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Abstract

This paper analyzes how to determine the viriaffaments B and C of real gases by
using a theoretical device whose pressures andti@snsscillate in chaotic regime. The
device is formed by a valve, a pressure controléerpressure probe and a gas
accumulator, for which the thermodynamic model basn derived from the force-
mass-energy balances. This model allows keepingjdlsetemperature almost constant
with chaotic oscillations in the inlet to the acaulator. The chaotic data are used to
obtain variability in the pressures and densigesthat they can be used as experimental
values from which the virial coefficients are esdted. For this purpose, several cubic
and high precision equations of state for polar aad-polar gases and mixtures are
used. In particular, the virial coefficient B forydair is estimated by using high
precision state equations, whereas, the virialfmefts B and C are also estimated for
guantum gases (He4, He3,HD,, Ne) by using several modified cubic equations of
state at moderate and high pressures. Furtherther&alues for the virial coefficient B
obtained from numerical simulations are used tanege the intermolecular potential
and the radial distribution function. The results en good agreement with the currently
known experimental data for virial coefficients figbed in the literature.

Keywords: Pressure control, virial coefficients, chaoticitbgttons, equations of state,
quantum gases.
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1 Introduction

In industrial applications, the design of contralves for gases is a well known
topic that has been addressed in technical catesognd books [1-3]. However, despite
the great amount of information and expertise atéel in the field, this knowledge has
been little used in the study of the thermodynarprogperties of real gases at moderate
and high pressures. In addition, the applicationcbéotic behavior to study the
thermodynamic properties of real gases by usingcdswvith control valves is an in
interesting field of research which, however, had been fully explored. In this
context, the aim of the present work relies on gigntheoretical device for pressure
control oscillating in chaotic regime to estimake tvirial coefficients and the radial

distribution function of several real gases botmatlerate and high pressures.

The theoretical device addressed in this papeonsidd by a Pl controller, a
control valve, a pressure probe, connection pip®bk an accumulation vessel, and it
aims to obtain chaotic oscillations in the pressame density while maintaining an
almost constant temperature at the inlet to theselesThe model of the device is
obtained from the balance equations of forces (obrtlve) and mass-energy (vessel
and connection pipes) in a similar way as that icemed in Ref [4], whereas the
pressure probe is modeled assuming a nonlineafofider system. The values of the
system parameters have been chosen taking intairicttise of real devices, whereas
the ranges for the proportional constant and teetrigme of the PI controller have been
chosen from the technical sheets of Design Instntir8eries [5].

In the control valve, the inlet gas flow rate is@®ed to be isentropic and it is
calculated from cubic and high precision state 8qna [6-9]. Moreover, the device has
been designed so that the control valve affectegédhermal subsystem (formed by the
vessel accumulator and pipes) but the thermal stérsyhas no influence on the control
valve. The purpose of this layout is to obtain decuate volume of the accumulation
vessel so that the temperature of the gas contawithoh it is almost constant and equal
to the temperature of the gas at the vessel ifites leads to a device which operates at
an almost constant temperature but with the pdagilmf varying chaotically the
pressure and density of the gas at the inlet oféssel due to the plug movement of the

nonlinear control valve. The main advantage of tl@sgice is that it does not require an



additional system to maintain the gas temperatanstant, thus providing a procedure
to study the virial coefficients which is simpléran others previously published in the
literature [10-11].

On the other hand, it is well known that a possibute to obtain chaotic
oscillations may be to obtain a self-oscillatingh&eor superposed to another
oscillating one associated to the harmonic vamatba system parameter [12-13]. In
this sense, the self-oscillating behavior in ourdeichas been determined by imposing
that the characteristic polynomial correspondinghe linear part of the mechanical
subsystem has two purely imaginary roots [14] aad/mg harmonically the pressure
probe time constant.

The proposed device is applied to estimate thealgtithe second and third
virial coefficients (B and C) for the methane usiggneralized cubic state equations
[15] as well as the second virial coefficient faw cir considering it as a mixture of
nitrogen (78.1 %), oxygen (20.95 %), argon (0.92ag carbon dioxide (0.03 %). For
this purpose, the intermolecular Lennard—-Jonesngiateand a high precision state
equation for non-polar (nitrogen, oxygen, argonpoa dioxide) and polar (ammonia)
gases is incorporated to the model by consideriagalle specific heats with the
pressure and temperature. The model can be usé¢eniperatures and pressures above
the critical point as well as for temperatures belte critical temperature. For the
latter, the pressure oscillations must be smaltemn tthe corresponding saturation
pressure at the considered temperature.

Our model is also applied to quantum gases (He8, H,, D,, Ne) substituting
the critical temperature and pressure by the cpomeding effective critical values [16]
in the cubic equations of state of Peng-Robinson[PR18] and Soave-Rechling-
Kwong SRK [18], [19]. This allows to verify that is possible to reproduce very
accurately the experimental values of the secondl\oefficient and also the third
virial coefficient in certain temperature rangesthbat moderate and high pressures.
Other cubic equations such as the ones of Soav2027], Peng-Robinson with
translated volume PRT and Van-der-wals with traedglavolume VDWT [6] are also
considered, verifying that in these cases the apmation of the virial coefficients is

less accurate at low temperatures. Finally, théakatistribution function in the first-



order approximation is estimated by using an intdecular potential of Mie type [16]
together with the data for the pressures, volunmes tamperatures (P,V,T) obtained

from the chaotic simulations.
2 Thermodynamic model of the device
Figure 1 shows the layout of the considered devicevhich the accumulation

vessel has a sufficiently large volume so thatdheunt of gas in the pipes can be

neglected and the pressures are assumed to ramge fioars up to 100 bars.
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Fig. 1 Schematic layout of the theoretical device, whintlides a Pl controller, connection pipes, the gas
accumulation vessel, the input and output linesthadused nomenclature for the dynamical variables.

A probe which provides the output pressure of thetrol valve and expels gas
out of the device towards the vessel is conneabethé latter through a T-shaped
connection. It should be pointed out that this dedonstitutes a simplification of a real



device used for air pressure control built at theiversity of Alicante. Next, the
equations of the mathematical model including btte mechanical and thermal

subsystems shall be defined.

i) Model of the control valve plus the control syst

The equations of the mechanical subsystem incluthiagcontrol valve and the

PI1 controller are given by [1-5], [10-11]:

B =y

dt
() - e, (1) 200 (rk[R-ROT-2X(3x()

IPYIT
x(t) =kyx () +hx(d

wheres is a damping coefficient (0 &< 1), w, is the undamped frequency (rad/s) and

x (), % (t) andx(t) are intermediate variables related to the dimeness

displacement of the valwgt) (ranging between 0 for a completely closed valve &n

for a completely open valve), whose units are iatid in table 1. Furthermore, the term
K, [PS - F;(t)] takes into account the pressure probe, bBythe desired pressure and
P,(t) the measured pressure (see Fig 1). On the othed, the nonlinear term

X (t) x,(t) takes into account nonlinearities associated éortieasurement process,

KL (see table 1) is a constant that will be of gnesgortance in the analysis of the self-
oscillating behavior and is the reset time (integral action of the PI colterd. Finally,
the parameterisy andb; depend on the proportional and the integral consifithe Pl
controller. The key aspect of this model is that Knowing P,(t) and the initial

conditions forx, (t), x,(t) andx(t) it is possible to calculate the dimensionless &alv

positionx(t) by solving Eqgs (1), as it shall be discussed next.
i) Flow rate in the control valve

The model for the flow rate relies on the assunmptd isentropic flow for an

ideal gas [4]. The flow rat@,(t) (m%/s) is defined as:
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where¢ is the so called expansion coefficie@¥, is the valve discharge coefficient
ranging between 0.68 and 0, is a characteristic area of the valve (if) mnd Ty is
the inlet gas temperature in K. Besides; ¢,(T)/c(T) beingcy(T) andc,(T) the specific
heats at constant pressure and volume respec{wiigh depend on the temperature),
R is the specific constant of a given gBsandP,(t) are the input and output pressures
respectively andP, is the pressure from which whég(t) = P¢, the flow is choked, i.e.

the gas mass flow Gy(t) = Qat)p2(t) (kg/s) remains constant for
PysrB=PR,< (2/ k+ 1)"/k_1 R. For example, for air at low pressure whose beiravi
can be regarded as ideal, it is verified that 1.4 andP,, < 0.528R. This means that if

the downstream pressure is bel®b28-R then the gas velocity is sonic and the
pressureP,(t) has no influence on the mass flow of the gas.Heamore, it is assumed
that the values of the plug positig(t) andf[x(t)] are given by:

FLx(t)]=x()=hx()+ Bx(} @3)

For non-ideal gases, the corresponding state eou#tiubic or high precision state

equations) must be considered in Eq (2).
iii) Model of the pressure probe

The output pressurié,(t) of the control valve is assumed to fulfill the fioear

differential equation given by:



+R(1) = K,Q (1) 4)

whereT, is a time constant arit,, (N/nf)/(m’/s) is a parameter which will be regarded
either as constant or time-dependent, as it skeallifcussed later. It should be remarked
that Egs (1)-(4) provide the mathematical modethef control valve together with the

P1 controller taking into account the gas flow rai¢he control valve given in Eq (2).
iv) Model of the thermal subsystem

Taking into account the scheme of Fig 1 and assgithiat the gas density in the
output pipe is equal to the gas density within wlkssel, the following mass balance
equation can be written:

do(t) _ () =Q (1) py(t
vog ey a(y {i%: Qf()t)’;ES ©)

whereV is the vessel volume(t) is the gas density (kgAnwithin the vessel and&(t)

and nﬁg(t) (kg/s) are the mass flow rates in the input anghutupipes respectively. On

the other hand, assuming that the heat losseseivabsel and the heat stored in the
vessel walls are both negligible, the energy baasquation for the vessel gas can be

written as:

d[,o

O)- g 1-0(} 1) ©

wherec, and ¢, (J/kg-K) are the gas specific heats at constahnw® and pressure
respectively. By expanding the derivative of Eqd6yl substituting Eq (5) into Eq (6) it
is deduced that:

aT(9) (05, ¢ _ o y7-20 QT

dt veo(t) -° Veo( 1)
Besides Egs (5) and (7), it is necessary to talkeantount the following mass balance
(see Fig 1):

(¢-¢) (7)



&(0) = () +a()=0,(3 Q(I=2.() Q(}+o(} A} (8)

where the densitiesy(t) andp(t) are calculated from the state equation of theagas
Qq(t) is the gas flow rate of the vessel, which is rdgdras positive when the gas enters
the vessel (see Fig 1) and negative when the gasdehe vessel. Such gas flow rate is

modeled as:

_ | KayR ()= P(1) if B(9> P(Y
O PR 1R(9> RS ®

where Ky represents a discharge coefficient. Eqgs (5)-(9) tdores the thermal
subsystem equations [4], for which the parametkregaand units are indicated in table
1.

3 Self-oscillating and chaotic behavior to obtainhte virial coefficients

In this section we shall study how to obtain te-sscillating behavior and how
can it be transformed into a chaotic dynamic byway harmonically the time constant
T, of the pressure probe (see Eq (4)). Once the chhehiavior has been obtained, it
will be analyzed how to determine the second amdl thirial coefficients by using
cubic equations of state (see the Appendix). Fisrhrpose, the system equations are

first rewritten by introducing the following new rrables:

(10)

(1) =x()=% ; %(0=x(d-%=%) ; %)=} %= o}
R()=R()-R 5 X()=xd-x=0x}+ bX(} ; *= bx

wherexie, %o X3e and X denote the equilibrium point of the system, whiglobtained
by equating the derivatives of Eq (1) and (5) toozérhe system equations can be

expressed in terms of the variables defined in EQs 4s:
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where Q,(t) is defined by Egs (2) where§sandf are the nonlinear functions which
respectively relate the density and the pressutie the other state variables according
to the equation of state.

Egs (11) describe the dynamic behavior of the aystgmed by the control
valve (the first four equations) and the accumatatvessel (the last two equations).
From a conceptual point of view, the device workshe following way: From the first
four equations it determines the pressus@) Rt the output of the control valve by
setting a temperaturey,Ta pressure {Pat the input of the device and a set pressyre P
Then with the values of;R), Tp and the equation of state, the dengiy) at the output
of the control valve is determined.

The density and temperature in the vessel are latdécuwith the last two Eqgs
of (11), and the pressure is calculated throughetieation of state. Since we want to
determine the virial coefficients B and C at theaperature §, the temperature of the
gas in the vessel must be kept close §oThis is achieved by increasing the vessel
volume, which leads to approximately constant valfmr p(t) and T(t) since both
dp(t)/dt and dT(t)/dt are approximately zero in acemrce with Eqs (11).



TABLE 1 DEFINITION OF VARIABLES AND PARAMETER

Variable

Py
Ps
Pa(t)
p2(t)
To
T(®
p(t)
P(t)
T
KL

va
Atm

OTm

VALUES
Description Value
Input pressure (N/fn 2-10t0 8-16
Pressure set point (Nfjin <P
Pressure in the control valve (N\Jm 1-16 to 10-16
Density in the control valve (kgfn 1to 15
Inlet gas temperature (K) 2.6-900
Gas temperature in the vessel (K) 2.6-900
Gas density in the vessel (kgjm 0.9to 14
Pressure in the vessel (NJm < Py(t)
Integral time of the PI controller (min) 0-900
Constant of nonlinear term (1/riA°) 8-10°to 8
Transmitter constant (mA/NAnN 3-10°t0 3.2:10
Vessel volume () 0.001-1
Natural frequency of the control valve (rad/s) 0.69
Damping coefficient of the control valve ®<< 1 (0.26)
Force constant (F(t) =dp(t)) (N/mA) 0.3125

Parameter of the valve plug position (1/m#-s0.01 to 10
Parameter of the valve plug velocity (1/mA-s < by/10

Time constant of the pressure probe (s) 5-10
Fixed value of the time constant (s)
Amplitude of the harmonic disturbance (s) & T

Frequency of the harmonic disturbance (rad/s) (®8-1
Constant of the pressure probe (Rifm¥s) 210" to 4- 10

Coefficient of the control valve 0.75

Control valve area (M 4.10°

Control valve expansion factor ~0.98
Dimensionless control valve displacement <L) <1
Inlet gas flow rate (ris) 5-10 to 2.5-10
Gas flow rate to the vessel {is) < Q1)

Outlet gas flow rate to the atmospheré/gn

Constant of the flow rateQ) (m*s)/(N/nf)°*  5.10°to 1-10
State variable (mA®s

Equilibrium point of the state variable(®

State variable (MA?s

State variable (MmA-s)

Specific heat at constant pressure (J/mol)

Specific heat at constant volume (J/mol)

Polytropic coefficient

10



3.1 Analysis of self-oscillating behavior

From Eqgs (16) it is clear that the equations ofwlilee, controller and pressure

probe defined by the variablesx (t),%(t),%(t) andB({) influence on

p(t) andT (t), but the dynamics of the mechanical subsystemdepiendent from the

thermal subsystem. Therefore, the linear part of niexhanical subsystem can be
obtained by taking the linear terms of the Taylaiesearound the equilibrium point,

which can be written as:

(1) 0o 1 0 01[x(t)
223 | ¢ —232 —Z;wn —Et 223 R A
B(1)] [bA BA 0 B B(}
where the coefficientd; andB; are defined as follows:
[ (059, R(9) =S K

The characteristic polynomial of Eq (12) is given by:

Ps@E) sl- A= §+ ad+ a%+ as a

a,=20w,~ B ; az=aﬁ+%>§e-25wn8 , 8= QAK—(C«#% %ej B g= b Ak

(14)

On the other hand, assuming that the coefficientsthe characteristic
polynomial given by Egs (14) are positive -ee> 0 (i=0,1,2,3), a necessary condition

for self-oscillation is [14]:

2,8,-8 ) _ 15
( y jal %3, (15)

11



Under the self-oscillation condition of Eq (15), ttiearacteristic polynomial of Eq (12)

can be rewritten as:

S0 At ) ol IR e ey R

To ensure that the rooss4 of Eq (16) are complex conjugate with negative peat,

the following additional condition must be fulfile
a; <4(a,-a/a)=> a<4a/ 3 (17)

Consequently, as per Egs (14)-(17) it is possiblechioose a value for the
parameteiKy, to obtain of a pair of purely imaginary roots (®s,  in Eq (16)) that

lead to self-oscillating behavior, as it will beatyzed later.

Next we are to consider how to estimate the viciafficients by resolving
numerically Eqgs (11) with the self-oscillation catmoins given by Eqgs (15) and (17)

assuming a cubic state equation, which in genegliarm can be written as [15]:

_Pv_ v _[O(T)/RT] 1)
RT v-b (v-b)(V+dv+e)

(18)

where®(T), , 01 ande depend on the particular cubic state equationishednsidered.
A summary of several cubic state equations cambed in Refs [6-7,15]. For example,

considering the SRK state equation we have that:

_ RT _aa(T,)

P=
v-b v(v+b

; O(T)=ax(T) (19)

12



where the values &, b anda(T;) are given in the Appendix. It should be recallealt t
the specific heats at constant volume and pregsui@ndc, respectively) in Eqs (11)
must be calculated assuming a non-ideal gas bahaeoby using the relations:

o()=R-6[T(}] ; ¢[TMI]= &+ AT )+ AT()+ AN )+ AT) (20)

whereT(t) is the gas temperature in the vessel and theiciesfs A (i=1,2,3,4,5) can
be found in the literature for each gas [24]. Aslpgs (19) and (20) it follows that:

v

GZOJ' dv LB
0T J vV +ov+e¢ L

o C

¢ =C-R-T (21)

where c*p is the specific heat calculated as if the gas wakal,

whereag3, =(1/v)(0v/dT), and «,=-(1/v)(dv/0P). are the isobaric expansion

coefficient and the isothermal compressibility dwefnt respectively, which can be
calculated from the cubic equation of state. Intast with the case of an ideal gas in
which the calculation of the specific volume iwit, in our system the following cubic

equation must be solved in each simulation step:

v3+(51—b—ﬂjv2+(g— b§1—51RT+e(T)j \/—O(T)/7 ~e-fRT oy (22)
P P P P P

where the largest positive root must be chosen i(RE}

Once the simulation data are obtained, the kegtpsithat the self-oscillating
pressures, specific volumes and temperatures casdat as if they were experimental

data to obtain the virial coefficients. The virigjuation can be written as:

v(%—lj: B(T)+C(T)+ D(T) + E( T)+.... (23)

13



whereB(T), C(T), D(T)andE(T) are the second, third and so on virial coeffigelfitis
interesting to remark that currently there are exqterimental data for the coefficients
D(T) andE(T) and those of higher order, so only the coeffig@(l) andC(T) have
been estimated from the simulated data obtainesklifroscillation for different input

temperature3 (see Fig 1).

It should be remarked that the uncertainties ofptoposed method to estimate
the virial coefficients B(T) and C(T) are associat@dhe numerical integration method,
which has a local error proportional to the simolaistep raised to four and thus can be
considered as acceptable. In addition, the modelimserically rather stable due to the
limitation in the dimensionless valve plug motideiwveen 0 and 1) and the limitation
of the pressures (choked pressures). Consequdrglgata obtained from the numerical

simulations allow to estimate B(T) and C(T) by lesgtiare polynomial fitting of the
equationy = B(T)+ C( T) x wherey=v(Py RT-1) and x=1/v as per equation (23).

It is very important to remark that this procedprevides accurate values only if
the gas behavior is nearly isotherm. Consequesélyeral simulations are carried out
with different input temperaturef, and the virial estimations are calculated wita th
simulation data obtained at the output of the aintalve, i.e. withP,(t) andp,(t) (see
Fig 1). The proposed estimation works properly & tessel temperaturégt) are
almost constant and very close to the valudyah each simulation. For this purpose,
the vessel volume must be sufficiently large s tihe densities and temperatures of the
gas inside the vessel vary slowly with time in ademce with Eqs (5) and (7), as it will
be analyzed next.

To estimate the virial coefficients for the metharal the argon [22,23], Egs
(11) are numerically solved by using the Soave-Rbeékwong (SRK) cubic state
equation [19] and assuming the self-oscillationdibons given by Eqgs (15)-(17). To do
this aim, the fourth-order Runge-Kutta integratioathod is used with simulation times
between 100 and 500 s and with simulation stepstivds: 0.01 and 0.001 s. An
interesting aspect of the numerical procedure as the system is rather stable due to
the limitation in the dimensionless valve plug eston (between 0 and 1) and the

limitation due to the choked pressures valuesdutiten, to simplify the calculation of

14



the equilibrium point, the parametein Eq (9) (which is close to 0.98) is linearized as

follows:

k/(k-1)
g:ge:g]u+6{|32_(t)_r5} ;rsz&z(ij ;kch(T)
K R R \k+l

(24)

[k 1 21k begn] 17l R(t)
g]rj—\/mrg_r?[(rf) —(rpD) } ‘b= T for Zp 21

P .
p |

wherePg, is the choked pressure obtained from the valud ahd the specific heats

of the considered gas (which are calculated from @) and (21)).

According to Eqgs (1)-(4) and (24), the equilibriymoint for the mechanical
subsystem is defined as:

Xe= %= 0;R.= P f[x]=Rhx,

2C f
Q2€=\f§ A [‘]%\/a(e— R);for > R; R> R, (25)

Pae

P K P
—_S +_m — e:> — S
Tt Qae Qe K.

On the other hand, the equilibrium point for therthal subsystem is calculated
from Eqs (5)-(7) as follows:
p2eQ2e=p2e de+lerse ; Qde: O
KyyP.— P, ; for P> P,
Qde = (26)
K¢vP.— P, ; for P.<P,
IOere

;
0Bl o7]-08 (5 g 1o 7

where the gas density in Egs (25) and (26) is tatled from the state equation of a real
gas (see Eq (18)).

The simulation results for the methane and theraaye shown in Figs 2 and 3

by using ten temperatures and their correspondiagilerium values (which are shown

15



in table 2 for the methane) and taking values Tgrin Eq (11) between 5 and 10

seconds. The values f&_ have obtained assuming that the self-oscillatmmddions

given by Eqgs (15)-(17) are fulfilled and calculatitne values ok from Eq (25).

TABLE 2 EQUILIBRIUM POINTS AND SIMULATION VALUES F OR THE

METHANE

P, = 100 MPa; Ps =60 Mpa; 8 =0.26; @, = 0.69rad/s; bo =3 mA.s®
b1 =0.03 mA- &V = 10° m® Kq = 6.10° m¥/s/(N/nf)%> K = 6.4.10° (1/N/nr)

Km=4.8140.10%(N/m?)/(m3/s)

To Tm Xe Kne.10° X1e P2e

(K) (s) 1/mA% & mA-s® (kg/m®)

200 5 0.1242 1.8672  0.0414 418.3528
255,55 555 0.1125  2.1599. 0.0375 378.6929
31111 6.11 0.1015  2.5372. 0.0338 341.7617
366.66 6.66  0.0918 2.9917 0.0306 308.0884
42222 7.22  0.0834 3.5127 0.0278 280.7617
47777 7.77  0.0763 4.0892 0.0254 256.7932
533.33 8.33  0.0702 4.7123 0.0234 236.4927
588.88 8.88  0.0651 5.3752 0.0217 219.2262
644.44  9.44  0.0607 6.0736 0.0202 204.4284

700 10 0.0569 6.8043 0.0190 191.6331

Ny
mol
20.0770
23.6049
213031
19.2600
17.5006
16.0056
14.7412
13.6649
12.7425
11.9450

Fig 2 a) shows the self-oscillating pressuReft) measured by the pressure

probe shown in Fig 1, where the choked pressumeshar approximately straight lines
indicated byP.». On the other hand, Fig 2 b) shows the densiti@swhich are used in

Eq (30) £ = P2 ; v =Mlpz; M = molecular mass) to estimate the virial coefficseit

and C, whereas Figs 2 c¢) and 2 d) show the estimated salti¢he virial coefficients

compared to the experimental ones. It should bedadhat the virial coefficients

estimation cannot be regarded as acceptable fotealperatures due to their self-

oscillating behavior. This is due to the fact ttie vessel volume is very small (V =10

3

observed in the three input temperaturgsflFig 3 a) for the argon.
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In Fig 3 b) the exponents = c,(T)/c(T) obtained from Egs (2) and (24) are
plotted as function of the simulation time, whidloas to appreciate clearly the self-
oscillating behavior. Furthermore, in Figs 3 c) at)dthe virial coefficients are also
estimated for the argon, and in this case onlyvilaes of the virial coefficient B at

high temperatures may be regarded as acceptable.

The previous estimations can be improved by achgemore variability in the
simulation data. Taking into account that the maslélighly nonlinear, we shall search
for chaotic oscillations. The first consideratiarthat currently there is not a systematic
procedure to assure that an oscillating behaviochigotic. Consequently, we have
considered several tests which viewed all togetdlaw us to affirm if a system
behavior is chaotic or not with a reasonably higgrée of certainty. For this purpose, it
has been verified that there appears sensitivendiepee, a positive Lyapunov exponent

and a power spectral density such that, altoge#inerconsistent with chaotic behavior.

It is well known that when the matrix of the linea&d system at the equilibrium
point has two purely imaginary conjugate roots ifawas discussed in the previous
section), a harmonic disturbance or the harmoni@tran of a system parameter may
lead to chaotic dynamics. On the basis of this,idemassume that the time constant of

the pressure probe is harmonically varied in acoed with the following equation:
Tm(t) :va+ ATmSin(a)TrTI) ; ATm< Tm\/:> Tr(\ D > O (27)

where Ar, and oty are the amplitude and the angular frequency réispéc and in
addition it must be fulfilled thatl,, > Arm Therefore, we aim to verify if the chaotic
behavior appears for certain valuesAdt, andwt, SO that the chaotic simulation data
can be used to estimate the virial coefficients.stibuld be remarked that this
methodology is aimed to provide an approach whoa motivation is that chaotic
dynamics is an inherent property of many dynamsgatems like the considered one in
our manuscript. Therefore, an advantage of ouragmpr is that it provides a route to

estimate the virial coefficients relying only oset of chaotic measurements.
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Fig 4 shows the estimation of virial coefficie®&ndC for the nitrogen through
chaotic behavior by applying a disturbance in theetconstant of the pressure probe
Tm, @s indicated in Eq (27). In this case, ten temupeesT, between 200 and 650 K are
considered with the parameter vallfes= 8-1F N/m?, Ps = 6:1F N/m?, V = 1 m®, Ky, =
1.9256-1& (N/m?)/(m3/s), 6 = 0.26, w, = 0.69 rad/s,K; = 3.210° (MA/N/m?), by = 10
(1/mA-S) andb; = 0.1 (/mA-$). In accordance with Eq (34), the disturbance is
defined by considering ten valuesTaf, varying uniformly between 5 and 107, = 0.8
rad/sand Arm = T/fTm's, whereflTm are other ten values varying uniformly between
1.2 and 1.8The purpose of this particular choice is to obtaaotic behavior in all

ranges of temperaturds.

-
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=
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Fig. 4 a) PressureB,(t) as a function of time for the nitrogen calculatedelf-oscillating regime and at
high pressure for ten constant temperatures bet@88mand650 K, beingP., the choked pressures for
each temperature. b) Densitjeét) for the same constant temperatures. ¢) Simuldiadtic data for the

second virial coefficienB of the nitrogen as a function of the temperatdjeSimulated chaotic data for
the third virial coefficienC of the nitrogen as a function of the temperature.

The values oKy have been chosen assuming the conditions of EQS(1Tp
(in similar way to the one shown in table 2) sa tihe self-oscillation appears for each
temperaturel. In Figs 4 a) and b), the pressufegt) and densitiep,(t) are plotted
showing chaotic oscillations, whereas Figs 4 c) dhghow the estimation of virial

coefficientsB andC. In this case, it is clear that the estimatiorBa$ similar (with an
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error of 5 % around the Boyle temperature wBen 0) to the one of Fig 3, while the

estimation of C is better at all temperatufgs

To corroborate that the gas temperature is apprabely constant, we use the
simulation data of Fig 4 for the nitrogen and chltal the per cent relative error
between § (ranging between 200 and 650 K) and the gas teatyrer T(t), i.e.

Er =100(T ¢)-T,)/T (t]. The results are shown in Fig 5 a), whEreis plotted as a

function of the time. It should be noted that, aith this error increases slightly with
time, at t = 200 s it is less than 1 % and conseilyiehe temperature T(t) can be
regarded as approximately constant. In this semse remarkable theoretical aspect of
our device is that it does not incorporate any mbnsystem to maintain the gas
temperature almost constant. On the other hand; Bijgdepicts the heat capacitigft)c
and ¢(t) as functions of the time taking into accountsE@0) and (21) for all

temperatures T(t), which are close to the inpuferatures as shown in Fig 5 a).
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Fig. 5 Relative error (%) between the gas temperaturésan(t the input temperatureg ds a function of
the time. b) Heat capacities@and ¢ as functions of the time for each gas temperak(ie

Fig 6 shows three strange attractors in the pipdesee defined by the state

variables x;(t)-xo(t) for the temperature3, = [200, 400, 650] K, which provides
reasonable evidence that the oscillations showiigs 4 a) and b) are chaotic.
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Fig. 6 Strange attractors in the phase plané)x,(t) for three temperaturesqd T, and T
corresponding to the simulation parameters inditatehe legend of Fig 4.

The previous calculations have also been carngdar the argon [23] by using
the same parameters of Fig 4 in a wide range opeéeatures. Like in the case of
nitrogen, the results indicate chaotic regime anel ia good agreement with the
experimental data as can be observed in Figs iicap On the other hand, in Fig 7 c)
the second virial coefficient is plotted for sevegases by using the dimensionless

coordinates:

B =— b, =— Ng, (28)

where kg is the Boltzmann constaniNa is the Avogadro number angh, o, are

parameters of the inter-molecular Lennard-Jonesnpial tabulated for each gas [15]
[24]. The estimated data for the argon obtainethfohaotic oscillations are close to the
experimental data, which is another clear verifarathat the outlined procedure works

reasonably well for the virial coefficient estinati
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Fig. 7 a) Experimental and simulated data for the sewina coefficientB of the argon as a function of
the temperature, obtained from chaotic behavioEXgerimental and simulated data for the thirdaviri
coefficient C of the argon as a function of the temperatureaiobtl from chaotic behavior. c)
Dimensionless experimental and simulated datalfervirial coefficientB of the argon as a function of
the dimensionless temperature obtained from chaetiavior. A comparison with the corresponding data
for the methane, oxygen and nitrogen is also shown.

In view of the results shown in Figs 2 to 7, it slibbe remarked that the
concordance between the theoretical and experimemnial coefficients B and C
requires two conditions: i) An empirical equatiohstate which describes suitably the
behavior of the considered gas at low and highspires. ii) Enough variability in the
simulation data to capture the gas properties, vimdurn allows to estimate the virial
coefficients B and C through Eq (23). Such varigbih the simulation data is achieved
by means of the chaotic behavior, which is obtataéthg parameter values which give
self-oscillating behavior (see Eqs 15-17) and varjarmonically the time constant of
the pressure probe (Eq (27)). Consequently, altmdhgre is nothing random in the
system Eqgs (11), the system behavior becomes unfaele.

On the other hand, the thermodynamic equilibriumthed system is reached
when the following condition is verified [25]:
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FEF.=|—| |—||—]| =-1 29
thens (aij(avManv (29)

To verify that equation (29) holds, in Fig 8 d) theoductF;-F,-F3 is been
plotted as a function of the time taking into aauothe SRK state equation, which
allows to observe that it is exactly fulfilled tHad-F,-.F3 = -1. Additionally,F, F, and
F3; are plotted separately in Figs 8 a), b) and how that their values are quite far
from unity, which however does not contradict ttregir product is exactly equal to -1.
The same conclusion is reached for the equatiossaté indicated in the Appendix as

well as for the high precision equations of stdtat twill be considered in the next

section.
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Fig. 8 a) Variation of(GV/GT)P as a function of the input temperaturgand the time. b) Variation of
(6F’/6V)T as a function of the input temperaturg dnd the time. ¢) Variation o(GP/GT)V as a

function of the input temperature &nd the time. d) Variation 01(6V/0T)P [oP/o \OT o T/0 F)V
as function of the input temperaturgand time.

4. Application for non-polar and polar gases with igh precision equations of state

In this section we shall describe how the virié¢fficients can be estimated for

polar gases as well as for a mixture of non-poteseg by using high precision equations

of state.

23



4.1 Estimation of second virial coefficient for day

The results obtained in the previous section ssigti@t the theoretical device
considered in this paper could be used for estigdtie second virial coefficient of a
mixture of real gases, such as the dry air. Fa phirpose, we use Eq (23) assuming
that the pressures are sufficiently small so thatdffect of the virial coefficientS(T),
D(T) and so on is negligible. The used procedure isnsamzed through the following

steps:

a) We establish a set of gas inlet temperatligewhich are the temperatures for which

the viral coefficienB(T)is estimated.

b) We use an empirical state equation of high precidefined as a function of the
molar Hemlholtz energy, which is decomposed intieran representing the ideal gas
behavior and a residual term due to the gas naaliy¢9], i.e.:

a(T, p) a'(T.p)+ ff(Tp)
RT RT

a“ (T,p)+a"(T,p) (30)

where the superscriptd andR refer to the ideal and residual terms respectivEhe

ideal term is defined as:

a® (T.p)= le T)dT- Rj@" 1)—+Inpo a(T—Rf) (31)

o

whereT andp” are small reference values for which the gas Hehaan be regarded

as ideal, andt (T) is the specific heat of the gas at constant volurhe equation of

state for the real gas is expressed as:
P(T.p0)= —(Wl , P(T.o)=p RW{H 5(—6”2(;'5)M : 5:[% T
a®(r 3)=ndr*®+ndr*?+ndr *+ nd T % nd £ °%
N0 7°%°+ n,0 T *°%° exp-0) + n,d°r* “exp(-9) + nor *°* ex;( -0 2) +
n,o'r%° ex()—é' 2)+ ndT*® e>(|&5 j+ no t* e(<p5 )
(32)

— |
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where p. and T, are the critical density and the critical temperatrespectively,
whereas the coefficients (i=1,...,12) can be found in Ref [9] for several non-polar
gases. As we shall see later, Eq (32) provides avigheat precision in the estimation of
B(T). The relation betweeR(t) and p(t) (see Fig 1 and Eqgs (6)) is given for each
temperaturdly, whereas the value p§(t) is obtained iteratively in each simulation step
from the values oP,(t) andTy by means of Eq (32). In the case of polar gasssniar
equation to Eq (32) will be considered as showRefs [8,9].

c) As previously indicated, the application of tivedel to obtain theoretically the
second virial coefficient requires maintaining thessel gas temperature approximately
constant (see Figs 1 and 2). For this purpose,ssenae a vessel volume of £,rfor
which according to Egs (5)-(7) the density and téraperature of the gas will remain

approximately constant.

d) The chaotic behavior is necessary to assurghavariability in the simulation data at
each temperatur®, so that the polynomial fit of Eq (23) collectetthermodynamic

properties of the gas. For this reason, it is reargsto achieve chaotic oscillations for
temperatures below and above the critical one. nipknto account the analysis of
section 3, we will choose suitable parameter valoeSgs (15)-(17) to obtain a self-

oscillating behavior as it was discussed considetq (27).

e) The values for the specific heats at constaggsure ) and constant volumej

cannot be calculated like in the case of ideal giéise. through the relatiog, — ¢, = R).

Instead, the specific heat of a particular gas\atpressurec’; (T) can be obtained like
in Eq (20), i.e. [24]:
c,(T)=A+AT+ AT+ AT+ AT (33)

whereT is the temperature (iK) and c; (T) is expressed with units df(mole-K) On

the other hand, since the values cc%f(T) given in Eq (33) are determined at low

pressures, it is necessary to calculate the vamniaif c,(T) with respect to the pressure
by means of the following equation [6], [9], [25]:
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ACPZCP(T)—ép(T):—j T(g_:\;j dF (34)

R -
Once the specific heat at constant pressy(®) is known, the specific heat at constant

volumec,(T) can be obtained by means of Eq (21). Taking intmact Eqs (32)-(34) it
is deduced that:

o|32] 58]

{H(W] _&(W(T’p)ﬂz (35)
¢,(T.p)-¢(T.0)= R 05 ), 0190
T e )

With the previous considerations, the model presenn section 2 can be
applied to estimate the second virial coefficiemt the dry air, which is formed by a
mixture of nitrogen (non-polar, 78.1 % Vol.), oxygéon-polar, 20.95 % Vol.), argon
(non-polar, 0.9 % Vol.), carbon dioxide (non-pol@rd3 % Vol.) and other gases in
very small volumetric proportions that will not lsensidered in this work. Next we
apply the previously described procedure for eaah igdividually to obtain the virial
coefficientsB; (i = 1,2,3,4)for the nitrogen, oxygen, argon and carbon dioxiled
from such virial coefficients for the individual ggs, the virial coefficierB.(T) of the
mixture can be obtained as [6], [9] [15-16]:

n=4 n=4

B,(T)=> > vy (T

izl j=1

B,(T)=¥B,+2y%B,+2y B+ 2yy B (36)
¥;B,+2Y,¥,B.+2Yy,y,Bi+ §.Bs+2 vy Bt % B

Since there are few experimental data for the aatesn coefficientB; (i,j = 1,2,3,4

with i#), we shall apply an approximation based on a Lehdanes intermolecular
potential defined as [15-16]:
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wherer is the intermolecular distancejs the minimum potential energy aads the
radius such thai(s) = 0 whenr = 4. On the other hand, the second virial coefficignt

two interacting molecules can be calculated fromtistical mechanics [26] as:

(38)

wherel” is the gamma functiorkg is the Boltzmann’s constaritl, is the Avogadro’s
number ands; and g are the parameters of the Lennard-Jones potemtfath are
tabulated for the nitrogen, oxygen, argon and cartioxide [15-16]. Consequently,
Egs (36)-(38) allow to estimate the interactionalicoefficients for dry air. And the
final step consists of calculating the virial cogints for the individual gasd®1(Ny),

B22(05), Bss(Ar) andBy4(COy) as it was done in the previous section.

In Fig 9, the calculated virial coefficients foretmitrogen, oxygen, argon and
carbon dioxide are plotted together with the cqroesling experimental values [27]. It
is interesting to highlight the good adjustmentvited by the state equation of high
precision given in Eq (38). Next, by applying E®6)-(38) the interaction virial
coefficientsB; are calculated, from which the virial coefficiemtsdry air are obtained
and shown in Fig 10. It should be noted that tineperatures are above the critical one
for all gases. The parameter values@re 6 min, by = 1(1/s%), b, = 0.01(1/s), K=
3.8512- 18 (N/m?)/(m3s), Kq = 7.5-10° (m*/s)/(N/nf)°> K, = 8-10" mA/(N/m?), 6 =
0.26 andw, = 0.69 rad/s. Moreover, the valuesi@f andAry,; in Eq (27) are given by:

mi

1125217 14.1940 15.7319 17.1633 185
119.7794 22.1444 209888 23.2528 24.3

39
[10.4347 11.2058 11.7989 12.2595 12.6}3 (39)

mi

12.8996 13.1180 13.2867 13.4151 13.5]
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The initial conditions are defined as:
XOi:[Xle 0 0 R p; Ty 0] (40)

where x,=x,/h . It should be remarked that the last null elementEq (40)
corresponds to a new state variakjé) whose initial value is zero. The reason of
introducing such variable relies on the fact that time constanl, given by Eq (27) is
time dependent and therefore the system is nohaatous. Consequently, to obtain an
autonomous system the variaki€) is defined as:

d
D (41)

X (t)=a,t= o

*:é..
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Fig. 9 Experimental and simulated data for the secona@lvimefficients of the nitrogen, oxygen, argon
and carbon dioxide estimated for temperatures atf@veritical one and at a pressie= 8- 10 N/n¥.

For the sake of comparing the virial coefficientghe gas mixture and those of
the individual gases, the second virial coefficsefdr the nitrogen and the oxygen are
plotted in Fig 10. A similar procedure has beermrriedrout for temperatures below the
critical one as shown in Fig 11, with the differertbat in this case the pressures must

remain below the saturation pressure to avoid ergen the biphasic zone of the gases.
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Fig. 10 Experimental and simulated data for the seconéMoefficient of the nitrogen and the oxygen
compared to the estimation for dry air. The tempuees and pressure are the same as in Fig 7.
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Fig. 11 Experimental and simulated data for the secondiviefficients of the nitrogen and the oxygen
estimated for temperatures below the critical ome @ pressureB; = 3.2-18 N/n? (nitrogen) and®; =
2-10 N/ (oxygen) compared to the estimation for dry air.
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The saturation pressure has been calculated Ing @si Antoine-type equation

given by:
< B
log,, P* = A+?+ Clog,, T+ DT+ ET (42)

where T is expressed in K and the coefficieht8, C, D andE for different gases are
obtained from Ref [24]. If any of the input tempterasT, to the device is lower than
the critical one, the value of,Rand R < P)) is taken lower than the saturation pressure

P°® so that the chaotic pressure oscillations arelsmihlan the saturation pressiie

4.2 Extension to polar gases

To demonstrate that our methodology works proptatypolar gases, we will
also analyze the ammonia for which it is possiblegtimate the virial coefficients. For
this purpose, the following high precision equatidrstate shall be applied:

o= 5]
P(T ,p)—pRT{lm[%;’a)J } 0;0=2 ;T=%

Pe
a®(7,0)=ndr*®+ndr'®+ndor "+ nd t *** nd f *% (43)
n,OT>*"°exp(-9) + n,0°r* exp(=93) + ngd°r **** ex( =) + n,dr *° exré—é' 2)
+n,,0r>° exr(—é'z) +n, 0T expé—é' Z) +nP 7% exé—d )

Eq (43) is very similar to Eq (32) and it will bep@ied to the ammonia
following the simulation steps discussed in subsact.l. Fig 12 shows the simulation
results for the ammonia considering two cases. hia first case, the minimum
temperature is below the critical one, i.emf = 325 K < T = 405.65 K, and the
corresponding saturation pressure given by Eq (2P = 3.8647-10 N/nt.
Consequently, to avoid entering the biphasic zdne NHs, the input gas pressure is
set to R = 3-16 N/m? < P, It can be observed that the values of virial ficieht B in
Fig 11 a) are in good agreement with the experiaiatdta, although the adjustment of

virial coefficient C to the experimental data isopas shown in Fig 12 b). This is due to
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the fact that, at low pressures, only coefficientsBelevant in the virial expansion. In
the second case, the minimum temperatureyiga £ 425 K > T and the value of the

initial pressure is taken as B 9-16 N/m?. Like in the first case, in Figs 12 c) and d)
we can observe that the virial coefficient B iggmod agreement with the experimental
values, but now the fitting of the virial coefficie C to the experimental data is
significantly better. This result is expectable doi¢he fact both B and C are relevant in

the virial expansion at high pressures.
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£ P =1128110° Nim?2 | E
S 200} 4F )
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P,= 3 1(]le N.l'm < pP*® 2000 Simulated data
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Fig. 12 Experimental and simulated values of the vicakfficients B and C obtained with the high
precision equation of state for the ammonia. ajaVoefficient B for P < P. b) Virial coefficient C for
P, < P. ¢) Virial coefficient B for P> P. d) Virial coefficient C for P> P,

To conclude this section, figure 13 illustratesaavthart which summarizes the
required steps to estimate the virial coefficieotsa real gas in accordance with the
previously described methodology. It should be cemti that to obtain chaotic
oscillations it is necessary to assure self-osoilpbehaviour by choosing adequate
values ford, wn,, Ky and z; as well as to include an adequate external hammoni

disturbance given by Eq (27).
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Select a desired real gas with critical constants.PT. and p.

Y

Define the pressures B Ps and the input temperatures To for which
B(T) and C(T) will be estimated

Y

Select an empirical equation of state:
) Cubic equation of state Eqs (Al) to (A8)
i) High precision equation of state Eqs (32), (43)

¢<

Define a vessel accumulator volume V and the parartess 8, o,

KnL, Ti

Determine the specific heatscand .. Egs (20)-(21)

or Egs (33)-(35)
|

Analysis of self-oscillation conditions with Eqs
(15) to (17)

Y

Harmonic variation of the pressure probe time consint Eq (27)
Simulation of the mathematical model of the systeriqgs (11)

v

No

Yes

Estimation of B(T) and C(T) by fitting
the equationy = B(T)+ C( T) x

Fig. 13Flowchart for the estimation of the virial coefécits B(T) and C(T).
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5. Application to quantum gases

In this section we shall apply the results of teeti®ns 3 and 4 to the following
quantum gases: Helium 4, Helium 3, Hydrogen, Déeuterand Neon. The Tritium will
not be considered here since there are not expetaéata for the virial coefficients
[27-29]. The main difficulty that arises from womnky with quantum gases is that, in
general, the cubic equations of state cannot be tlees becoming necessary to apply
an individualized equation of state for each gaghSndividualized equations can be
very complicated with many parameters such as éncse of He4 [30] or H31],
whereas other equations are based on Quantum MesHi&e in the cases of -Hand
D, [32]. On the other hand, the Helmholtz potentiahdtion by using the Debye
function for He3 [33] and the radial distributiomnction with quantum corrections for

the Ne [34-35] have been also developed as alteenapproaches.

The application of the aforementioned individualuatipns of state in the
context of the system presented in this paper ne@pine very complicated. In fact, it
should be noted that it is necessary to reach whastillations in wide ranges of
pressure and temperature to obtain acceptables/&du¢he virial coefficients B and C.
For this reason, we have used several cubic eqsatd state whose unified form
appears in Eqg (18) (see Appendix). A detailed aislgf the capabilities of such cubic
equation is reported in Refs [20] and [36].

In all cubic equations of state, the parameteendb depend on the critical
temperatureT. and critical pressur®;, which in the case of quantum gases (i.e.
molecules of low molecular weight whose properties more accurately described by
means of Quantum Mechanics) must be substitutethdeffective critical constants

defined by the empirical relations given by [1&3]:

TO

PO
=218 R a2 44
1+ 1+
M M

where M is the molecular mass (gr/mol) afdis the temperature expressed in K,

whereasT.’ andP. are the so called classical critical constantdchvire tabulated for
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the quantum gases. Egs (44) must be applied takm@centric factotw = 0 (see the
Appendix). It should be pointed out that the caigets given by Eqgs (44) are more
significant at low temperatures, since whed - o=T - T ;P - P

c -

Consequently]. andP. are approximately constant at high temperatures.

The simulation results obtained with cubic equaiand Eqs (44) provide
simulation results which even in chaotic regime ptately disagree with the
experimental data for the virial coefficients B a@dof all quantum gases [29]. To
overcome this problem, we have introduced anothmgrirical modification of Eqgs (44),
which consists of introducing a temperature dependienction so that the modified

values ofT; andP. are written as:

1
1+
T —_ TCO I:V (T) . P —_ fP R:o
om 21.8 1 SRCLE 44.2
1+ 1+ 1+
fuMO |~ F(T) fu M T (45)

F,(T)= fFv+(1- fFv) (1~ exp{— feF\{TT __TlT D E(T)= R

where T, and Py, are the modified critical constants afg fp, fFv and feFv are
adjustable parameters, whereBsand Tnax are respectively the lowest and highest
temperature from which the virial coefficients Bdaf@ are estimated through the

simulation data. It should be noted thatfif/ =1 thenF, (T) =1.

Once the virial coefficients are estimated by gsincubic equation of state in
accordance with Egs (45), it is possible to apprate the intermolecular potential. For
this purpose, we assume a Mie-type intermolecwégrgial [16] written as:

6

u(T,r)=f, (T){nTT)TTH n(”T()Tz e{(ﬂnﬁ) ‘(%ﬂ (46)
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where in case that depends on the temperature dg(d@) = 1 for n(T) = 12 Eq (44)
provides the Lennard-Jones intermolecular poterdgfalEq (37). Nevertheless, the
functionfy(T) is an empirical factor that takes the form:

1 1
F(T) fRv+(1- fFv)(l— ex] — feFY T= T)/( Tuc™ Tﬂ)

fo(T) = (47)

wherefo(T) = 1 if fFv = 1. On the other hand, it should be recalled thatrduial
distribution function (i.e. the local densities \&rious distances from a particular

molecule divided by the bulk average density ofghs) can be expressed as [26]:

g(r,,o,T):exr{u(T,r)/kBT][Bp g(rT)+p°g(rm+ } (48)

whereu(T,r) is an intermolecular potential which can be defity Eq (46). On the
other hand, the state equation can be expressaduasction of the radial distribution

function in the form:

Pv Z]wzde(T, r)g(r,p,T) r3dr (49)

=1-
Nk, T 3 dr

0

Substituting Eq (48) into Eq (49) and considerihg tadial distribution function up to
first order approximation, the second virial co@f#ntB can be written as [26]:

3k, T kT

B(T. )= NA( ‘2”j g(T)Id“(drr’T) exp{_u( “Tq f dr (50)

The radial distribution function can be estimateohf the empirical function
fo(T), which will allow to elucidate to what extent theodified cubic state equations
(18) and (45) can provide an accurate second vooaifficient. This aspect will be
discussed in detail with the Helium 4, and the imata conclusions will be applied to

the rest of quantum gases.

35



It should be remarked that from Eqgs (46)-(48) ipassible to estimate several
values of B by assuming a set of valuesrfat a given temperature Among such
values fom, the oneéhat is chosen will be that which provides the ekissalue of B to
the value estimated from the chaotic data. Nexshadl analyze how to obtain the virial

coefficients for quantum gases by using Eqs (48)-(4

5.1 Helium 4

In the case of Helium 4 (He 4) we consider tweoiy values for the
temperatures glbetweernd5 and800K as well a?; = 10 MPa andPs = 7 MPa (both of
them above the critical pressure). Taking into aotd&qgs (11) we choose= 0.26, w,
= 0.69 rad/s,by = 3 mA™.s® andb; = 0.03 mA™.s?, for which the values of # for
self-oscillating behavior are obtained when theditions given by Egs (15)-(17) are
fulfilled. Therefore twenty-four values fé¢y. ranging betweeti.25-16 and1.3341-16
s® are obtained.

Once the self-oscillating behavior has been obthwe assume that the time
constanfl,, of the pressure probe (see Eqs (11)) is variethbmically as shown in Eq
(27) takingwtm = 0.8 rad/s, twenty four values fdry,, between5 and10 s and other
twenty four values foAr, between.1667and5.5556s. The simulation is carried out
by using the Peng-Robinson equation of state (gg@eAdix) and Eqs (45) withy =
15, $ = 0.85, fFv = 0.75andfeFv = 4.The simulation results are shown in Figs 10-12.

Fig 14 a) shows chaotic oscillations for the puessP, for each temperature
between 45 and 800 K, for which the approximatéigight lines represent the choked
pressures. Fig 14 b) shows the chaotic oscillatadps (for comparison see Figs 2 a)-b)
and 4 a)-b)). In Fig 14 c) the vessel temperataresplotted showing nearly straight
lines, in accordance with the fact that the gas peature is nearly constant.
Furthermore, the chaotic behavior can also be amiesl in Fig 14 d), which shows a
strange attractor obtained by using the auxiliaagiablesx;(t) andx,(t) defined in Eq
(1) for a gas temperature of 100 K. Similar graphtan be obtained for the rest of
temperatures between 45 and 800 K.
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In Fig 15, the estimation of the virial coeffictenis compared with the
experimental data. The error in the experimenté flar coefficient B is + 1 cffmol,
so the estimation from the simulated data can lgarded as acceptable. The
experimental values of C can be inaccurate depgndim the used experimental
procedure. However, it is clear that the estimatb& for the He4 could only be used

within the temperature range between 45 and 200 K.

25 30
a) Time t(s)

0 50 00 02 04 0 01 02
c) Time t (s) d) x1(t] (53]

Fig. 14a) Chaotic oscillations in the pressigt) measured by the pressure probe for the Heliuror4, f
which the choked pressures are the approximatedyght lines. b) Chaotic oscillations in the depsit
pa(t). ) Approximately constant temperaturBgt) of the gas in the vessel. d) Strange attractahén
phase planeft)-x(t).

Fig 16 a) shows simulation data for the secondalidoefficient and the
exponenin of the intermolecular potential given by Eqs (46 (47). The mean value
of nis 11.4995, which is in agreement with a Lennande3aintermolecular potential as
shown in Eq (37). Fig 16 b) shows the radial disttion function assuming = 12 and
fFv = 1in Eq (47) (i.e. withfo(T) = 1 for several temperatures). In Fig 16 c), the radial
distribution function is also plotted but now tagifirv = 0.75andfeFv = 4in Eq (47),
which are used in the simulation to estimate theffaments B and C of Fig 14. In Fig
16 d), the second virial coefficient B is calcuthfeom Eq (48) takindo(T) = 1 (Bz1)
andfo(T) # 1 (Byp). It should be noted that the valuesBa$ are close to those obtained
from the chaotic oscillations depicted Fig 13 a),accordance with the empirical
equations (45) and (47).
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Fig. 15 a) Experimental and estimated values for the seaondl coefficient B for Helium 4. b)
Experimental and estimated values for the thircivaoefficient C for Helium 4.
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Fig. 16a) Simulation data to obtain the virial coefficiéhfor Helium 4 and estimated values of exponent
n for the intermolecular potential given by Eq (44) Radial distribution function for Helium 4 assog
thatfo(T)= 1 and a mean value of = 12 (Lennard-Jones potential). ¢) Radial distributfanction for
Helium 4 withn =12 andfy(T) # 1. d) Values of the second virial coefficients; B calculated by using

n = 12 andg(r,T), wherea®,, is obtained by using = 12 andg(r,T)i(T).
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Next we shall investigate if the other cubic egqua of state could be used to
estimate the virial coefficients for Helium 4. Thenulation results show that by using
any of the equations of state indicated in Apperidlithe results are very different to the
ones shown in Fig 15. To analyze this issue, tmegdized equation of state given by

Eq (18) is expanded into powers\of i.e.:

_Pv_ v _[O(T)/RT] v7) _ o(T) o(T)
Z_%_ v-b (v—b)(vz+5lv+£) _1+(b_?]1v+[(,7+51_b) RT+bz 3’
B=b—@ C=(n+6,-1) a“FEP+ B

(51)

Consequently, in principle it is possible to obt#nme virial coefficients B and C as
indicated in Eqgs (51). Since the PR equation dégtin reasonable agreement with the
experimental values, we can take this equatiorefesence and adjust the valuesaof
andb in the rest of equations of state shown in theelglix so that they coincide with
the values of andb given in Eq (A3). To detail the proposed proceditres assumed
that the values o& and b of the SRK equation of state shall be modifiedr Huos
purpose, the value @fis denoted through the subscript PR or SRK asvdali

bPR = 0-0778% = KbPR% : bSRK: 0-08664% =K bSRKﬁ

cmPR I:)cmPR cmSRK P cmSR
P - 1:PR EIPcO P — fSRKEP((): (52)
cmPR 44 2 " cmSRK 44 2
1+ : 1+ :
f,M T f,MIT

It should be noted that the valuesRyfpr and Pcmsrkare denoted aB.m, in EQs (45).
Furthermoredpr = fp, which is taken a§ = 0.85in the PR equation of state to obtain

the simulation data of Fig 11. The valudikis deduced from the condition given by:

K K K
Bog = D= FPR = beRK:> fome= f PKbSRK (53)
P SRK bPR

The same procedure can be applied for the parameter:
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2 2 2
aPR=o.457247(RT°m) = fapRKapR( RL) - (RE)

aPR
I:::mPR PcmPR P

cmPR 54
(RL)’ (54)

_ RT.) _
aSRK = 0.4274 - faSRKK aSR

K
cmSRK PcmSRK

where the value dfsrkis obtained from the condition:

KaPR - faSRKKaSRK: f aSRK: K aPR f SRt (55)
PcmSRK K aSRK f P

aPR = aSRK =
cmPR

beingfsrkdeduced from Eq (53). In the case of the He 4 st lbeen corroborated that
the introduction of a new coefficiefit (between 0.4 and 0.5) multiplyingT;) in Eq
(51) leads to results which are closer to the erpental values at high temperatures for
all the considered equations of state. Now we shaltulate the second virial
coefficient by using the equations of state shownthe Appendix taking the PR

equation of state as reference. The obtained valgeshown in Fig 17.
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Fig. 17 Values of the second virial coefficient B obtainatth the equations of state shown in the

Appendix. a) Values of coefficientssandb corresponding to each of the equations of st3t€hb values
of aandb have been adjusted in accordance with Eqs (50)g®@& takind, = 0.4.
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It should be noticed that, in Fig 17 a), only tledues of B for the PR and PRT
equations of state are close to the experimentaésaFurthermore, the RK equation of
state only provides an acceptable estimation at temperatures, whereas the SRK
equation provides a worse estimation and the VDWllagon leads to a very poor
estimation. In Fig 17 b), all equations of statedified in accordance with the Egs (52)-
(55) could be used at moderate and high tempestaned especially at low and
moderate pressures for which the influence of thedtvirial coefficient C is not
significant. It must be remarked that the previcemsoning has been made on the basis
of Eqs (51) without taking into account the simiglatdata obtained from the chaotic
oscillations, which leads to poor results for theial coefficient C. This fact
corroborates the convenience of using chaotic behato estimate the virial
coefficients. On the other hand, table 3 showssihmilation data and parameters that

have been used with all quantum gases.

TABLE 3 SIMULATION DATA AND PARAMETER VALUES FOR QU ANTUM

GASES
He 4 He 3 B D, Ne
P. (bar) 2.28 1.17 13.13 16.64 26.53
Te (K) 5.20 3.31 33.18 38.25 44.40
P (bar) 6.76 6.01 20.5 20.4 27.3
T (K) 10.47 10.55 43.6 43.6 45.5
P: (MPa) 10 0.18; 0.015 10 35 20
Ps (MPa) 7 0.14; 0.01 7 25 15
AT (K) 45-800 2.6-30 40-600 98-450 50-900
M (gr/mol) 4.003 3.016 2.016 4.032 20.180
fm 15 15 ; 20 4 15 0.08
fp 0.85 2.6;3 1 1.1 0.9
fFv 0.75 1.8:2 0.75 0.68 0.3
feFv 4 15;05 3 5 4
n 11.4995 29.5244 30.6972 12.1814 11.0279
s (A) 2.551 2.56 2.827 2.982 2.82
elks (K) 10.22 10.2 59.7 37 32.6
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5.2 Helium 3

The previous procedure will now be applied to H®li 3. The simulation
parameters for this gas are twenty-one valueshiertémperaturesylbetweens.5 and
30 K as well asP; = 0.18 MPa andPs = 0.14 MPa (both of them above the critical
pressure). Taking into account Egs (11) we ch@ose0.26, w, = 0.69 rad/s,by = 3
mA™.s® andb; = 0.03 mA™- s With the previous valueky, is obtained for each
temperaturely to obtain self-oscillating behavior when the caiotis given by Eqs
(15)-(17) are fulfilled. Therefore we obtain twertdge values forKy. between
3.9333-16 and2.9533-16 s° with ; = 300s. It is assumed that the time consBpbf
the pressure probe is varied harmonically as shovwiqg (27) takingorty, = 0.8 rad/s,
twenty-one values fof,, between5 sand10 s and other twenty-four values f8&m
between4.1667 sand 5.5556s. The simulation is carried out by using the SRK
equation of state (see Appendix) with a simulastep of T = 0.02 s and Egs (45) with
fu = 15, b = 2.6, fFv = 1.8andfeFv = 1.5(see table 3). The estimated values for B and

C are shown in Figs 18 a) and b).
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c) Time t (s) d) T, (K)

Fig. 18 Virial coefficients for the He3 using the SRK edaatof state. a) Experimental and simulated
values of virial coefficient B witiymin> T.. b) Experimental and simulated values of viriafticient C.

c) Simulated pressures Bor the temperatures of 5.5 K, 6 K and 7 K. Theidl pressure of 1.4-10
N/m? is reached for the temperatures of 5.5 K and @)KEstimation of the second virial coefficient at

low pressure (0.015 MPa) by using the PR equati@tate withT,n< T..
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Fig 18 c) shows the pressuresdBrresponding to the temperatures of 5.5 K, 6 K
and 7 K. It should be noted that for 5.5 K and @&hi§ pressures are not chaotic, and
after a transient they eventually reach the despezbsure of P= 1.4.16 N/m?.
Consequently, the first two points of Fig 18 a) wha slightly divergent behavior
respect to the experimental values. It should belled that this issue was discussed in

the analysis of Fig 3 for self-oscillating behavior

To verify that the proposed method can be appietemperatures below the
critical one, a new simulation has been carried yuusing the PR equation of state
with fy, = 20, fp= 3, fFv = 2 andfeFv = 0.5(see Table 3). In this case, sifl¢gin = 2.6
< Tc, the corresponding saturation pressure has beeuolad from Eq (42) and the
pressureP1 = 0.015MPa has been chosen below the saturation pressuagoid
entering in the biphasic zone. Due to the low pressghe coefficient B is the dominant
one in the virial expansion, whereas coefficierar@ higher order virial coefficients are
negligible. It should be noted that the experimeata simulated data are in reasonable
agreement both for the SRK and PR equations of.gt@ally, it has corroborated that

similar results to the ones shown in Fig 17 araioled for the Helium 3.

5.3 Hydrogen

The simulation data for the hydrogen consist of nityweone values for the
temperatures oTbetweerd0 K and600 K as well as?; = 0.18 MPa andPs = 10 MPa
(both of them above the critical pressure). Takitg account Eqs (11) we choose
0.26,w, = 0.69rad/s,by = 3 mA™-s® andb, = 0.03mA™.s% With the previous values,
Kne is calculated for each temperatufgto obtain self-oscillating behavior when the
conditions given by Egs (15)-(17) are fulfilled. &refore we obtain twenty-one values
for Ky, betweent.07-10 and1.8236-18 s®with z; = 300ss.

Like previously considered, the time constaptof the pressure probe is varied
harmonically as shown in Eq (27) takiagm, = 0.8 rad/s, twenty-one values fQ,,
betweerb sand10 s and other twenty-four values &t betweent.1667s and5.5556
s. The simulation is carried out by using the SRjdation of state (see Appendix) with

a simulation step of T = 0.02 s and takfpg= 4, fr = 1, fFv = 0.75 andfeFv =3 in EQs
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(45) (see Table 3). Figs 19 a) and b) shows thaestimated values for B and C are

both in good agreement with the experimental data.
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Fig. 19a) Estimation of second virial coefficient for thgdrogen at temperatures above the critical one.
b) Estimation of the third virial coefficient foné¢ hydrogen.

5.4 Deuterium

The simulation data for the deuterium are twentg-ealues for the temperatures
To between98 K and450 K as well as?; = 35 MPa andPs = 25 MPa (both of them
above the critical pressure). Taking into accougs EL1) we choosé = 0.26, w, =
0.69rad/s,bp = 3 mA™.s® andb; = 0.03 mA™-s% With the previous valued(. is
calculated for each temperatui® to obtain self-oscillating behavior when the
conditions given by Eqgs (15)-(17) are fulfilled. &refore we obtain twenty-one values

for Ky, betweer6.412-10 and4.7005-18 s°® with 7; = 300s.
The time constant,, of the pressure probe is varied harmonically asvshin

Eq (27) takingwtm = 0.8 rad/s, twenty-one values fdi,, between5 s and 10 s and
other twenty-four values foAr, between4.1667s and5.5556s. The simulation is
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carried out by using the SRK equation of state fgg@endix) with a simulation step of
T =0.02 s takindy = 15, # = 1.1, fFv = 0.68 and feFv =5 in Eqs (45) (see table 3).
The estimated values for B and C are shown in BigaRand b), whereas Fig 20 c)
shows the exponemtof the Mie intermolecular potential calculatednfrdcq (46). The
mean value of is 12.1814, which is compatible with the Lennaotiels intermolecular
potential of Eq (36). On the other hand, Fig 2@l)ws the chaotic displacement of the
dimensionless valve plug as a function of the timbich allows to appreciate small

time intervals where the valve remains closed.
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Fig. 20a) Estimation of the second virial coefficient fbe deuterium at temperatures above the critical
one. b) Estimation of the third virial coefficiefdr the deuterium. ¢) Simulation data of the virial
coefficient B for the deuterium and estimated valéer the exponem of the intermolecular potential
given by Eq (44). d) Chaotic oscillations of thendnsionless valve plug displacement as a functfon o
the time.

5.5 Neon

The simulation data for the neon consist of twesdyen values for the
temperatures gf'between50 K and 900 K as well asP; = 20 MPa andPs = 15 MPa
(both of them above the critical pressure). Takirig account Eqgs (11) we choose
0.26,w, = 0.69rad/s by = 3 mA™-s® andb, = 0.03mA™ s% With the previous values,
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Kne is calculated for each temperatufgto obtain self-oscillating behavior when the
conditions given by Eqgs (15)-(17) are fulfilled. &rkfore we obtain twenty-one values
for Ky, between2.69-10 and1.6216-10 s° with ; = 300's. The time constart, of the
pressure probe is varied harmonically as showngn(%) takingwtn = 0.8 rad/s,
twenty-one values fof,, between5 s and 10 s and other twenty-four values f8&m
betweend.1667s and5.5556s. The simulation is carried out by using the BRation
of state (see Appendix) with a simulation step of 1.02 s and takinfy, = 0.08, ¢ =

0.9, fFv = 0.3andfeFv =4 in Eqs (45) (see Table 3).

The estimated values for B and C are shown in Figa) and b), whereas Fig 21
c) shows the exponentof the Mie intermolecular potential with valuesging from
22.8556 to 10.6529 with a mean value of 11.027hSwalues forn have been

calculated taking into account the values of B @mhare also plotted) obtained in

accordance with Eq (50).
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- % ©  Simulated Data
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11 _4(]1:*/ o
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Fig. 21a) Estimation of the second virial coefficient the neon at temperatures above the critical one.
b) Estimation of the third virial coefficient fohé neon. ¢) Second virial coefficient for differemaiues of

the Mie intermolecular potential exponent.
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It should be remarked that the Lennard-Jones pdesiseeande used in the Mie
potential play an important role in the estimatafrthe virial coefficients for quantum
gases. For this reason, we shall analyze the guafitc and € by applying the
generalized Mie potential given by Eqs (44) and) (&gether with the theoretical
estimation of virial coefficient B defined in Eq8¥% This procedure aims to determine
the values ob ande as functions of the temperature, taking into antdbe exponent
n(T) of the Mie potential given in Eq (44) as showrkig 21 c) for Ne.

Assuming that the values of B obtained from theotlhasimulation data
approximate the theoretical values of B given byatgpn (48), the following relation

holds:

where the subscripmulatedandtheoreticalrespectively indicate the use of chaotic
simulated data and Eq (50). Now assigning tbe experimental value of the Lennard-
Jones potential, Eq (50) allows to calculater different values of Tand T, where |
is the minimum value of the input temperatureahd T, ranges between;Tand the
maximum value of §. The same procedure can be applied interchangimge, which

allows estimating: at different temperatures. It should be noted, thaice the term

du(r,T)/dr under the integral of Eq (50) is proportional & the relation
B[T,n(T,)]/§ T.«{T)] only involves the parametere in the exponent

exp[ —u(r.T)/k;T], which attenuates the dependence tmsome extent.

Fig 22 a) shows the estimated valuessf@as functions of the input temperatures
To together with the experimental values indicatethanlegend, taking into account the
estimated values of the virial coefficient B for4Jld+,, Ne and D. The case for He3
has not been plotted since the temperature rangeryssmall (between 5.5 K and 30 K
as shown in Fig 18 a)). The averages of the sirdlaalues o6 for He4, B Ne and B
are 2.5026- 18 4.0247-18° 2.7714-18° and 2.8594-I8 m respectively, whose
relative errors respect to the experimental vahres1.8969 %, 42.3653 %, 1.7223 %,

and 2.3438 %. Consequently, the values o&n be regarded as adequate except for H
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Such discrepancy for Halso appears for He3, and it is due to the faat the mean
value ofn for both gases in table 3 is far away from 12 (ealor the Lennard-Jones
potential). On the other hand, Fig 22 b) showsrdsailts for the parameter In this
case, the averages of the simulated valuesfof He4, H Ne and D are 1.4128- I¢,
8.3803- 107 4.5065-13° and 5.1170- 18 J respectively, which are very close to the
experimental values. Indeed, the relative erroitsvéen the previous values and the
experimental results are 0.1233 %, 1.6710 %, 0.2228nd 0.1681 %.
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Fig. 22 a) Parametes used in the Mie Potential as a function of the gmmut temperature gl b)
Parametet used in the Mie Potential as a function of theigpst temperature ol

An important aspect related to the methodology sanmed in the flowchart of
Fig 13 is that the presence of chaotic oscillatigmsessential to achieve a good
estimation of the virial coefficient8(T) and C(T). To corroborate this assertion we
shall consider the estimation of the virial coaéiits for the Helium 4, which is a
particularly interesting case (see Figs 14 and BES8j).this purpose we consider twenty
values for the temperatur@s betweend5 and800 K, as well as?; = 10 MPa,Ps = 7
MPa (both of them above the critical pressure) ®¥rd 10° m®. Furthermore, taking
into account Egs (11) we choode 0.26, w, = 0.69rad/s,by = 3 mA™-s3 b, = 0.03
mA™.s? and a constant valuy, = 8.4146 (1/mA* ). With such parameters, the

conditions for the appearance of a weak focus giwerEqs (15)-(17) are no longer
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fulfilled. In addition, the harmonic variation dii¢ time constant of the pressure probe

given by Eq (27) is eliminated by taking a constealue T, = 30 s for each input

temperaturdy.

Figs 23 a) and b) depict the simulation resultstf® pressurd,(t) and the
temperaturd (t) showing that the chaotic regime has completelggpsared and that a
new self-oscillating behavior appears. In thisaitn, Figs 23 c¢) and d) show that the

estimations oB(T) andC(T) are much worse than the previously obtained inlbig

i1
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=6 i iy, (e Y
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a) Time t(s) b) Time t (s)
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m‘g ***ﬁ.*** 4t
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Fig. 23a) Self-oscillating behavior of the pressure atdahtput of the control valve for Helium 4. b) Self
oscillating temperatures of the gas inside the alesanging from 45 to 800 K. ¢) Experimental and
estimated values for the second virial coefficiBrior Helium 4 obtained from non-chaotic oscillaiso

d) Experimental and estimated values for the thir@l coefficient C for Helium 4 obtained from nen

chaotic oscillations.

6 Conclusions

In this paper, a theoretical device has been aedlgt low and high pressures to
obtain self-oscillating and chaotic behaviors whitive been used to estimate the
second and third virial coefficients of severall igases including quantum gases. The

device is formed by a mechanical subsystem inctu@nPI controller and a control
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valve connected to a thermal subsystem, whichrieéd by an accumulation vessel and

connection pipes.

The thermodynamic model of the control valve, Ritoaller, pressure probe and
thermal subsystem has been defined by six nonlidg@rential equations with one-
way coupling from the mechanical subsystem to thermhal one. From a set of
physically meaningful parameter values it has beenfied that the mechanical
subsystem can reach a self-oscillating behaviouragg) cubic and high precision

equations of state.

By treating the P-V-T simulation results (pressumolumes and temperatures)
obtained with the SRK equation of state as if wexperimental, the second and third
virial coefficients have been estimated and congpari¢h the experimental data for the
methane and argon. It has been shown that theosalfating behavior provides a
proper estimation of the second virial coefficiamtsome ranges of temperature but a
significant error in the third viral coefficient.ugh estimation error is due to the
oscillating (non constant) temperatures in the aumdator vessel as well as the
periodicity in the pressures and gas densities unedsby the pressure probe. To
overcome such issues, the variability of the sitedladata has been increased by
leading the system to a chaotic regime and mainiirthe accumulator vessel

temperatures nearly constant by increasing itsaelu

The chaotic behavior has been obtained from theoselllation conditions by
introducing a harmonic disturbance in the time tamsof the pressure probe. With this
procedure, the estimation of the second and thndl \coefficients is better in a wide
range of temperatures, which demonstrates thattthetic behavior provides a better fit
to experimental data than the one provided by éffeoscillating behavior.

The device in chaotic regime has also been usebtimate the second virial
coefficient of a mixture of gases (dry air) by s high precision equation of state and
assuming an intermolecular potential of Lennardedoto calculate the interaction
coefficients of the mixture. It has been shown thatsimulation data are very close to
the experimental results for the second virial toeht at temperatures above and

below the critical one.
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The methodology used in the paper has been exteimdgdantum gases (H4,
He3, K, D,, Ne) by using the effective critical constants ified by a parameterized
temperature dependent function with the same famalf quantum gases. The purpose
of such function relies on using cubic equationstafe to estimate the second and third
virial coefficients. In this sense, simple cubications have been investigated showing
that, in all cases, the estimation of the secomdlvtoefficient is in good agreement
with the experimental data and the third virial ficent is acceptable in some ranges
of temperature. In addition, the radial distribatifunction has been also investigated

taking into account an intermolecular potentiaMié type.

This manuscript has provided a very simple devibélkvnot requires a control
system to maintain a nearly constant temperatuee@umulator vessel and that can be
applied to investigate different equations of stateeal gases as well as their mixtures.
In adition, the theoretical system presented is Work could be used to calculate the
thermodynamic properties of real gases and theiturgs from the knowledge of the
second and third virial coefficients calculatednfréthe P-V-T data obtained with any

equation of state.

Regarding the choice of an equation of state fgivan gas (specially in the
absence of experimental data), the multiparametdocations of state based on
Helmholtz energy are the best available equatiamd generally provide the best
simulation results. However, these equations armpéex to implement in the
simulation process and the parameter values thephia are not always known for all
gases. For this reason, cubic equations of statdean advantageous alternative, and
indeed they provide good results in the estimatibB(T) andC(T) for quantum gases,
as it has been verified in this work.

Finally, the main advantages of the methodologysm®red in this work can be
summarized as follows. i) It can be used for theregion of the second and third virial
coefficients, both for individual gases and mixtul®/ using a computational program
which can be applied with any equation of stajeThe method is flexible, rapid and
economic. iii) It is possible to estimate the \iaefficients B and C in temperature

ranges for which there are no experimental dajal e methodology used in this paper
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shows that it is possible to compare the relativerdor the pressure by using several
equations of state in different pressure range3he) methodology can be applied with
good results for quantum gases by using very simaldified cubic equations.
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Appendix

In accordance with Eq (18), the parameters of thkicc equations are the
following ones: T, = T/T. and P, = P/P. denote reduced temperature and pressure
respectively, whereak;,, P. andw are respectively the critical temperature, théoai
pressure and the acentric factor of the considgasd16-22], [24].

1) Redlich-Kwong (RK) equation of state

2
@(T) — aa(];) : 51 =b:£=0;a= 0.4274ém o= 0-086é3’-L
R Ty

n=b U(Tr)=ﬁ

r

i) Soave-Redlich-Kwong (SRK) equation of state
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2
O(T)=aa(T);d=b:e=0;a= 0.4274§R;—°) b= 0.086(33;—c
: :  (A2)

r

a(t)=[ #( 048 1524~ 0.1a8)( -1°°)]

iii) Peng-Robinson (PR) equation of state
2
o(T)=aa(T) g=2bie=-8 in=b ;& 0.4572&;) = 0.07%16
a(Tr)z[}( 0.37464 1.54a8- 0.266Y( _1105)}2
(A3)
iv) Soave (S) equation of state
2
O(T)=aa(T) 0=b = O.0017{§%j

r
C

2
a= 0.421@ b= 0.083%T2 (A4)

2

a(T,)=[1+(0.4998 15928~ 0.19568+ 0.028)( -1°°)]
v) Peng-Robinson equation of state with translatidome (PRT)

2
O(T)=aa(T) ;g =20t+b):e=¢ ;n=b;a= 0.4572£RF)L) = 0_07%1:

m = 0.38440% 1522766~ 0.213868  0.034616  0.002976
a(m)=[ +m( -1)]

tO:RI(—o.014473+ 0.067498- 0.084852+ 0.067288  0.01%#46

tl:RTCK;?j_ZC} ; B=-10.244700 28.631200 t=1,+(t-t) €uf ~T|]

(A5)
where z is the critical compressibility coefficient. Inishcase, the equation of state

can be written as:

Cvtt=b (vi)(vEtr B+ v B

RT aa (T,) (A6)

vi) Van-der-Waals equation of state with translatiolure (VDWT)
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2
o= 27(RE) . 1IRT
64 P, 8 P

C

O(T)=ax(T) ;4 =2(t+b ; e=f

m =0.48523 1.62400- 0.21884 a(T)=[ "'m( _IO'S)T

=RPT°(0.0348 0.0937- 0.1661+ 0.125) (A7)

c

F;Tc E’-zc} 17,= (@890~ 0.0700~ 0.020%

B=10.244700 28.63120D t=t,+(t,~t,) &xf| ~T]

L

t, =

The equation of state can be written as:

(A8)
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