well-known valid form of deductive reasoning. The problem 

is that the conclusion in a deductive argument is only valid when the premises are completely 

true (Manktelow, 2012). Unfortunately, neither human reasoning nor scientific inquiry 

proceeds on the basis of deductive reasoning. Rather, it is probabilistic and inductive (Chater 

& Oaksford, 2008; Manktelow, 2012). The unfortunate irony is that this erroneous form of 

reasoning became conventional practice and the basis of scientific inference in frequentist 

statistics. NHST-based inference using p-values takes exactly the same form as these syllogistic 

arguments (Pollard & Richardson, 1987; Rouder et al., 2016). Expressed as a syllogism, NHST 

takes this form: 

(Premise)  If the H0 is true, then is it very unlikely that I will observe result X 

(Premise)  I observe result X 

(Conclusion)  Therefore, it is very likely that the H0 is not true 

While this may not immediately strike one as problematic, examples A and B above show the 

error contained in this form of reasoning. Importantly, these syllogisms show that it is possible 

for the observed data to be extreme under both the null and the alternative hypotheses at the 

same time. In fact, the data can simultaneously be extreme under the null hypothesis, and 

impossible under the alternative hypothesis (Szucs & Ioannidis, 2017).  

 Another inferential error of NHST occurs when we infer one conditional probability 

from knowing its inverse, because, we believe it to be the same thing. For instance, in NHST 

we compute the conditional probability of the observed data under the null hypothesis. When 

this probability is sufficiently small (i.e., p < .05), we reject the null hypothesis. Thus we are 

interpreting this result as its inverse, as the probability of the null hypothesis given the observed 

data p(H0 | D). However, the null hypothesis cannot be rejected, because it is assumed to be 
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true. At best, we can conclude that the data is very unlikely under the null hypothesis. The 

probability of the data given the null hypothesis is not the same as the probability of the null 

hypothesis given the data p(D | H0) ≠  p(H0 | D). Dienes (2008) clearly illustrates the problem 

that arises when one infers a conditional probability from its inverse as follows:  

The probability of being dead given that a shark has bitten one’s head clean off, p(dead | 

head bitten clean off by shark), is 1. But the probability that a shark has bitten one’s head 

clean off given that one is dead, p(head bitten clean off by shark | dead), is very close to 

zero. Most people die of other causes. (p. 276)  

This example shows how problematic it is to equate the probability of the observed data given 

that the null hypothesis is true p(D | H0), with the probability that the null hypothesis is true 

given the observed data  p(H0) | D). The probability of the latter p(H0 | D) is never considered 

in the frequentist paradigm. Accordingly, one cannot make pronouncements regarding the 

likelihood of the null hypothesis in the frequentist approach. Such an inference, can however, 

be made in the Bayesian framework (see section on Bayesian inference below).  

Indeed, the logic of p-values is convoluted, in the sense that we really want to show the 

existence of some effect (H1), so we postulate that there is no effect (H0 = 0), hoping that the 

data will show that this cannot be the case (H0 = rejected because p < .05), so that we can then 

infer that the effect we are interested in must therefore exist (H1 = True). Not only is the 

inferential process tortured, it is not logically coherent, as we saw above. 

A further irony is that despite the ubiquity of NHST in many fields, including 

psychology, it fails to provide the information that researchers presumably seek. Wagenmakers 

(2007) argues that researchers are not actually interested in knowing the probability of 

encountering a statistic as extreme or more than the one observed, given that the null hypothesis 

is true (i.e., the information obtained from NHST). What they really want to know is how much 

evidence the observed data provides for one hypothesis relative to another hypothesis. 
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So how did NHST using p-values as a decision procedure come about? Over time the 

evidential notion of p-values as conceptualized by Sir Ronald Fisher, along with Jersey 

Neyman and Egon Pearson’s decision procedure for managing Type I and II error rates (α, β; 

also introducing the concepts of power and H1), somehow became conflated (Szucs & 

Ioannides, 2017). However, these ideas are to a large degree, incompatible (see Hubbard & 

Bayarri, 2003 for more detail on this issue). The inadvertent merger of these two different 

procedures eventually became a fait accompli. This outcome has been lamented by many 

commentators (Hubbard & Bayarri, 2003; Christensen, 2005; Gigerenzer, 1993, 1998, 2004; 

Grigerenzer Krauss, & Vitouch, 2004), arguing that the existing approach has essentially 

become meaningless in applied research (Wagenmakers, Lee et al., 2009). 

3. Further issues with frequentist inference 

In frequentist statistics, evidence is not quantified. According to Wagenmakers, Lee et al. 

(2009), Fisher himself was of the opinion that p-values constitute evidence against the null 

hypothesis. However, this would require that p-values should at minimum conform to the 

requirement of consistency when used to evaluate evidence. This would necessitate a p-value 

of say, .05 to reflect the same amount of evidence in a sample with 12 observations and in a 

sample with 1200 observations. Unfortunately, it does not. Despite considerable debates 

regarding the evidential load of p-values in different sample sizes it turns out that a p-value of 

.05 actually reflect more evidence for some effect in a small sample than in a large sample 

(Wagenmakers, Lee et al., 2009). However, this does not mean that a statistically significant 

effect observed in a small sample will be robust. This is another common misinterpretation of 

NHST. In fact, it is much more likely that an effect will be overestimated in small samples 

compared to large samples due to increased measurement error. This is an error which Loken 

and Gelman (2017) refers to as the “what does not kill statistical significance makes it stronger” 

fallacy (p. 584).    
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A further underappreciated, but critical issue, is the fact that frequentist inference 

depends on the subjective intentions of the researcher. This refers to the fact that the sampling 

intentions of the researcher is a critical determinant of the final p-value upon which conclusions 

will be drawn. For example, different stopping intentions in the data collection process can 

yield different p-values for exactly the same data. Berger and Wolpert’s classic story involving 

a frequentist statistician and a naïve scientist (1988, p. 30-33) makes the bizarre consequences 

of this practice evident. The story is repeated here in full to retain its impact:   

The naïve scientist has obtained 100 independent observations that are assumed to 

originate from a normal distribution with mean θ and standard deviation 1. In order to 

test the null hypothesis that θ = 0, the scientist consults a frequentist statistician. The 

mean of the observations is 0.2, and hence the p-value is a little smaller than .05, which 

leads to a rejection of the null hypothesis. However, the statistician decides to probe 

deeper into the problem and asks the scientist what he would have done in the fictional 

case that the experiment had not yielded a significant result after 100 observations. The 

scientist replies that he would have collected another 100 observations. Thus, it may be 

hypothesized that the implicit sampling plan was not to collect 100 observation and 

stop; instead, the implicit sampling plan was to first take 100 observations and check 

whether p < .05. When the check is successful, the experiment stops, but when the check 

fails, another 100 observations are collected and added to the first 100, after which the 

experiment stops. The statistician then succeeds in convincing the scientist that use of 

the implicit sampling plan requires a correction in order to keep the Type I error rate at 

p = .05. Unfortunately, this correction for planning multiple tests now leads to a p-value 

that is no longer significant. Therefore, the puzzled scientist is forced to continue the 

experiment and collect an additional 100 observations. Note that the interpretation of 

the data (i.e., significant or not significant), depends on what the scientist was planning 
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to do in a situation that did not actually occur. If the very same data had been collected 

by a scientist who had answered the statistician's question by saying, whether truthfully 

or not, “I would not have collected any more observations", then the data would have 

been judged to be significant. Same data, different inference. But the story becomes 

even more peculiar. Assume that the scientist collects the next 100 observations, and 

sets up another meeting with the statistician. The data are now significant. The 

statistician, however, persists and asks what the scientist would have done in case the 

experiment had not yielded a significant result after 200 observations. Suppose that the 

scientist now answers: This would have depended on the status of my grant renewal; If 

my grant is renewed, I would have had enough funds to test another 100 observations. 

If my grant is not renewed, I would have had to stop the experiment. Not that this 

matters, of course, because the data were significant anyway". The frequentist 

statistician then explains that the inference depends on the grant renewal; if the grant is 

not renewed, the sampling plan stands and no correction is necessary. But if the grant 

is renewed, the scientist could have collected more data, in the fictional case that the 

data would not have been significant after 200 observations. This calls for a correction 

for planning multiple tests, similar to the first one. The story concludes with the scientist 

resolving to never again share with the statistician the options he considers under 

different conditions.  

In addition to exact researcher intentions, this story also shows how p-values are dependent on 

unobserved data and decisions that were never made. This refers to the fact that p-values are 

affected by data that were never observed (i.e., the hypothetical sampling distribution). This 

however, is argued to be a violation of the conditionality principle that statistical conclusions 

should only be based on actual observed data (see Wagenmakers 2007 and Berger & Wolpert, 

1988 for detailed discussions of the issue).  
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Arguably, the most troubling aspect of NHST, is the fact that a statistically significant 

result can always be obtained (whether .05 or .01). This can be achieved by continually 

calculating p-values as the data comes in and stopping as soon as it drops below the set 

significance level. In frequentist statistics, this is guaranteed to happen eventually, even if the 

null hypothesis is known to be true (Armitage, McPherson & Rowe, 1969; Dienes, 2011; 2016; 

Meehl, 1990; Wagenmakers 2007). Not only will 5% of findings be statistically significant in 

the long run when the H0 is true (Szucs & Ioannides, 2017), the probability of false positives is 

further compounded by so-called researcher degrees of freedom.  

This refers to a researcher’s decision flexibility during a study. Researchers have 

substantial discretion regarding the hypotheses to be tested, the design of the study, the analyses 

conducted and the reporting of results, which can each have a substantial and untoward 

influence on the final p-value obtained (Simmons et al., 2011). Although researcher degrees of 

freedom is something that has to be dealt with in any statistical paradigm, in NHST the problem 

has culminated in so-called p-hacking (Ioannides, 2005). This refers to the opportunistic use of 

researcher degrees of freedom in an effort to obtain statistically significant results, since non-

significant results are unlikely to get published in peer-reviewed journals (Simmons et al., 

2011). Common examples include the decision to run some additional participants when faced 

with a non-significant result, or making use of multiple comparisons that were never part of 

the initial analysis plan. There are a myriad of such seemingly benign decisions which greatly 

inflate the chance of finding false positive results (Wicherts et al. 2016). While pre-registration 

have in recent years gained much traction as a mechanism to reduce the adverse effect of 

researcher degrees of freedom, by making a clear distinction between exploratory and 

confirmatory research (Wagenmakers, Wetsels, Borsboom, Van der Maas & Kievit, 2012), it 

remains a widespread problem. Fortunately, many journals have now implemented compulsory 

pre-registration practices for confirmatory research and the list is growing (Wicherts et al. 
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2016). In the next section we consider Bayesian inference, an alternative paradigm that 

provides solutions to several of the issues plaguing frequentist statistics. 

4. Bayesian inference 

Bayesian inference is described only insofar as it enables discussion of selected Bayesian 

benefits over some frequentist problems highlighted above. The objective here is not to provide 

a comprehensive introduction to Bayesian statistics, or to fully explicate it (for more 

comprehensive treatments of Bayesian inference see e.g., Bernardo & Smith, 1994; Jaynes, 

2003; Jeffreys, 1961; Lambert, 2018). Rather, the goal is to draw attention to some of the 

solutions that Bayesian statistics provide to several of the issues in NHST that impedes proper 

scientific inference.   

First, it is important to note that there is an important philosophical distinction between 

Bayesian and frequentist statistics. According to Dienes (2008) Bayesian statistics uses 

probability to quantify uncertainty, or degree of belief. Thus, in the Bayesian paradigm, 

probability distributions are used to represent states of belief. This requires the use of priors. 

Priors are probability distributions used to represent what we believe or know about some state 

of the world before we observe the data. They are explicitly modeled in Bayesian statistics. 

Although the subjective nature of priors are criticized by frequentists, Bayesians point out there 

is subjectivity present in all analyses. In fact, it is considered a strength that subjectivity is made 

explicit in Bayesian analysis (Lambert, 2018), and that existing knowledge is formally 

incorporated into new conclusions (Nuzzo, 2014).  

These prior beliefs are then updated via the likelihood to a posterior set of beliefs. 

Simply stated, it is the degree to which we should change our prior beliefs in the face of the 

present data (likelihood), to a new and updated set of beliefs (posterior distribution). Bayes’ 

rule provides an optimal way with which to update prior beliefs in the face of evidence or 
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observed data. Accordingly, “Bayes' rule states that the posterior distribution is proportional to 

the product of the prior and the likelihood” (Wagenmakers, Lee et al., 2009, p. 10). 

This stands in contrast to the frequentist assumption of probability as long-run 

frequency. In this paradigm, probability is used to inform us about the relative frequency of an 

event over the long run, that is, how often something is expected to happen in an infinite series 

of exact replications. When, for example, we want to examine the relationship between two 

variables, X and Y, by computing a correlation coefficient in frequentist statistics, we are in 

effect asking “assuming the null hypothesis that r = 0, what is the probability of obtaining our 

observed effect, or one that is even more extreme?  

For frequentists, uncertainty resides in the hypothetical sampling distribution with the 

population parameter(s) being fixed (Zepher & Oswald, 2015). In this case, that the correlation 

is zero. In contrast, in the Bayesian paradigm probability is directed to the parameter(s) of 

interest, where uncertainty about the parameter is quantified by a range of probabilistic values 

based on actual observed data (Zepher & Oswald, 2015). Thus, in frequentist statistics, the 

parameters are fixed (null hypothesis assumed true) and the data considered variable (one 

sample from a hypothetically infinite sample possibilities), whereas, in Bayesian statistics, the 

parameters are variable and the data is considered constant or fixed (Zepher & Oswald, 2015).  

5. Advantages of Bayesian inference 

Arguably, one of the most useful features of Bayesian statistics is the ability to quantify 

evidence. For instance, the Bayesian answer to the fact that evidence is not quantified in 

frequentist statistics is the Bayes factor, “the primary tool used in Bayesian inference for 

hypothesis testing and model selection” (Berger, 2006, p. 378). Bayes factors quantify evidence 

from observed data on a continuous scale for and against the null and alternative hypothesis 

(Wagenmakers et al. 2017). Bayes factors indicate the degree to which the data supports the 
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null hypothesis, the alternative hypothesis, or neither hypothesis (Berger, 2006; see also 

Wagenmakers, Love et al. 2018 for suggested Bayes factor interpretation guidelines). 

In contrast to NHST where no hypothesis is directly being tested because the null is 

assumed to be true, Bayes factors provide direct support for each hypothesis under 

consideration. Importantly, this includes the null hypothesis. For example, the Bayes factor 

could show that the H0 is 5 times more likely than the H1 under the present data, or that the 

data is 14 times more likely under the H1 than under the H0, or that the data is insensitive and 

does not provide clear evidence in support of either hypothesis (Dienes, 2016). Notice, the 

probability of both the H0 and the H1 is explicitly being evaluated. Thus, we are not asking 

about the likelihood of getting the data we did while accepting the truth of the null  p(data | 

H0), we are asking how much evidence the present data provides for one hypothesis relative to 

another hypothesis or  p(H0 | data) vs  p(H1 | data). We might also want to quantify the 

confidence in parameters. For instance, we could determine how much more likely one 

parameter estimate is over another, say .25 over .35, using the Savage Dickey density ratio 

(Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2009). We could also determine the 

posterior probability of a certain parameter value, or determine which parameter values the 

data and priors make 95% probable, in a similar sense as the frequentist confidence interval. 

Although Bayesian credible intervals are somewhat similar to well-known confidence 

intervals used in frequentist statistics, it is important to note that there is a critical conceptual 

difference between them. As a reminder, in frequentist statistics, a 95% confidence interval for 

an estimated parameter refers to an interval that in the case of repeated sampling will have a 

95% probability of containing the true value of the population parameter (for a detailed 

discussion see Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016).  As such, it is not 

possible to know if a true value falls within the 95% confidence interval of any given sample 

in the frequentist paradigm. In contrast, one can directly determine the 95% probability of a 
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true value falling in a Bayesian credible interval (Morey et al., 2016). Thus, Bayesian inference 

using credible intervals tells us what we want to know, but cannot know when using frequentist 

confidence intervals.  

Another important benefit of Bayesian statistics is that evidence can be continually 

computed and updated as the data comes in. This is possible because all inferences in Bayesian 

statistics are based on actual observed data (Wagenmakers et al., 2017) This is a major 

advantage of Bayesian over frequentist methods because inference is not dependent on data 

that was never observed (e.g., hypothetical sampling distribution), or the exact intentions with 

which data was collected (Dienes, 2008). 

Lastly, Wagenmakers et al. (2017) note that in contrast to frequentist statistics, 

Bayesian inference is logically coherent and internally consistent. Thus, none of the 

consistency and coherence issues plaguing frequentist statistics are present in the Bayesian 

paradigm. This is guaranteed because Bayesian inference conforms to the axioms of probability 

theory, which is argued to be the cornerstone of Bayesian statistics (Lindley, 1985, 2000, 2006). 

6. Conclusion 

Some of the most problematic and pervasive problems afflicting scientific inference using 

frequentist statistics were described in this paper. It should, hopefully, be evident how the 

inferential shortcomings of frequentist statistics could contribute to reproducibility challenges 

in psychology. In addition, it becomes apparent that the choices we make as methodologists 

and substantive researchers is a critical determinant of this process. For researchers wishing to 

do meaningful and robust work, these issues are unavoidable. Moreover, if we want our 

scientific efforts to be, and remain credible, we will also have to address them explicitly in our 

teaching. The selection of frequentist problems described in this paper was by no means 

exhaustive and only selected Bayesian benefits were described. Readers are encouraged to 
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peruse the references for work that offers comprehensive and technically detailed treatments 

of the points raised in this paper. 
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