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Themixed lineage leukemia (MLL, also knownasKMT2A) gene is
frequently rearranged in human acute leukemia. Chromosomal
rearrangements involving MLL are biologically and molecularly
very intriguing because of the unique ability ofMLL to “break and
fuse” with more than 135 fusion partners, as recently reported by
the 2017 MLL Recombinome Consortium.1MLL fusions are
commonly associated with poor disease outcome in infant,
pediatric, adult, and therapy-induced acute leukemias. The
contribution ofMLL fusions to leukemia initiation and evolution,
therapy resistance and relapse is still under active investigation. In
this issue of HemaSphere, Stavropoulou et al2 report a novel
inducible transgenic mouse model of MLL-ENL-driven mixed
lineage acute leukemia which reveals that the cell-of-origin and the
fusion gene expression level are both critical determinants for
MLL-ENL-driven acute leukemia. Here, we revisit the main
advantages and pitfalls for current mouse models for MLL-AF4,
MLL-ENL, and MLL-AF9, the commonest MLL translocations
found in human acute lymphoid and myeloid acute leukemia.
The large variety of mixed lineage leukemia (MLL) gene

fusions (affecting 11q23) found in acute leukemia indicates that
the MLL gene is a hotspot genomic region for chromosomal
translocations.1,3 Longitudinal genomic studies reveal large

tumor-mutational heterogeneity for secondary driver mutations4

but not for MLL fusions, which are clonal and present in all
leukemic cells, thus representing early initiating leukemogenic
events.5,6MLL-rearranged leukemias represent a major subgroup
of acute leukemias in infants and pediatric patients but also affect
adults (de novo or therapy-related acute leukemia). MLL
rearrangements are usually found both in B-cell acute lympho-
blastic leukemia (B-ALL) and acute myeloid leukemia (AML) as
well as in biphenotypic acute leukemias in whichMLL fusions are
a hallmark pathogenic event.7 Although there are several clinical
and biological factors influencing the long-term prognostic value
ofMLL rearrangements, the current molecular diagnostic criteria
place acute leukemias with 11q23 rearrangements as intermedi-
ate/high-risk patients.
Several reasons have contributed to a very dynamic research

over the last 10 to 15 years on modeling the leukemogenic impact
of MLL fusions. Among these are the unfavorable clinical
outcome of these patients, the relatively high frequency of MLL
leukemias in children, the prenatal origin ofMLL rearrangements
in utero during fetal hematopoietic development and the
impressively large number of distinct MLL partners eventually
contributing to the same (or similar) phenotype. A wide array of
transgenic mouse models have been generated for studying the
leukemogenic mechanisms of MLL fusions, with special interest
in the commonest MLL fusions: MLL-AF4, MLL-ENL, and
MLL-AF9 resulting from the balanced translocations t(4;11), t
(11;19), and t(9;11), respectively. These available mouse models
have proven very useful to further our understanding about the
leukemogenic role of MLL fusions; however, they are all
somehow subjected to disadvantages which prevent them to
faithfully reproduce all the disease phenotypic and latency
features. The different experimental strategies, molecular
approaches, inducible systems and target cells certainly contrib-
uted to the current “controversial” state-of-the-art. Aspects such
as the cell-of-origin in which the translocation is specifically
induced, the timing and level of MLL fusion expression, the
interaction with the bone marrow microenvironment, and the
differences between transgenic approaches contribute to the
existing diversity of MLL mouse models. The CRISPR/Cas9
system has revolutionized the way to approach functional
genomics.8,9 We envision that the use of more accurate models
generated by genome engineering techniques in the appropriate
human and mouse target cells will soon transform the field of
MLL leukemia biology.
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MLL-AF4/t(4;11) mouse models

The translocation between chromosomes 4 and 11, t(4;11),
which fuses MLL to the AF4 gene, is the most common genetic-
chromosomal alteration found in infant leukemia and is
associated with a particularly dismal prognosis.6,10 It mostly
manifests itself as B-ALL; however, as other MLL-rearranged
leukemias, can also appear biphenotypic, with patient blast cells
coexpressing lymphoid and myeloid markers. Importantly, it has
the capacity to undergo lineage switching, from B-ALL to AML,
following either conventional chemotherapy-based treatment or
immunotherapy with CD19-specific chimeric antigen receptor-
modified T cells (CAR-T cells).11 Understanding the lineage
preference and plasticity ofMLL-rearranged leukemias and how
this is influenced by the properties of the cell-of-origin and the
specificMLL fusion is thus of utmost importance for the design of
successful treatment strategies.
Recent sequencing studies have revealed MLL-AF4+ infant B-

ALL to have one of the most silent mutational landscapes with no
other recurrent genetic abnormalities apart from the initiating t
(4;11) translocation.12 Despite this seemingly genetic simplicity,
it has proven to be extremely difficult to model MLL-AF4+
leukemia in mice. The first attempt involved a straight knock-in
of the human AF4 gene into the mouse MLL locus; however,
despite considerable embryonic lethality, the surviving mice
developed hematological malignancies only after a very long
latency, and without an acute leukemia phenotype, eventually
succumbing to lymphoid and myeloid hyperplasias and, most
commonly, B cell lymphomas.13 An alternative model was based
on the invertor technology and allowed cell lineage-specific
expression ofMLL-AF4 via Cre recombinase-mediated inversion
of human AF4 within the mouse MLL locus, creating an MLL-
AF4 fusion.14 Interestingly, targetingMLL-AF4 expression to the
T cell and the B cell lineage produced a B cell malignancy in both
cases, thus demonstrating a clear B lymphoid bias; however,
disease was once again a more mature B lymphoma that
developed after a long latency. Using the same mouse model, but
initiating MLL-AF4 expression already in the first definitive
hematopoietic cells generated during development, thus more
closely recreating conditions in the infant disease, Barrett et al.15

were able to describe the preleukemic prenatal stages and the
lymphoid-primed multipotent progenitor (LMPP) as the likely
cell-of-origin, which was also highlighted in the present study by
Stavropoulou et al2 as a potential cell-of-origin for MLL-ENL.
However, embryonic expression of MLL-AF4 in this model did
not shorten disease latency and did not result in acute leukemia
development. An acute leukemia phenotype with a much shorter
latency was achieved in the conditional Mx1-Cre-induced model
generated in the Armstrong lab.16 Around 30% of the mice
developed AML, while approximately 40% succumbed to ALL,
albeit with a slightly more mature pre-B phenotype. Using this
model, the authors were able to highlight H3K79 methylation as
a hallmark for MLL-AF4+ leukemia.
Despite the valuable knowledge gained from these genetic

models, their failure to faithfully recapitulate the human disease
suggests that they are missing crucial elements. B-ALL has
generally been challenging to model in murine models. One
possible explanation may be that there are fundamental differ-
ences in lymphoid development between mice and humans. This
notion has recently received a lot of support in a study where
mouse progenitor cells transduced with a human–mouse MLL-
Af4 construct induced AML upon transplantation, while human
progenitors transduced with the same construct were able to

initiate pro-B ALL.17 Other crucial factors may include
contributing immune stimuli which is somewhat supported by
the stronger phenotype observed in the model that relies on polyI:
C injections for fusion gene expression,16 which is known to
induce an inflammatory response. The stromal microenviron-
ment may also play an important role in leukemia initiation as
indicated by the detection of the t(4;11) translocation and fusion
transcript in a subset of stromal cells from leukemia patients.18 A
model like the one published by Stavropoulou2 would lend itself
particularly well to addressing this question as the timing and
level of fusion gene expression can be tightly regulated in any cell
type.
Despite the silent mutational landscape, activating mutations

in the RAS pathway have been commonly observed in MLL-AF4
+ patients; however, these were subclonal and often disappeared
at relapse.12 Accordingly, an activating KRAS mutation proved
unable to initiate leukemia in a lentiviral MLL-AF4 transplant
model, but was shown to enhance engraftment and extramedul-
lary hematopoiesis.21 The current MLL-ENL study by Stavro-
poulou also detected an activating KRAS signature in the
leukemia-propagating population suggesting that RAS pathway
activation, despite not being essential, is nevertheless an
important contributing factor. What sets MLL-AF4 apart from
other MLL-rearranged leukemias is a possible role for the
reciprocal fusion, AF4-MLL. It is expressed in a large proportion
of patients, but not all, arguing against an essential function,
which is supported by a recent study in which it was shown to
enhance engraftment, but was unable to initiate disease.22 While
there have been some important advances and discoveries
recently, a genetic mouse model for MLL-AF4+ infant B-ALL
in which all stages from prenatal initiation can be studied via
disruption of normal fetal hematopoiesis to full-blown early
onset pro-B ALL in vivo has not yet been generated. Uncovering
the missing elements may highlight important therapeutic targets.
Table 1 summarizes current mouse models available for MLL-
AF4+ acute leukemia.

MLL-ENL/t(11;19) mouse models

Mixed-lineage leukemia-eleven-nineteen-leukemia translocation,
known as t(11;19)/MLL-ENL is found in both adult and
pediatric B and T-ALL and also in adult AML, in this case being
associated with favorable or intermediate prognosis. MLL-ENL
is more common in B-ALL than AML and in contrast to MLL-
AF4 andMLL-AF9, it is the only 11q23 abnormality found in T-
ALL. An important feature of MLL-ENL is the ability to cause
lineage reassignment and switch between AML and ALL by
reprogramming the transcriptome of MLL-ENL+ cells.6,23

To address how MLL-ENL specifies leukemia phenotype and
outcome, different in vivo mouse models have been described.
TheMLL-ENL translocatormice which carries the chromosomal
rearrangement after Cre-loxP-mediated recombination, was
crossed with different lineage-specific Cre lines to express
MLL-ENL in different compartments, such as HSC (Lmo2-
Cre), B/T progenitors (Rag1-Cre), T cells (Lck-Cre), and B cells
(CD19-Cre). These translocator models evidenced that targeted
cells influence leukemic development and not all compartments
could initiate leukemia.23,24 For example, MLL-ENL expression
in B cells did not result in a malignant phenotype.25 Later on,
studies using tamoxifen or doxycycline-inducible expression of
MLL-ENL (iMLL-ENL) in distinct hematopoietic populations
were performed to fine-tune the dosage and restrict the window
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of protein expression.26,27 When different populations from
Col1a1-tetO-MLL-ENL mice were isolated and transplanted
into DOX-treated mice, AML leukemia developed from multiple
progenitors (GMLP, pGM, committed myeloid progenitors
(GMP), and common lymphoid progenitors (CLP)) but not from
HSC, MPP or PreMeg/E.27,28 Now, a novel inducibleMLL-ENL
mouse model reported that hematopoietic stem and early
multipotent precursor cells (LT-HSC, LMPP, MMP, and
CMP) rather than GMP could act as cell-of-origin and give rise
to a biphenotypic leukemia.2

Given that MLL-ENL-initiated ALL was never observed in
mice, Ugale et al investigated the impact of inducible MLL-ENL
expression in lymphoid progenitors. They hypothesized that
MLL-ENL fails to initiate ALL owing to either fundamental
differences in lymphoid development between species or the
requirement of additional cooperating mutations in MLL-ENL+
cells. When different B and T cell developmental stages were
isolated from iMLL-ENL mice and transplanted into DOX-
treated recipients, only T-cell DN1 progenitors and B-cell
progenitors (BLP) gave rise to AML, likely due to their latent
myeloid potential. If MLL-ENL fusion was coexpressed with an
active KRAS mutant form (KRASG12D), appearance of GMLP-
initiated AML leukemia was accelerated. Experiments addressing
the impact of sequential acquisition of oncogenic hits revealed
that the mutation order determines leukemia phenotype. Thus, a
T-ALL was observed when KRASG12D preceded MLL-ENL
whereas amyeloid leukemia wasmore commonwhenMLL-ENL
preceded KRASG12D.27

In spite of these studies, the nature of the leukemia initiating
cell (LIC) still remains controversial and not all MLL-ENL-
associated leukemia phenotypes observed in humans could be
recapitulated in mice. Differences inMLL-ENL expression levels
between the knock-in approaches could explain these discrep-
ancies since MLL-ENL leukemogenic capacity requires fusion
expression levels above those of the endogenous MLL1 gene.2 It
is likely that both lineage potential of the target cells and MLL-
ENL expression levels are key determinants for establishing
leukemia phenotype. Additionally, factors influencing the lineage
choice in LIC cells could exist and be elusive forMLL-rearranged
leukemias. Nonetheless, these mouse models proved useful for
initial drug screening studies as reported in the Ara-C induced

leukemia remission inMLL-ENL/Lmo2-Cre translocator mice.25

Their refinement will contribute to better in vivo MLL mouse
models for preclinical drug testing. Finally, despite a silent genetic
landscape in infant MLL-rearranged B-ALL in which only
mutations in PI3K-RAS signaling pathways were found12 a
whole-genome mutational landscape of MLL-ENL+ leukemias
has not been analyzed in a patient cohort sufficiently large as to
reveal recurrent cooperating mutations that could be functionally
explored in these mouse models. Table 2 summarizes current
mouse models available for MLL-ENL+ acute leukemia.

MLL-AF9/t(9;11) mouse models

Translocation t(9;11) results in the expression of MLL-AF9
fusion protein found in both B-ALL and AML in infants and
children, and AML in adults.29 MLL-AF9+ leukemia is
associated with extramedullary tumor infiltration, frequent
relapses and variable prognosis depending on the age of the
patient and phenotype of the leukemia, being intermediate
risk (childhood) or intermediate-high (adulthood) prognosis in
AMLs, and overall poor prognosis for childhood B-ALL.30MLL-
AF9-induced leukemia has been easier to model in vivo in
comparison to other MLL-rearranged leukemias, mimicking
phenotype and latency of the human disease quite accurately,
which has allowed an extensive research of the biology of this
disease. Besides retroviral models where the fusion oncogene is
introduced into the target cells by viral vectors with an
uncontrolled expression-integration, numerous mouse models
have been developed to recreate a more physiological initiation of
the disease.
The first attempt to recreate MLL-AF9 translocation in mice

was performed by the Rabbitts’ lab using a targeting vector
encoding for Mll (exon 8)-AF9 (human sequence) fusion was
inserted by homologous recombination into mouse ES cells in the
endogenous Mll gene, thus being expressed at physiological
levels.31 Extensive characterization of the chimeric and hetero-
zygous mice32 showed that they recapitulate a human AML
disease with the similar expansion of immature myeloid cell
populations, macroscopically symptoms, and organ infiltration.
Interestingly, 2 out of 24 chimeric mice developed B-ALL, similar
to the proportion (∼10%) of MLL-AF9+ B-ALL described for

Table 1

Summary of MLL-AF4 Mouse Models

Strategy Cre Line Disease Phenotype (LIC) Average Latency Refs.

Mll-AF4 constitutive knock-in NA Lymphoid and myeloid hyperplasia 520 d Chen et al13

B-cell lymphoma (most common)
MPD-like myeloid leukemia
Erythroid leukemia

Mll-AF4 conditional invertor • Lmo2-Cre (HSC) Embryonic lethal N/A Metzler et al14

• Rag1-Cre (B, T cells) B-cell lymphoma 317–466 d
• Lck-Cre (T cells) B-cell lymphoma 416–472 d
• CD19-Cre (B cells) B-cell lymphoma 460–475 d
• Vav-Cre (all definitive hematopoietic cells) B cell lymphoma (most common), T cell

lymphoma
556 d Barrett et al15

• VE-Cadherin-Cre (hemogenic
endothelium+all definitive
hematopoietic cells)

B cell lymphoma (most common), T cell
lymphoma, lymphoproliferative disorder

437 d

Mll-AF4 conditional knock-in Mx1-Cre Pre-B ALL or AML 152 d Krivtsov et al16

144 d
MLL-AF4 transgenic NA Pro-B ALL or lymphoma 170 d Tamai and Inokuchi20

ALL=acute lymphoblastic leukemia, AML= acute myeloid leukemia, HSC=hematopoietic stem cells, MPD=myeloproliferative disorder, NA=not applicable.

(2018) Vol:No www.hemaspherejournal.com

3

http://www.hemaspherejournal.com


HEMASPHERE-2018-0057; Total nos of Pages: 6;

HEMASPHERE-2018-0057

patients with a t(9,11).29 Using the same model, Kersey’s lab
assessed the potential of endogenous Mll-AF9 to transform
phenotypically defined populations (HSC, CLP, CMP, andGMP)
and to initiate leukemia.33 They showed that both HSCs and
CMPs could be immortalized in vitro and transformed in vivo by
MLL-AF9 so AML was initiated even when a low number of
MLL-AF9+ cells were transplanted. In contrast, committed
myeloid progenitors (CMP) were somehow refractory to MLL-
AF9 transformation and a large number of MLL-AF9+ cells had
to be transplanted for leukemia initiation. GMP progenitors
could not be immortalized by MLL-AF9 so far, indicating they
are not target cells for such a fusion. In addition, the Rabbitts’ lab
developed a conditional knock-in mouse model to address which
is the cell-of-origin of this disease.34 This model consisted in a
translocator mice where a loxP sequence was included at the
desired breaking point in the sequences of both Mll and Af9
genes, promoting their recombination upon Cre expression. To
specifically promote the recombination in particular cell types,
this translocator model was bred with specific Cre-models (Lmo-
Cre, expressing Cre enzyme in the HSC compartment and Lck-
Cre expressing Cre in the T-cell compartment).23 Contrarily to
the Mll-Enl model described above, the Mll-Af9 model was
unable to recapitulate hematological malignancies whenMll-Af9

was expressed in the T cell compartment. However, when
expressed into more primitive cells/HSCs, a myeloproliferative
disorder (MPD)-like myeloid leukemia was observed, underlying
the importance of the cell-of-origin for the oncogenic fusion to
drive a specific leukemia development/phenotype.
Inducible transgenic models allow for temporal control of

transgene expression. An inducibleMLL-AF9 (human sequence)
model was developed previously in the Schwaller’s lab,19 similar
to the iMLL-ENL model reported in this issue of HemaSphere.2

In the iMLL-AF9 study, authors recreated AML in mice upon
doxycycline administration, showing that the leukemic cells
become oncogene-addicted, since the disease regressed after
doxycycline removal, demonstrating that MLL-AF9 is necessary
for AMLmaintenance. They also investigated the cell-of-origin of
MLL-AF9-induced AML using purified LT-HSCs and GMPs
populations. Both populations gave rise to AML after doxycy-
cline induction but with different latencies. Resulting AML
showed a primitive progenitor phenotype, cytotoxic drug
resistance and a stemness and migration gene signature. They
also observed a subtype of LT-HSCs-derived AML (LT-HSCs-
early-AML), arising from a more immature HSC phenotype,
enriched for LICs and more aggressive than LT-HSCs-late- and
GMP-derived AML.

Table 2

Summary of MLL-ENL Mouse Models

Strategy Cre Line Disease Phenotype (LIC) Average Latency Refs.

Mll-Enl translocator model by LoxP/
Cre-mediated recombination

• Lmo2-Cre (HSC) Myeloproliferative-disease-like myeloid leukemia 120 d Forster
et al24

• Lck-Cre (T cells) Either lymphoid or myeloid neoplasia 550 d Drynan
et al23

• Lmo2-Cre (HSC) Myeloid leukemia
• Lck-Cre (T cells) AML and ALL 120–180 d Cano et al25

Rag1-Cre (B, T cells) Myeloid-like leukemia 170 d
• CD19-Cre (B cells) No phenotype 550 d

Tamoxifen-inducible MLL-ENL-ERTm
inserted at the endogenous locus

NA Long latency MPD with progression to AML upon
DDR inhibition

229–140 d (primary recipients) Takacova
et al26

165–140 d (secondary
recipients)

NA AML when expressed from progenitors, but not
from HSC

EFS: 5–30 wk depending on
targeted cell transplanted
(GMLP<pGM<CLP<GMP)

Ugale
et al27

NA AML (T progenitors: DN1–DN3) DN1: 9–14 wk post-transplant Ugale
et al28

DOX-inducible MLL-ENL inserted at the
Col1a1 locus under tetracycline-regulated
control (Col1a1-tetO-MLL/ENL)

NA AML (BLP and Hardy fractions B–F) BLP: 20 wk post-transplant

KRASG12D upon in vitro
Tat-Cre recombination

AML (GMLP with simultaneous hits) Only MLL-ENL: 100 d

MLL-ENL�KRASG12D: 31 d
T-ALL (GMLP with sequential hits: KRASG12D first

and MLL-ENL later)
Only KRASG12D: 143 d

MLL�KRASG12D: 111 days
DOX-inducible MLL-ENL inserted at the Hprt
locus under tetracycline-regulated control
(iMLL-ENL)

NA 72 d (primary recipients) Stavropoulou
et al2

15 d (secondary recipients)
LT-HSC: 170 d post-transplants

Biphenotypic mixed lineage leukemia CMP: 120 d post-transplants
MPP: 61 d post-transplants
LMPP: 54 d post-transplants

ALL= acute lymphoblastic leukemia, AML= acute myeloid leukemia, BLP=B-cell progenitors, CLP= common lymphoid progenitor, CMP= committed myeloid progenitors, DDR=DNA damage response, DOX=
doxycycline, EFS= event-free survival, ERTm= ligand-binding domain of estrogen receptor, GMLP=granulocyte–monocyte–lymphoid progenitor, GMP=granulocyte and macrophage progenitor, LT-HSC=
long-term hematopoietic stem cell, LIC= leukemia-initiating cells, LMPP= lymphoid-primed multipotent progenitor, MPD=myeloproliferative disorder, NA=not applicable, pGM=pregranulocyte–monocyte
progenitor.
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In conclusion, MLL-AF9 mouse models have been able to
recapitulate the main features including phenotype and latency of
human ALL and AML using different mouse models expressing
either a chimeric (mouse–human) or a human version of the
fusion gene. Humanized models based on retro or lentiviral gene
delivery into human HSC followed by xenotransplantation into
immunosuppressed mice have also been developed in order to
better mimic the biology of the human MLL-AF9+ leukemia, but
similar transgene expression levels caveats were reported.
Cutting-edge genome editing (TALEN and CRISPR/Cas9)
strategies are currently been explored as more accurate
mechanisms to recreate the allele-specific exact translocation
process, with the advantages of reproducing endogenous
expression levels and also reciprocal translocations.35 These
models will, without hesitation, continue providing more precise
experimental tools for modeling MLL-rearranged leukemia.
Table 3 summarizes current mouse models available for MLL-
AF9+ acute leukemia.
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